THE UNIVERSITY OF CHICAGO

RESOURCE DISCOVERY IN LARGE RESOURCE-SHARING ENVIRONMENTS

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY
ADRIANA TOANA TAMNITCHI

CHICAGO, ILLINOIS
DECEMBER 2003

Copyright (©2003 by Adriana Ioana Iamnitchi
All rights reserved

ABSTRACT

Opportunistic sharing of Internet-connected resources is a low cost method for ob-
taining access to unprecedented-scale collections of resources. An essential service
in any resource-sharing environment is resource discovery: given a description of the
resources desired, a resource discovery mechanism returns locations of resources that
match the description.

Two resource-sharing environments are particularly well defined by applications,
user communities, and deployments: Grid and peer-to-peer systems. Grids are shar-
ing environments that rely on persistent, standards-based service infrastructures that
allow well-established, mainly professional communities to share computers, stor-
age space, sensors, software applications, and data across organizational boundaries.
Peer-to-peer systems are Internet applications that harness resources from millions
of autonomous participants. Thus, Grids provide infrastructure to support a variety
of applications on resources shared by relatively small communities; at the scale of
the peer-to-peer communities, remarkable sharing patterns are exhibited, such as free
riding and intermittent resource participation.

The focus of this dissertation is on solution design for resource discovery in Grids
of the scale and lack of reliability of today’s peer-to-peer networks. This hybrid target
environment requires fully decentralized solutions that scale with the number of users
and resources and tolerate intermittent resource participation.

To explore the solution space, we propose a taxonomy for resource discovery solu-
tions. This taxonomy proves to be a useful tool for discussing and comparing existing
solutions.

Using this taxonomy, we delimit and explore a portion of the solution space. We
build a scalable Grid emulator to evaluate mechanism performance in this subspace.
Large-scale experiments reveal that the performance of mechanisms in this subspace
is strongly dependent on sharing characteristics.

For inspiration, we turned to studying user behavior in various communities. We
uncovered a significant usage pattern in file-sharing communities: users naturally form
interest-based groups. This pattern can be exploited for system design in a variety of
problems: we designed a file-location mechanism, FLASK, that exploits and benefits
from this naturally emerging pattern. Trace-driven evaluations show FLASK leads to
lower response latency, good scalability, support for intermittent participation, and
satisfies requirements typical of scientific usage of data.

il

ACKNOWLEDGEMENTS

I am indebted to my advisor, Ian Foster, for 6 years of peer-to-peer collaboration:
[an always encouraged me to follow my own interests, under the motto ”What’s the
point in doing it if it’s not fun?” He often reminded me to look at the big picture.
The big picture now shows that an advisor has many students during his career but
is condemned to remain unique for each of his students.

With Janos Simon I had uncountably many conversations during these years:
our random walks between graph theory and the addressing forms in the Brazilian-
Portuguese provided many ideas incorporated in this thesis. Bruno Codenotti’s in-
sights helped shape this thesis and still provide good material for future work.

I am indebted for the access to the DO data to a team of scientists from Fermi
National Accelerator Laboratory: Lee Lueking first suggested this opportunity at
SuperComputing 2001; Ruth Pordes, Gabriele Garzoglio, and John Weigand helped
materializing it. I owe the access to Kazaa data to Nathaniel Leibowitz.

Parts of this thesis were presented in various meetings and conferences and im-
proved significantly thanks to feedback from the audience: I thank now to the
many people I cannot name. Discussions “on the road” were loaded with ideas and
suggestions from Laszl6 Barabasi, Stephen Eubank, Christos Papadimitriou, Karl
Czaikovski, Miron Livny, Zoltan Toroczkai, and Gabriel Istrate.

To Leo Irakliotis I owe the opportunity to teach in the Masters Program he leads.
His humor and philosophy of life made me feel at home. Not less important, his talents
in setting up the projector for my dissertation defense deserves a warm evyapioTw!

To Irina Athanasiu and Valentin Cristea, my professors from Politehnica Univer-
sity of Bucharest, Romania, I owe my interest for distributed systems. Gail Pieper
edited many of my writings during the years. She always took the time to write
detailed explanations of the writing rules that I repeatedly got wrong.

I often ran to my friends Radu, Andrei and Livache for help with statistics and
math questions. To have them, Raluca, and Lei around was one of the joys of living in
Chicago. Kavitha proved a constant friend and good colleague during the years. Al-
ways online for my silly questions, I gradually came to rely on Stephen for everything
not explained to my understanding in the Encyclopaedia Britannica, the Oxford Dic-
tionary, or by Google. He also proofread many of my papers and a significant part of
this thesis. To Anca and Andi I owe the wonderful time we spent in Southern France
and so much more.

Matei asked to be acknowledged for his perseverance and dedication at washing
dishes during his five years in Chicago. Without minimizing the importance and the
influence of his dish-washing skills on my research, his help and support manifested
in many other ways. Matei acted as the most constant (and the toughest) critique of

v

\%

my work; he gave feedback to all my papers; he was always careful to make me break
my “suicidal regime”, as he called the periods of intense work. We worked together
on many projects and papers, of which many ideas are found in this thesis.

I owe the peace of mind that made me finish this thesis to some wonderful people
who helped my father recover after a stroke: Dr. Tatiana Luchian made miracles. Our
wonderful friend Nora Mihoc did her share of impossible. My mother managed the
situation like only mothers can and provided invaluable support. With my brother
Marius I shared the joys and the worries during all these years. And all these would
have had no effect without my father’s optimism and perseverance.

For all I am, I am indebted to my parents.

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS

1 INTRODUCTION
1.1 The Resource Discovery Problem
1.2 Grid and Peer-to-Peer Environments
1.2.1 Target Communities and Incentives
1.2.2 Resources
1.2.3 Applications
1.3 Requirements for Resource Discovery
1.4 Thesis Roadmap

2 RESOURCE DISCOVERY IN DISTRIBUTED SYSTEMS
2.1 Resource Discovery: Components and Solutions
2.1.1 Four Axes of the Solution Space
2.1.2 Previous Solutions
2.2 Experimental Studies
2.2.1 Emulated Grid oo
2.2.2 Modeling the Grid Environment
2.2.3 Resource Discovery Mechanisms
2.3 Experimental Results L
2.3.1 Quantitative Estimation of Resource Discovery Costs
2.3.2 Effects of the Environment
2.4 SUMMATY o e e e e e

3 SMALL-WORLD FILE-SHARING COMMUNITIES
3.1 Intuitiono
3.1.1 Patterns, Patterns Everywhere
3.1.2 Research Questions
3.2 The Data-Sharing Graph,
3.3 Three Data-Sharing Communities
3.3.1 The DO Experiment: a High-Energy Physics Collaboration . .
332 TheWeb.
3.3.3 The KaZaA Peer-to-Peer Network
3.4 Small-World Data-Sharing Graphs

vi

— e
—
—

e
<

SOl =W W

3.4.1 Distribution of Weights 32
3.4.2 Degree Distribution o000 32
3.4.3 Small-World Characteristics: Clustering Coefficient and Aver-
age Path Length 32
3.5 Human Nature or Zipf’s Law? 40
3.5.1 Afhiliation Networks L. 40
3.5.2 Influences of Zipf’s Law and Time and Space Locality 43
3.6 Small-World Data-Sharing Graph: Significance for Mechanism Design 48
3.6.1 Relevance of the Data-Sharing Graph Structure 48
3.6.2 Relevance of Small-World Characteristics 49
3.7 Summary ... 49
FLASK: A FILE-LOCATION ALGORITHM FOR SMALL-WORLD COM-
MUNITIES 50
4.1 FLASK: Yet Another File-Location Mechanism 50
4.1.1 Motivation: Different Requirements 50
4.1.2 Intuition 02
4.1.3 RelatedIdeas oo 53
4.2 FLASK: Components 55
4.3 Overlay Construction 56
4.4 Clustering e 58
4.5 Locating Files in Small-World Networks 60
4.5.1 Information Dissemination 60
4.5.2 Request Propagation 65
FLASK: EXPERIMENTAL EVALUATION 67
5.1 Decentralized, Local Information-based Clustering 67
5.1.1 Triad Labeling oL 67
5.1.2 Discussion L Lo 71
5.2 Information Dissemination: Costs and Benefits 71
5.2.1 Experimental Setup 72
5.2.2 Experience Sharing L. 73
5.2.3 Disseminating Storage Information 86
5.3 Requirements Revisited 95
5.3.1 File Insertion and Removal 95
5.3.2 Node Volatility 99
5.3.3 Scalability with the Number of Files 99
5.3.4 Heterogeneity 100
5.3.5 Publishing Control 101
5.3.6 Support for Collections 101
5.3.7 Approximate Matches 103

5.3.8 NotaPanacea. 103

54 Summary . . .

6 LESSONS FOR RESOURCE DISCOVERY
6.1 FLASK in the General Resource-Discovery Framework
6.2 FLASK as a Resource Discovery Solution

7 DISCUSSION
7.1 Contributions .
7.2 Future Research

REFERENCES

viil

104

107
107
108

110
110
112

114

2.1

2.2
2.3

2.4

2.5

3.1
3.2
3.3
3.4

3.5

3.6
3.7
3.8
3.9
3.10
3.11

3.12

3.13

3.14

3.15
3.16

LIST OF FIGURES

Distribution of resources on nodes: balanced (all nodes have equal
number of resources) and unbalanced (a significant part of nodes have
DO TESOULCES). . « « « o vt e e e et e e e
Distribution of user requests.
Performance (in average number of hops) of learning-based forwarding
strategy for the two request distributions (Condor and uniform), in two
environments with different resource-sharing characteristics (balanced
B and unbalanced U).o
Performance (in average number of hops) of the best neighbor request
forwarding strategy under different user request and sharing charac-
teristics. L.
Performance of all four request-forwarding strategies for a Condor re-
quest load in the unbalanced resource-sharing environments.

Number of file requests per project in DO.
File popularity distributionin DO.
Number of file requests per day in DO.
Number of files (total and distinct) asked by each user during the 6-
month interval. L L
Requests per second (averaged over 15 min. intervals). In our experi-
ments we used the traces from the interval 40,000 and 80,000 seconds
(until right after the peak).
The file popularity distribution in Web follows Zipf’s law.
Number of requests per Web user.
The file popularity distribution in Kazaa follows Zipf's law.
Number of requests per user in KaZaa.
Requests per second in KaZaa (averaged over 100s)
The distribution of weights in D0 data-sharing graphs for different
intervals during the same period.
The distribution of weights in Web for data-sharing graphs for different
time intervals.
The distribution of weights in Kazaa data-sharing graphs for different
time intervals.
Degree distribution for DO data-sharing graphs.
Degree distribution for Web data-sharing graphs
Degree distribution for Kazaa data-sharing graphs

X

16
17

19

20

21

26
26
27

27

28
29
29
30
31
31

33

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25
3.26

4.1

4.2

4.3

4.4

4.5

Clustering coefficients (left) and average path lengths (right) of DO
data-sharing graphs and random graphs of same size. Similarity crite-
rion: 1 shared file during a 7-day interval. 37
Clustering coefficients (left) and average path lengths (right) of WWW
data-sharing graphs and random graphs of same size. Similarity crite-
rion: 10, respectively 100 shared requests during a half-hour interval. 38
Clustering coefficients (left) and average path lengths (right) of Kazaa
data-sharing graphs and random graphs of same size. Similarity crite-

rion: 2 shared requests during an 8-hour interval. 38
Small-world networks: data-sharing graphs and networks previously
documented in the literature as small worlds. 39

A bipartite network (left) and its unipartite projection (right). Users
A-G access files m-p. In the unipartite projection, two users are con-
nected if they requested the same file. 41
Degree distribution of user (left) and file (right) nodes of a bipartite
affiliation network corresponding to a half-hour interval in the Boeing
Web traces. 42
The relations between users, their requests, and their request times
determine observed patterns like Zipf frequency of requests or time

locality. 44
Distribution of weights in the synthetic data-sharing graphs built from
shuffling the DO traces. L. 46

Number of nodes in data-sharing graphs in real and synthetic D0 traces 47
Comparison of the small-world data-sharing graphs as resulted from
the real and synthetic DO traces. 47

Small worlds seen as loosely connected collections of well connected
clusters. FLASK components: 1) overlay construction (a); 2). Cluster
identification (b); 3). File location, with its two parts: information dis-
semination within clusters (c¢) and request propagation among clusters
(d) o 53
Overlay construction: (1) Node A requests file “F”; (2) A receives
answer that “F” is stored on node N; (3) A contacts N to fetch file. N
logs A’s request and time; (4) Node B requests file “F”; (5) B receives
answer that “F” is stored on node N; (6) B contacts N to fetch file;
(7) N sends the relevant log with latest requests for file “F”: this is

how B learnsof A. 57
Triad labeling: edges in triangles and dead-ends are considered short,
while others are considered long. L. 59
Bloom filter accuracy depends on the number of hash functions and
the storage requirements. 63

Tradeoffs computation-storage-accuracy for designing Bloom filters. . 64

5.1

5.2
5.3

5.4
3.5

5.6
5.7
5.8
5.9
5.10

5.11

5.12
5.13

5.14

5.15
5.16

5.17

5.18
5.19

Average cluster size over time for DO traces for ;4 = 100, 7 =7, 14, 21
and 28 days. L.
Average cluster size resulting from triad labeling in DO.
Average cluster size over time for Web traces for 2, 5, 15 and 30-minute
intervals (1, 5, 10 and respectively 10 shared requests).
Average cluster size resulting from triad labeling in Web.
Average cluster size over time for Kazaa traces for 1, 4, and 8-hour
intervals, 1 shared request. oL
Average cluster size resulting from triad labeling in Kazaa.
Number of files stored per user node in DO.
Number of files stored per Web user node. (a) First requester mapping;
(b) Any requester mapping; (c¢) Random mapping.
Number of files stored per Kazaa user node.
Average percentage of requests solved locally (based on information
within cluster): 7-, 14-, 21- and 28-day intervals, 100 shared request,
triad labeling.
The effect of the largest cluster (triad labeling, 7-, 14-, 21- and 28-
day intervals, 100 shared request) on average hit rate: the difference
between the average hit rate and the average hit rate for all except the
largest cluster.
Average percentage of local answers with triad labeling on DO traces.
Average percentage of requests solved locally (based on information
within cluster): 2-, 5-; 15-minute, and half-hour intervals, with p = 1,
5, 10, and 10 shared requests.
The effect of the largest cluster (triad labeling, 2-, 5-, 15-minute and
half-hour intervals, 1, 5, 10, 10 shared requests) on average hit rate:
the difference between the average hit rate and the average hit rate for
all except the largest cluster. 0.
Average percentage of local answers with triad labeling on Web traces.
Average percentage of requests solved based on information dissemi-
nated within Kazaa triad-labeling clusters: 1-, 4-, and 8-hour intervals,
1 shared request.
The effect of the largest cluster (triad labeling, 1-, 4- and 8-hour in-
tervals, 1 shared request) on average hit rate in Kazaa: the difference
between the average hit rate and the average hit rate for all except the
largest cluster.

Average percentage of local answers with triad labeling on Kazaa traces.

Average percentage of requests solved locally (based on information
within cluster): 7-, 14-, 21- and 28-day intervals, 100 shared request,
triad labeling.

xi

68

68

69
69

70
70
74
I6)
76

78

79
80

82

83

83

85
85

5.20

5.21
5.22
5.23

5.24

5.25

5.26

5.27

5.28
5.29

5.30

The effect of the largest cluster (triad labeling, 7-, 14-, 21- and 28-
day intervals, 100 shared request) on average hit rate: the difference
between the average hit rate and the average hit rate for all except the
largest cluster.
Average percentage of local answers with triad labeling on DO traces.
Average number of files disseminated per cluster in DO.
Average percentage of requests solved locally (based on information
within cluster): 2-, 5-, 15-minute and half-hour intervals, 1, 5, 10, 10
shared requests, triad labeling.
The effect of the largest cluster (triad labeling, 2-, 5-, 15-minute and
half-hour intervals, 1, 5, 10, 10 shared requests) on average hit rate:
the difference between the average hit rate and the average hit rate for
all except the largest cluster. 0L

Average percentage of local answers with triad labeling on Web traces.

Average percentage of requests solved based on information dissemi-
nated within Kazaa triad-labeling clusters: 1-, 4-, and 8-hour intervals,
1 shared request.
The effect of the largest cluster (triad labeling, 1-, 4- and 8-hour in-
tervals, 1 shared request) on average hit rate in Kazaa: the difference
between the average hit rate and the average hit rate for all except the
largest cluster.

xi1

89
90
91

92

93

94

97

Average percentage of local answers with triad labeling on Kazaa traces. 98

Cumulative distribution function of requests per collection found in
the local cluster after experience dissemination. A collection is the set
of requests sent to support the same computational task (or project, in
the DO terminology).
Support for requests for collections of files with storage summary dis-
semination (empirical cumulative distribution).

102

3.1
3.2

3.3

5.1
5.2

5.3
5.4
3.5
5.6

LIST OF TABLES

Characteristics of traces analyzed.
Properties of data-sharing graphs for the three communities studied.
CC} is the measured Watts-Strogatz clustering coefficient (Eq. 3.1),
C'CY is the measured clustering coefficient defined in Eq. 3.3; CC, is
the Watts-Strogatz clustering coefficient of random graphs (Eq. 3.4); [
is the measured average path length and [, is the average path length
of random graphs (Eq. 3.5)
Properties of data-sharing graphs, measured and modeled as unimodal
projection of affiliation networks. Clustering coefficient are measured
using Eq. 3.3 and modeled using Eq. 3.10

Number (and percentage) of users who contribute files.
Requests for files stored on the requester node. For Web, data are
collected based on 100 samples of 5 minutes taken at equal intervals
during the 10-hour traces.
Experience dissemination costs in DO.
Experience dissemination costs in the Web.
Experience dissemination costs in Kazaa.
Average size (in number of requested files) of collections for which
more than 50% files (respectively less) are found locally. Results from
multiple data-sharing graph definitions (7, p) are showed.

xiii

35

43
73

CHAPTER 1
INTRODUCTION

An important consequence of the ubiquitous Internet is the opportunity to share
with total strangers not only communication infrastructure but also other resources,
such as computers and data. The classic example is Seti@home [8]: a project from
Berkeley that benefits from computational power of computers on the Island of Man,
Tonga, and Saint Pierre and Miquelon. Another example is the peer-to-peer, or P2P,
music-sharing networks such as Napster [103], Kazaa [71], or Gnutella [98]: a file
provided by a peer in Guam is downloaded by a user in Sicily, this operation being
made possible by many other peers from, for instance, Hawaii, Mexico and Portugal.

Sharing resources over the Internet raises many technical problems, amplified by
the potential scale of the resource pool, the heterogeneity of platforms, the diversity
in user behavior, and the inherent lack of reliability. Sharing resources over the In-
ternet also has many names and objectives: the Web is a form of resource sharing,
but so are Grid, global computing, P2P, or utility computing, to name just a few. In
all these systems, one important functionality is resource discovery: given a resource
description, the resource discovery component returns the location of one or more re-
sources that fit the description. However, the resource discovery problem has slightly
different meanings and requirements depending on the particular resource-sharing
environment and, therefore, its objectives and constraints.

Two resource-sharing environments have particularly well defined philosophies,
communities, and incarnations: Grids and P2P systems. Grids [42, 43, 41] provide
the software infrastructure to federate resources from multiple administrative domains
in support of a variety of data- and compute-intensive applications. They have grown
incrementally to provide quite sophisticated services to a mainly scientific commu-
nity. Their objective is to support computations on an unprecedented scale using
collections of resources aggregated dynamically, while providing security guarantees
and accommodating resource usage policies dictated by owners.

P2P systems are Internet applications that harness the resources of a large num-
ber of autonomous participants. They have emerged as vertically integrated popular
applications such as music-sharing and grew tremendously in user-base over a short
time. The scale of current P2P systems makes them an interesting case study: a
community with millions of users gives significant insight into user behavior, hetero-
geneity, reliability, design bottlenecks, and so on.

This thesis focuses on resource discovery in Grid environments of the scale and lack
of reliability of today’s P2P networks. The characteristics of the target environment
requires solutions that are fully decentralized, scalable with the number of users and

2

resources, and tolerant to intermittent resource participations (whether voluntary or
due to failures). To define the solution space for resource discovery mechanisms, we
propose a taxonomy. This taxonomy is a useful tool for discussing previous work but
does not reduce the size of the (large) solution space. We get guidance for mechanism
design by examining user behavior in different file-sharing communities. We discover
an important pattern in file usage: users naturally cluster in interest-based groups.
This observation guides the solution design for an instance of the resource discovery
problem, namely file location. Important lessons for resource discovery are revealed
by the design and evaluation of this file-location mechanism.

In the remainder of this chapter we introduce the resource discovery problem,
discuss the characteristics of the target resource-sharing environment, identify a set
of requirements for resource discovery solutions, and present the roadmap of this
thesis.

1.1 The Resource Discovery Problem

When dealing with large sets of entities, a basic problem is locating one or more
entities that match a given description. These descriptions can have various forms,
from globally unique identifiers (such as a person’s name and address) to enumerations
of desired attributes, such as the required skills of a qualified candidate presented in
job advertisements.

As already suggested, everyday life is awash with instances of resource discov-
ery: a lookup in the Yellow Pages for a cab phone number; a Google search; posting
an advertisement in a newspaper; browsing the Web by specifying the desired URL.
Given the characteristics of each instance, different solutions are employed: central-
ized indexes (as in telephone books or Google), targeted broadcast (as in newspa-
per advertisements), or mechanisms that associate human-readable addresses with
machine-understandable locations (as in DNS).

We study the resource discovery problem in a resource-sharing environment that
preserves the essence of Grids but has the scale and dynamism of peer-to-peer com-
munities. While the two environments have the same final objective—to pool large
sets of resources—they emerged from different communities, and hence their current
designs highlight different requirements. We believe that the design objectives of the
two environments will eventually converge. Consequently, it is important to analyze,
compare, and contrast their current requirements and characteristics.

To this end, we discuss the resource location problem in the context of the two
resource-sharing environments (Section 1.2) and we identify four critical design ob-
jectives for resource discovery (Section 1.3).

1.2 Grid and Peer-to-Peer Environments

In recent years significant interest has focused on two resource-sharing environments:
Grids and peer-to-peer (P2P) systems. The two systems have followed different evo-
lutionary paths. Grids have incrementally scaled the deployment of relatively so-
phisticated services, connecting small numbers of sites into collaborations engaged in
complex scientific applications. P2P communities, on the other hand, have developed
rapidly around unsophisticated but popular services such as file sharing, focusing on
scalability and support for intermittent user and resource participation. As a result of
these different evolutionary paths, the two systems differ in three dimensions: target
communities, resources, and applications. We discuss each of these dimensions below.

Despite these differences, however, we maintain that the two environments are in
fact concerned with the same general problem, namely, resource sharing within virtual
organizations that link resources and people spanning multiple physical organizations.
Moreover, the two environments seem likely to converge [40] in terms of their concerns,
as Grids scale and P2P systems address more sophisticated application requirements.

1.2.1 Target Communities and Incentives

The development and deployment of Grid technologies were motivated initially by
the requirements of professional communities to access remote resources, federate
datasets, and/or to pool computers for large-scale simulations [7] and data analyses
[52, 39]. Participants in contemporary Grids are members of established communities
that are prepared to devote effort to the creation and operation of required infrastruc-
ture and within which exist some degree of trust, accountability, and opportunities
for sanctions in response to inappropriate behavior.

In contrast, P2P has been popularized by grass-roots, mass culture (music) file-
sharing and highly parallel computing applications [8, 9] that scale in some instances
to hundreds of thousands of nodes. The “communities” that underlie these applica-
tions comprise diverse and anonymous individuals with little incentive to act coopera-
tively and honestly. Thus, for example, we find that in file-sharing applications, there
are few providers and many consumers [4]; the operators of SETI@home [105] devote
significant effort to detecting deliberately submitted incorrect results; and people tend
to intentionally misreport their resources [103].

The two target communities differ in scale, homogeneity, and the intrinsic degree
of trust. The natural tendency of Grids to grow, however, will inevitably lead to
less homogeneous communities and, consequently, to smaller degrees of trust. Par-
ticipation patterns will also change with scale: intermittent participation is likely
to become the norm. All these characteristics have a strong impact on defining the
assumptions one can make (or, rather, cannot) about the environment. We need
support for volatile user communities; and we need to deal with the lack of incentives
for and interest in centralized, global administrative control.

1.2.2 Resources

In general, Grid systems integrate resources that are more powerful, more diverse,
and better connected than the “desktop at the edge of the Internet” [106] that con-
stitutes a typical P2P resource. A Grid resource might be a cluster, storage system,
database, or scientific instrument of considerable value that is administered in an
organized fashion according to some well-defined policy. This explicit administration
enhances the resource’s ability to deliver desired qualities of service and can facilitate
improvements to services (e.g., through software upgrades), but it can also increase
the cost of integrating the resource into a Grid. Explicit administration, higher cost
of membership, and stronger community links within scientific virtual organizations
mean that resource availability tends to be high and uniform.

In contrast, P2P systems deal with intermittent participation and highly variable
behavior. For example, one study of Mojo Nation [121] showed that a node remained
connected on average for about 28% of time. Moreover, the connection time distri-
bution was highly skewed, with one sixth of the nodes remaining always connected.

Grids integrate not only “high-end” resources: desktop systems with variable
availability [80] form a major component of many contemporary Grids [12]. However,
the ensemble of all such resources within a Grid are not treated as an undifferentiated
swarm of global scope. Rather, they are aggregated within administrative domains via
technologies such as Condor [74, 75] to create local resource pools that are integrated
into larger Grids via the same Grid protocols as other computational resources.

Resources in Grids, traditionally from research and educational organizations,
tend to be more powerful than home computers that arguably represent the majority
of P2P resources (e.g., 71% of SETT@home systems are home computers [105]). The
difference in capabilities between home and work computers is illustrated by the
average CPU time per work unit in SETI@home: home computers are 30% slower
than work computers (13:45 vs. 10:16 hours per work unit).

As their size increases, Grids will increasingly adopt some of the characteristics of
today’s P2P systems in resource participation: unreliable resources and intermittent
participation will constitute a significant share. At the same time, Grid resources will
preserve or increase their diversity. Consequently, services—and resource discovery in
particular—will have to tolerate failures and adapt to dynamic resource participation.

1.2.83 Applications

The range and scope of scientific Grid applications vary considerably. Three examples
that show the variety of deployed Grid applications are the HotPage portal, providing
remote access to supercomputer hardware and software [113]; the numerical solution
of the long-open nug30 quadratic optimization problem using hundreds of computers
at many sites [11]; and the NEESgrid system that integrates earthquake engineering
facilities into a national laboratory [90]. Grid applications typically share a common

5

infrastructure (such as the Globus Toolkit [48]) that provides basic services such as
security and resource management.

In contrast, P2P systems tend to be vertically integrated solutions to specialized
problems: currently deployed systems share either compute cycles or files. Diversifi-
cation comes from differing design goals, such as scalability [95, 112, 101], anonymity
[28], or availability [28, 66].

Grid applications also tend to be far more data intensive than P2P applications.
For example, a recent analysis of Sloan Digital Sky Survey data [10] involved, on
average, 660 MB input data per CPU hour; and the Compact Muon Solenoid [81]
data analysis pipeline involves from 60 MB to 72 GB input data per CPU hour. In
contrast, SETI@home moves at least four orders of magnitude less data: a mere 21
KB data per CPU hour. The reason is presumably, in part at least, better network
connectivity, which also allows for more flexibility in Grid application design: in
addition to loosely coupled applications [2, 10], Grids have been used for numerical
simulation [7, 99, 100] and branch-and-bound-based optimization problems [11].

The variety of Grid applications requires significant support from services. Appli-
cations may use not only data and computational power, but also storage, network
bandwidth, and Internet-connected instruments at the same time. Unlike in file-
sharing systems such as Gnutella, this variety of resources requires attribute-based
identification (such as “Linux machine with more than 1 GB memory”), since glob-
ally unique names (such as “ficus.cs.uchicago.edu”) are of no significant use. Also,
Grid services must provide stronger quality-of-service guarantees: a scientist that
runs data-analysis applications in a Grid may be less willing to wait until data is
retrieved than is a typical P2P user in search for music files.

1.3 Requirements for Resource Discovery

As we have noted, we expect Grid and P2P systems to converge in a unified resource-
sharing environment. This environment is likely to scale to millions of resources
shared by hundreds of thousands of participants (institutions and individuals): No
central, global authority will have the means, the incentive, and the participants’ trust
to administer such a large collection of distributed resources. Participation patterns
will be highly variable: there will be perhaps a larger number of stable nodes than in
today’s P2P systems, but many resources will join and leave the network frequently.
Resources will have highly diverse types (computers, data, services, instruments, stor-
age space) and characteristics (e.g., operating systems, number of CPUs and speed,
data of various sizes, services). Some resources will be shared following well-defined
public policies, such as “available to all from 6 pm to 6 am.” Other resources will
participate rather chaotically, for example, when idle. Technical support will be vari-
able: some participants will benefit from technical support, whereas others will rely
on basic tools provided by the community (e.g., today’s Gnutella nodes run various
implementations of the protocol, each with its own peculiarities).

6

In addition to the requirements imposed by the resource-sharing environment,
various challenges are raised by usage scenarios. Resource discovery may be ex-
pected to provide browsing capabilities: users may want to learn what resources are
shared in a virtual organization, maybe to decide whether to join it with their own
resources. Also, resource discovery may be employed to support other mechanisms,
such as scheduling or monitoring services: when jobs are submitted, a scheduler may
call resource discovery to get up-to-date information about available, appropriate re-
sources. A monitoring service may want to detect all existing replicas of a file in order
to decide whether more replicas are needed for improving performance or availability.
Another challenge comes from the diversity of requests, from simple requests that
specify one resource, such as a file named “foo,” to aggregated requests, such as 100
Linux machines separated by at least 20ms. latency pairwise.

However, the design of a mechanism that meets the desired usage scenarios must
obey the rules imposed by the characteristics of the resource-sharing environment.
These characteristics require a resource discovery mechanism with the following fea-
tures:

e Independence from central, global control. This is a departure from pre-
vious Grid solutions and a step toward the fully decentralized solutions typical
of P2P approaches.

e Support for attribute-based search, a feature not found in current P2P
solutions. That is, solutions must support requests that specify a set of de-
sired attributes (“Linux machine with more than 128 MB of available mem-
ory”) rather than be designed around globally unique identifiers (such as “fi-
cus.cs.uchicago.edu”). Attribute-based search is even more challenging when
resource attributes can vary over time (e.g., CPU load, available bandwidth,
even software versions) and when the number of resources is large and/or dy-
namic (as resources join, leave, or fail).

e Scalability, which becomes more important with increased scale and partici-
pation.

e Support for intermittent resource participation, a characteristic frequent
in today’s P2P systems but rare in current Grid solutions.

1.4 Thesis Roadmap

The central focus of this thesis is the design of fully decentralized resource discovery
solutions for large-scale Grid environments in which resource and user participation is
highly variable. Along the way, we define the solution space by proposing a taxonomy
for resource discovery mechanisms; we design and implement a scalable Grid emulator;
we evaluate a set of resource discovery strategies in emulated Grids; we identify

7

usage patterns in file-sharing communities; we design a mechanism for an instance of
resource discovery, namely file location; and we apply and adapt the lessons learned
from the solution to the instance to the general problem. Accordingly, the remainder
of this thesis is organized as follows:

Chapter 2: Resource Discovery in Distributed Systems

Chapter 2 proposes a general framework for any resource discovery solution. This
framework, based on four components, defines the design space and provides the
basis for comparing existing solutions. We prove the generality of this framework by
mapping previous resource discovery solutions onto these four components. We also
investigate experimentally a number of design solutions for one of these components
in a large-scale emulated Grid.

Chapter 3: Small-World File-Sharing Communities

The four-component framework provides a common language for describing and
comparing various design alternatives, but does not reduce the size of the (large)
solution space. One approach to designing efficient solutions is to analyze and possibly
exploit user behavior. Although Grids are the most mature deployment of computer-
sharing environments, their deployment is currently limited in scale and usage: many
Grids are still in experimental phases. Thus, a serious problem in Grid research is
the lack of a large and diverse user community on non-experimental Grids: this fact
makes the availability of user traces an intractable problem.

However, there is one instance of resource sharing, namely file sharing, which is
widely deployed under various incarnations, from the Web to P2P systems. File-
sharing is also an important aspect of Grid communities, as many collaborations are
formed around sharing of scientific data. We hence focused on an instance of resource
discovery—file location—in order to get guidance from existing user traces.

In Chapter 3 we analyze three file-sharing communities in an attempt to identify
possible patterns in data interests. We propose a new structure called the data-
sharing graph that captures users’ common interests in files. Based on this structure
and real traces from the three communities, we show that users naturally cluster in
interest-based groups.

Chapter 4: FLASK: A File-Location Algorithm for Small-World Com-
munities

Chapter 3 shows that using the data-sharing graph for system characterization
has potential for basic science, because it reveals new structures emerging in real,
dynamic networks. Chapter 4 shows that the data-sharing graph is also useful for
system design, because we can exploit these structures when designing file-location
mechanisms.

Despite the large number of existing file-location solutions, new solutions are nec-
essary to satisfy the requirements raised by typical Grid communities in a P2P en-
vironment. We identify these requirements and propose a file-location mechanism,
called FLASK, that satisfies them by exploiting the emergent patterns in data-sharing
graphs. The basic idea in FLASK is to identify groups of users with common interests

8

in data and to disseminate relevant file location information to these groups. Chapter
4 presents in detail the design of FLASK.

Chapter 5: FLASK: Experimental Evaluation

This chapter evaluates the performance of the main components of FLASK in
trace-driven simulations. The performance results validate the basic algorithmic
idea—that of exploiting the naturally emerging interest-based clusters—and prove
that FLASK does satisfy the file-location requirements stated in Chapter 4.

Moreover, some of the FLASK components can be used to improve existing file-
location solutions. For example, parts of FLASK can improve the performance and
scalability of a centralized file-location mechanism by significantly reducing the load
on the central index. This chapter shows that up to 65% of this load can be reduced
by information dissemination in interest-based clusters.

Chapter 6: Lessons for Resource Discovery

File location is a simplified instance of resource discovery, since files are resources
that can be uniquely identified with a simple attribute: their name. However, FLASK
does not build search-optimized structures based on these unique identifiers: this
design approach was chosen in order to allow FLASK ideas to remain applicable
to the resource discovery problem. Nevertheless, the translation of FLASK into a
resource discovery solution is not obvious.

This chapter presents the lessons learned from FLASK and their applicability
to the general resource discovery problem. FLASK’s strength comes from dissem-
inating file location information in interest-based clusters. Disseminating resource
information can significantly improve the resource discovery performance, but clus-
ters of interest are not easily identifiable in the context of general resources. Various
approaches to determining where to disseminate resource information are discussed.
This chapter also discusses FLASK’s place in the resource discovery taxonomy.

Chapter 7: Discussion

The main contributions of this work are summarized in Chapter 7. We conclude
with a discussion on future research directions.

CHAPTER 2
RESOURCE DISCOVERY IN DISTRIBUTED SYSTEMS

The resource discovery literature is rich and mature but lacks a common language for
describing various solutions. In this chapter we propose such a common language: a
taxonomy along four axes that is general enough to comprise the existing solutions,
centralized and decentralized alike. We support this taxonomy by discussing previous
work along its four axes.

We also propose an architecture for resource discovery. We test the strength of
one component under the proposed architecture and draw important lessons for bet-
ter solution design. Basically, we show evidence that relying on request propagation
alone in a large, unstructured network of resource providers gives limited perfor-
mance. Moreover, based on experimental studies, this performance is highly sensitive
to sharing characteristics.

We shall use the terms “resource discovery” and “resource location” interchange-
ably.

2.1 Resource Discovery: Components and Solutions

Let us assume that every participant in the virtual organization—institution or in-
dividual—publishes information about local resources on one or more local servers.
Let us call these servers nodes, or peers. Nodes hence provide information about
resources: some advertise locally stored files or the node’s computing power, as in a
traditional P2P scenario; others advertise all the resources shared by an institution,
as in a typical Grid scenario.

From the perspective of resource discovery, a Grid is thus a collection of geograph-
ically distributed nodes that may join and leave at any time and without notice (for
example, as a result of system or communication failure). Users send their requests
to some known (typically local) node. Typically, the node responds with the match-
ing resource descriptions if it has them locally; otherwise it processes the request,
possibly forwarding it to one or more nodes.

2.1.1 Four Axes of the Solution Space

We partition a general resource discovery solution into four architectural components:
membership protocol, overlay construction, preprocessing, and query processing. This
partitioning helps us recognize the unexplored regions in the solution space. It also
provides the basis for comparing previous solutions from both the P2P area and the
traditional distributed computing domain, solutions that we present in Section 2.1.2.

10

Membership Protocol

The membership protocol specifies how new nodes join the network and how nodes
learn about each others (we refer to the latter part of the membership problem as
peer discovery, although it has multiple names in the literature [68]).

Imagine a graph whose vertices are peers and whose edges indicate whether ver-
tices know of each other. Ideally, despite frequent vertex departures and joins, this
graph is a clique; that is, every member of the network has accurate information
about all participants. In practice, however, this situation is impossible [26], and dif-
ferent protocols have been suggested, each involving different tradeoffs. For example,
Gnutella uses an aggressive membership protocol that maintains the highly dynamic
nodes in the membership graph connected, but at a significant communication cost
[98]. More scalable with the number of nodes are membership protocols based on
epidemic communication mechanisms [49].

Overlay Construction

The overlay construction function selects the set of collaborators from the local
membership list. In practice, this set may be limited by such factors as available
bandwidth, message-processing load, security or administrative policies, and topol-
ogy specifications. Hence, the overlay network often contains only a subset of the
edges of the membership graph. For example, a Gnutella node maintains a relatively
small number of open connections (the average is less than 10, with 3.4 measured as
of May 2001 [98]) but knows of many more peers (hundreds) at any given time.

The characteristics of the overlay topology have a significant effect on performance.
For example, Barabdsi and Albert [15] show a strong correlation between robustness
and the power-law topology; Adamic et al. [3] give a search algorithm that exploits the
power-law topology in a cost-efficient way; and Kleinberg [65] presents an optimal al-
gorithm for search in small-world graphs with a particular topology (two-dimensional
lattice) and knowledge about global properties, such as distance between any two
nodes. On the other hand, a large number of dynamic, real networks, ranging from
the Internet to social and biological networks, all exhibit the same power-law and
small-world patterns (as surveyed in [6], [34], and [85] and discussed in detail in [14]
and [120]).

Preprocessing

Preprocessing refers to off-line processing used to enhance search performance prior
to executing requests. For example, prefetching is a preprocessing technique, but
caching is not. Another example of a preprocessing technique is dissemination of
resource descriptions, that is, advertising descriptions of the local resources to other
areas of the network for better search performance and reliability. A third exam-

11

ple of preprocessing is rewiring the overlay network to adapt to changes in usage
characteristics.

It is not obvious, however, that such preprocessing strategies work in the dynamic
environments that we consider, in which resources may leave the pool and resource
characteristics and user behavior may change suddenly. A recent result [30] shows
that, in a static environment, the optimum replication of an item for search in un-
structured networks is proportional to the square root of the popularity of that item.

Request Processing

The request-processing function has a local and a remote component. The local
component looks up a request in the local information, processes aggregated requests
(e.g., a request for A and B could be broken into two distinct requests to be treated
separately), and/or applies local policies, such as dropping requests unacceptable for
the local administration.

The remote component implements the request propagation rule. Request propa-
gation is currently an active research topic in the P2P area [95, 112, 101, 77, 122, 58,
111]. In some cases, request propagation rules are dictated by other components of
the resource discovery mechanism, as with distributed hash tables [95, 112, 101, 122],
where the overlay and the propagation rules are strongly correlated. In an unstruc-
tured network, however, there are many degrees of freedom in choosing the prop-
agation rule. Various strategies can be employed, characterized by the number of
neighbors to which a request is sent and the way in which these neighbors are se-
lected.

2.1.2 Previous Solutions

To provide a basis for our proposed characterization scheme, we discuss here existing
solutions and related work from the perspective of the four architectural components
presented above.

Many solutions to resource discovery presume the existence of globally unique
names. In some cases, this naming scheme is natural (for example, filenames used
as global identifiers in P2P file-sharing systems); in others, it is created to support
discovery. In the context of Grid computing it is difficult (if even possible) to define a
global naming scheme capable of supporting attribute-based resource identification.
We first discuss resource location solutions that exploit natural naming schemes.

Domain Name Service [79] is perhaps the largest such system that provides name-
based location information. Its hierarchical topology dictates the design of all four
components: nodes (domains) join at a specified address in the hierarchy, the overlay
function maintains the domain-based tree structure, requests are propagated upward
in the hierarchy.

12

Recent contributions to name-based resource location solutions have been pro-
posed in the context of P2P file-sharing systems, such as Gnutella and Napster. The
basic mechanism used in Gnutella is flooding. Its flooding-based membership com-
ponent manages a highly dynamic set of members (with median lifetime per node of
about 60 minutes [103]) by sending periodic messages. Its overlay function selects
a fixed number of nodes from those alive (in most instances, the first nodes of the
membership list). Flooding is also the core of the request-processing component: re-
quests are propagated in the overlay until their time-to-live expires. No preprocessing
component is active in Gnutella. Answers are returned along the same trajectory,
from node to node, to the node that initiated the request. Gnutella’s relatively good
search performance (as measured in number of hops) is achieved at the cost of inten-
sive network use [98].

Napster uses a centralized approach: a file index is maintained at a central loca-
tion, while real data (files) are widely distributed on nodes. The membership com-
ponent is centralized: nodes register with (and report their locally stored files to)
the central index. Hence, the request-processing component is a simple lookup in the
central index. Napster does not use a distinct overlay function or a preprocessing
component.

Distributed hash table structures such as CAN [95], Chord [112], Tapestry [122],
and Pastry [101] build search-efficient overlays. All have similar membership and
request processing components, based on information propagation in a structured
overlay. Differentiating these four solutions is the definition of the node space, and
consequently, the overlay function that preserves that definition despite the nodes’
volatility: ring in Chord, d-coordinate space on a torus in CAN, Plaxton mesh [89] in
Pastry and Tapestry. The maintenance of the overlay via “I’m alive” messages can
be considered preprocessing.

The file location mechanism in Freenet [28] uses a request-propagation component
based on dynamic routing tables. Freenet includes both file management and file lo-
cation mechanisms: popular files are replicated closer to users, while the least popular
files eventually disappear.

The solutions discussed above are concerned with locating resources that inher-
ently can be named. Solutions that create an artificial name have been proposed
for attribute-based service location (Ninja) and as location-independent identifiers
(Globe).

In Ninja’s service location service [50, 51], services are named based on a most
relevant subset of their attributes. Its preprocessing component disseminates lossy
aggregations (summaries) of these names up a hierarchy. Requests are then guided by
these summaries up or down the hierarchy, in a B-tree search fashion. The fix overlay
function (hence, the construction of the hierarchy) is specified at deployment.

The location mechanism in Globe [117] is based on a search-tree-like structure
where the search keys are globally unique names. Its naming service [13] transforms
an URL into a location-independent unique identifier. Consequently, the overlay

13

function and the membership and the request-processing components are designed
conform to the search-tree.

Among the few attribute-based resource location services is Condor’s Matchmaker
[92]. Resource descriptions and requests are sent to a central authority that performs
the matching. Hence, the equivalent of the preprocessing component is registering
resources with the central server; the overlay function always returns the address of
the central server; request processing means sending the request to the central server;
no membership component is necessary, other than, perhaps, making the address of
the central server known to the new comers.

Lee and Benford [69] propose a resource discovery mechanism based on request
propagation: nodes (called traders) forward unsolved requests to other nodes in an un-
structured overlay. The overlay function takes into account neighbors’ expertise and
preference: a node connects to a node that has useful services and/or good recommen-
dations. This evaluation uses information collected by the preprocessing component:
traders explore the network off-demand, whenever necessary, and disseminate state
changes via flooding.

Another solution is provided by the Globus Toolkit MDS [31]. Initially centralized,
this service moved to a decentralized structure as its pool of resources and users grew.
In MDS-2, a Grid consists of multiple information sources that can register with index
servers (“nodes” in our terminology) via a registration protocol. Nodes and users can
use an enquiry protocol to query other nodes to discover entities and to obtain more
detailed descriptions of resources from their information sources. Left unspecified
is the overlay construction function, the techniques used to associate information
sources to nodes and to construct an efficient, scalable network of index servers.

2.2 Experimental Studies

Our objective is to observe and quantify the synergies emerging from the interaction
of the four components of resource discovery in flat, unstructured networks. To
understand how much to request from the other components, we ask the following
question:

Q1 How powerful is the request propagation alone?

Therefore, we need experimental evaluations of the performance of this component
in order to understand how much support is needed from the other components. In the
absence of a large-scale, deployed Grid available to test design ideas, we modeled an
environment in which we experimented with a set of resource discovery mechanisms.
This emulated Grid, while specifically designed to test resource location ideas, can
be easily expanded to evaluate other services on large-scale testbeds, such as resource
selection and scheduling. More important, it provides a framework for evaluating
aggregations of cooperative services, such as resource location, resource selection,
and scheduling.

14

2.2.1 FEmulated Grid

Existing Grid simulators are specialized for certain services, such as scheduling [70]
or data replication [93]. Others, such as the MicroGrid [109], run Grid software and
applications on virtual resources. No current simulator is appropriate for or easily
extensible to evaluating generic Grid services. We built an emulated Grid that is
scalable and is suitable for resource discovery but also is easily extensible to other
purposes.

In our framework, nodes form an overlay network. Each node is implemented as
a process that communicates with other nodes via TCP. Each node maintains two
types of information: (1) information about a set of resources and (2) information
about other nodes in the overlay network (including membership information).

The large number of processes needed by our large-scale emulation raises multiple
problems, ranging from resource starvation to library limitations. For the preliminary
experiments (of up to 32,768 virtual nodes) presented in Section 2.3, we used 128
systems (256 processors) communicating over fast Ethernet of the Chiba City cluster
of Argonne National Laboratory. With minimal modifications, the framework could
be used in real deployments.

2.2.2 Modeling the Grid Environment

Four environment parameters influence the performance and the design of a resource
discovery mechanism:

1. Resource information distribution and density: Some nodes provide information
on a large number of resources, whereas others just on a few (for example, home
computers): resource information distribution models thus behaviors such as
free riding. Also, some resources are common (e.g., PCs running Linux), while
others are rare or even unique (e.g., specific services or data): resource density
parameter distinguishes thus the “needle” from the “hay”.

2. Resource information dynamism: Some resource attributes are highly variable
(e.g., CPU load or availably bandwidth between two nodes), while others vary
so slowly that they can be considered static for many purposes (e.g., operat-
ing system version, number and type of CPUs in a computer, etc.). Dynamic
information can hinder the performance of caching techniques, for example.

3. Request popularity distribution: The popularity of users’ requests for resources
varies. For example, studies have shown that HT'TP requests follow Zipf distri-
butions [22]. Our analysis [57] of a scientific collaboration, on the other hand,
reveals different request popularity patterns, closer to a uniform distribution.

15

4. Peer participation: The participation of peers, or nodes, varies more signifi-
cantly in P2P systems than in current Grids. Influenced by incentives, some
nodes activate in the network for longer than others.

The failure rate in a large-scale system is inevitably high and hence necessary
to model. This factor can easily be captured by two of the parameters just listed,
namely, resource information dynamism and peer participation. The effects of failure
are visible at two levels: the resource level and the node level. When resources fail,
the nodes that publish their descriptions may need to update their local information
to reflect the change. Resource failure can therefore be seen as yet another example
of resource attribute variation and can be treated as part of resource information
dynamism. When nodes fail, not only do their resources disappear, but they cease to
participate in maintaining the overlay and processing remote requests. Node failures
can therefore be captured in the peer participation parameter as departures. We note,
however, that node failures are ungraceful (unannounced) departures. Moreover, such
failures may not be perceived in the same way by all peers; for example, in the case
of network partitioning, a node may seem failed to some peers and alive to others.

To isolate some of the correlations between the many parameters of our study, we
used a simplified, optimistic Grid model characterized by static resource attributes,
constant peer participation, and no failures. Thus, we model only the resource and
request distributions.

Resource Distributions

In Grids and peer-to-peer environments, the total number of resources increases with
the number of nodes, so we model this as well. We assume that the average number
of resources per node remains constant with the increase in the network size: in our
experiments, we (arbitrarily) chose this constant equal to 5.

New nodes often bring new types of resources, however, such as unique on-line
instruments, new data, and new, possibly locally developed, applications. To account
for these, we allowed the set of resource types to increase slowly (5%) with the number
of nodes in the system.

In this context, we experimented with two resource distributions of different de-
grees of fairness, as presented in Figure 2.2.2: a balanced distribution, with all nodes
providing the same number of resources, and a highly unbalanced one, generated as
a geometric distribution in which most resources are provided by a small number of
nodes.

Request Distributions

Although usage patterns can be decisive in making design decisions, we faced the
problem of not having real user request logs, a problem inherent in systems during

16

60 I T T T T T T T T T T T T
Unbalanced (U) +
[} + Balanced (B) X
B 50 B
[+
g .
o - -
(%] 40 +
Q
o +
> L + .
] 30 .
o +
S 0 |- ", -
2 +
€ K
E 10 ﬁﬁ B
XXX XXOXOOORKIS
0 e]
1 10 100

Node rank

Figure 2.1: Distribution of resources on nodes: balanced (all nodes have equal number
of resources) and unbalanced (a significant part of nodes have no resources).

the design phase. We therefore logged, processed, and used one week’s requests for
computers submitted to the Condor [74] pool at the University of Wisconsin. This
pool consists mainly of Linux workstations and hence is a rather homogeneous set
of resources. On the other hand, since it is intensively used for various types of
computations, the requests specify various attribute values (e.g., minimum amount
of available memory or required disk space). We processed these requests to capture
their variety. We acknowledge, however, that despite their authenticity, these traces
may not accurately represent the request patterns in a sharing environment that
usually comprises data and services in addition to computers.

We also experimented with a synthetic request popularity distribution modeled as
a uniform distribution. Figure 2.2.2 highlights the differences between the two request
distributions. The Condor traces exhibit a Zipf-like distribution, where a small num-
ber of distinct requests appear frequently in the set of 2000 requests considered. In
the pseudo-uniform distribution, on the other hand, requests are repeated about the
same number of times. We evaluated various resource location strategies in overlay
networks ranging in size from 128 to 32768 (27 to 2!°) nodes. In our experiments we
randomly chose a fixed percentage of nodes to which we sent independently generated
sets of 200 requests. The same sets of requests, sent to the same nodes, respectively,
were repeated to compare various resource discovery strategies.

2.2.8 Resource Discovery Mechanisms

Our objective is to evaluate the performance of the request processing component
alone. To this end, we considered a set of simple resource discovery mechanisms
constructed by fixing three of the four components presented in Section 2.1.1 and
varying the fourth: the request-processing component.

17

1000 F——— T
E Uniform +
Condor X
5 .]
c X
o 100 3 X E
o E XX E
o % 1
: 0F *HM
& b
= @ -]
p 4 - 1
1 e T ———
1 10 100 1000

Request rank

Figure 2.2: Distribution of user requests.

For the membership protocol we use a join mechanism that is commonly used in
P2P systems: a node joins by contacting a member node. Contact addresses of mem-
ber nodes are learned out-of-band: typical sources are web pages (as in Gnutella) or
word-of-mouth. A node contacted by joining members responds with its membership
information. Membership information is passively enriched over time: upon the re-
ceipt of a message from a previously unknown node, a node adds the new address to
its membership list.

In our design, the overlay function accepts an unlimited number of neighbors:
hence, we allowed the overlay connectivity to grow as much as the membership infor-
mation. In this way, we neutralized one more component, aiming to understand the
correlations between graph topology and discovery performance. We generated the
starting overlay by using a hierarchy-based Internet graph generator [33].

We assumed no preprocessing.

Our design of the request-processing component is based on forwarding. We as-
sumed simple requests, satisfiable only by perfect matches. Hence, local processing is
minimized: a node that has a matching resource responds to the requester; otherwise,
it decrements TTL and forwards it (if TTL>0) to some other node. Requests are
dropped when received by a node with no other neighbors or when TTL=0.

We evaluated four request propagation strategies:

1. Random walk: the node to which a request is forwarded is chosen randomly
from the local membership view. No extra information is stored on nodes.

2. Learning-based: nodes learn from experience by recording the requests answered
by other nodes. A request is forwarded to the peer that answered similar re-
quests previously. If no relevant experience exists, the request is forwarded to
a randomly chosen node.

18

3. Best-neighbor: the number of answers received from each peer is recorded (with-
out recording the type of request answered). A request is forwarded to the peer
who answered the largest number of requests. First requests are always sent to
random nodes.

4. Learning-based + best-neighbor: this strategy is identical with the learning-
based strategy except that, when no relevant experience exists, the request is
forwarded to the best neighbor instead of to a random node.

2.3 Experimental Results

This section presents preliminary results in two areas: (1) quantification of the costs of
simple resource discovery techniques based on request-forwarding (no preprocessing),
and (2) effects of resource and request distributions on resource discovery perfor-
mance.

2.3.1 Quantitative Estimation of Resource Discovery Costs

Question @)1, reformulated, is:

What are the search costs in an unstructured, static network in the absence of
preprocessing?

To this end, we considered time-to-live infinite. The answer is presented in Figures
2.3.1, 2.3.1, and 2.3.1: the learning-based strategy is the best regardless of resource-
sharing characteristics, with fewer than 200 hops response time per request for the
largest network in our experiment. For a network of thousands of nodes (hence,
possibly thousands of institutions and individuals) the average response time is around
20 hops. Assuming 20 ms to travel between consecutive nodes on a path (10 ms.
latency in a metropolitan area network and 10 ms. necessary for request processing),
then a path of 20 hops takes less than half a second.

Key to the performance of the learning-based strategy is the fact that it takes
advantage of similarity in requests by using a possibly large cache. It starts with low
performance until it builds its cache.

The random-forwarding algorithm has the advantage that no additional storage
space is required on nodes to record history. We also expect it to be the least efficient,
however, an expectation confirmed by the results shown in Figure 2.3.1 (Condor-
based user requests, unbalanced resource distribution). For all network sizes in our
experiments, the learning-based algorithm consistently performs well, while its more
expensive version (learning-based + best neighbor) proves to be rather unpredictable
in terms of performance (see, for example, the large standard error deviation for 1024
and 2048 simulated nodes in 2.3.1).

19

200

'Condor'(U) L - ' Pl

180 - uniform (U) ------ .
Condor (B) ---*--- x
Uniform (B) & /

160 -
140
120
100

Average number of hops per request

Number of nodes (log scale)

Figure 2.3: Performance (in average number of hops) of learning-based forwarding
strategy for the two request distributions (Condor and uniform), in two environments
with different resource-sharing characteristics (balanced B and unbalanced U).

We emphasize that these results do not advocate one strategy over another but
give a numerical estimate of the costs (in response time) involved. These estimates are
useful in two ways. First, they give a lower bound for the performance of resource lo-
cation mechanisms based on request propagation. They show that more sophisticated
strategies (potentially including preprocessing techniques) are needed for efficient re-
source location in large-scale (tens of thousands institutions) Grids. Second, they can
be used in estimating the performance of more sophisticated mechanisms that have
a request-propagation component (as is, for example, the solution in [58]).

2.3.2 Effects of the Environment

From the results obtained, a new question emerges:
Q2 How sensitive is the search performance to sharing characteristics?

Figure 2.3.1 highlights the influence of user request popularity distribution on the
performance of the learning-based request forwarding strategy. (Of the strategies we
considered, this is the most sensitive to user request patterns.) The slightly better
performance in the fair-sharing environment is due to the random component of this
strategy, employed when no relevant previous information on a specific request exists:
random forwarding has a better chance of reaching a useful node when information
is distributed fairly on nodes. The learning-based strategy takes most advantage of
the Condor request distribution, where a significant part of the requests are repeated
(and hence can benefit from previous experience).

The best-neighbor strategy is influenced more strongly by sharing patterns: com-
pared with a balanced environment, in a highly unbalanced environment a node that

20

900 T — T T T
Condor (U) —+—

800 Uniform (U) ---x--- B -
Condor (B) ---*--- B

700 - Uniform (B) & .

600) -

500 i

Average number of hops per request

Number of nodes

Figure 2.4: Performance (in average number of hops) of the best neighbor request
forwarding strategy under different user request and sharing characteristics.

had already answered a request is more likely to have answers to other requests as
well. Figure 2.3.1 shows the response latency in unbalanced and balanced environ-
ments for the two request patterns we considered: the response latency almost doubles
in the balanced sharing environment as compared with the unbalanced one. We note
that the performance of the best-neighbor strategy is influenced by past requests: the
algorithm records the number of requests answered regardless of their type, hence it
does not distinguish between nodes that answered same request n times and nodes
that answered n distinct requests. This fact explains why the algorithm performs
better under a uniform user distribution load than under the Condor traces: since
the number of distinct requests in a uniform distribution is larger, the best neighbor
identified by this strategy has indeed a larger number of distinct resources.

2.4 Summary

In Chapter 1 we argue that the characteristics and the design objectives of Grid and
P2P environments will converge, even if they continue to serve different communi-
ties. Grids will increase in scale and inherently will need to address intermittent
resource participation, while P2P systems will start to provide more complex func-
tionalities, integrating data and computation sharing with various quality of service
requirements. We are therefore studying the resource discovery problem in a resource-
sharing environment that combines the characteristics of the two environments: the
complexity of the Grids (that share a large diversity of resources, including data,
applications, computers, online instruments, and storage) with the scale, dynamism,
and heterogeneity of today’s P2P systems.

We thus propose a decentralized architecture for resource discovery in Grids, in
which the participating entities maintain and publish information about a possibly

21

350 — T T T
@ Random +——+—
S 300 L Learning ---x--- } i
g Best Neighbor :-----:
= Learning+BN 8- I
g 250 i -
%] i
g :
2 200 | : .
B B X
8 150 = gé B
IS . ; i 2 X
2 100 F * i j - .
& 5 o= 0 o
5 50 % X 5 « X -
> % + X i
< 0 * X X .5 % Q L1 . . L1

102 10° 10* 10°

Number of nodes

Figure 2.5: Performance of all four request-forwarding strategies for a Condor request
load in the unbalanced resource-sharing environments.

large set of resources. In this very general framework, we have identified four compo-
nents that can describe any resource discovery design: membership protocol, overlay
function, preprocessing, and request processing.

Of the four components, we have focused in this chapter on request processing:
we evaluate four request propagation strategies under various environmental assump-
tions. The main results of our study are:

e The request propagation component alone may not perform satisfactorily in a
large network of nodes. A more efficient resource discovery mechanism may
require contribution from the preprocessing component, as well.

e The request propagation component and, implicitly, any resource discovery
mechanisms that relies on it, is highly dependent on sharing characteristics.

We have also proposed a Grid emulator for evaluating resource discovery tech-
niques based on request propagation.

CHAPTER 3
SMALL-WORLD FILE-SHARING COMMUNITIES

The identification of a general framework for any resource discovery mechanism (as
presented in the previous chapter) significantly simplifies the design of a resource
discovery solution. However, the design space remains vast and the search for an
efficient solution is still challenging.

As shown before, various solutions were chosen as to fit specific requirements.
However, none looked at users behavior in an attempt to adapt a resource location
mechanism to naturally occurring patterns. We are trying to get inspiration by
looking at user behavior: what resources do users ask for? What are the relevant
patterns in their requests for resources?

This chapter answers the question:

What patterns in user behavior are relevant and can be useful for de-
signing a resource location solution?

Given the lack of user traces from deployed, non-experimental Grids that could
give insights into what resources users request, we shall profit of the many file-sharing
deployments and thus focus our study on a particular type of resources: files.

3.1 Intuition

It is not news that understanding the system properties can help guide efficient so-
lution design. A well known example is the relationship between file popularity in
the Web and cache size. The popularity of web pages has been shown to follow a
Zipf distribution [17, 22]: few pages are highly popular and many pages are requested
few times. As a result, the efficiency of increasing cache size is not linear: caching
is useful for the popular items, but there is little gain from increasing the cache to
provision for unpopular items.

As a second example, many real networks are power law. That is, their node
degrees are distributed according to a power law, such that a small number of nodes
have large degrees, while most nodes have small degrees. Adamic et al. [3] propose a
mechanism for probabilistic search in power-law networks that exploits exactly this
characteristic: the search is guided first to nodes with high degree and their many
neighbors. This way, a large percentage of the network is covered fast.

This type of observations inspired us to look for patterns in user requests for
resources. But what patterns?

22

23

3.1.1 Patterns, Patterns Everywhere

It is believed that the study of networks started with Euler’s solution of the Konigsberg
bridge problem in 1735. The field has since extended from theoretical results to the
analysis of patterns in real networks. Social sciences have apparently the longest
history in the study of real networks [85], with significant quantitative results dating
from the 1920s [44].

The development of the Internet added significant momentum to the study of
networks: by both facilitating access to collections of data and by introducing new
networks to study, such as the Web graph, whose nodes are web pages and edges are
hyperlinks [23], the Internet at the router and the AS level [35] and the email graph
[86].

The study of large real networks led to fascinating results: recurring patterns
emerge in real networks (see [6, 14, 34, 85] for good surveys). For example, a frequent
pattern is the power-law distribution of node degree, that is, a small number of nodes
act as hubs (having a large degree), while most nodes have a small degree. Examples
of power-law networks are numerous and from many domains: the phone-call network
(long distance phone calls made during a single day) [1, 5], the citation network [96],
and the linguistics network [25] (pairs of words in English texts that appear at most
one word apart). In computer science, perhaps the first and most surprising result
at its time was the proof that the random graph-based models of the Internet (with
their Poisson degree distribution) were inaccurate: the Internet topology had a power-
law degree distribution [35]. Other results followed: the web graph [16, 23] and the
Gnutella overlay (as of year 2000) [98] are also power-law networks.

Another class of networks are the “small worlds.” Two characteristics distinguish
small-world networks: first, a small average path length, typical of random graphs
(here “path” means shortest node-to-node path); second, a large clustering coefficient
that is independent of network size. The clustering coefficient captures how many of a
node’s neighbors are connected to each other. This set of characteristics is identified
in systems as diverse as social networks, in which nodes are people and edges are
relationships; the power grid system of western USA, in which nodes are generators,
transformers, substations, etc. and edges are transmission lines; and neural networks,
in which nodes are neurons and edges are synapses or gap junctions [120].

3.1.2 Research Questions

Newman shows that scientific collaboration networks in different domains (physics,
biomedical research, neuroscience, and computer science) have the characteristics of
small worlds [82, 83, 84]. Collaboration networks connect scientists who have written
articles together.

Moreover, Girvan and Newman [47] show that well-defined groups (such as a re-
search group in a specific field) can be identified in (small-world) scientific collabora-

24

tion networks. In parallel, a theoretical model for small-world networks by Watts and
Strogatz [119] pictures a small world as a loosely connected set of highly connected
subgraphs.

From here, the step is natural: since scientists tend to collaborate on publications,
they most likely use the same resources (share them) during their collaboration: for
example, they might use the same instruments to observe physics phenomena, or
they might analyze the same data, using perhaps the same software tools or even a
common set of computers. This means that if we connect scientists who use the same
files, we might get a small world. Even more, we might be able to identify groups
that share the same resources. Notice that the notion of “collaboration” transformed
into “resource sharing”: the social relationships do not matter anymore, scientists
who use the same resources within some time interval may never hear of each other.

Resource sharing in a (predominantly) scientific community is the driving force of
computational Grids. If we indeed see these naturally occurring sharing patterns and
we find ways to exploit them (e.g., by identifying users grouped around common sets
of resources), then we can build mechanisms that can tame the challenges typical of
large-scale, dynamic, heterogeneous, latency-affected distributed systems.

The research question now become clear:

3 Are there any patterns in the way scientists share resources that could be ex-
Q yp Y
ploited for designing mechanisms?

But resource sharing also exists outside scientific communities: peer-to-peer sys-
tems or even the Web facilitate the sharing of data. Another question arises:

Q)4 Are these characteristics typical of scientific communities or are they more gen-
eral?

This chapter answers these two questions: it shows that small-world patterns exist
in diverse file-sharing communities.

3.2 The Data-Sharing Graph

To answer question ()3, we define a new structure that captures the virtual relation-
ship between users who request the same data at about the same time. We call this
structure the data-sharing graph.

Definition: The data-sharing graph is a graph in which nodes are users and an
edge connects two users with similar interests in data.

We consider one similarity criterion in this thesis: the number of shared requests
within a specified time interval.

To answer question (4, we analyze the data-sharing graphs of three different file-
sharing communities. Section 3.3 presents briefly these systems and the traces we

25

used. We discover that in all cases, for different similarity criteria, these data-sharing
graphs are small worlds. The next sections show that using the data-sharing graph for
system characterization has potential both for basic science, because we can identify
new structures emerging in real, dynamic networks (Section 3.4); and for system
design, because we can exploit these structures when designing data location and
delivery mechanisms (Section 3.6). In Chapters 4 and 5 we shall present in details
such a data-location mechanism.

3.3 Three Data-Sharing Communities

We study the characteristics of the data-sharing graph corresponding to three file-
sharing communities: a high-energy physics collaboration (Section 3.3.1), the Web as
seen from the Boeing traces (Section 3.3.2), and the Kazaa peer-to-peer file-sharing
system seen from a large ISP in Israel (Section 3.3.3).

This section gives a brief description of each community and its traces. In addition,
we present the file popularity and user activity distributions for each of these traces as
these have a high impact on the characteristics of the data-sharing graph: intuitively,
a user with high activity is likely to map onto a highly connected node in the data
sharing graph. Similarly, highly popular files are likely to produce dense clusters.

Table 3.1: Characteristics of traces analyzed.

System | Users Requests Duration

All | Distinct Traces
DO 317 | 2,757,015 193,662 | 180 days
Web 60,826 | 16,527,194 | 4,794,439 | 10 hours
Kazaa | 14,404 976,184 116,509 5 days

3.3.1 The DO Experiment: a High-Energy Physics Collaboration

The DO experiment [32] is a virtual organization comprising hundreds of physicists
from more than 70 institutions in 18 countries. Its purpose is to provide a worldwide
system of shareable computing and storage resources that can together solve the
common problem of extracting physics results from about a Petabyte (c¢.2003) of
measured and simulated data. In this system, data files are read-only and typical
jobs analyze and produce new, processed data files. The tracing of system utilization
is possible via a software layer (SAM [76]) that provides centralized file-based data
management.

We analyzed logs over the first six months of 2002, amounting to about 23,000
jobs submitted by more than 300 users and involving more than 2.5 million requests

26

for about 200,000 distinct files. A data analysis job typically runs on multiple files
(117 on average). Figure 3.1 shows the distribution of the number of files per job.

In addition to studying the properties of the data-sharing graph, we evaluated
the applicability of traditional workload models (such as file size distribution, file
popularity distribution, and job interarrival time) in this environment. We learnt that
some of the traditional workload models are appropriate, such as job inter-arrival time
and the existence of diurnal usage patterns, while others (e.g., file size distribution
and file popularity distribution) are inaccurate. These results are presented in detail
in [57].

100000 ——rrrrrm—r—rrrrrs—r—rrrreey
10000]
@ 1000 -_
2
T
#* 100 i
D
o 4
10 %g‘;)% -
% B
O
1 PRI | PRI | PR | PR
1 10 100 1000 10000

Projects

Figure 3.1: Number of file requests per project in DO.

100000 . ; ; . .

> 10000 £]
|

g

T 1000 =)
£ .

g 100 4
o

@

[10 b 2

1 | L 1 1 |.

1 10 100 1000 100001000001e+06
Request rank

Figure 3.2: File popularity distribution in DO.

The daily activity is relatively constant (Figure 3.3), with a few significant peaks—
corresponding perhaps to approaching paper submission deadlines in high-energy
physics. User activity (Figure 3.4) is highly variable, with scientists who scan from
tens of thousands of distinct data files to just a couple.

27

140000 T T T T T T 1T
120000 I -

100000 B
80000 B
60000 B
40000 H B
20000 j

[AvALS

Number of requests

0 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Day

Figure 3.3: Number of file requests per day in DO.

1e+06

T T T T
Distinct requests ©
All requests x

100000 5

10000 f

1000 |

Requests

100 |

10 |

N
0 50 100 150 200 250 300 350
User Rank

Figure 3.4: Number of files (total and distinct) asked by each user during the 6-month
interval.

28

In DO file popularity does not follow the Zipf’s law typical of Web requests. (Fig-
ure 3.2). The reason, we believe, is that data in this scientific application is more
uniformly interesting: a typical job swipes a significant part of the data space (and
hence file set) in search of particular physics events.

3.8.2 The Web

We use the Boeing proxy traces [20] as a representative sample for Web data access
patterns. These traces represent a five-day record from May 1999 of all HT'TP requests
(more than 20M requests per day) from a large organization (Boeing) to the Web.
Because traces are anonymized and IDs are not preserved from day to day, our study
was limited to one-day intervals. However, given the intense activity recorded (Figure
3.5 shows the number of requests per second), this limitation does not affect the
accuracy of our results. Here we study a representative 10-hour interval.

800 T T I T T T T
700 | -
600 +

+
500 | o
400 il

200

Requests per Second

i
300 | &
+
7
+

100 - ¢ ww+ s
0 1 1 1 1 1 1 1 1 W
40 50 60 70 80 90 100 110 120 130

Time ('000s)

Figure 3.5: Requests per second (averaged over 15 min. intervals). In our experiments
we used the traces from the interval 40,000 and 80,000 seconds (until right after the
peak).

For the study of Web traces, we consider a user as an IP address. During the
10-hour interval, 60,826 users sent 16.5 million web requests, of which 4.7 million
requests were distinct. It is possible that the same IP address corresponded in fact
to multiple users (for example, for DHCP addresses or shared workstations). We do
not have any additional information to help us identify these cases or evaluate their
impact. However, given the relatively short intervals we consider in our studies—from
2 minutes to a couple of hours—the chances of multiple users using the same IP are
small.

100000 pr—r e
10000 |]
)]
% L 4
o 1000]
2 i]
E 100 |]
- i]
o - 4
22 10 .
1 L 1 [l 1 1 1 I- |_

09 4p™ 9 p™ 4gd A anteg’

Reqguest rank

Figure 3.6: The file popularity distribution in Web follows Zipf’s law.

1e+06 : : :
100000 .
10000 .

1000 .

Requests

100 .

10 g

1 L L —
0 20000 40000 60000
User rank

Figure 3.7: Number of requests per Web user.

29

30
3.3.3 The KaZaA Peer-to-Peer Network

Kazaa is a popular peer-to-peer file-sharing system with an estimated number of more
than 4 million concurrent users as of June 2003 [108].

Few details are publicly available about the Kazaa protocol. Apparently, Kazaa
nodes dynamically elect “supernodes” that form an unstructured overlay network
and use query flooding to locate content. Regular nodes connect to one or more
super-nodes and act as querying clients to super-nodes. Control information, such
as queries, membership, and software version, is encrypted. Once content has been
located, data is transfered (unencrypted) directly from provider to requester using
the HT'TP protocol. In order to improve transfer speed, multiple file fragments are
downloaded in parallel from multiple providers.

Since control information is encrypted, the only accessible traffic information can
be obtained from the download channel. As a result, we can only gather information
about the files requested for download and not about files searched for (therefore,
typos are naturally filtered). Details on how Kazaa traces were recorded as well as a
thorough analysis of the Kazaa traffic are presented in [71].

10000 g
F
g 1000 F E
q) -
>
(on L 4
(0]
= 100 E =
%) E 3
% :
=) F 4
g
r E
1 N sl sl sl sl .i N P
10° 10' 102 10° 10* 10° 10°

Request rank

Figure 3.8: The file popularity distribution in Kazaa follows Zipf’s law.

We had access to five days of Kazaa traffic from January 2003, during which 14,404
users downloaded 976,184 files, of which 116,509 were distinct. Users are identified
based on their (anonymized) user ID that appears in the HTTP download request.
The user population is formed of Kazaa users who are clients of the ISP: similar to
the Boeing traces, these traces give information about only a limited set of users in
the system.

10000

1000

100

Requests

10

1 1 1 1 1
0 3000 6000 9000 12000

User rank

Figure 3.9: Number of requests per user in KaZaa.

T
o4+
|

+

I
+ o+ e

| | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Time ('000 seconds)

Requests per second
O P N W M O O N @©
T
|

Figure 3.10: Requests per second in KaZaa (averaged over 100s)

31

32

3.4 Small-World Data-Sharing Graphs

Data-sharing graphs are built using the definition in Section 3.2: users are nodes in
the graph and two users are connected if they have similar interests in data during
some interval. For the rest of this paper we consider one class of similarity criteria:
we say that two users have similar data interests if the size of the intersection of their
request sets is larger than some threshold. This section presents the properties of
data-sharing graphs for the three communities introduced previously.

The similarity criterion has two degrees of freedom: the length of the time interval
7 and the threshold on the number of common requests p. Section 3.4.1 studies the
dependence between these parameters for each of the three data-sharing communities.

Sections 3.4.2 and 3.4.3 present the properties of the data-sharing graphs. We
shall see that not all data-sharing graphs are power law. However, they all exhibit
small-world characteristics, a result that we support with more rigorous analysis in
Section 3.5.1.

3.4.1 Distribution of Weights

We can think of the family G(7,1) of data-sharing graphs as weighted graphs: two
users are connected by an edge labeled with the number of shared requests during a
specified time period. The distribution of weights (Figures 3.11, 3.12 and 3.13) high-
lights differences among the sharing communities: the sharing in DO is significantly
more pronounced than in Kazaa, with weights in the order of hundreds or thousands
in DO compared to 5 in Kazaa.

3.4.2 Degree Distribution

The node degree distribution of the data-sharing graph is particularly interesting
for designing or evaluating distributed applications: for example, if the graph is an
overlay, it gives insights on the number of neighbors a node needs to maintain. Figures
3.14, 3.15, and 3.16 present the degree distributions for the three systems: note that
the Kazaa data-sharing graph is the closest to a power-law, while D0 graphs clearly
are not power-law.

3.4.8 Small-World Characteristics: Clustering Coefficient and
Awverage Path Length

We wanted to test our intuition that, similar to scientific collaboration networks,
we find small-world patterns at the resource sharing level. We consider the Watts-
Strogatz definition [119]: a graph G(V, E) is a small world if it has small average path
length and large clustering coefficient, much larger than that of a random graph with
the same number of nodes and edges.

10000

1000

100

Weight

10

1

10000

1000

100

Weight

10

1

33

—— 3 100000 T ——
7days + E 14 days +
£] 10000 E
] 1000 s -
+ . § £,
] 100 + .
+ * 1 + + +
+
o 10 Fro oo s
+] + + +
+ 1 + T i
L L L PRI 1 P Ml P
1 10 1 10 100
0 —rr ————rry 100000 —
21days +] 28 days +
0 . 10000 S -
- + +
0 N + E 1000 b £t N E
T+ .] tot
N = 1
0 Pt & 100 % Lt &
+ i + 1
% : T 1 T % + +F
£t * +F *
0 + + + = 10 + + + + =
+ 7 : T+
LT Lt
+ 1 +
1 P | m PR 1 2l PR R
1 10 100 1 10 100
Edges # Edges

Figure 3.11: The distribution of weights in D0 data-sharing graphs for different in-
tervals during the same period.

Weight

X 01

*

M DR N

10° 10* 10% 10° 10* 10° 1
Edges

0® 10’

108

Figure 3.12: The distribution of weights in Web for data-sharing graphs for different
time intervals.

34

10 T T VIR
L 8h =m
L 4h °
I 1h A
= r -
K=
() A o N
=
A on
l N P | N P | N Ll ol - N
1 10 100 1000 10000 100000
Edges

Figure 3.13: The distribution of weights in Kazaa data-sharing graphs for different
time intervals.

100 T —————— 1000 T —— g
F 7days, IF O 28days, 1IF O
7 days, 100F e 28 days, 100F e
100
%] %]
3 1] %
e 10} o - (s}
< * 1 z
H* b H*
o 10
=]
O Coo @ [
11— meeeinwEm—— 1l 1
1 10 100
Node Degree Node Degree
Figure 3.14: Degree distribution for DO data-sharing graphs.
1000 g . ——r g 1000 g T e
F 2min, 1F + E E o 30min, 10F +
2min, 5F o t, 30min, 100F ©
N
w 100 E O+++ — E w 100 E
E ot 3 E
3 © o8 3
o o H + + o
= D ok + + z
* s+ *
10 O, i+ E 10 |
E oed’, 4t E E
D o ittty] F
QO D+ HHH-HiHi- E
QD 4D HH-HHHHHHAHHHH- E
1 L 1 - Hi-] 1
10 100 1000 1 10 100 1000 10000

Node Degree

Node Degree

Figure 3.15: Degree distribution for Web data-sharing graphs

35

8PT°¢l | 060°0 | 09T°€ | BLTO | €¥P°0 | 8L 9¢ Ve ITT ITT € SINOY § | BRZRY]
G0LE G00°0 | TI9°€ | €LV°0 | €€9°0 | GCC0€ €0ye 6L GSTARS 809€ I SINOY § | BRZRY]
66S°¢ IT0°0 | 6¢9°¢ | €65°0 | OFL°0 | 069T 87¢ L6 LEGT 608 I oy T | eezel]
168°8 €e00 | 9¢ 0€T°0 | 0CL°0 | CLT ¢01 0¢ 961 eVl 00T | S 008T 4oM
6TGT ¢01°0 | 960°¢ 808°0 | TLZ998T | 6709 6€ 8EE998T | LETI I S 0081 4oM
96¢°¢ 6¢0°0 | 999°¢ | ¥€9°0 | 98L°0 | 99¢LY G08T 00T 0T9.L¥ 9L0¢ I S 0cl 9o
906°T 6L€°0 | 8C9'T | 808°0 | 8ER'0 | 9¢¢C ¢g 9 GeT 6¥ 000T | s&ep 8¢ 0a
vcae GF1°0 | 69L°¢ | €9L°0 | 90L°0 | 8€Y 8L 4 vy 8 00T | s4®p 8¢ 0d
88¢°C €€T’0 | 9L¥'¢ | T¥9°0 | 9TL°0 | LEL LOT 6 LLL 6¢l I s&ep §g 0d
16€°¢ GLy0 | 91 ¢99°0 | 7E80 | €F VI I ey VI 000T | s&ep L 0d
120°¢ €90 | 99T | €PL°0 | €LL°0 | 88 0¢ € g6 9¢ 00T | sdep . 0d
8ECC 8ECO | PIT'C | 8¥9°0 | T¥L°0 | V1 ¢g g €al1 9 I sdep 0d
4 ‘90 1) | 1D | $98pH # | SOpON # | syuouoduio)) | soSpH # | SOpoN # | 1! L UID)SAG
ydeir) wopuey] JmouoduIod pajoouuod sodre| polosuuON)#

(¢¢ "b) syderd wopuer jo
13uo] yred adeIose o1y ST 4 pue [)3us] yed aFeioar painseawt) si] {(F'¢ by) sydeld wopuel Jo JULIDYJ0D FULIISND
7ye3011G-S19BA\ 911 ST 4H) ‘g'¢ "bry ul peuyep JuaIIe0d SuLLISN[D painseswt o) St 5)) (1T'¢ ‘bY) jusIdIFo0d Fure)snd
71e301)G-S)1)eA\ POINSBOUIL 9} ST 1)) “PoIpN)s SoIjTunumuIod 991y} o) 10} syderd Surreys-ejep jo soenpiodol :7°¢ 9[qR],

36

1000 F——rrrrry ey 1000 g
] ih,1F + 3] gh, 1F + 3
I o 4h,1F o 1 T 8h,2F x
- + O 4 K * +
+og oy
100 50 E 100 % ot E
) : +29 o]) : T]
° [O)) o x hii +
E TR Z o
F 4 S+ F 4 +
* iﬂigo #* X X Ff‘#ﬁ +
10 ¢ " o 3 10 x 3
E T o E E K HE E
+ oo F XX]
+ H X T -
+ 4 GEED O 3 XOXK - Hill+ g
1 L EmdEc——— | 1 bl o mmac s s
1 10 100 1000 1 10 100 1000
Node Degree Node Degree

Figure 3.16: Degree distribution for Kazaa data-sharing graphs

The clustering coefficient is a measure of how well connected a node’s neighbors
are with each other. According to one commonly used formula for computing the
clustering coefficient of a graph (Eq. 3.1), the clustering coefficient of a node is
the ratio of the number of existing edges and the maximum number of possible edges
connecting its neighbors. The average over all |V'| nodes gives the clustering coefficient
of a graph (Eq. 3.2).

edges between u’s neighbors

cC, =

= 3.1
Maximum # edges between u’s neighbors (3.1)

1
CC, = T Y ca, (3.2)

Another definition (Eq. 3.3) directly calculates the clustering coefficient of a graph
as a ratio of the number of triangles and the number of triples of connected nodes,
where connected triples of vertices are trios of nodes in which at least one is connected
to the other two.

3 X Number of triangles on the graph

CCy (3.3)

~ Number of connected triples of vertices

The two definitions of the clustering coefficient simply reverse the operations—one
takes the mean of the ratios, while the other takes the ratio of the means. The former
definition tends therefore to weight the low-degree vertices more heavily, since they
have a small denominator in Eq. 3.1.

According to the definition of clustering from Eq. 3.1, the clustering coefficient of
a random graph is:

B 2 x |E|
VIx(VI=1)

ca; (3.4)

37

The average path length of a graph is the average of all distances. For large graphs,
measuring all-pair distances is computationally expensive, so an accepted procedure
[120] is to measure it over a random sample of nodes. The average path length for
the larger Web data-sharing graphs in Table 3.2 was approximated using a random
sample of 5% of the graph nodes. The average path length of a random graph is given
by Eq. 3.5.

_log(lV)
" Tog(|EI/IV])

We discover that data-sharing graphs for the three systems all display small-
world properties. Figures 3.17, 3.18, and 3.19 show the small-world patterns—large
clustering coefficient and small average path length-—remain constant over time, for
the entire period of our studies. Figure 3.20 summarizes the small-world result: it
compares some instances of data-sharing graphs with small-world networks already
documented in the literature. The axes represent the ratios of the data-sharing graphs
metrics and the same metrics of random graphs of same size. Notice that most
datapoints are concentrated around y = 1 (“same average path length”) and = > 10
(“much larger clustering coefficient”).

(3.5)

1 T T T T T 3.5 T T T : ;

DO —e— + 4 DO —e—
= Random ---4--- 3r AV Random, -—-4--- -
% 0.8 T E= E S Y SN o

[=) \ VN N A /
o S 25 VL] Y E
5 ! g
o) 0.6 I T = 2 _
= f i
g o4l . i o 15 i
g n A 2
%] AA o o = 1} i
= N /%\ /‘\ A A ! \ Aha Aaas g
O 021 /A4 R S 7 < o5k i
O 1 1 1 1 1 O 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Week Week

Figure 3.17: Clustering coefficients (left) and average path lengths (right) of DO data-
sharing graphs and random graphs of same size. Similarity criterion: 1 shared file
during a 7-day interval.

We clearly see that data-sharing graphs of various durations and similarity criteria
are small worlds. From the Watts-Strogatz model of small worlds—as loosely con-
nected collections of highly connected subgraphs—two significant observations can be
drawn. First, well connected clusters exist; due to the data-sharing graph definition,
these clusters map onto groups of users with shared interests in files. Second, there is,
on average, a small path between any two nodes in the data-sharing graph: therefore,
for example, flooding with relatively small time-to-live would cover most of the graph.

1 T T T T T T T T T
WWW, 10 files —e—
- Random ---a---
5 0.8 _N—H—‘—k’—.\._._.\._._._
o
%
8 06 —
(@)
()]
£ 04} i
]
[2]
)
o 02} —
0 e, Seleent” S Y S G W W GV WY GG S WY
0 2 4 6 8 10 12 14 16 18 20
Interval (30 min)
1 T T T T T T T T
WWW, 100 files —e—
- Random ---a---
_5 0.8 - b
o
%
8 06
(@)
()]
£ 04t
]
7] A
4 \
o 02F N 1
k\
E .
0 Let I e ST ST S ST e

0 2 4 6 8 10 12 14 16 18
Interval (30 min)

20

Average Path Length

Average Path Length

35 =TT T T T T T T
a WWW,10 files —e—
3F N Random ---a--- -
A
2 - -
15 —
1 - -
0.5 _
0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Interval (30 min)
60 T T T T T T T T T
R WWW,100 files —e—
50 - % Random ---4--- |
40 \ —
30 \ .
20 - ia i
\ A
\\ P L«A\
10 + k\ */A A .
. L—A*A_‘/“
H"’MW‘W'W-H'
0

0 2 4 6 8 10 12 14 16 18 20

Interval (30min)

38

Figure 3.18: Clustering coefficients (left) and average path lengths (right) of WWW
data-sharing graphs and random graphs of same size. Similarity criterion: 10, respec-
tively 100 shared requests during a half-hour interval.

1 T T T T T T T
Kazaa —e—
- Random ---a---
_5 0.8 - -
Q
5 1
8 06 B
(@)
()]
£ 04} i
Q
@
o}
o 02} —
A\
0 TA-A Aoy oA h A a-A 4 A A A4

0 2 4 6 8 10 12 14
8-hour interval

16

Average Path Length

T T T
Kazaa —e—
4 Random ---a--- o

0 2 4 6 8 10 12 14 16

8-hour interval

Figure 3.19: Clustering coefficients (left) and average path lengths (right) of Kazaa
data-sharing graphs and random graphs of same size. Similarity criterion: 2 shared

requests during an 8-hour interval.

,_.\10'0] + Web data-sharing graph
= 300s, 1file ® DO data-sharing graph
e # Other small-world graphs
20 i + Kazaa d%tzftgshanjlg graph
= 5
Web A GOofiles
3 ' Film
E 5 actors
0 Ko e
g‘u 1.0 n " 0k5 ¢ :ﬁ‘ c\‘K&g
b} *
E / e 36005,
= o S0files
jH Ak » aay
gb o / ! file
{I: LAML
1800s, Intermet coauthors
100files
0.1 | | | |
1 10 100 1000 10000
Clustering coefficient ratio (log scale)

39

Figure 3.20: Small-world networks: data-sharing graphs and networks previously

documented in the literature as small worlds.

40
3.5 Human Nature or Zipf’s Law?

We observed small-world patterns in three different file-sharing communities: a sci-
entific collaboration, the Web, and the Kazaa peer-to-peer system. Given the variety
of our study sample, we could perhaps generalize this observation to any file-sharing
user community. Thus, we seek to understand what causes these characteristics in
data-sharing graphs and to answer the question:

Q5 Are the small-world characteristics consequences of previously documented pat-
terns or do they reflect a new observation concerning user’s preferences in data?

We explore two directions that help us answer the causality question. In Section
3.5.1 we focus on the definition of the data-sharing graph and question the large
clustering coefficient as a natural consequence of the graph definition. In Section
3.5.2 we analyze the influence of well-known patterns in file access, such as time
locality and file popularity distribution.

3.5.1 Affiliation Networks

An affiliation network (also called “a preference network”) is a social network in which
the participants (actors in sociology terminology) are linked by common membership
in groups or clubs of some kind. Examples include scientific collaboration networks
(in which actors belong to the group of authors of a scientific paper), movie actors
(in which actors belong to the cast of a certain movie), and board directors (in which
actors belong to the same board).

Affiliation networks are therefore bipartite graphs: there are two types of vertices,
for actors and respectively groups, and edges link nodes of different types only (Figure
3.21, left). Affiliation networks are often represented as unipartite graphs of actors
joined by undirected edges that connect actors in the same group. One observes now
that the data-sharing graph with one-shared file threshold for the similarity criterion
is such a one-mode projection of a bipartite affiliation network (Figure 3.21, right).

These one-mode projections of bipartite graphs have particular characteristics.
Most relevant to this discussion is the clustering coefficient: inherently, the clustering
coefficient is larger in these graphs than in random graphs of the same size, since
the members of a group will form a complete subgraph in the one-mode projection.
Consequently, our comparison with random graphs, although faithful to the Watts-
Strogatz definition of small worlds, is misleading.

We therefore identified two possible sources of bias in our analysis: one is the
implicitly large clustering coefficient of the unimodal affiliation networks, as just
shown. Another is the degree distribution of the data-sharing graphs which, as in
many other real networks, is far from the Poisson distribution of a random graph
(Figures 3.14, 3.15, and 3.16).

41

®

®—®

Y

(cD)
E—F)

® -

& ©

Figure 3.21: A bipartite network (left) and its unipartite projection (right). Users
A-G access files m-p. In the unipartite projection, two users are connected if they
requested the same file.

Newman et al. [88, 87] propose a model for random graphs with given degree
distributions. These graphs, therefore, will not be random in the Erdds-Rényi sense,
but will be random members of a class of graphs with a fixed degree distribution. The
authors also adapt their model to affiliation networks and deduce a set of parameters
of their unimodal projection. We use their theoretical model to estimate the clustering
coefficient of unimodal projections of random affiliation networks of the size and
degree distributions as given by traces and compare it with the actual values.

In a bipartite affiliation network, there are two degree distributions: of actors
(to how many groups does an actor belong) and of groups (how many actors does a
group contain). Let us consider a bipartite affiliation graph of N actors and M groups.
Let us name p; the probability that an actor is part of exactly j groups and g the
probability that a group consists of exactly £ members. In order to easily compute the
average node degree and the clustering coefficient of the unipartite affiliation network,
Newman et al. use three functions fy, g, and Gy defined as follows:

folx) = ;pjxj (3.6)
go(z) = Z: gz (3.7)
Go(x) = folgo(x)/g(1)) (3.8)

The average degree for the actors’ one-mode projection of the affiliation network

42

is:
AvgDegree = Gy(1) (3.9)
And the clustering coefficient is:
M g"’(l)
C=—= 3.10
N Gj(1) (3.10)

The definition of the clustering coefficient is that of Eq. 3.3.
It is therefore relevant to compare the clustering coefficient of data-sharing graphs
with that given by Equation 3.10.

10000 f——r———r——————— 16+06 f——rrrrery ——
E Users O ; Files o 1
¢ 100000 F N
1000 F . []
o 3 E $ 10000 |
=) [=) I
(3] (3] F
QO 100 F . Q 1000 |
() F (] r
pe) r pe) L
2 : S 100 |
10 £ 3 [
E E 10 i
1 L e A 1 L ohe @agul o
1 10 100 1000 10000 100000 1 10 100 1000 10000
Nodes # Nodes

Figure 3.22: Degree distribution of user (left) and file (right) nodes of a bipartite
affiliation network corresponding to a half-hour interval in the Boeing Web traces.

Figure 3.22 shows the corresponding values for the degree distribution p and ¢
(but not normalized: i.e., it shows the number rather than the percentage of users
that requested exactly k files) in a Web data-sharing graph with a similarity criterion
of one shared request within a half-hour interval.

Table 3.3 shows that our intuition was correct: there is a significant difference
between the values of measured and modeled parameters. Thus, the large cluster-
ing coefficient is not due to the definition of the data-sharing graph as a one-mode
projection of an affiliation network with non-Poisson degree distributions.

Table 3.3 leads to two observations. First, the actual clustering coefficient in
the data-sharing graphs is always larger than predicted and the average degree is
always smaller than predicted. An interesting new question emerges: what is the
explanation for these (sometimes significant) differences? One possible explanation
is that user requests for files are not random: their preferences are limited to a set
of files, which explains the actual average degree being smaller than predicted. A
rigorous understanding of this problem is left for future work.

A second observation is that we can perhaps compare the file sharing in the three
communities by comparing their distance from the theoretical model. We see that

43

Table 3.3: Properties of data-sharing graphs, measured and modeled as unimodal
projection of affiliation networks. Clustering coefficient are measured using Eq. 3.3
and modeled using Eq. 3.10

Clustering Average degree

Interval | Users Files | Theory | Measured | Theory | Measured

DO 7 days 74 | 28638 | 0.0006 0.65 | 1242.5 3.3
28 days 151 | 67742 | 0.0004 0.64 | 7589.6 6.0

Web 2 min | 3385 | 39423 | 0.046 0.63 50.0 22.9
30 min | 6757 | 240927 | 0.016 1453.1 304.1

Kazaa 1h| 1629 3393 | 0.55 0.60 2.9 24
8h | 2497 9224 | 0.30 0.48 9.5 8.7

the Kazaa data-sharing graphs are the closest to the theoretical model and the DO
graphs are very different from their corresponding model. This is different from the
comparison with the Erdds-Rényi random graphs (Table 3.2). The cause of this
difference and the significance of this observation remain to be studied in the future.

3.5.2 Influences of Zipf’s Law and Time and Space Locality

Event frequency has been shown to follow a Zipf distribution in many systems, from
word occurrences in English and in monkey-typing texts [72] to city population [78].
It is also present in two of the three cases we analyze: the Web and Kazaa. Other
patterns characteristic to data access systems include time locality, in which an item
is more popular (and possibly requested by multiple users) during a limited interval
and temporal user activity, meaning that users are not uniformly active during a
period, but follow some patterns (for example, downloading more music files during
weekends or holidays [98]). Thus, we ask:

Q6 Are the patterns we identified in the data-sharing graph, especially the large
clustering coefficient, an inherent consequence of these well-known behaviors?

To answer this question, we generate random traces that preserve the documented
characteristics but break the user-request association. From these synthetic traces,
we build the resulting data-sharing graphs, and analyze and compare their properties
with those resulting from the real traces.

Synthetic Traces

The core of our traces is a triplet of user 1D, item requested and request time. Figure
3.23 identifies the following correlations in traces, some of which we want to preserve
in the synthetic traces:

44

Figure 3.23: The relations between users, their requests, and their request times
determine observed patterns like Zipf frequency of requests or time locality.

(1)

(5)

(6)

User—Time: User’s activity varies over time: for example, in the DO traces, some
users accessed data only in May.

Request—Time: Items may be more popular during some intervals: for example,
news sites are more popular in the morning.

User—Request: This is the key to user’s preferences. By breaking this relation-
ship and randomly recreating it, we can analyze the effect of user preferences
on the properties of the data-sharing graph.

User: The number of items requested per user over the entire interval studied
may be relevant, as some users are more active than others (see Figure 3.7 for
the Web traces).

Time: The time of the day (or in our case, of the periods studied) is relevant,
as the Web traces show (the peak in Figure 3.5 right).

Request: This is item popularity: number of requests for the same item.

Our aim is to break the relationship (3), which implicitly requires the break of
(1), (2), or both. We also want to preserve relationships (4), (5), and (6).

One can picture the traces as a R x 3 matrix, in which R is the number of requests
in that trace and the three columns correspond to users, files requested, and request
times, respectively. Now imagine the we shuffle the users column while the other
two are kept unchanged: this breaks relations (3) and (1). If the requests column
is shuffled, relations (3) and (2) are broken. If both user and request columns are
shuffled, then relations (1), (2), and (3) are broken. In all cases, (4), (5), and (6)
are maintained faithful to the real behavior: that is, users ask the same number of

45

requests (4); the times when requests are sent are the same (5); and the same requests
are asked and repeated the same number of times (6).
We generated synthetic traces in three ways, as presented above:

ST;: No correlation related to time is maintained: break relations (1), (2), and (3).
STy: Maintain the request times as in the real traces: break relations (1) and (3).

ST;: Maintain the user’s activity over time as in the real traces: break (2) and (3).

Properties of Synthetic Data-Sharing Graphs

Three characteristics of the synthetic data-sharing graphs are relevant to our study.
First, the number of nodes in synthetic graphs is significantly different than in their
corresponding real graphs (“corresponding” in terms of similarity criterion and time).
On the one hand, the synthetic data-sharing graphs for which user activity in time
(relation (1)) is not preserved have a significantly larger number of nodes. Even when
the user activity in time is preserved (as in the STj case), the number of nodes is
larger: this is because in the real data-sharing graphs, we ignored the isolated nodes
and in the synthetic graphs there are no isolated nodes. On the other hand, when
the similarity criterion varies to a large number of common requests (say, 100 in the
DO case, Figure 3.25), the synthetic graphs are much smaller or even disappear. This
behavior is explained by the distribution of weights in the synthetic graphs (Figure
3.24): compared to the real graphs (Figure 3.11), there are many more edges with
small weights. The median weight in the real DO data-sharing graphs is 356 and the
average is 657.9, while for synthetic graphs the median is 137 (185 for ST3) and the
average is 13.8 (75.6 for ST3).

Second, the synthetic data-sharing graphs are always connected (unlike real graphs,
that always have multiple connected components, as shown in Table 3.2). Even for
similarity criteria with large number of common requests the synthetic graphs remain
connected. This behavior is due to the uniform distribution of requests per user in
the case of synthetic traces, which is obviously not true in the real case.

Third, the synthetic data-sharing graphs are “less” small worlds than their corre-
sponding real graphs: the ratio between the clustering coefficients is smaller and the
ratio between average path lengths is larger than in real data-sharing graph (Figure
3.26). However, these differences are not major: the synthetic data-sharing graphs
would perhaps pass as small worlds.

These results show that user preferences for files have significant influence on the
data-sharing graphs: their properties are not induced (solely) by user-independent
trace characteristics, but human nature has some impact. So perhaps the answer
to this section title (“Human nature or Zipf’s law?”) is “Both.” However, it seems
that identifying small-world properties is not a sufficient metric to characterize the
natural interest-based clustering of users: we might need a metric of how small world

+

1000 : ———r—————— 10000 — ——————
7 days, ST1 + 7 days, ST2
% -+ 1000
100 i3 + E
5 e, g
o ", 2 100
= ﬂm =
10 | 4 .
F +++]
*] 10
n)
1 R | Lol Lol M
1 10 100 1000 10000 1 el ol il
Edges 1 10 100
10000 ———r e —— —
7 days, ST3 E
1000 3
N 3
£
100 ﬁﬁ* 3
+ T+
Bl
10 #, -
o 3
*y
n
l Lol Lol L L
1 10 100 1000
Edges

1000 10000

46

Figure 3.24: Distribution of weights in the synthetic data-sharing graphs built from

shuffling the DO traces.

47

300 T T X;L* j<I X 160 STl T T I>< T
X % s * X g ¥ ¥ *
250 ¥yt THE e TR 140 sT2 ~ ’
+ 120 L ST x + X
= Real © x
T 200 | ST1L + A 100 L i
> ST2 X % X x+
£ 150 | ST x . go p¥x X LEREIVE IV
" Real O 3 Ty
g 100 60« X Ty x
o) - *1
= x**%¥§**x KoK e K XX 40 + X E X éxx §*§X*§++xﬁmm
50 ¥00008 9 X BogaXgP 50 0% % DRY xg® "oo #bo
= = 20 | x o+ Oy % ¥ 7
+ X ¥ +7%
0 1 1 1 1 O 1 1 1 1
0 5 10 15 20 25 0 5 10 15 20 25
7-day interval (1 common request) 7-day interval (100 common requests)
60 T T T T
ST1 + X
| ST2 x _
50 ST3 %
<
5 40 | Real O |
o
£ 30 + «
&
S X Og
z “ _DD " oo 0 DD) DﬁDDD _Eﬁ
ok o D§ éDD ¥ O * *%Jr_
¥ * Q X +>< %
0 T et e 1T
0 5 10 15 20 25

7-day interval (1000 common requests)

Figure 3.25: Number of nodes in data-sharing graphs in real and synthetic DO traces

1.8 T T T

T

Real
ST1
ST2
ST3

Oproe

Avg. path length ratio

0.2 1 1 1 1 1
1 2 3 4 5 6 7

Clustering coefficient ratio

Figure 3.26: Comparison of the small-world data-sharing graphs as resulted from the
real and synthetic DO traces.

48

a small-world data-sharing graph is. This problem remains to be studied further in
the future.

3.6 Small-World Data-Sharing Graph: Significance for
Mechanism Design

It is interesting to notice that the structure we call the data-sharing graph can be
applied at various levels and granularities in a computing system. We looked at
relationships that form at the file access level, but intuitively similar patterns could
be found at finer granularity, such as access to same memory locations or access
to same items in a database. For example, a recent article [104] investigates the
correlation of program addresses that reference the same data and shows that these
correlations can be used to eliminate load misses and partial hits.

At a higher level, the data-sharing graph can identify the structure of an organiza-
tion—based on the applications its members use, for example—Dby identifying interest-
based clusters of users and then use this information to optimize an organization’s
infrastructure, such as servers or network topology.

In this section we focus on implications for mechanism design of the data-sharing
graph from two perspective: its structure (definition) and its small-world properties.
We stress that some of these ideas, while untested, are promising directions for future
work. In Chapters 4 and 5 we present the design and performance of a mechanism
inspired from the small-world characteristics of the data-sharing graph.

3.6.1 Relevance of the Data-Sharing Graph Structure

Some recommender systems have a similar flavor to the data-sharing graph. Refer-
ralWeb [62] attempts to uncover existing social networks to create a referral chain of
named individuals. It does this by inferring social relationships from web pages, such
as co-authorship, research groups and interests, co-participation in discussion panels,
etc. This social network is then used to identify experts and to guide searches around
them.

Sripanidkulchai et. al came close to the intuition of the data-sharing graph
[111]: they improve Gnutella’s flooding-based mechanism by inserting and exploiting
interest-based shortcuts between peers. Interest-based shortcuts connect a peer to
peers who provided data in the past. This is slightly different from our case, where
an edge in the data-sharing graph connects peers that requested the same data. How-
ever, the two graphs are likely to overlap significantly if peers store data of their own
interest. Our study distinguishes by its independence from any underlying infrastruc-
ture (in this case, the distribution of data on peers and the location mechanism) and
gives a theoretical explanation of the performance improvements in [111].

49

The data-sharing graph can be exploited for a variety of decentralized file man-
agement mechanisms in resource-sharing systems (such as peer-to-peer or Grids).

e [n a writable file-sharing system, keeping track of which peers recently requested
a file facilitates the efficient propagation of updates in a fully decentralized, self-
organizing fashion (a similar idea is explored in [102]).

e In large-scale, unreliable, dynamic peer-to-peer systems file replication may be
used to insure data availability [94] and transfer performance. The data-sharing
graph may suggest where to place replicas closer to the nodes that access them.
Similarly, it may be useful for dynamic distributed storage: if files cannot be
stored entirely on a node, then they can be partitioned among the nodes that
are interested in that file.

e [n a peer-to-peer computing scenario, the relationships between users who re-
quested the same files can be exploited for job management. If nodes store and
share recently downloaded files, they become good candidates for running jobs
that take those files as input. This can be used for scheduling, migrating or
replicating data-intensive jobs.

3.6.2 Relevance of Small-World Characteristics

The idea underlying the data-sharing graph was first presented in [58] as a challenge
to design a file-location mechanism that exploits the small-world characteristics of
a file-sharing community. Meanwhile we completed the design and evaluation of a
mechanism that dynamically identifies interest-based clusters, disseminates location
information in groups of interested users, and propagates requests among clusters
(Chapters 4 and 5). Its strengths come from mirroring and adapting to changes
in user’s behavior. File insertion and deletion are low cost, which makes it a good
candidate for scientific collaborations, where use of files leads to creation of new files.

3.7 Summary

This chapter reveals a predominant pattern in diverse file-sharing communities, from
scientific communities to the Web and file-swapping peer-to-peer systems. This pat-
tern is brought to light by a structure we propose and that we call “data-sharing
graph.” This structure captures the relationships that form between users who are
interested in the same files. We present properties of data-sharing graphs from three
communities. These properties are relevant to and might inspire the design of a
new style of mechanisms in peer-to-peer systems, mechanisms that take into account,
adapt to, and exploit user’s behavior. We also suggest some mechanisms that could
benefit from the data-sharing graph and its small-world properties.

CHAPTER 4
FLASK: A FILE-LOCATION ALGORITHM FOR
SMALL-WORLD COMMUNITIES

The preceding chapter shows that file-sharing communities represented as data-sharing
graphs have small-world characteristics. The large clustering coefficient reveals that
groups of users tend to be interested in the same sets of files and the small average
path length shows that the distance between two users on the data-sharing graph is,
on average, small.

Based on these observations, we designed a file-location mechanism that takes ad-
vantage of the naturally occurring small-world patterns. This mechanism, FLASK (a
File-Location Algorithm for Small-world Kommunities) is presented in this chapter.

4.1 FLASK: Yet Another File-Location Mechanism

With the success of Napster and Gnutella technologies, significant research effort was
concentrated on designing more sophisticated (albeit less successful in terms of wide
acceptance) file-location mechanisms. This work has produced dozens of variants of
distributed hash tables, several improvements in the Gnutella flooding protocol, and
many other proposed mechanisms for locating files in unstructured networks. Why
bother to design yet another?

4.1.1 Motwation: Different Requirements

We can characterize existing P2P location mechanisms according to their performance
objectives and tradeoffs. In Gnutella, the emphasis is on accommodating highly
volatile peers and on fast file retrieval, with no guarantees that files will always
be located. In Freenet [28], the emphasis is on ensuring anonymity. In contrast,
distributed hash tables (DHTs) such as CAN [95], Chord [112], Pastry [101], and
Tapestry [122] guarantee that files will always be located at the cost of increased
overhead for file-insertion and removal and lack of support for wildcard searches.

All these systems were built without reference to a target community: mainly
because they were the “pioneers” in the peer-to-peer file-sharing domain, they do not
address a specific user community or exploit user behavior, but rather, as was the
case with Gnutella and Napster, create a user community. Over time, this user com-
munity was analyzed from various perspectives and important lessons were learned on
participation [103, 18], free riding [4], query distribution [110, 71], overlay topology
characteristics [98], and interest groups [59, 60].

20

51

Our approach is different: we studied a set of user communities and observed
significant requirements not addressed by existing solutions. We detail these require-
ments below, and note that many are associated with scientific communities. For
example, scientists tend to request publishing control over their own data, that is,
they want to ensure that the files they share are advertised as they want. This makes
solutions that rely on other nodes to advertise on their behalf (such as the DHT
solutions) inappropriate. In addition, usage of scientific data often results in creation
of new data that is of interest to the group to which the data producer belongs. For
example, members of a science group access newly produced data to perform anal-
yses or simulations. This work may result in new data that will be of interest to
all scientists in the group, e.g., for comparison. Furthermore, not only do scientific
communities introduce requirements (fast publication, local control) atypical of P2P
music-sharing communities, but in fact some features of P2P systems are undesirable.
For example, the desire for anonymity of access in scientific collaborations may be
overruled by the need for auditing of access for security and monitoring reasons.

Not only are user requirements different, but, as observed in the previous chapter,
some characteristics of user behavior can be exploited in mechanism design. These
observations justify the design of yet another file-location mechanism.

A file-location mechanism appropriate for a variety of communities, including the
scientific community, requires the following:

1. Low-cost file insertion/removal. Data usage in scientific communities is
different than in, for example, music sharing environments: data usage often
leads to creation of new files, inserting a new dimension of dynamism into an
already dynamic system. This requirement is better served by unstructured
search mechanisms (such as Gnutella) than by DHTSs: in the latter the cost of
inserting and deleting a file is the cost of a lookup.

2. Support for node volatility. One of the significant properties of P2P net-
works, revealed by many system characterization studies [103, 18], is highly
intermittent node participation. Support for file volatility may be provided as
self-configuring overlays, as in many current P2P solutions.

3. Scalability with the number of files: Among the scientific domains that
have expressed interest in building data-sharing communities are physics (e.g.,
GriPhyN project [52]), astronomy (Sloan Digital Sky Survey project [107]) and
genomics [54]. The Large Hadron Collider (LHC) experiment at CERN is a
proof of the physicists’ interest and pressing need for large-scale data-sharing
solutions. Starting 2005, the LHC will produce Petabytes of raw data a year that
needs to be pre-processed, stored and analyzed by teams comprising thousands
of physicists around the world. In this process, even more derived data will be
produced. Hundreds of millions of files will need to be managed, and storage
at hundreds of institutions will be involved.

52

4. Heterogeneity. Resource capabilities are likely to be highly variable: storage
space, network latency and bandwidth, fault tolerance and system load are
likely to differ from node to node and to vary over time.

5. Publishing control refers to the ability of nodes to advertise or make accessible
location information about the files they provide to the community. Publishing
control is offered by many solutions. The DHT-based solutions trade off this
ability for low file retrieval by (sometimes unsustained) assumptions about node
cooperation.

6. Support for collections. A typical scenario in scientific collaborations is
imposed by data-intensive applications: a data-analysis job takes a set of files
as input data. In the DO experiment, the average number of files per data-
intensive job submitted is 117. Ideally, the location latency of a collection of
files should depend sublineary on the size of the collection.

7. Support for approximate matches and keyword searches. This is a
requirement often expressed for music-sharing systems, but it is a valid require-
ment for scientific communities, as well: for example, if data description is
included in the filename (as musician’s name is often included in a digital song
title), keyword searches are useful. Keyword searches are not naturally provided
by DHT-based algorithms.

4.1.2 Intuition

The small-world characteristics presented in Figures 3.17, 3.18, 3.19 and 3.20 describe
a particular graph topology with two properties: first, the graph contains highly
connected subgraphs; second, the average distance between nodes is small. Since the
highly connected subgraphs (that we refer to as clusters) are formed around common
data interests, this topology suggests new search methods that combine information
dissemination and request propagation techniques. Specifically, our idea is to build
an overlay that mirrors common user interests, to determine clusters of interest, to
disseminate file location information to users with common interests and to propagate
requests to different groups of interests. Figure 4.1 presents this intuition.
We distinguish three main components in FLASK:

1. Overlay construction refers to creating and maintaining connections between
nodes that satisfy a similarity criterion. Basically, this requires mechanisms that
allow users with similar interests to learn about each other without relying on
centralized control or global information. Thus, the overlay must mirror the
data-sharing graph and adapt to changing user behavior.

2. Cluster identification. Once the overlay is in place, FLASK needs to iden-
tify groups of users with common interests. The existence of these groups (or

53

clusters) is proven by the large clustering coefficient.

3. File location. Two components are necessary for locating files: information
dissemination within clusters and request propagation among clusters.

Assuming a probabilistic information dissemination technique such as gossip
[63], file location information can be spread reliably and quickly to all members
of the cluster. Therefore, requests for files known by nodes in the group are
solved with one local lookup. If the answer is not found locally, then with high
probability it does not exist in the local cluster either: the request should be
sent to different clusters.

Figure 4.1: Small worlds seen as loosely connected collections of well connected clus-
ters. FLASK components: 1) overlay construction (a); 2). Cluster identification (b);
3). File location, with its two parts: information dissemination within clusters (c)
and request propagation among clusters (d)

There are multiple sources of dynamism in a file-sharing community: intermittent
user (and therefore, resource) participation; changing user behavior, such as inter-
est in data and frequency of requests; and variation in the set of shared files, by
file insertion and deletion. Referring to Figure 4.1, taking into account these dy-
namic characteristics requires a continuous rewiring of the graph and reconsidering
of clusters over time.

4.1.8 Related Ideas

While we are not aware of previous work that has looked at communities of users
the way we do—Dby connecting users with the same interests in a graph—there are
various ideas that partially overlap with the main ideas in FLASK.

54

One class of relevant ideas is related to optimizing the overlay in unstructured net-
works based on usage or interest. Two results are worth mentioning. Sripanidkulchai
et al. [111] propose a mechanism that improves Gnutella’s flooding-based search by
adding shortcuts between peers. The motivating assumption is interest locality: if
node A found some data on node B, it is likely that node B holds some other data
that A will be interested in, so queries are first propagated along shortcuts; if un-
successful, they rely on the typical Gnutella flooding. This idea leads to an overlay
different from the data-sharing graph: in a data-sharing graph A would connect to B
only if both are interested in the same files.

However, Sripanidkulchai et al. have not verified the motivating assumptions (i.e.,
if A is interested in a file on B, it is also interested in other files on B) on real data,
presumably because of the challenges related to collecting information on where files
are stored in today’s P2P systems. The experimental setup that makes up for this
lack of real traces introduces some side effects that build the very data-sharing graph.
The mapping of files onto user storage is built via replication: after a successful query,
a node downloads the file and makes it public. In this scenario, a node stores precisely
the files in which it expressed interest: therefore, the connection between A and B
exists in both overlays. The resulting overlay from [111] is therefore an overlap of the
Gnutella overlay (the graphs collected and studied in [98]) and the data-sharing graph.
The graph formed of shortcuts only is a sparser data-sharing graph (the number of
shortcuts per node is limited to 10) defined over one-hour intervals (according to the
experimental setup) with a similarity criterion of one shared file.

The improvements introduced by shortcuts are significant: 85% of queries can be
solved using shortcuts only. However, it is unclear how much of this figure is due to
the data-sharing graph, how much to file replication, and how much to the optimistic
experimental assumptions of infinite caches: e.g., a node that asks for all files in the
system will end up storing copies of all files on its local disk and will help any request
coming from any neighbor.

Cohen et al. [29] propose another approach to guiding search in unstructured
overlays: nodes connect to other nodes that store the same data, in an attempt to
adapt the market-basket idea to P2P. The market-basket concept was determined on
empirical evidence that shows that those who buy diapers (have small kids at home,
therefore cannot go out, therefore) also buy beer. Translated to the P2P context,
the market-basket idea shows that a node that stores beer is likely to store diapers,
and a node that looks for diapers and stores beer would likely find diapers at some
neighbor who stores beer.

Note that both ideas ([111, 29]) have in common the assumption that there exist
a relationship among the files stored on a node: users do not store random things on
their disks. We proved that users do not ask for random things: the proof that they
do not store random things requires the assumption that users store only what they
are interested in.

Three significant differences may be noted between our idea and those discussed

%)

above. First, we base the FLASK design on studies of user communities: that is,
we support our assumptions with analysis of real file-sharing communities. Second,
the pattern we exploit is based solely on users’ expressed interests in data, totally
independent of where those data are stored. Third, in FLASK we combine information
dissemination with request propagation: the study of real user communities suggests
where to disseminate information. The two approaches mentioned above focus solely
on requested propagation. Consequently, the observations on user behavior are used
to guide request propagation.

Combining information dissemination with query propagation is an idea that
FLASK shares with other systems. Kelips [53] is a location mechanism in which
groups (or clusters in our terminology) are formed and information is disseminated
in groups, while requests are propagated among groups. The important difference is
how clusters are formed. In Kelips, they are independent of user behavior: nodes are
placed in clusters based on their IDs, as in a classical hash table.

Yet another aspect of FLASK is the differentiated activities for in-cluster and
between-cluster communication. Similar ideas are found in various epidemic commu-
nication mechanisms, such as multi-level gossip [116, 64].

4.2 FLASK: Components

The FLASK algorithm follows the intuition provided by the data-sharing graph and
its small-world characteristics. Nodes self-organize in an overlay that mirrors the
data-sharing graph: thus, two nodes maintain an open connection if they requested
at least u common files within an interval of duration 7. How this overlay is built
in a decentralized manner will be presented in Section 4.3. Nodes may contribute
files to the community: they maintain an up-to-date summary of the files stored
locally. Let us assume peers can identify their own group of interest and therefore
distinguish between peers in their group and peers outside their group (how this can
be obtained is presented in Section 4.4). Periodically, nodes exchange file location
information with nodes in their own interest group. The information they share
contains lists of filenames and the nodes that provide them. This information may
include a (sub)list of locally stored files as well as remote files recently discovered.
Soft-state mechanisms ensure that old information is erased: information received
more than 7 ago is considered outdated and discarded.

Periodically, nodes reevaluate their relationships with their neighbors to adapt to
changes in interests: for example, they may decide to disconnect from some neighbors
or make new connections to other peers. They also reevaluate the interest group, to
accommodate the new neighbors, for example.

Nodes maintain the information received from peers in a local database. When
a node receives a request, it searches its local database. Because of the information
dissemination mechanism used, with high probability all nodes in a cluster maintain
the same database. Therefore, if the answer is not found in the local database, with

56

high probability it does not exist in the cluster: that is, the requested file is not
stored on any of the nodes in the group and none of the nodes knows where that file
is located. The request needs to be forwarded to a different cluster. Otherwise, if the
answer is found locally, then it is returned to the user.

A node who wants to join the network learns of one or more nodes from out of
band sources (for example, a web site as in Gnutella) and contacts them. If the
connection is accepted, it will consider its new neighbors as being in the same cluster
of interests and exchange information. Over time, assuming it does send its own
requests for files, the new node may discover other nodes that better match its own
data interests and will connect with those.

The following components are the building blocks in FLASK:

1. Overlay construction.
2. Cluster identification.
3. Information dissemination and request propagation.

Each of these components is described in the following sections. The benefits and
costs of information dissemination in clusters of interest are studied in Chapter 5.

4.3 Overlay Construction

The overlay construction component deals with building the data-sharing graph on
the fly in a decentralized manner: we need a mechanism to let users with the same
interests learn of each other in a decentralized, adaptive manner.

We propose a solution that uses the data storage nodes as meeting points for users
with the same interests in data. Assume a node A requests file F' and, via the file
location mechanism, learns that F' is stored on node N. When A goes to fetch file F'
from N, N will record A’s interest in its file and the time of the download. If user
B then fetches the same file within a time shorter than an aging time, N informs
B about A’s interest in the same file F' (see Figure 4.2). Thus, B can contact A if
interested in connecting to new peers.

This basic idea can be expanded to fit the similarity criterion of the data sharing
graph. For example, B may choose to contact A only if more than g common files have
been requested with an interval 7. The values ;1 and 7 can be adapted by each node
independently to satisfy local objectives: more or fewer connections, better interest
overlap, etc. This approach has significant advantages: it allows for true adaptability
to node heterogeneity relating, for example, to communication capabilities or high
load /reduced processing power.

Given the documented Zipf distribution of file popularity in many systems, a rel-
evant problem is that of avoiding hot spots when building the data-sharing overlay:

S7

Figure 4.2: Overlay construction: (1) Node A requests file “F”; (2) A receives answer
that “F” is stored on node N; (3) A contacts N to fetch file. N logs A’s request and
time; (4) Node B requests file “F”; (5) B receives answer that “F” is stored on node
N; (6) B contacts N to fetch file; (7) N sends the relevant log with latest requests
for file “F”: this is how B learns of A.

for example, if all users check the same news sites in the morning, they will be consid-
ered (incorrectly, perhaps) as having common data interests. One way to overcome
this problem has already been suggested: use a similarity criterion that has a larger
number of shared files . However, this approach may eliminate relevant sharing infor-
mation, while remaining inefficient: most users might go to nytimes.com, yahoo.com
and google.com first thing in the morning, so m = 2 would not help. One solution
is to weight the sharing of files by their popularity: node N will not announce F' as
a shared file if it is highly popular within last 7. Alternatively, it will announce it,
but will also send the number of requests r for F', such that the highly popular files
F; will contribute only with 1 to the number of files shared between two nodes.
There are some issues ra1sed by this overlay construction solution:

1. How large do the logs at the storage node become? The log size is determined
by the number and popularity of the files stored locally. While the number
of files stored per node is not provided in traces, file popularity provides some
useful insights. In DO, for example, the most popular files are requested 271
times over the 6-month interval. In the Web, this number is just under 50000
(for 24 hours), while in Kazaa it is almost 10000 (for five days). At the highest
activity peak in the Web traces, the most popular file during a half-hour interval
is requested 13272 times. However, given the Zipf distribution of file popularity,
few files are requested many times: out of more than 12000 files requested, seven

58

are requested more then 1000 times and about 10% are requested more than
100 times.

These numbers do not provide a satisfactory estimation of the storage costs
required. While our intuition is that these costs are not exaggerated, a more
detailed estimation is necessary.

2. Effects of multiple file replicas. A common approach to improve reliability and
performance is to replicate data. However, with multiple replicas of a file, the
central meeting point for nodes interested in that file is lost: for example, node
A might fetch file F' from node N while node B might have discovered a replica
of file F' on node M. In this scenario, A and B do not learn of each other.
However, we argue that this situation is unlikely to be maintained extensively
in a system with high user activity: the nodes may eventually meet via other
files of common interest.

The overlay construction mechanism presented in this section uses storage nodes
as meeting points for users interested in the same files. It is, hence, fully decentralized
(since storage is distributed) and adaptive to changes in user interests. While a more
careful analysis of the mechanism is necessary (and is part of our future work plans),
the mechanism is sound enough to provide a basis for understanding the potential
benefits of information dissemination.

4.4 Clustering

The problem of detecting “clusters” has been studied for long and has produced a large
body of literature [61]. Clustering is the problem of discovering natural groups in data
sets by partitioning N given data points into a number of clusters, such that points
within a cluster are more similar to each other that to points from different clusters.
The problem is difficult because of the challenges imposed by defining similarity
metrics and their dependence on application. Similarity between data points can
often be represented as a (weighted) graph.

Of the many clustering techniques previously proposed, we discuss solutions to
two problems very similar to our context. The first example refers to inferring com-
munities on the web graph. The web graph consists of web pages connected via
hyperlinks. Flake et al. propose a method based on maximum cut flow to identify
“communities” of pages [37, 38]: a community is a set of web pages that link (in either
direction) to more web pages in the community than to pages outside the community.
Their solution requires the identification of two well connected nodes, one acting as
a source and the other as a sink. Moreover, these nodes need to have some special
properties: the source node must be a known member of the community that is to be
identified, while the sink needs to be a hub, for example a set of web portals. These
requirements are hard to meet in a dynamic graph such as the data-sharing graph.

59

Another relevant problem is to identify communities of scientists connected in
a co-authorship graph. Girvan and Newman [47] use edge betweenness to identify
the edges that connect communities. The betweenness of an edge is the number of
shortest paths that contain that edge. The algorithm repeatedly removes the edge
with the highest betweenness until a satisfactory partition is obtained. However, the
algorithm is prohibitively expensive (O(N?)) and requires global information on the
graph.

Many other related solutions have been proposed in various contexts, such as
web communities [67] and recommendation systems [73]. The particular challenges
of our context limit us to solutions that use only local knowledge about the graph
topology. However, one can observe from the intuition presented in Section 4.1.2 that
a node only needs to know to which neighbors to gossip and to which to propagate
unanswered requests. This simple observation reduces the clustering problem to an
edge-labeling strategy: each node labels its own edges, based on local information
only, as long or short. Nodes gossip along short edges and propagate requests along
the long edges. Thus, a cluster is defined by a collection of nodes connected by short
edges. Long edges maintain the connections between different clusters.

Multiple definitions can be proposed for long/short edges. We experiment with
one definition that we call triad labeling and mirrors the small-world topology: the
tightly connected nodes—which may have large clustering coefficients—are connected
by short edges. We therefore define a short edge as an edge that is part of a triad
(triangle in graph). In oder to avoid isolated nodes—one-node clusters—we also
consider dead ends as short edges (Figure 4.3).

& / Long edge &Thort edge

Figure 4.3: Triad labeling: edges in triangles and dead-ends are considered short,
while others are considered long.

The formal definition of long/short edges in triad labeling is:

Definition: An edge in graph is called short if it connects nodes that are part
of a triad or if it is a dead end. Otherwise, an edge is called long.

Another simple idea for labeling is threshold labeling: in a weighted data sharing
graph—where weights represent the number of requests common to two nodes—an
edge is considered short if its corresponding weight is larger than a threshold value,
otherwise it is long. The effectiveness of this approach, however, is highly sensitive to

60

the choice of the threshold value, which is a non-trivial problem in our context. We
therefore considered only the triad clustering method in our experiments.

4.5 Locating Files in Small-World Networks

The file-location component has two parts: information dissemination and request
propagation. When a request is sent to a node, the node looks it up in its own index.
If found, the answer is sent back to the requester. If not, the request is propagated
to another cluster. Section 4.5.1 presents the information dissemination component
while Section 4.5.2 discusses the request propagation component.

4.5.1 Information Dissemination

The basic idea in FLASK is offloading the request propagation component by dissem-
inating useful information to interested parties. The previous sections presented a
method to determine the interested parties: nodes in the same interest-based cluster.
This section focuses on the remaining aspects of information dissemination: what
information to disseminate (i.e., define useful information) and how to disseminate
it.

Similar to identifying interested parties, identifying useful information is helped
by the data-sharing graph and its small-world properties: the large weights in the
weighted data-sharing graph show there is significant overlap in interests between
pairs of users. Therefore, sharing ezperience—previously discovered file locations—
may save nodes in the same cluster significantly many future searches.

As previously noted, the search space for request propagation is reduced to clus-
ters: a request not answered is forwarded to another cluster. Therefore, if some
file is not known on a node, it is assumed it is not known in that node’s cluster.
Consequently, in addition to disseminating recent experience, nodes also need to dis-
seminate location information about the newly inserted files. This is necessary in
order to support file insertion. Note that disseminating local summaries would not
be necessary if FLASK fell back on another mechanism when searches fail. For ex-
ample, experience sharing in interest-based clusters can be used to reduce the load
on a central index: a newly inserted file never accessed before will not be known in
the local cluster but can be located via the centralized mechanism.

In Chapter 5 we analyze separately the impact of disseminating recent experience
(Section 5.2.2) and the impact of disseminating storage summaries (Section 5.2.3).
We shall come back to the “what to disseminate” question after we discuss the “how
to disseminate” aspect in the following.

61

Gossip Mechanisms

The basic mechanism for disseminating information in FLASK, gossip, is an epidemic
communication mechanism that probabilistically guarantees information broadcast in
a dynamic community of members.

Gossip protocols [64, 118] have been employed as scalable and reliable information
dissemination mechanisms for group communication. Each node in the group knows
a partial, possibly inaccurate set of group members. When a node has information to
share, it sends it to f randomly chosen nodes in its set. A node that receives new in-
formation processes it (for example, combines it with or updates its own information)
and gossips it further to f random nodes from its own set.

We use gossip protocols for two purposes: (1) to maintain accurate membership
information in a potentially dynamic cluster and (2) to disseminate file location in-
formation to nodes in the local cluster. We rely on soft-state mechanisms to remove
stale information: a node not heard about for some time is considered departed; a
file not advertised for some time is considered removed.

For the membership mechanism, we employ SCAMP (Scalable Membership Proto-
col) proposed in [46]: nodes start with a small number of contact addresses (possibly
neighbors in the data-sharing graph) and build up a partial view of the cluster mem-
bership of size O((c + 1)log(N)), where N is the number of nodes in cluster and ¢
is a mechanism parameter. A larger membership view is beneficial but not manda-
tory, since log(IV) acts as a performance threshold: the probability that a notification
reaches everyone exhibits a sharp threshold if log(N) or more members are known.
Alternatively, smaller than log(/N) membership size hinders the performance of dis-
seminating information to all nodes in cluster.

The membership algorithm and its analytical and experimental evaluations are
presented in detail in [46]. Like any membership mechanism, SCAMP aims to col-
lect and maintain information about the group members. It uses gossip techniques
to disseminate membership updates and defines three algorithms in support of dy-
namic group membership: subscription, unsubscription, and failure recovery based
on hearbeats.

A gossip-based information dissemination mechanism that uses SCAMP to main-
tain membership information has multiple advantages: first, it does not require com-
plete membership information, which may be difficult to collect and provide in a
decentralized, highly dynamic scenario. Second, it adapts fast to changes in member-
ship. Finally, it is a scalable, decentralized scheme that probabilistically guarantees
the dissemination of information to all group members. Each piece of information is
gossiped by each node to f other nodes: thus, Nlog(/N) messages are communicated
for the dissemination of one rumor. With high probability, assuming nodes gossip in
parallel to one node in a round, the latency to propagate new information to all nodes
is low (O(log(N))): experimental results presented in [63] show that the number of
rounds necessary to reach all members is below 8 for f > 8 and a group of 20000

62

members.

Bloom Filters

Disseminating information may be costly in terms of storage and communication
costs. In order to limit these costs, file location information can be compressed using
Bloom filters.

Bloom filters [19] are compact data structures used for probabilistic representation
of a set in order to support membership queries (“Is element x in set X?”). The cost of
this compact representation is a small rate of false positives: the structure sometimes
incorrectly recognizes an element as member of the set.

Consider a set A of n elements. Bloom filters encode A as a bit vector V' of length
m that can easily be tested for membership. For this, £ hash functions are used: hy,
ha, ..., hy with h; : S — 1..m, where S is the element space.

The following procedure builds an m-bit Bloom filter for the set A by using k£ hash
functions:

Procedure BuildBloomFilter(set A, hash_functions, integer m)

filter = allocate m bits initialized to O
foreach ai in A:

foreach hash function hj:

filter[hj(ai)] =1

end foreach
end foreach
return filter

Therefore, if a; € A, in the resulting Bloom filter V' all bits corresponding to
the hashed values of a; are set to 1. Testing for membership of an element elm is
equivalent to testing that all corresponding bits of V' are set:

Procedure TestMembership (elm, filter, hash_functions)
foreach hash function hj:
if filter[hj(elm)] != 1 return False
end foreach
return True

One prominent feature of Bloom filters is that there is a clear tradeoff between
the size of the filter and the rate of false positives. After inserting n keys into a filter
of size m using k hash functions, the probability that a particular bit is still 0 is:

1 kn
pgz(l—a)knzl—em (4.1)

63

In this case, perfect hash functions that spread the elements of A evenly through-
out the space 1..m are assumed. In practice, good results have been achieved using
MD5 and other hash functions [91].

The probability of a false positive (the probability that all £ bits have been pre-
viously set) is:

1
Perr = (L= o) = (1= (1 = =) (1 — eh/my (4.2)

m
In Equation 4.2 p.., is minimized for £ = TIn2 hash functions. In practice,
however, only a small number of hash functions are used: the computational overhead
of each additional hash function is constant while the incremental benefit of adding a
new hash function decreases after a certain threshold (see Figure 4.4). For example,

Bloom filters can be used to compress a set to 2 bytes per entry with false positive
rates of less than 0.1% and lookup time of about 100 us [97].

0.1
0.01
0.001
0.0001
1le-05
1le-06

Probability of false positives

1e-07 L1 1 |’ 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Number of hash functions

Figure 4.4: Bloom filter accuracy depends on the number of hash functions and the
storage requirements.

Equation 4.2 is the base formula for engineering Bloom filters. It allows us to
compute, for example, the minimal memory requirements (filter size) and the number
of hash functions given the maximum acceptable false positives rate and number of
elements in the set (as detailed in Figure 4.5).

iy]f(_) (4.3)
nooin(l—e"*%)

A nice feature of Bloom filters is that they can be built incrementally: as new
elements are added to a set, the corresponding positions are computed through the
hash functions and bits are set in the filter. Moreover, the filter expressing the union
of multiple sets is simply computed as the bit-wise OR applied over the corresponding
filters.

64

140 — | : |
perr=1% ———
2 120 |
g perr=0.01% --------
~ 100 - perr=0.001% - _
g
1] 80 | i
£
S 60 R i
bS 40 |- ‘ |
z 20 . - e =
I e
oY L ! |

Number of hash functions

Figure 4.5: Tradeoffs computation-storage-accuracy for designing Bloom filters.

Gossiping about Files in FLASK

The mechanisms presented above, the gossip-based group communication and the
Bloom filter-based data-compression technique, are the main ingredients of the infor-
mation dissemination component in FLASK. Initially, nodes know only their neigh-
bors in the data-sharing graph. They can also distinguish between “close” neighbors—
nodes to which they are connected via short edges—and remote neighbors. The close
neighbors are part of a node’s group of interest and comprise the initial view of the
cluster membership.

Two types of information are collected from gossips: membership and file location.
Each node sends tuples of the form:

<sender node IP address, storage node IP address, list of files>

The first field will add up to the membership information while the remaining two
fields build up the file location database. The first field will always refer to nodes
in the current cluster: this can be easily proven from the observation that gossips
propagate along short edges initially, hence they collect information only from nodes
that are connected via short edges.

In contrast, storage node IP address can be also from outside the current clus-
ter, depending on what files are advertised: nodes may advertise own files as well as
remote files of which they learned recently. If the local files are advertised, then
the first two fields (sender node IP address and storage node IP address) are
identical.

Upon the receipt of a gossip message, a node updates its local file database: if file
lists are represented as Bloom filters, this is an low-cost bit-wise OR operation on lists
of files from same storage node. To better support insertion and removal of files, an
additional field containing a timestamp can be added to the tuple. This timestamp,
with a valid value only for storage summaries of nodes in cluster (therefore, for which

65

sender address = storage address), can be used to maintain information up to date
with better granularity than 7. Since the timestamp is always emitted by the same
node, it is sufficient information to identify the older data (that is, no additional time
synchronizations are necessary).

As described in Section 4.5.1, nodes select random sets of nodes from the local
view of the cluster membership and send them the updated file database (or just
parts of it, for example only the new rumors).

The list of files can be compressed using Bloom filters or be left uncompressed, to
support partial matches. Via gossip, all nodes learn with high probability of all files
known within their cluster.

If Bloom filters are used, nodes need to know the following:

e The hash functions for encoding information. For simplicity, all nodes use the
same hash functions. This is important to lookup queries in summaries sent
from other nodes: the translation of the query into a Bloom filter (performed
by the local node) and the summary against which it is compared (sent by a
remote node) should be compatible.

e Consequently, nodes need to use the same values for m—the size of the Bloom
filter. Since m depends on the desired fault positive upper limit and on the size
of the set to be represented, an estimation of the expected number of files per
node is needed.

These values are provided when nodes join the network.

4.5.2 Request Propagation

FLASK considerably diminished the influence of request propagation on performance:
Chapter 5 will present trace-driven experimental results that show that more than
50% of requests can be answered based on cluster-disseminated information. For the
remaining requests, however, FLASK relies on request propagation.

Propagating requests is trivial for nodes who maintain a long edge: the requests
will be propagated along the long edge. This section discusses the case in which a
node needs to propagate a request and has no long edge connecting it with a node in
a different cluster.

A simple solution is to disseminate information on long-connections along with
the membership information: nodes that maintain long edges are marked with a
flag as “well-connected”. Poorly-connected nodes will therefore forward the requests
they need to send outside the cluster to the well-connected nodes in the cluster, who
will send them along the long edges. The well-connected nodes will therefore act as
communication points between clusters. Sending a request to all well-connected nodes
in the local cluster has clear advantages, as it initiates a flooding-like propagation of
requests (faster and more robust against failure).

66

One problem, though, is maintaining the overlay connected. A graph-theory result
shows that an average vertex degree larger than In(/N) in a random graph with N
nodes gives a connected graph [21]. Translated to our context, this would require
that each node knows about In(N) nodes currently in the network, where N is the
total number of nodes in FLASK (thus, not only in a cluster). While this is not an
unreasonable requirement, it may not apply to the small-world topologies [6]. We
plan to explore this aspect in the future via experimental evaluations.

CHAPTER 5
FLASK: EXPERIMENTAL EVALUATION

This chapter studies the performance of the main FLASK components in trace-driven
simulations. Section 5.1 evaluates the performance of the clustering mechanism. Sec-
tion 5.2 studies the costs and benefits of disseminating information within interest-
based clusters. The requirements that constitute the motivation for designing FLASK
(presented in Section 4.1.1) are revisited in Section 5.3. Section 5.4 summarizes the
main results of this chapter.

All results presented in this chapter are based on specific definitions of the un-
derlying data-sharing graphs. As a reminder, two parameters define a data-sharing
graph: the time interval 7 and the minimum number of common requests p that
defines an edge between two users in the graph.

5.1 Decentralized, Local Information-based Clustering

The clustering component in FLASK has a strong influence on the overall performance
of the mechanism: too large clusters may lead to unacceptable overhead on their
members, while too small clusters may not reduce the search space efficiently. As
shown in the previous chapter, the clustering (graph partitioning) problem is difficult,
even more so under our assumption that only local information is known. The metrics
relevant for clustering are average cluster size and cluster size distribution. This
section presents these two metrics for our three sets of traces.

We have proposed a clustering method (Section 4.4) that uses decentralized, local
information-based triad labeling whereby an edge that connects two nodes that have
a common neighbor is labeled as small and all other edges are long. We evaluate the
performance of this method in the following.

5.1.1 Triad Labeling

Triad labeling leads to highly skewed cluster sizes in all traces. Typically, a large
cluster that comprises 60-80% of all nodes is created, along with a fair number of
much smaller clusters. Since this pattern appears in all cases, we present only the
average cluster sizes: Figures 5.1, 5.3, and 5.5 show the average cluster size at different
times for the three systems. Figures 5.2, 5.4, and 5.6 present the average cluster size
for each of the data-sharing graph definitions analyzed.

The difference in average cluster size from week to week in D0 is due to variation
in user activity: for example, the peak in week 16 in Figure 5.1 corresponds to the
peak in day 108 in Figure 3.3.

67

Cluster Size (# Nodes)

Cluster Size (# Nodes)

35
30
25
20
15
10

40
35
30
25
20
15
10

T T T T
0 5 10 15 20 25
7days Interval
T T T T
1 2 3 4 5 6 8

21days Interval

Cluster Size (# Nodes)

Cluster Size (# Nodes)

Figure 5.1: Average cluster size over time for

28 days.

Nodes/per cluster (average)

40
35
30
25
20
15
10

S

3 7 10

14

Time Interval

21 28 days

Percentage cluster size(%)

60

68

50

40

30

20

10

l

100
90
80
70
60
50
40
30
20
10

42

4

6

8

1l4days Interval

10

3

4

28days Interval

DO traces for p = 100, 7 =7, 14, 21 and

40
38
36
34
32
30
28

26

10

Time Interval

14

21 28 days

Figure 5.2: Average cluster size resulting from triad labeling in DO.

Cluster Size (# Nodes)

Cluster Size (# Nodes)

35
30
25
20
15
10

45
40
35
30
25
20
15
10

|
0

50

100 150 200
120s Interval

69

30
25

20

10
5
0

Cluster Size (# Nodes)
=
[6)]
T

250 300 0

o

5 10

15 20 25 30 35

900s Interval

120

80

20 40 60
300s Interval

100

120

100 |

80 -

60 -

Cluster Size (# Nodes)

20

40 0

2 4 6 8 10 12 14 16 18

1800s Interval

Figure 5.3: Average cluster size over time for Web traces for 2, 5, 15 and 30-minute
intervals (1, 5, 10 and respectively 10 shared requests).

Nodes/per cluster (average)

70
65
60
55
50
45
40
35
30
25
20
15

2 min

5 min 15 min
Time Interval

30 min

Figure 5.4: Average cluster size

1.35

1.25 -

1.15

11 F

Percentage cluster size(%)
=
N
T

1.05

2 min 5 min 15 min
Time Interval

30 min

resulting from triad labeling in Web.

Cluster Size (# Nodes)

Figure 5.5: Average cluster
intervals, 1 shared request.

Nodes/per cluster (average)

70
60
50
40
30
20
10

70

Percentage cluster size(%)

1 hour 4 hours
Time Interval

8 hours

2.6
2.4
2.2

18
1.6
14
1.2

T T T T T T 70 T T T T
] & 60 .
(&)
i 8 50 H -
e
. x40 | .
. 8
||| 127
5]
. £ 20H .
o}
I]l 2
I i O 10t i
[.
0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 35
3600s Interval 14400s Interval
120 T T T T T T T
% 100 | .
[}
3
Z 80 —
&
© 60 .
N
& 40f .
)]
3
O 20t i
0
0 2 4 6 8 10 12 14 16
28800s Interval
size over time for Kazaa traces for 1, 4, and 8-hour

1 hour

4 hours

8 hours

Time Interval

Figure 5.6: Average cluster size resulting from triad labeling in Kazaa.

71

Note that average cluster size is in the order of tens for all traces and data-sharing
graph definitions: for DO it varies from 10 to 35 nodes per cluster, for the Web it is
between 20 and 65 and for Kazaa between 10 and 70. However, given the different
sizes of the data-sharing graphs, the number of clusters resulted is highly different:
under 10 in DO (where the data-sharing graphs have under 200 nodes); up to 200 in
the Web (where data-sharing graphs are in the order of tens of thousands of nodes);
and up to 150 in Kazaa (for data-sharing graphs of thousands of nodes).

5.1.2 Discussion

The triad labeling method requires only local information. However, it creates un-
balanced-sized clusters, since it identifies a giant cluster and many small ones. To
understand if this behavior is dictated by the clustering approach or is a property
of the graph, we ran a global-knowledge clustering algorithm [114, 115]. The same
results were obtained: a large cluster often comprising more than 60% of all nodes and
many small clusters. Moreover, the clusters obtained with the two methods overlap
significantly.

While this test does not aim to be a satisfactory proof of the accuracy of the triad
labeling, it shows that large clusters may be wired into the graph topology. Thus,
additional steps are required to limit the cluster size.

One way to do it is to allow nodes to refuse to label edges as small when the
number of nodes in cluster exceeds some limit. However, this approach assumes that
the current cluster size can be approximated in a decentralized fashion, which might
prove difficult.

Alternatively, more sophisticated labeling strategies can be employed, for example
to include criteria unrelated to user interests, such as network nearness (in network
latency) or node lifespan. Low latency between peers can significantly improve the
information propagation time. Selecting peers with longer lifespan seems to consid-
erably improve performance [24] by assuring longer lived connections between peers.

5.2 Information Dissemination: Costs and Benefits

The main metric of success in disseminating information is hit rate, which is the
percentage of requests answered locally from the information previously disseminated.
There are multiple benefits associated with a high hit rate: first, response latency for
hits is that of a local lookup, therefore low. Second, no messages are inserted into the
network. However, not all hits are due to information dissemination: for example,
requests for files that are stored locally.

Costs include communication and storage: how much information is circulated
within clusters, how much information a node needs to send, and how much storage
per node is needed to maintain the information disseminated.

72

The performance and costs of information dissemination is discussed in the follow-
ing sections. Section 5.2.1 presents the experimental setup. Two types of information
can be disseminated: experience and storage summaries. Section 5.2.2 analyzes in
detail the advantages and the costs of experience sharing within clusters while Section
5.2.3 focuses on storage summary dissemination.

5.2.1 FExperimental Setup

For each set of traces, we consider multiple instances of data-sharing graphs. As a
reminder, a data-sharing graph is defined by two parameters: the time interval 7 and
the minimum number of shared requests between two nodes u. For each definition,
we build the data-sharing graph for the interval 7 and “freeze” it at the end of the
interval. We then apply the triad labeling technique to identify clusters of interest and
disseminate information within clusters. In all cases, the information disseminated
is about location of files. We analyzed two instances: first, the location of the files
stored on the local peer is disseminated. We call this information storage summaries.
Second, the location of files discovered in the previous interval is disseminated. We
call this case experience sharing. We then measure how many queries sent during the
following interval can be answered from the information just disseminated.

We do not rely on caching information disseminated more than one interval 7 ago
for multiple reasons. First, the overlay changes at each interval and so do clusters.
Second, file location information is likely to be volatile (since files and nodes frequently
and unpredictably join and leave the system), which may lead to high percentage of
inaccurate information.

Note that in a real implementation, the overlay varies and adjusts to user behavior
smoothly over time. This may lead to better hit rates, since the overlay and clusters
adapt faster to changing in user interests.

The dissemination of storage summaries poses a particular problem. In a P2P
scenario, files are stored on user nodes. However, information on this distributed
storage does not appear in traces. In the D0 experiment, storage is centralized. In
the Web and Kazaa traces, while we have information on the servers where files are
stored, there is no correlation between users and these storage servers for two reasons.
First, the set of servers and the set of users are overlapping but are not identical, as
users are Boeing employees (for Web) or ISP clients (for Kazaa), while servers may
be anywhere on the Internet. Second, even the existing correlation between users and
servers from the same ISP /institution was lost in trace anonymization.

To overcome this problem, we generated a set of mappings of files onto user storage.
In all cases, we considered only one copy of each file stored in the system. While
this assumption may be unrealistic, it simplifies the setup and eliminates additional
sources of bias. Most importantly, it gives a lower bound on performance metrics.
Therefore, all results presented in the following must be considered lower bounds.

The synthetic mappings are:

73

1. First requester mapping (labeled 1st on plots) associates a file with the user
who first requested it. This mapping favors users active at the beginning of
traces.

2. Any requester mapping (labeled "any" on plots) associates a file with a random
user who requested that file.

3. Random mapping (labeled "random" on plots) associates a file with a random
user, regardless of that user’s interest in the file.

Not all users store files in these mappings: Table 5.1 shows the number and
percentage of users who store and therefore contribute files in each community.

Table 5.1: Number (and percentage) of users who contribute files.

Traces | Nodes Files Random | 1st Requester | Any Requester

Providers (%) | Providers (%) | Providers (%)
DO 317 | 193684 153(48.26) 219 (69.08) 241 (76.02)
Web 60826 | 4794439 | 53646 (88.19) | 46183 (75.92) | 46434 (76.33)
Kazaa | 14404 | 116509 | 10397 (72.18) | 11638 (90.79) | 11648 (80.86)

Table 5.2: Requests for files stored on the requester node. For Web, data are collected
based on 100 samples of 5 minutes taken at equal intervals during the 10-hour traces.

System | Random | 1st Requester | Any Requester
DO 1.16% 22.16% 23.15%
Web 0.08% 37.86% 36.53%
Kazaa 0.09% 34.49% 36.72%

The mappings chosen are just some examples of possible scenarios. 1st and any
requester mappings are realistic scenarios under the assumption that nodes store files
of their own interest. However, in these cases, a significant number of queries (22%-
38%) are for files stored on the requester node. Table 5.2 shows the percentage of
requests in the system whose answers are on the local (requester’s) disk: this infor-
mation is necessary for correctly evaluating the benefits of disseminating information
in clusters and will be relevant in Section 5.2.3.

5.2.2 Fxperience Sharing

In this scenario, peers gossip the experience accumulated during the previous inter-
val 7. This experience consists of the set of file locations learned (as responses to

Files Stored/Node

100000 F

10000

1000

100

10

74

- - 100000 e
4 1st, DO T any, DO
- - - + -
-] g 10000 | .
£
- E E 1000 E E
o
g I]
L 4 - 100 F 4
3 i]
T I]
- - H* 10 -
sl sl i 1 [sl sl g
1 10 100 1000 1 10 100 1000
Node Rank Node Rank
100000 ¢ — -
1. random, D(
3 10000 F E
(]
Z L
E 1000 F E
o
g I
7 100 F -.
3 i
T I
H* 10]
1 L 1l AR ET] B A A E T
10 100 1000
Node Rank
Figure 5.7: Number of files stored per user node in DO.

I6)

Te+06 g u T 1e+06 — T T T —
(@ [(0)
o 100000 4 o 100000 |+
E ot 3 Rt
£ 10000 4 3 Z foooo B4
=) =
S om | 1000
- = [=] -
& F &
& 100] 3 100 F
i i 1
3 10 a2 E * 10 F
1 Ll Ll L L ! P 1 i L ol Ll i Ll ! p
1 1aa 1000 10000 100000 1 10 100 1000 10000 100000
Mode Rank Mode Rank
1e+06 - - —
1 c i
@ 100000 F I[;l -
+
3 "
£ 1oooo | 3
=
oo L .
Ef_j F]
3 100]
T i
3 10 F -
1 Y S Y Ry B
1 10 100 1000 10000 100000
Mode Bank

Figure 5.8: Number of files stored per Web user node. (a) First requester mapping;
(b) Any requester mapping; (¢) Random mapping.

Files Stored/Node

76

1000 - . ey 1000 - ——rr :
t 1st, Kazaaj I any, Kazaaj
ey 1 o 4]
e}
o
100 E Z 100 E
F © F
E 5 E
]
n
10 ¢ E § 10 E
F (N F
I+
-+ &+
-+ -+
1 PR R T RS R .I...-... 1 PR T T N T T N SR TS N .=...
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Node Rank Node Rank
1000 g . . . 3
SR random, Kazaaj
o C 1
e}
o
Z 100 k
© F
o
o
n
3 1w}
T E
I+
+
-+
1 | L P | L PR L i L L
1 10 100 1000 10000 100000
Node Rank

Figure 5.9: Number of files stored per Kazaa user node.

77

queries) during this interval. Under the assumption that files can be removed from or
inserted frequently into one’s storage, old experience quickly becomes outdated: that
is, the information received two intervals ago is most likely outdated and will not be
propagated or even maintained in the local database.

This means that no influence from caching exists except for when the same user
asks same requests in consecutive intervals: their later requests can therefore be
answered from the local cache and should not be attributed to information dissemi-
nation. However, the percentage of requests of this sort is low: it varies up to 15%,
with averages between 5% and 10% for different intervals in D0. Surprisingly, the
Kazaa users show the same behavior, with similar average cache rates (around 7%):
while it is conceivable that scientists repeat requests for the same data to run their
computations, it is less intuitive that a Kazaa user would repeat requests for same
music at intervals of one hour. This behavior may be explained in by unsatisfactory
answers: files were not found, were not downloaded properly, or were corrupted.

The results in this section are based on the assumption that all requests are
answered within the interval in which they are asked. For an approximation of the
hit rate under the (realistic) scenario that not all requests are answered, one needs
to consider the percentage and the popularity of unanswered queries to obtain an
estimation from the results presented below. However, the results we present here
are also relevant for evaluating the potential of a hybrid scenario: for example, use
information dissemination within clusters to reduce the load on a centralized index
such as the one used in Napster.

DO

Figure 5.10 shows the hit rate per interval for different values of 7. Observe that
the hit rate decreases with the increase in duration (summarized in Figure 5.12).
Interestingly, this behavior is not found in the other communities: for Web (Figure
5.15) and Kazaa (Figure 5.18) the hit rate increases (albeit slightly) with longer
intervals. A possible explanation for this different behavior is a stronger time locality
in scientific communities: scientists repeatedly request the same files as they repeat
their experiments on the same data. Once they finish with that region of the problem
space, they move to a new set of files. This assumption may be true at the group
level but it is not true at the individual level: the percentage of a user’s repeated
requests at consecutive intervals in general increases slightly with the duration of the
interval (6.35%, 7.5%, 7.6%, 8.7%, 9.1%, and 7.75% for p = 100 and 7 =3, 7, 10, 14,
21, and 28 days).

One effect of the imperfect clustering algorithm based on edge labeling is the
creation of the large cluster. Figure 5.11 evaluates the impact of the largest cluster
on hit rate, by comparing the hit rate of the overall system with that when the benefits
of the largest cluster are ignored. The plots show the difference between the two hit
rates: a negative value therefore shows that the largest cluster decreases the overall

100

80

60

40

Local Answers (%)

20

100

80

60

40

Local Answers (%)

20

10 15
7days Interval

20

25

3

4 5
21days Interval

6

Local Answers (%)

Local Answers (%)

100

80

60

40

20

100

80

60

40

20

78

4 6 8 10 12
1l4days Interval

3 4 5 6
28days Interval

Figure 5.10: Average percentage of requests solved locally (based on information
within cluster): 7-, 14-, 21- and 28-day intervals, 100 shared request, triad labeling.

21days Interval

79

28days Interval

100 T T T 100 T T T T
g 50 - g 50 -
2 2
| | - |
o 0 |] | — o 0 : —
g | g |
© ©
[S] [S]
S 50 - S 50 -
_100 1 1 1 _100 1 1 1 1
5 10 15 25 4 6 8 10 12
7days Interval 1l4days Interval
100 T T T T 100 T T T T
g 50 - g 50 -
2 2
() () ‘
: o 13 o .
< <
© ©
(8] (8]
S 50 - S 50 -
_100 1 1 1 1 _100 1 1 1 1
2 3 4 5 8 2 3 4 5 6

Figure 5.11: The effect of the largest cluster (triad labeling, 7-, 14-, 21- and 28-day
intervals, 100 shared request) on average hit rate: the difference between the average
hit rate and the average hit rate for all except the largest cluster.

80

hit rate.

Figure 5.12 summarizes the hit rate results by presenting the average for different
7 intervals. It also highlights the effect of the largest cluster on the overall hit rate.
It is remarkable that in DO this influence is significant for longer intervals.

100 T T T T T
Without LC -------

80 —

60 a

40] —

Local Answers (%)

20 | —

0 L L L ! L L
3 7 10 14 21 28days

Time Interval

Figure 5.12: Average percentage of local answers with triad labeling on DO traces.

The benefits of disseminating information in DO are significant: more than 50% of
queries do not impose any costs on the network and their answer latency is that of a
local lookup. The price for these advantages is paid in dissemination costs and storage
of the information disseminated. Table 5.3 presents the raw costs of information
dissemination: storage space required per node is a function of the number of files
disseminated within a cluster; communication costs per node depends on the number
of files disseminated within the cluster and the size of the cluster.

Table 5.3: Experience dissemination costs in D0.

Data-sharing | Average # filenames
graph definition stored per node
3 days, 100F 8787

7 days, 100F 18182

10 days, 100F 24912
14 days, 100F 32239
21 days, 100F 44911
28 days, 100F 56924

The longest filename in the DO traces has 183 characters. Assuming a pair
filename-location takes 300 bytes on average, the storage cost to maintain all file
information disseminated in cluster is obtained by multiplying the number of files
with the storage cost per file. Over a three-day interval this cost is 2.6MB per node.
For the 28-day interval, this cost grows to 15MB per node.

81

Given the gossip-based information dissemination mechanisms used, the commu-
nication costs are estimated by multiplying storage costs with the natural logarithm
from the number of nodes in cluster. (This is because each message needs to be
sent to approximately In(N) peers in cluster to ensure the message will reach all N
members.)

Consequently, communication costs are not high, either: 5.2MB of data trans-
mitted per node in a 3-day interval, growing to 60MB for the 28-day interval case.
In DO, there are fewer than 200 nodes in the network during any of the intervals
considered: this results in at most 12GB of data exchanged over a month. To put
this in context, compare with the Gnutella traffic as measured in late 2000 [98]:
6GB per node or 1.2TB of data exchanged by 200 Gnutella nodes over a month.
Therefore, the information dissemination component of FLASK-—arguably the most
resource consuming—requires 2 orders of magnitude less communication than the
(full) Gnutella mechanism in late 2000.

Moreover, as proposed in the previous chapter, the information disseminated can
be compressed using Bloom filters. In this case, fewer resources are consumed, but
approximate matches or keyword searches cannot be supported. Assuming that the
Bloom filters are tuned to represent up to 1000 files with false positive rate under
0.1%, each node’s storage summary requires 2KB (2 bytes per entry and 10 hash
functions). With experience sharing, in the worst case scenario each node has partial
information from every node in the network (not only in its local cluster). In the
case of D0, this means each node eventually stores 317 Bloom filters of 2KB each,
which is under 1MB of storage space. Interestingly, this storage cost does not grow
with the length of the interval 7: a larger number of files known locally will fill in the
(previously sparse) fixed-size summary vectors.

Web

The same experiment on the web traces leads to different results. First, the hit
rate seems to increase over time (Figure 5.13). This is the effect of the increased
activity—number of queries per time unit—shown in Figure 3.7.

Second, the hit rate seems to increase (slightly) with the increase of interval du-
ration, while user’s cached repeated requests remain constant (under 2.5%).

Third, the effect of the unbalanced-sized clusters is often negative: Figure 5.14
shows that the largest cluster leads to smaller hit rates in some intervals. However, its
average effect is still positive (between 2% and 13%, depending on the data-sharing
graph definition).

Figure 5.15 summarizes these results: the hit rate is around 40% and the poor
labeling technique does not (significantly) increase the overall hit rate.

Dissemination costs for the Web traces are higher than in the DO case (Table 5.4).
Nodes will need to store 48MB of data for half-hour intervals and will send 240MB of
uncompressed data each. The communication costs are unrealistically high: for user

82

100 T T T T T 100 T T T T T

/5\ 80 I~ /5\ 80 I~ T
S S
2] 2]
) 60) 60 -
= =
n n
c c
< 40 | < 40 |
3 W 3
[S] [S]
o o
] ’ ‘”M H“H] ’

0 (Ve -

0 50 100 150 200 250 300 0 20 40 60 80 100 120
120s Interval 300s Interval
100 T T T T T T T 100 T T T T T T T

/5\ 80 I~ T /5\ 80 I~ T
S S
2] 2]
) 60 -) 60 -
= =
n n
c c
< 40 | < 40 | -
< <
[&] [&]
o o
] ’ W] °l |

0 0

0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12 14 16

900s Interval

1800s Interval

Figure 5.13: Average percentage of requests solved locally (based on information
within cluster): 2-, 5-, 15-minute, and half-hour intervals, with x4 = 1, 5, 10, and 10

shared requests.

Table 5.4: Experience dissemination costs in the Web.

Data-sharing
graph definition

Average # filenames
stored per node

120s, IF

300s, 5F
900s, 10F
1800s, 10F

21424
41442
111137
192079

Local Answers (%)

Local Answers (%)

100

50

-100

100

50

-100

T T T T T
\ ‘ \h h H\ I \MHH\ a0k il \‘\\\\\M\“\H‘\\M\m\hﬂh\‘\“\mﬂh i
i - \V H\‘ L M\HH‘H‘”U ‘H‘U“‘U H“\‘ ‘
1 1 1 1 1
0 50 100 150 200 250 300
120s Interval
T T T T T T T
J_
1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

900s Interval

100

83

50 -

Local Answers (%)

50

-100

0 'y ‘H‘ uumwm [

o Dt \H M i i \\ et H\‘HH\H‘HH il

100

20

40 60 80 100
300s Interval

120

Local Answers (%)

-100

6 8 10 12 14
1800s Interval

16

Figure 5.14: The effect of the largest cluster (triad labeling, 2-, 5-, 15-minute and
half-hour intervals, 1, 5, 10, 10 shared requests) on average hit rate: the difference
between the average hit rate and the average hit rate for all except the largest cluster.

100 T T
Without LC -------
= 80 - -
S
1]
o 60]
=
[%]
c
E 40 LT
s PPt
(&)
o
- 20]
0 1 1 1 1
2 min 5 min 15 min 30 min
Time Interval

Figure 5.15: Average percentage of local answers with triad labeling on Web traces.

84

behavior typical of web browsing, compressing information is mandatory.

Kazaa

Yet another set of results are obtained using the Kazaa traces: Figure 5.17 shows
constantly high hit rate (around 70%) for all durations, in spite of the decrease in
the user’s cached repeated requests (from almost 8% for one-hour to 5.5% for 8-hour
intervals). The wavy pattern in Figure 5.16 is likely due to increases in activity,
evident in daily patterns (Figure 3.9). On the other hand, the influence of the largest
cluster increases with duration: from 13% for 1-hour to 44% for 8-hour intervals
(Figure 5.17). These results are summarized in Figure 5.18.

100 T T T T T T 100 T T T T T T
/5\ 80 T /5\ 80 | T
S S
[2]
o 60 o 60 [-
: L :
n n
c c
< 40 - < 40 H -
2 L ‘“
[&] [&]
o o
- 20 “| T - 20 | T
0 0
0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 35
3600s Interval 14400 Interval
100 T T T T T T T
/5\ 80 I~ T
S
2]
o 60]
=
n
c
< 40 | -
<
[&]
o
= 20]
0

0 2 4 6 8 10 12 14 16
28800 Interval

Figure 5.16: Average percentage of requests solved based on information disseminated
within Kazaa triad-labeling clusters: 1-, 4-, and 8-hour intervals, 1 shared request.

Dissemination costs for Kazaa are smaller than in the other two cases (Table 5.5):
3MB of storage is necessary for storing the data disseminated over 8-hour intervals
and 15MB of data are to be sent by each node over an 8-hour interval. For about 3000
nodes, about 45GB of data are transferred over 8-hour intervals, which is 4 times less
data than transferred by the same number of Gnutella users at the end of year 2000.

85

100 T T T T T T 100 T T T T T T
g 50 - g 50 -
: : UTTRRT T
] (]
z 0umMMHHmmMMM\hHmmHmnH\\M\hmMhH\\MMHHHHH\\\HH\MH\HH\HHHHH\\M i 2 ol ‘ HHHH \HW ‘ Ll
c c
< <
= =
(&) (&)
S 50 - - S 50 - -
-100 1 1 1 1 1 1 -100 1 1 1 1 1 1
0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 35
3600s Interval 14400 Interval
100 T T T T T T T
g 50 -
@
:]
<
=
(&)
S 50 - -
_100 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16
28800 Interval

Figure 5.17: The effect of the largest cluster (triad labeling, 1-, 4- and 8-hour intervals,
1 shared request) on average hit rate in Kazaa: the difference between the average
hit rate and the average hit rate for all except the largest cluster.

100 T T
Without LC -------
= 80 - -
e\/ -
1]
© 60 -]
=
[%]
c
< 4} T .
]
5 B,
o
= 20]
0 1 1 1
1 hour 4 hours 8 hours
Time Interval

Figure 5.18: Average percentage of local answers with triad labeling on Kazaa traces.

86

Table 5.5: Experience dissemination costs in Kazaa.

Data-sharing | Average # filenames
graph definition stored per node
1 hour, 1 file 1345
4 hours, 1 file 5303
8 hours, 1 file 10178

Despite the quantitative differences, the benefits of disseminating experience within
clusters formed with triad labeling are significant for all three communities, ranging
from 40 to 70% of the queries being answered from local storage. Also, eliminating
the unreasonably good effects of the imperfect clustering algorithm, the hit rate is
between 30% and 65%. Shorter time intervals for the data-sharing graph are prefer-
able to keep costs down. Interestingly, the average hit rate over all except the largest
cluster is higher for shorter intervals.

However, dissemination costs are unreasonably high for the web traces. One can
rightly argue that web requests are considerably more frequent than requests for files
in the context we consider because of the inherently lower file granularity: web files
are much smaller than music or data files, they can therefore be “consumed” faster,
and therefore requested more frequently. Nevertheless, if requests for files are so
frequent, compressing data is necessary.

5.2.83 Disseminating Storage Information

In this section we look at the benefits of disseminating storage information to peers
in the same cluster: each peer publishes what files it stores.

The same metric of success—hit rate—is relevant in this case. However, in this
case, the hit rate has multiple components. First, a significant percentage of queries
refer to files stored on the requestor’s node, as shown in Table 5.2. This component is
not the merit of the FLASK mechanism, but rather an artifact of the setup. Second,
as already explained in the previous section, a giant cluster leads to a larger hit rate,
as it includes a large percentage of all peers and, consequently, a large percentage of
the stored files. Given the unrealistic costs that a giant cluster implies, this behavior
must be corrected by smarter clustering mechanisms. Until then, though, Figures
5.21, 5.25, and 5.28 delimit the effect of the giant cluster on the benefits of information
dissemination.

We summarize here some notable results presented in the following sections: first,
as in the previous experiment, information dissemination performs differently in the
three systems. For example, in DO and Kazaa, information dissemination leads to
20% to 55% of requests being found locally (that is, no latency involved in locating
the files). The Web traces are different, as only 5 to 13% of requests are found in this

87

way.

Second, the results are significantly poorer than in the previous experiment: after
eliminating the effects of the unrealistically “helpful” factors such as the largest cluster
and local storage, the remaining hit rate is not larger than 15%.

DO

Figure 5.19 presents the hit rates over time for the three mappings and different
interval lengths. Note that the 1st and any mappings yield larger hit rates than
the random mapping. For DO (see Table 5.2) 22% and, respectively, 23% of requests
are for files stored locally, that can be retrieved easily via local mechanisms. The
hit ratio due solely to information dissemination is between 27% and 50% for 1st
mapping, between 21% and 52% for any mapping, and between 25% to 57% for
random mapping: roughly between 20% and 50% of the queries can be resolved locally
from the information disseminated within clusters. However, what differentiates these
results is the influence of the largest cluster (Figure 5.20): the average hit rate over
all clusters except the largest is between 0 and 27% for 1st mapping, between 10%
and 65% for any mapping, and close to 0% for random mapping.

Compared to the benefits of disseminating past experience (Section 5.2.2) sum-
marized in Figure 5.12, we observe the following. First, the hit rate in the storage
information dissemination case depends strongly on file location. Second, the hit rates
obtained in the two cases (experience sharing and storage information dissemination)
are not very different. This does not happen for the other sets of traces, as we shall
see in the following.

Storage summaries contain from 0 to 37,000 items per node (Figure 5.7). Following
the same reasoning as before, if a filename-location pair is 300 characters (bytes)
long, the node with the largest number of stored files will have a 10MB uncompressed
summary. A 10MB message is obviously too costly to gossip. On the other hand, it
is not necessary to disseminate the full summary repeatedly: gossiping incremental
changes or portions of the summary may be a better approach. However, using Bloom
filters reduces the communication costs considerably, since a maxium of 37,000 files
per node can be represented with a 75KB Bloom filter.

Another cost is the space needed to store the information received from peers in
a cluster: Figure 5.22 gives the average number of files disseminated within a cluster
(this time, taking into account the largest cluster, which gives a worst case scenario).
Storage requirements increase with the increase of the interval 7 to up to 160,000
filenames (approximately 48MB) to be stored on each node. While this is not an
unreasonable cost in todays’ PCs, Bloom filters would reduce these costs to about
2.7MB (considering 75KB per Bloom filter and 35 nodes per cluster on average, as
shown in Figure 5.2).

100
80
60
40
20

Local Answers (%)

100
80
60
40
20

Local Answers (%)

100
80
60
40
20

Local Answers (%)

100
80
60
40
20

Local Answers (%)

—— —

LA

o

5 10 15 20 25
7days Interval

1l

2 4 6 81012
1l4days Interval

2 34567
21days Interval

T hst

2 3 4 5 6
28days Interval

Local Answers (%) Local Answers (%) Local Answers (%)

Local Answers (%)

100
80
60
40
20

100
80
60
40
20

100
80
60
40
20

100
80
60
40
20

0 %

1
any

A ‘ |

0

5 10 15 20 25
7days Interval

T T T
any
|

2 4 6 81012
14days Interval

2345678
21days Interval

T T__1
any

2 3 4 5 6
28days Interval

Local Answers (%) Local Answers (%) Local Answers (%)

Local Answers (%)

100
80
60
40
20

100
80

60

40
20

100
80
60
40
20

100
80
60
40
20

: sl I

T T
randon]

5 10 15 20 25
7days Interval

T T T T T
randon|

i

2 4 6 81012
1l4days Interval

T T T1T_1
randon

}]

2345678
21days Interval

T T
randon]

2 3 4 5 6
28days Interval

88

Figure 5.19: Average percentage of requests solved locally (based on information
within cluster): 7-, 14-, 21- and 28-day intervals, 100 shared request, triad labeling.

gi 100 st
[
e MM\MZ
5 |
£ -50 -
3 -100 1 1 1 1
0 5 10 15 20 25
7days Interval
S
;; 100 T T T 1|St|
e [11
? 0 _\‘\ NERERAR
£ -50 -
3 -100 | | | | |
0 2 4 6 81012
l4days Interval
S
;; 100 T T T 1|St|
g 50 - ‘ .
-
£ -50 -
3 -100 | | | | |
1234567
21days Interval
g 100 . .
w 1st
5 50 | .
é ol |1 i}
£ -50 -
3 -100 1 1 1 1

1 2 3 4 5 6
28days Interval

Local Answers (%) Local Answers (%) Local Answers (%)

Local Answers (%)

100

T T T
any

5 10 15 20 25
7days Interval

I any

o

2 4 6 81012
14days Interval

2345678
21days Interval

T T
any

2 3 4 5 6
28days Interval

Local Answers (%) Local Answers (%) Local Answers (%)

Local Answers (%)

89

100 T

T T
randon]

= M\‘JH‘HHM“H

-100 ! ! L1
0 5 10 15 20 25

7days Interval

T
randon

0

-100 | | | | |
0 2 4 6 81012

l4days Interval

100
50 ‘

0 - ‘ ‘

I ra'mdon

-100 N N N N |
123456738

21days Interval

100 T

T T
randon|

ol |
50 | 4

-100 ! ! L1
1 2 3 4 5 6

28days Interval

Figure 5.20: The effect of the largest cluster (triad labeling, 7-, 14-, 21- and 28-day
intervals, 100 shared request) on average hit rate: the difference between the average
hit rate and the average hit rate for all except the largest cluster.

ffffffffffff

7days 14 days 21 days

Time Interval

100 T T —T T 100 T
1st Without LC ------- any
s 80 1 = 80
e S |
n %)
o 60 4 5 60
- I e A 2
c c
< 40k . < 40F
5 [EEE—
Q 3]
o | A__________1 ol la)
- 20 4 — 20 +
0 1 1 1 1 0
7days l1l4days 21days 28days
Time Interval
100 T ;
random Without LC -------
= 80 -
S
2]
3] 60 _
=
n
c
< 40 -
5
[&]
o
- 20 _
0 77777 | 1 P 1
7days l1l4days 21days 28days
Time Interval

28 days

90

Figure 5.21: Average percentage of local answers with triad labeling on DO traces.

Files

Files

Files

Files

0 5 10152025
7days Interval

10, T 1

[

=X=k=]
W b
T
Lol ol

e

oo
N
T
I

0246 81012
14days Interval

10° F 3
10t F 3

1234567
21days Interval

6
igs ; L é
10 F 3
10° £ E
10° £ E
10t F 3

1 2 3 456
28days Interval

Files

Files

Files

Files

o)

0 5 10152025
7days Interval

10 P11 T3
105 g_ any _g

[

=X=k=
N oW R
T
Lol ol

e

oo
2.
T
I

02 46 81012
14days Interval

10° F ny 3
10* F 3
10° F 3
10° 3
10t F 3

12345678
21days Interval

108 ¢ T T
5t any

10? F 3
10' F 3

1 2 3 456
28days Interval

Files

Files

Files

Files

randomg

0 5 10152025
7days Interval

14days Interval

F T 1T 17 _T T1T.T°173
randomy

12345678
21days Interval

T _1 3
randomy

1 2 3 456
28days Interval

Figure 5.22: Average number of files disseminated per cluster in DO.

91

92

Web

In the Web traces the bias introduced by 1st mapping is more evident than in the
DO case: requests asked at the beginning of the traces are answered from the local
storage in considerably higher percentage (Figure 5.23). However, the average hit
rate is only slightly larger for the 1st mapping setup (Figure 5.25).

0246810246180
1800s Interval

0246810246180
1800s Interval

€ 100 g 100 € 100

% 80 g 80 % 80

= 60 = 60 = 60

2 40 2 40 2 40

< < <

73 20 ‘_8 20 Tg 20

° 0 9 0 ° 0

0 5010015@0@5M@00 0 5010015@0@5@B00 0 5010015@0@5M@00

120s Interval 120s Interval 120s Interval

g 100 L g 100 T T alnyl g 100 UL e

)] 7])]

s 80 W o 80 g 80

= 60 = 60 =

: 91 i oo :

< I | H | <

o 20 = 20 o

g Sl I g Sl I S

- 0 2040 60 8010120 ~— 0 2040 60 8010120 0 20 40 60 80100120
300s Interval 300s Interval 300s Interval

P\i’, 100 T T T 1 ﬁ.SEI Q\o, 100 T T T T Ianlyl P\i’, 100 T T T 1]Ifall’ldIOI'[

n . | . | -

2 80 g 80 g 80

= 60 - = 60 . = 60 -

2 40 2 40 2 40 -

< < <

g 2 H g 2 HJH FF g 2L HHHHH I

8 0 e 0 8 o L R ‘H ‘ H\ H

- 0 510152025303540 - 0 510152025303540 - 0 510152025303540
900s Interval 900s Interval 900s Interval

P\i’, 100 T T T 17T Illstl T Q\o, 100 T T T T1TT1 Ialllyl T P\i’, 100 T T T 17T Irél’lld(IDH

n | . | -

2 80 g 80 g 80

= 60 - = 60 = 60 -

) [7)])

g 40 g 40 g 40 .

g g 5 2p

11
S 0 S 0 S 0

0246810246180
1800s Interval

Figure 5.23: Average percentage of requests solved locally (based on information
within cluster): 2-, 5-, 15-minute and half-hour intervals, 1, 5, 10, 10 shared requests,
triad labeling.

The random mapping scenario performs poorly: the increase in hit rate over time
is due to the increase in activity (number of requests per second). This leads to
a larger largest cluster, therefore to potentially many more files publicized in this

93

largest cluster. The effect of the largest cluster and its increase over time is shown in
Figure 5.24.

g 100 11— g 100 11— g 100 11—
o 1st o any o randon]
5 50 I — 5 50 | — 5 50 | —
§ 0 ﬁW\U‘MﬂMWWWW“W‘W 2 0 wmW,M.Mu#humpmwuﬂd..mmf. § 0 H.m‘u.mm.mulﬂumum
< ot 1 X sof 4 £ =m0t -
8 Ei 8
3 -100 | | | | | 3 -100 | | | | | 3 -100 | | | | |
0 5010015@0@5@B00 0 5010QL50@5B00 0 5010015@0@5@B00
120s Interval 120s Interval 120s Interval
9\1 100 T T T T 1 §, 100 T T T __1 9\1 100 T T _1__1
" 1st o any " randon]
g .l R g 50_\ |] g .l b
il L L b, . AT Il T g ol I o 1 1117 T LT
g O [l i bl ﬁ 0 fajir Lo a0l ﬁ 0 bl g
‘_g -50 - Tg -50 - ‘_g -50 .
3 -100 | | | | | 3 -100 | | | | | 3 -100 | | | | |
0 20 40 60 80100120 0 20 40 60 80100120 0 20 40 60 80100120
300s Interval 300s Interval 300s Interval
& 100 T TS & 100 T T T & 100 T T T3
" <] - any " randon]
g 50 | . g 50 | - g 50 | H .
§ 0 a‘\“mww\\JMHHHHH\WL é, 0 _ﬂ‘\‘\\hhmﬂ\\m At L § 0 b SR RIITTm
Tg -50 - (_g -50 - Tg -50 .
3 _100 | I I N [N N B | 3 _100 | I I N N I B | 3 _100 | I I N [N N B |
0 510152025303540 0 510152025303540 0 510152025303540
900s Interval 900s Interval 900s Interval
Q\o, 100 7T T T T 1T T 1T7T1 9\?, 100 T T T 1T T1T_T TT1 Q\o, 100 T T T T T 1T T 1.7
" 1st - any " randon
= 50 - = 50 - = 50 -
2 2 [2 i
ﬁ o kR oty é, o HIth o 4 ﬁ 0 frioitl
Tg -50 - (_g -50 - Tg -50 .
3 _100 | T Y N I I | 3 _100 | N T O I | 3 _100 | T Y N I I |
024681024680 02468102460 024681024680
1800s Interval 1800s Interval 1800s Interval

Figure 5.24: The effect of the largest cluster (triad labeling, 2-, 5-, 15-minute and
half-hour intervals, 1, 5, 10, 10 shared requests) on average hit rate: the difference
between the average hit rate and the average hit rate for all except the largest cluster.

The hit rate due to information dissemination only (therefore ignoring requests
for local files) is between 10% and 23% for 1st mapping, between 6% and 21% for
any mapping, and between 10% and 30% for random mapping (Table 5.2 gives 36-
37% of local queries for 1st and any mappings). Of these values, about 5-10% is the
influence of the largest cluster (Figure 5.25).

The benefits of disseminating storage summary in interest-based clusters are lim-
ited: under 10% of requests are solved due to information dissemination. In the case

94

100 T T 100 T T T
1st Without LC ------- any Without LC -------
/5\ 80 I~ = /5\ 80 I~ =
S S
(%] (%] mmmmmmmm—o
o 60 = o 60 ! =
= =
n n
c 01 T c Al ____
< 40 e E < 40 F_______ [______ E
< <
[&] [&]
o o
- 20 E - 20 E
0 1 1 1 1 0 1 1 1 1
2 min 5 min 15 min 30 min 2 min 5 min 15 min 30 min
Time Interval Time Interval
100 T T T
random Without LC -------

/5\ 80 I~ =

S

2]

o 60]

=

n

c

< 40 | -

<

[&]

o

= 20]

1
2 min 5 min 15 min 30 min
Time Interval

Figure 5.25: Average percentage of local answers with triad labeling on Web traces.

95

of random mapping the hit rate is mainly the result of the largest cluster. However,
the costs are also low: with few exceptions, nodes have under 10,000 files stored lo-
cally (Figure 5.8), which limits the storage summary size to 3MB. For a cluster size
of about 100 nodes and the average number of files per node of 105, the amount of
information disseminated within cluster is under 16MB (with approximately 157KB
sent by each node).

Compared to the experience sharing scenario, storage summary dissemination
using the Web traces performs poorly: the hit rate is 4 times lower. The costs are
also lower: nodes gossip about fewer files when share storage summaries than when
share experience. That is, nodes request many more files than store, which is different
than in DO.

Kazaa

The Kazaa traces show the same decrease over time of the hit rate in the 1st mapping
scenario (Figure 5.26). The total hit rate in the random mapping case is larger than
for the Web traces, mainly due to a larger effect of the largest cluster (20 to 60%, as
shown in Figure 5.28). Also, the hit rate increases more significantly in Kazaa with
the increase in interval.

Not counting the queries for local storage, the hit rate due to information dissemi-
nation is from 38 to 68% for 1st mapping, 44 to 74% for any mapping, and 21 to 59%
for random mapping. However, the influence of the largest cluster is again significant:
without it, the hit rate is up to 16% for 1st and any mapping and around 0% for
random mapping.

Compared with the other communities, dissemination costs in Kazaa are the low-
est. Uncompressed information requires 21MB storage space per node and 10MB of
data sent by each node during 8-hour intervals (the average number of files stored per
node is under 100, as seen in Table 3.1). When compressed information is dissemi-
nated, these costs decrease to 140KB storage space per node and 700KB data sent
per node per 8-hour interval.

5.3 Requirements Revisited

In Section 4.1.1 we specified a set of requirements, many emerging from scientific
communities. This section discusses how each requirement is met (or not) in FLASK.

5.8.1 File Insertion and Remowval

FLASK deals with newly inserted files in an implicit way: since nodes gossip infor-
mation about locally stored files and their recent experience, newly inserted files will
be naturally advertised in the local cluster. If Bloom filters are used, the insertion of
a new file requires the local Bloom filter be updated. This is a simple operation, since

Local Answers (%) Local Answers (%)

Local Answers (%)

100
80
60

40
20

o ll
0

100
80
60
40
20

100
80
60
40
20

204060801002040
3600s Interval

RETT

o

5101520253035
14400s Interval

" lst]

2 4 6 810121416
28800s Interval

Local Answers (%) Local Answers (%)

Local Answers (%)

100
80
60
40
20

0

100
80
60
40
20

100

80

60
40
20

0

0 204060801002040

3600s Interval

a

T T T_J1_1
ny

0 5101520253035

14400s Interval

0 2 4 6 810121416

28800s Interval

Local Answers (%) Local Answers (%)

Local Answers (%)

100
80
60
40
20

0

100
80
60
40
20

100
80

60

40
20
0

96

0 204060801002040

3600s Interval

I ra'mdog

|

x

|

0 5101520253035

14400s Interval

T T 3
randon]

0 2 4 6 810121416

28800s Interval

Figure 5.26: Average percentage of requests solved based on information disseminated
within Kazaa triad-labeling clusters: 1-, 4-, and 8-hour intervals, 1 shared request.

97

g 100 1 g 100 1 g 100 1

;’ 1st ;’ any ;’ randoq

& 50 - 2 50t . & 50 -

g 0 bt b il g 0 Lot it o bl b g 0 MMLM‘H“\\“\L“Mmmh““mmu“wm“\W\MHHHH\\\Hmmm\“mﬂ\\\“M“N\d\\m‘

= -50 - = -50 - = -50 -

8 -100 T N TR N | 8 -100 T T T R 8 -100 T N TR N |

- 0 204060801002040 - 0 204060801002040 - 0 204060801002040
3600s Interval 3600s Interval 3600s Interval

g 100 T T T T g 100 T T T T T g 100 J

w 1st P any w 'randon

ol g bl %% mumwwu

§ 0 L balatn bl é, 0 Wt] § 0 \ 11

= -50 - - = -50 - - = -50 - -

8 -100 T N TR N | 8 -100 T T T R 8 -100 T N TR N |

- 0 5101520253035 — 0 5101520253035 — 0 5101520253035
14400s Interval 14400s Interval 14400s Interval

g\:/ 100 1 TS 8\:/ 100 1T };mly T g\:, 100 o

5 50 | 5 50 | - 5 50 | F

é oLttt E oLttt é oL

= -50 - - = -50 - - = -50 - -

8 -100 T T T B M 8 -100 T T A I | 8 -100 T T T B M

- 0246810121416 — 0246810121416 — 0 2 4 6 810121416
28800s Interval 28800s Interval 28800s Interval

Figure 5.27: The effect of the largest cluster (triad labeling, 1-, 4- and 8-hour intervals,
1 shared request) on average hit rate in Kazaa: the difference between the average
hit rate and the average hit rate for all except the largest cluster.

Local Answers (%)

100

80

60

40

20

T T 100 ; —
1st Without LC ------- any Without LC ----—---
B N < 80 r —
S
[
= E o 60 E
,,,,,,,,,,,,,, = o]
(7 D I S
,,,,,,,,,,,,,,, 2
i . < 40F_] .
,,,,,,,,,,,,,,, =
[&]
o
- - — 20 | -
1 1 1 0 1 1 1
1 hour 4 hours 8 hours 1 hour 4 hours 8 hours
Time Interval Time Interval
100 ; —
random Without LC -------
= 80
S
2]
o 60
=
n
c
< 40
I
[&]
o
= 20 |
0 1 1 1
1 hour 4 hours 8 hours
Time Interval

98

Figure 5.28: Average percentage of local answers with triad labeling on Kazaa traces.

99

the representation of the new file is to be computed by applying the hash functions:
then only an OR is needed to get the new filter.

Removing an item from a Bloom filter is more costly, as it requires entirely re-
computing the filter. Methods to avoid this overhead were employed by maintaining
bit counters [36]. Furthermore, if file insertion and removal are frequent, the filter
can be recomputed at regular intervals, to include multiple updates at once.

5.3.2 Node Volatility

Node volatility is implicitly accommodated by the soft state mechanisms and the
semi-unstructured overlay. In structured networks like those based on DHTs, the
joining or departure of a node implies rewiring the overlay and migrating some data
to other nodes. These costs are justified by the guarantees for fast file location.
FLASK has the advantage of unstructured networks such as Gnutella: the departure
of a node is observed after the node did not communicate for a while. A node joins
at any point in the network and slowly migrates towards its group of interest.

Information does not live for longer than 27 in FLASK. During this interval,
inaccurate information may lead to false positives (for files stored on nodes that
just left or failed). Also, there is a latency of 7 associated with propagating file
information from a newly arrived node. The value of 7 can be chosen to balance
information accuracy and costs.

5.3.8 Scalability with the Number of Files

Bloom filters attenuate the effect of increasing the number of files at the cost of an
increase of false positives. Using Bloom filters, therefore, not only reduces bandwidth
consumption but also gives better scalability with the number of files. However, this
also requires a smart choice of the Bloom filter size m at the network bootstrap.

Assuming the ideal false positive rate is under 0.01% and 10 hash functions are
used, than the size of the Bloom filter can be chosen to 3 bytes per entry. Assuming
each node shares not much more than 1000 files, this gives a 3 KB per Bloom filter to
represent all the files stored on a node. The size of the Bloom filters is fixed: a much
lower number of files would not fully take advantage of the space allocated. A larger
number of files would lead to a decrease in the available number of bits per entry:
for example, if the number of files turns out to be twice as much as the predicted
maximum (i.e., 2000 files stored per node), this leads to 1.5 bytes per entry. From
Figure 4.5 we see that this increases the false positive rate to about 1%. A better
provisioning (that is, more room per entry in Bloom filters) allows for more graceful
degradation of performances but increases the communication costs.

Assuming 1000 clusters of 100 nodes each and 1000 files per node, this allows for
the sharing of hundreds of millions of files.

100

5.8.4 Heterogeneity

Multiple studies have shown that nodes in a large-scale, wide-area, multi-institutional
network are highly heterogeneous in both resource capabilities [103, 40] and behavior
[4]. The main resources consumed in FLASK are storage and communication. The
behaviors that may affect FLASK (and, in fact, any P2P system) are node partici-
pation and activity (in number of file requests).

In the following we discuss how the heterogeneity along these dimensions impact
FLASK performance: what if some nodes are weaker and cannot contribute the
necessary resource requirements? What if some nodes send huge numbers of requests?

1. Limited storage space. While storage requirements are not significant, it is still
possible that some nodes might not have that space available at some moment.
If a node fails to record the information disseminated within its own cluster, it
will unnecessarily forward requests to other clusters. These requests might still
be answered, although with a higher response time. However, a weak node will
affect only the requests that come to it, without impairing the performance of
the other nodes.

2. Limited communication bandwidth. Failing to disseminate one’s own informa-
tion increases the rate of false negatives and the query latency for the files stored
locally: queries will be unnecessarily forwarded to different clusters. Failing to
disseminate other node’s information may lead to incorrect assumptions on that
node’s availability. However, because of the reliability of the gossip mechanism
(information is often redundant since it travels on multiple paths), this effect is
significantly alleviated.

3. Limited participation. Some nodes participate longer than others. In DHTs,
the departure of a node implies overlay rewiring and data migration that affects
O(log(N)) of the N nodes. In many cases, this is a small price to pay for low
response latency and search guarantees. However, this price becomes significant
if nodes depart (or fail) frequently as it seems to be the case in deployed P2P
systems [18].

In FLASK, as discussed previously, intermittent node participation does not
impose costs on other nodes.

4. High activity. The high activity of a node in FLASK may be attenuated by
the information previously disseminated, since many requests may be answered
this way. That is, only a part of its requests will be propagated. The more
active a node is, the larger its cluster is likely to be (since it is likely to have
many neighbors in the data-sharing graph, therefore in the overlay). To guard
against too large clusters, a good clustering algorithm is needed.

101
5.3.5 Publishing Control

A frowned-upon assumption in DHT-like overlays is the node’s willingness to coop-
erate: a node is assumed to store storage summaries of other nodes. This problem is
overcome in FLASK since nodes are responsible for advertising one’s own files.

5.8.6 Support for Collections

As Figure 3.1 presents, requests in DO are for collections of files, a feature character-
istic to scientific communities. Figure 5.29 presents the support for collections with
experience-sharing in DO0: it presents empirical cumulative distribution functions for
various intervals.

The results show that 40 to 50% of collections have all their files disseminated
within the same cluster. About 40% of requests for collections of files found none
of the files locally. On average, 44 to 60% of the requests from a collection are in
the cluster due to experience sharing. In file location solutions based only on request
propagation, a request for a set of N files translates into N requests for one file. In
our case, a request for a set of N files propagates on average less than % requests
into the network.

Interestingly, the support for larger collections is better: collections with more
than half of their files found locally are larger, on average, than collections with less
than half of their files found locally (Table 5.6).

Table 5.6: Average size (in number of requested files) of collections for which more
than 50% files (respectively less) are found locally. Results from multiple data-sharing
graph definitions (7, p) are showed.
Interval =100 files i =500 files
7| > 50% | < 50% | > 50% | < 50%
7 days | 162.52 | 123.24 | 203.59 | 101.36
14 days | 154.02 | 121.60 | 185.16 | 144.16
21 days | 139.79 | 94.71 | 153.32 | 108.70
28 days | 83.20 | 305.90 | 50.78 | 164.94

Figure 5.30 presents the CDF for collection support when storage information is
disseminated within clusters. Fewer collections (less than 20%) are fully supported
within a cluster: this is because storage does not reflect (changing) user interest. This
explanation is best supported by the random mapping example (Figure 5.30 right),
where more than 70% of the collections find no files in the local cluster.

102

1 ! ; 1 . ,
7 days, 100 files 7 days, 500 files
0.8+ mean: 44.76 1 0.8t mean 51.36
' median: 8.10 median: 60
std: 47.49 std: 47.37
0.6r f 0.6f
O (@)
0.4 — 0.4 1
0.2 1 0.2
0 ‘ ‘ . . 0 ‘ ‘ . .
0 20 40 60 80 100 0 20 40 60 80 100
% of known files per collection % of known files per collection
1 w w w w 1 ‘ ‘
14 days, 100 files 14 days, 500 files
08 mean: 47.35 08l mean: 46.72
’ median; 32.60) median: 25
std: 47.17 std: 47.20
o 3
04] 0.4 i]
0.2 0.2
0 . ‘ 0 . ‘
0 20 40 60 80 100 0 20 40 60 80 100
% of known files per collection % of known files per collection
1 : : 1 : :
21 days, 100 files 21 days, 500 files
o8 mean: 51.84 o8 mean: 47.08
' median; 60 ' median: 26.66
std: 46.88 std: 46.96
0.6f : 0.6t :
LL LL
))
0.4¢ 1 0.4 1
0.2 1 0.2
0 ‘ ‘ . ‘ 0 ‘ ‘ . ‘
0 20 40 60 80 100 0 20 40 60 80 100

% of known files per collection % of known files per collection

Figure 5.29: Cumulative distribution function of requests per collection found in the
local cluster after experience dissemination. A collection is the set of requests sent to
support the same computational task (or project, in the DO terminology).

103

1 ‘ 1
0.8f 0.8/
L 0.61 " 0.6}
a 7 days, 100 files a 7 days, 100 files
© 04l any mapping | © 04l random mapping
) mean: 38.48) mean: 20.36
median: 21.42 median: 0
0.2} std: 40.52] 0.2} std: 37.12
0 ‘ 0 ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
% of known files per collection % of known files per collection

Figure 5.30: Support for requests for collections of files with storage summary dis-
semination (empirical cumulative distribution).

5.3.7 Approximate Matches

Approximate matches or keyword searches are supported only if no compression is
used. As discussed previously, this option is more costly in terms of storage space
and communication costs, but it is still a viable solution in many cases.

FLASK has an advantage over search mechanisms in unstructured networks (such
as Gnutella) in supporting approximate matches: a larger number of matches are
found faster, due to the larger amount of information on nodes.

5.83.8 Not a Panacea

FLASK is designed with particular requirements and user behavior in mind: like most
such mechanisms, it does not satisfy all requirements that various user communities
might have. In the following we discuss what FLASK does not provide by itself (and
how some requirements may be satisfied with additional mechanisms):

e Guarantees that files are always located. FLASK components rely on proba-
bilistic mechanisms: there is a chance that existing files may not be located.
However, it supports better the location of “the needle in the haystack” than
other mechanisms on unstructured networks, such as Freenet or Gnutella: the
less popular information (the “needle”) also gets duplicated (by dissemination),
although potentially less than the “hay”.

e Lack of anonymity and privacy. Unlike many mechanisms that aim to wipe
off usage history, FLASK relies on and exploits the sharing of information. In
FLASK information about who accessed what files is exposed in multiple ways:

104

first, during the overlay construction, nodes get to learn who else accessed the
files they accessed. Second, from the information dissemination component,
many users are provided with information about what data other users have
accessed. This lack of privacy guarantees may be unacceptable even in some
scientific (e.g., competing) communities. While there may be ways around this
problem, additional mechanisms must be incorporated in FLASK.

e Attribute-based searches. Even in file-sharing collaborations, Grid users often
require attribute-based searches. File metadata typically specifies creation time
and authorship, creation procedure such as experimental parameters for a par-
ticle accelerator or code version, file size, data format, and so on. File metadata
may have considerably storage requirements. Moreover, file metadata cannot
be compressed with techniques such as Bloom filters, that support member-
ship queries. However, unlike generic resources, file metadata are rather static,
therefore dissemination may have considerable benefits. Nevertheless, the stor-
age and communication costs imposed by disseminating metadata information
may be prohibitively high.

5.4 Summary

We explored the experimental space along two variables: the definition of data-sharing
graph (namely, different values for 7) and the type of information disseminated. We
studied the dissemination of two types of information: experience and storage sum-
maries. Experience dissemination is a form of short-lived cache sharing. Storage sum-
mary dissemination is advertising one’s own resources in a cluster of common interest.
We evaluated design ideas using real traces from three file-sharing communities: a
scientific community, the web, and a P2P file-sharing community. The performance
metrics evaluated are hit rate due to information dissemination and communication
and storage costs.

Experience sharing gives good results: pessimistic evaluations of the average hit
rate (that is, ignoring the effect of the largest cluster) leads to hit rates between
30% and 65%. Two costs are associated with information dissemination: storage and
network costs. In the case of experience sharing, the storage costs are reasonable even
for longer time intervals 7, up to 48MB per node. Network costs are relatively high
in some cases (for example, for the Web traces) when information is not compressed.
However, using Bloom filters to compress information leads to significantly lower
network costs.

Compared to experience sharing, file summary sharing performs poorly: hit rates
are lower (on average around 10%) despite higher storage and communication costs.
This is mainly due to the disconnection between the files stored on a node and its file
interests: in our experiments, the storage is fixed, that is, the mapping of files onto
nodes does not evolve over time, as interest in files do. Moreover, there is only one

105

copy for each file in the system. We opted for this setup in order to eliminate other
influences, such as those of multiple file replicas or replica migration.

We have evaluated the implications of disseminating either recent experience or
local storage summaries. Disseminating only experience does not support the discov-
ery of newly inserted files or of less popular files (“needles in the hay”). Disseminating
only storage information is sufficient for locating newly inserted and less popular files,
but its performance depends on other aspects of data management, such as file repli-
cation (caching) or distribution of files on nodes. Either approach can be used to
complement another file location technique: for example, disseminating recent expe-
rience in interest-based clusters can significantly reduce the load on a central index
while the central index will ensure that new or unpopular files are always located.

However, FLASK needs the dissemination of both types of information. In this
case, the hit rate will be higher than the highest hit rate from either case. However,
the costs will also be higher than the highest storage and communication costs. It
is here that Bloom filters show their power: not only that compressing information
using Bloom filters significantly reduces the costs, but the mechanism is more scalable.
The increase in communication and storage costs when both types of information are
disseminated is small, since the extra information will mostly fill in the Bloom vectors,
without taking new space.

To conclude, the main results presented in this section are:

e Information dissemination in interest-based clusters has significant benefits for
file-location performance and reasonable costs.

e Under our experimental assumptions, disseminating node experience is more
efficient than disseminating storage summaries. However, disseminating storage
summaries may perform significantly better if the distribution of files on nodes
reflects user interests. Simple mechanisms can do this: for example, caching files
on the nodes that requested them. Other approaches can also be beneficial,
such as usage-independent file replication (often required for robustness and
availability).

e Compressing information with Bloom filters significantly reduces communica-
tion and storage costs.

e Off the three mappings of files on nodes that we considered, random mapping
leads to the lowest hit rate. This result confirms the intuition that maintaining
the relationship between local storage and local user interests is important for
good performance from storage summary dissemination. No significant differ-
ence in average performance is found between any and 1st mappings.

e FLASK satisfies the requirements identified in Section 4.1.1. Off all, specific
to scientific communities is the requirement for collection support: sets of files

106

are requested at once as input data for computations. 40% to 50% of these
requirements for sets of files are located easily in one local lookup.

CHAPTER 6
LESSONS FOR RESOURCE DISCOVERY

In Chapter 2 we decomposed the resource discovery problem into four basic compo-
nents: membership, overlay function, preprocessing, and request processing. Based
on the patterns discovered in Chapter 3, we proposed in Chapter 4 a file-location
mechanism. File location is a simplified instance of resource discovery: the only re-
sources shared are files, uniquely identifiable by their single attribute, their filename.
However, FLASK does not use filenames to build search-efficient structures, such as
distributed hash tables. This design approach allows FLASK ideas to remain appli-
cable to the resource discovery problem, where resources have multiple and dynamic
attributes.

In this chapter we discuss how FLASK ideas can be applied to the general resource
discovery problem. The discussion focuses on two aspects. First, we present the cor-
respondence between the four components of a general resource discovery mechanism
and the FLASK components. Second, we discuss the applicability of FLASK to the
general resource location problem.

6.1 FLASK in the General Resource-Discovery Framework

In Chapter 2 we analyzed various resource discovery techniques that rely mainly on
the request propagation component. Based on large-scale emulations, we concluded
that in large unstructured networks, request propagation alone may lead to poor
performance.

In FLASK, information dissemination takes a significant amount of load off the
request propagation component: less than 50% of requests need to be propagated
into the network. The information dissemination component in FLASK corresponds
to the preprocessing component of the general resource discovery framework. The
design of the preprocessing component, however, influenced the design of the other
three components. In the following we discuss how each of these resource discovery
components is designed in FLASK. The order in which they are discussed here does
not follow the order in which they were introduced in Chapter 2, but allows for better
readability.

e The preprocessing component in FLASK includes cluster identification and in-

formation dissemination. In addition, the preprocessing component is respon-
sible for rewiring the overlay to adapt to changes in user interests.

107

108

e The request processing component corresponds to the request propagation rule:
requests are forwarded to nodes that are not part of the local group of interest.
An important distinction from the request propagation solutions studied in
Chapter 2 is that the destination nodes need not be direct neighbors of the
sender node. From this perspective, request propagation in FLASK is a hybrid
between guided and random walk searches: requests are forwarded outside the
local cluster but it is not specified to which cluster they should be forwarded.

e The overlay function in FLASK is responsible for building the data-sharing
graph based on user interests: it connects nodes with similar file interests.

e The membership component in FLASK has two components. One component
specifies how nodes join the FLASK network; another component functions at
the cluster level: it maintains information about the current peers in a cluster.
The membership mechanisms in FLASK are borrowed from previous research
results and have been selected based on the design of the other components.

6.2 FLASK as a Resource Discovery Solution

The most important result proven by FLASK’s design and performance is the clear
benefits of information dissemination. By shifting load from the request processing
component to the preprocessing component, FLASK considerably improves response
latency and scalability with respect to the number of both requests and participants.
However, it is not straightforward to generalize FLASK to locate diverse resources
that include computers, network, storage and instruments.

Multiple distinctions between the assumptions made in FLASK and the general
context of resource discovery result from the type of resources shared: files are a
particular type of resource with specific sharing and attribute characteristics.

FLASK considers files have only one, immutable attribute, their filename. In
the general resource discovery problem, resources are often described by multiple
attributes. Moreover, interest in one resource can be expressed by any subset of its
attributes. For this reason, common interests are harder to identify in the case of
general resources: for example, does a user interested in a computer with 2 GB of
memory have the same interest as a user who requests a Linux machines with at least
2 GB of memory, connected by at least 10 Mbps?

Another difference comes from the sharing characteristics of files and general re-
sources: while users may share a large number of files each, they will most likely have
a small number of other resources to share. This significantly finer granularity may
not be most efficient when disseminating information on computational resources.

Another challenge comes from the volatility of general resource attributes. Even if
files are frequently inserted into and removed from the system, they live longer than,
for example, a machine with CPU load of 5%. Disseminating potentially volatile

109

resource descriptions may lead to inaccurate, misleading information. Consequently,
resources need to be advertised by their more static attributes, such as operating
system, CPU type, and total memory.

Finally, there are intrinsic distinctions between data and computational resources
when seen as goods. Goods can be classified as consumable (such as oil) and non-
consumable (such as lighthouses): a larger number of oil consumers decreases the
available quantity of oil; a larger number of boats does not decrease the utility of
lighthouses and does not increase the cost of their operation. Files are closer to non-
consumable goods: the access to file is limited by available bandwidth, but data itself
remain available no matter how many users download it. Computational resources
are closer to consumable goods: simultaneous access to computational cycles limits
the utility. Consequently, nodes may be less willing to cooperate by disseminating
resource location information when they compete for resources.

However, designing and evaluating FLASK suggested a powerful idea: grouping
resource providers in such a way that their collaboration better serves their users’
interests. While the mechanisms used in FLASK for grouping nodes may not be
appropriate for locating general resources, the intuition remains applicable. However,
instead of grouping nodes with same interests, in this scenario it seems more efficient
to group nodes with resources that complement each other’s needs. In the following
such a strategy is sketched; its rigorous design and evaluation remains an important
direction for future work.

The architecture is that of the general resource discovery framework: nodes pro-
vide information about resources from a site and act on behalf of the users on that
site. As already mentioned, nodes create and maintain pairwise relationships with
other nodes such that their aggregated resources serve their user community better
than the nodes’ individual pools. These relationships are repeatedly re-evaluated and
updated to adapt to changing user interests.

This approach naturally accommodates requests for aggregated resources: for ex-
ample, if local users frequently request resources located far in network distance,
then the local node looks for distant peers and negotiates a collaboration. Collabo-
rations may be anything from mutual exchange of resource descriptions to promises
for preferred resource allocation to reservations.

CHAPTER 7
DISCUSSION

This thesis focuses on resource discovery in Grid environments of the scale and lack
of reliability of today’s P2P networks. The characteristics of this target environment
require solutions that are fully decentralized, scalable with the number of users and
resources, and tolerant to intermittent resource participations (whether voluntary or
due to failures). We define the solution space for resource discovery mechanisms
by proposing a taxonomy. This taxonomy proves to be a useful tool for discussing
previous work but does not reduce the size of the (large) solution space. Our ap-
proach to finding efficient design solutions is to analyze and exploit usage patterns.
By focusing on one instance of resource-sharing environments, namely file-sharing
systems and examining user behavior in different communities, we discover an im-
portant usage pattern: users naturally form interest-based groups. This pattern has
potential for system design: we design a mechanism for locating files that exploits and
benefits from this naturally emerging pattern. However, file location is a simplified
instance of resource discovery: nevertheless, important lessons for resource discovery
are revealed by the design and evaluation of this file location mechanism. The most
important such lesson is the proof that disseminating information to the right part
of the network offers considerable performance advantages.

7.1 Contributions

The main contributions of this thesis are:

1. A formulation of the resource discovery problem and its requirements
from a novel perspective that unifies two distinct instances of resource-
sharing environments, namely Grid and peer-to-peer. Looking at resource dis-
covery from the perspective of these two environments enables a useful exchange
of experience between previously disconnected communities: for example, Grid
solutions for resource discovery have not focused on scalability or support for
intermittent participation in the absence of central control; previous P2P solu-
tions on resource discovery have not focused on attribute-based searches, but
considered the ideal case of searches for globally unique identifiers. If Grids are
to grow in the number of users and resources, they need to provide scalable
mechanisms and to support intermittent resource participation. If P2P are to
go beyond file-swapping applications, they need to support the sharing of a
variety of resource types, many not identifiable by name.

110

111

2. A general resource discovery framework. This framework, based on four
building blocks, provides a common description language for various resource
discovery solutions and defines the solution design space. It also offers the
opportunity of better understanding and employing previous research results
into the design of each of the components.

3. A scalable emulator for resource-sharing environments and mechanisms
for evaluating resource discovery solutions. For the emulator design we iden-
tified and modeled the main sharing and usage properties. For example, we
modeled various sharing characteristics, such as fair and unbalanced resource
sharing (where the number of resources shared per node is constant or, respec-
tively, highly variable) and various user request distributions. We emulated up
to 32,768 nodes (2'%), where a node provides information about the resources
shared by one administrative organization. Using this emulator, we evaluated
a set of resource discovery mechanisms based solely on request propagation in
various sharing environments. In addition to quantitative estimates of costs and
performance, we learned two important things. First, request propagation alone
performs poorly in large-scale unstructured networks. Second, the request prop-
agation performance and, consequently, that of the resource discovery service it
serves, are highly dependent on the sharing characteristics.

4. Evidence that correctly evaluating user behavior (including both resource
usage and resource sharing) can yield significant performance advantages.
This evidence is provided via two convergent paths. The first path shows exper-
imentally that for different sharing environments, different discovery strategies
work better: for example, if users provide resources uniformly (that is, about the
same number and of uniformly distributed types), simple techniques based on
random walks work well. If the sharing is highly skewed, with some nodes pro-
viding many resources and most being free riders, more sophisticated resource
propagation techniques are necessary.

The second path shows that real traces can suggest design solutions by revealing
patterns that can be exploited. Therefore, not only that performance depends
on usage characteristics, but understanding usage characteristics can suggest
appropriate design solutions.

5. The unearthing of a previously unknown usage pattern in real file-
sharing communities that reveals commonality of user interests in resources.
We discovered this pattern by proposing a new way to look at data: a struc-
ture called “the data-sharing graph.” We studied this structure on traces from
three diverse file-sharing communities: a scientific collaboration (The D0 Ex-
periment), the Web, and a P2P music-swapping system (Kazaa). In all cases,
the data-sharing graph was shown to be a small-world graph. The small-world

112

graph topology proves that users form interest-based groups and these groups
are relatively close to each other in graph distance.

6. A file-location mechanism (FLASK) that exploits this emergent pattern in
user behavior and satisfies the requirements of a mixed Grid—P2P scenario.
FLASK identifies clusters of users with same interest in data, disseminate in-
formation within clusters, and propagates requests between clusters. To this
end, we propose a decentralized technique that mirrors user interests in data
onto an overlay structure and adapts the overlay to changes in user interests.
We also propose a mechanism for identifying clusters based on local information
only. The dissemination of file location information within clusters of interest
has significant performance benefits: based on real traces, we show that more
than 50% of the requests can be solved based on the information previously dis-
seminated. Moreover, we show that FLASK satisfies the requirements raised by
typical Grid communities: collections of files are efficiently located; users main-
tain publishing control; the mechanism is scalable with the number of nodes
and files in the network; heterogeneity does not impair the overall performance
of the system; and, finally, file insertion and removal as well as intermittent user
participation are supported.

7.2 Future Research

Important problems in resource discovery remain to be solved. Some research direc-
tions are a natural continuation of this thesis, others are more general problems in
resource discovery.

The discovery of small-world patterns in data-sharing graphs leads to three future
research directions. The first covers the particular improvements to the FLASK
components that have been described in the previous chapters.

The second direction investigates in more detail the feasibility of FLASK-like so-
lution for the general problem of resource discovery. As already mentioned in Chapter
6, an important lesson from FLASK is the impact of information dissemination on
search performance. At the same time, challenging problems are emerging from the
various requirements formulated for resource discovery. One such requirement is sup-
port for aggregated resources: for example, requests for 100 computers connected via
network bandwidth higher than 10Mbs. A centralized solution can solve this problem
simply, but centralized design is not always possible or efficient. Information dissem-
ination techniques such as those proposed by FLASK seem to be one direction to
pursue.

The third direction is a departure from the subject of this thesis and aims to
answer the question: In what other problems in large resource-sharing environments
can the emergent, interest-based clustering be exploited for better performance? One
example may be data replica placement to better serve a large community of users:

113

identifying clusters of interest can be one solution. However, vicinity in network
metrics become an important factor in determining the feasibility of such a solution.

An important research problem in distributed systems is identifying the relation
between resource discovery and other services. In this thesis, we looked at resource
discovery as a service in itself, but its existence is often required in support to other
services, such as scheduling. How decoupled should these services be? Fully decoupled
services—the approach taken in this thesis—have clear advantages. For example, a
stand-alone resource discovery service can be used by multiple services, not only
for scheduling. In itself, resource discovery can be a valuable tool for evaluating
virtual organizations: users often need browsing capabilities to asses the diversity
or the availability of the resources provided by a virtual organization. However, a
decoupled resource discovery component introduces latencies that, in the context
of highly dynamic resource attributes, may hinder the performance of dependent
services, such as scheduling.

Alternative approaches that incorporate resource discovery into more complex
services have been proposed. In SHARP [45], for example, the discovery of resources
is an inherent effect of the peer-to-peer service agreements. As a consequence, only
potentially available resources are discovered and their discovery can be promptly
utilized. This mechanism trades off some of the requirements of resource discovery
for efficient, flexible, and decentralized service negotiation. Better understanding
of the necessary tradeoffs is an important problem in large-scale resource sharing
environments.

REFERENCES

[1] ABELLO, J., PARDALOS, P., AND RESENDE, M. On maximum clique prob-
lems in very large graphs. DIMACS Series on Discrete Mathematics and The-
oretical Computer Science 50 (1999), 119-130.

[2] ABRAMSON, D., Sosic, R., GipDY, J., AND HALL, B. Nimrod: A tool
for performing parameterized simulations using distributed workstations. In
4th IEEE Symposium on High Performance Distributed Computing (HPDC-/)
(1995).

[3] Apamic, L., HUBERMAN, B., LUKOSE, R., AND PuUNIYANI, A. Search in
power law networks. Physical Review. E 64 (2001), 46135-46143.

[4] ADAR, E., AND HUBERMAN, B. A. Free riding on Gnutella. First Monday 5,
10 (2000).

[5] AiELLo, W., CHUNG, F., AND Lu, L. A random graph model for massive
graphs. In The 32nd Annual ACM Symposium on Theory of Computing (2000),
pp. 171-180.

[6] ALBERT, R., AND BARABASI, A.-L. Statistical mechanics of complex net-
works. Reviews of Modern Physics 74 (2002), 47-97.

[7] ALLEN, G., DRAMLITSCH, T., FOSTER, I., GOODALE, T., KARONIS, N.,
RiPEANU, M., SEIDEL, E., AND TOONEN, B. Supporting efficient execution

in heterogeneous distributed computing environments with cactus and globus.
In SC’2001 (2001), ACM Press.

[8] ANDERSON, D. P., Coss, J., KorpreELLA, E., LEBOFSKY, M., AND
WERTHIMER, D. Seti@home: An experiment in public-resource computing.

Communications of the ACM 45, 11 (2002), 56-61.

[9] ANDERSON, D. P., AND KuBiatowicz, J. The worldwide computer. Scien-
tific American, 3 (March 2002 2002).

[10] ANNIs, J., ZHAO, Y., VOECKLER, J., WILDE, M., KENT, S., AND FOSTER,
[. Applying Chimera virtual data concepts to cluster finding in the Sloan Sky
Survey. In SC’2002 (2002).

[11] ANSTREICHER, K., BRrixius, N., Goux, J.-P., AND LINDEROTH, J. T. Solv-

ing large quadratic assignment problems on computational Grids. Mathematical
Programming 91, 3 (2002), 563-588.

114

[12]

[13]

[15]

[16]

[17]

18]

[24]

115

AVERY, P., FOSTER, 1., GARDNER, R., NEWMAN, H., AND SZALAY, A. An

international virtual-data Grid laboratory for data intensive science. Technical
Report GriPhyN-2001-2, 2001.

BALLINTUN, G., STEEN, M. V., AND TANENBAUM, A. Scalable naming in
global middleware. In 13th Int’l Conf. on Parallel and Distributed Computing
Systems (PDCS-2000) (2000), pp. 624-631.

BARABASI, A.-L. Linked: The New Science of Networks. Perseus Publishing,
2002.

BARABASI, A.-L., AND ALBERT, R. Emergence of scaling in random networks.
Science 281 (1999), 509-512.

BARABASI, A.-L., ALBERT, R., AND JEONG, H. Scale-free characteristics
of random networks: The topology of the World Wide Web. Physica A 286
(2000), 69-77.

BARFORD, P., BESTAVROS, A., BRADLEY, A., AND CROVELLA, M. Changes

in web client access patterns characteristics and caching implications. Tech.
Rep. BUCS-TR-1998-023, Boston University, 1998.

BHAGWAN, R., SAVAGE, S., AND VOELKER, G. Understanding availabil-
ity. In 2nd Internernational Workshop on Peer-to-Peer Systems (IPTPS’03)
(Berkeley, CA, 2003), I. Stoica and F. Kaashoek, Eds., Springer-Verlag.

Broowm, B. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM 13, 7 (1970), 422-426.

Boeing proxy logs, ftp://researchsmp2.cc.vt.edu/pub/boeing/boeing.990301-
05.notes.

BorLoBAs, B. Random Graphs. Academic Press, 1985.

Bresrau, L., Cao, P., FAN, L., PHILLIPS, G., AND SHENKER, S. Web

caching and Zipf-like distributions: Evidence and implications. In InfoCom
(New York, NY, 1999), IEEE Press.

BRODER, A., KUMAR, R., MAGHOUL, F., RAGHAVAN, P., RAJAGOPALAN,
S., StATA, R., TOMKINS, A., AND WIENER, J. Graph structure in the web.
Computer Networks: The International Journal of Computer and Telecommu-
nications Networking 33, 1-6 (2000).

BusTAMANTE, F., AND Q1A0, Y. Friendships that last: peer lifespan and its
role in p2p protocols. In International Workshop on Web Content Caching and
Distribution (2003).

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]
33]

[34]

[35]

116

CanNcHO, R. F., AND SorLk, R. V. The small world of human language.
Proceedings of the Royal Society B 268 (2001), 2261-2266.

CHANDRA, T. D., HADzZILACOS, V., TOUEG, S., AND CHARRON-BosT, B.
On the impossibility of group membership. In 15th Annual ACM Symposium
on Principles of Distributed Computing (PODC"96) (New York, NY, 1996),
pp- 322-330.

CHERVENAK, A., DEeLMAN, E., FosTer, 1., Guy, L., HOSCHEK,
W., TamnitcHi, A., KEesseLman, C., KunszT, P., RiPEANU, M.,
SCHWARTZKOPF, B., STOCKINGER, H., STOCKINGER, K., AND TIERNEY,
B. Giggle: A framework for constructing scalable replica location services. In
SC’02 (2002).

CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W. Freenet: A dis-
tributed anonymous information storage and retrieval system. In International
Workshop on Designing Privacy Enhancing Technologies (Berkeley, CA, 2000),
vol. 44-66, Springer-Verlag.

CoHEN, E., FiaT, A., AND KAPLAN, H. Associative search in peer to peer
networks: Harnessing latent semantics. In Infocom (San Fancisco, CA, 2003).

COHEN, E., AND SHENKER, S. Replication strategies in unstructured peer-to-
peer networks. In SIGCOMM (2002).

CzAJKOWSKI, K., FITZGERALD, S., FOSTER, I., AND KESSELMAN, C. Grid
information services for distributed resource sharing. In 10th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC-10)
(2001), IEEE Press, pp. 181-184.

The DZero Experiment., http://www-d0.fnal.gov.

DoAR, M. A better model for generating test networks. IEEE Global Internet
(1996), 86-93.

DOROGOVTSEV, S., AND MENDES, J. Evolution of networks. Advances in
Physics 51, 4 (2002), 1079-1187.

Favoutsos, M., FALouTsos, P., AND FALoUTsos, C. On power-law rela-
tionships of the internet topology. In SIGCOMM (1999), pp. 251-262.

Fan, L., Cao, P., ALMEIDA, J., AND BRODER, A. Z. Summary cache: a
scalable wide-area Web cache sharing protocol. IEEE/ACM Transactions on
Networking 8, 3 (2000), 281-293.

37]

[38]

[41]

[42]

117

Frake, G. W., LAWRENCE, S., AND GILES, C. L. Efficient identification of
web communities,. In 6th ACM SIGKDD (2000), pp. 150-160.

FrLake, G. W., LAWRENCE, S., GILES, C. L., AND COETZEE, F. M. Self-

organization of the web and identification of communities. IEEE Computer 35,
3 (2002), 66-71.

FosTER, I. The emergence of the Grid. In Nature Yearbook of Science and
Technology. Nature Publishing Group, 2001.

FOSTER, I., AND IAMNITCHI, A. On death, taxes, and the convergence of peer-

to-peer and Grid computing. In 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’'03) (Berkeley, CA, 2003).

FosTeR, 1., AND KESSELMAN, C., Eds. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

FosTeR, 1., KESSELMAN, C., NIcK, J., AND TUECKE, S. The physiology of
the Grid: An open grid services architecture for distributed systems integration.
Tech. rep., Globus Project, 2002.

FosTER, I., KESSELMAN, C., AND TUECKE, S. The anatomy of the Grid:

Enabling scalable virtual organizations. International Journal of High Perfor-
mance Computing Applications 15, 3 (2001), 200-222.

FrREEMAN, L. Some antecedents of social network analysis. Connections 19
(1996), 39-42.

Fu, Y., CHASE, J., CHUN, B., SCHWAB, S., AND VAHDAT, A. Sharp:
An architecture for secure resource peering. In The 19th ACM Symposium on
Operating Systems Principles (SOSP) (October 2003).

GANESH, A., KERMARREC, A., AND MASSOULIE, L. Peer-to-peer member-

ship management for gossip-based protocols. IEEE Transactions on Computers
52 (Febriary 2003).

GIRVAN, M., AND NEWMAN, M. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. USA 99 (2002), 8271-8276.

The Globus project, http://www.globus.org.

GOLDING, R. A., AND TAYLOR, K. Group membership in the epidemic style.
Technical Report UCSC-CRL-92-13, University of California, Santa Cruz, Jack
Baskin School of Engineering, March 1992 1992.

[50]

[51]

[52]
[53]

[59]

[60]

[61]

118

GRIBBLE, S. D., BREWER, E. A., HELLERSTEIN, J. M., AND CULLER,
D. Scalable, distributed data structures for internet service construction. In
4th Symposium on Operating Systems Design and Implementation (OSDI 2000)
(San Diego, CA, 2000).

GRIBBLE, S. D., WELSH, M., BEHREN, R. v., BREWER, E. A., CULLER,
D., Borisov, N., CzeErRwINSKI, S., GUuMMADI, R., HiLL, J., JOSEPH,
A. D., Karz, R. H., MAO, Z., Ross, S., AND ZHAO, B. The ninja architec-
ture for robust internet-scale systems and services. Special Issue of Computer
Networks on Pervasive Computing (2001).

The Grid Physics Network (GriPhyN) project, http://www.griphyn.org.

GuptA, I., BiIrMAN, K., LINGA, P., DEMERS, A., AND VAN RENESSE, R.
Kelips: Building an efficient and stable P2P DHT through increased memory
and background overhead. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS '03) (2003).

The Human Genome Project, http://www.nhgri.nih.gov.

IamnITCHI, A., AND FOSTER, I. On fully decentralized resource discovery

in grid environments. In International Workshop on Grid Computing (Denver,
Colorado, 2001), IEEE.

IAMNITCHI, A., AND FOSTER, I. A peer-to-peer approach to resource location

in grid environments. In Grid Resource Management, J. Weglarz, J. Nabrzyski,
J. Schopf, and M. Stroinski, Eds. Kluwer Publishing, 2003.

[AMNITCHI, A., AND RIPEANU, M. Myth and reality: Usage behavior in a
large data-intensive physics project. Tech. Rep. TR2003-4, GriPhyN, 2003.

IaMNITCHI, A., RIPEANU, M., AND FOSTER, I. Locating data in (small-
world?) peer-to-peer scientific collaborations. In Ist International Workshop
on Peer-to-Peer Systems (IPTPS’02) (2002), LNCS Hot Topics series, Springer-
Verlag.

IAMNITCHI, A., RIPEANU, M., AND FOSTER, I. Data-sharing relationships
in the Web. In 12th International World Wide Web Conference (WWW12)
(Budapest, Hungary, 2003).

IAMNITCHI, A., RIPEANU, M., AND FOSTER, I. Small-world file-sharing
communities. In Infocom (Hong Kong, China, 2004).

JAIN, A. K., MurTY, M. N., AND FLYNN, P. J. Data clustering: a review.
ACM Computing Surveys 31, 3 (1999), 264-323.

[62]

[63]

119

Kautz, H., SELMAN, B., AND SHAH, M. ReferralWeb: Combining the social
networks and collaborative filtering. Communications of the ACM 40, 3 (1997),
63—65.

KERMARREC, A.-M., MASSOULIE, L., AND GANESH, A. Reliable probabilis-

tic communication in large-scale information dissemination systems. Tech. Rep.
MSR-TR-2000-105, Microsoft Research Cambridge, October 2000.

KERMARREC, A.-M., MASSOULIE, L., AND GANESH, A. Probabilistic reli-

able dissemination in large-scale systems. IEEE Transactions on Parallel and
Distributed Systems 14, 3 (March 2003).

KLEINBERG, J. The small-worlds phenomenon: an algorithmic perspective. In
32nd ACM Symposium on Theory of Computing, 2000 (Portland, OR, 2000).

KuBiarowicz, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P.,
GEELS, D., GuMMADI, R., RHEA, S., WEATHERSPOON, H., WEIMER, W.,
WELLS, C., AND ZHAO, B. Oceanstore: An architecture for global-scale per-
sistent storage. In 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000) (2000).

KuMAR, R., RAGHAVAN, P., RAJAGOPALAN, S., AND TOMKINS, A. Trawl-

ing the Web for emerging cyber-communities. Computer Networks (Amsterdam,
Netherlands: 1999) 81, 11-16 (1999), 1481-1493.

KuTTEN, S., AND PELEG, D. Deterministic distributed resource discov-

ery. In 19th Annual ACM Symposium on Principles of Distributed Computing
(PODC’02) (Portland, Oregon, 2000).

LeE, O., AND BENFORD, S. An explorative approach to federated trading.
Computer Communications 21(2) (1998).

LEGRAND, A., MARCHAL, L., AND CASANOVA, H. Scheduling distributed
applications: The simgrid simulation framework. In 3rd IEEE Symposium on

Cluster Computing and the Grid (CCGrid’03) (Tokyo, Japan, 2003).

LeiBowitz, N., RipEANU, M., AND WIERZBICKI, A. Deconstructing the
kazaa network. In Workshop on Internet Applications (San Francisco, CA,

2003).

L1. Random texts exhibit Zipf’s law-like word frequency distribution. IEEETIT:
IEEE Transactions on Information Theory 38 (1992).

LINDEN, G., SMITH, B., AND YORK, J. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing 7, 1 (Jan-
uary/February 2003), 76-80.

[74]

[75]

[76]

[77]

78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

120

Litzkow, M. J., LivNy, M., AND MUTKA, M. W. Condor - a hunter of idle
workstations. In 8th Intl. Conf. on Distributed Computing Systems (San Jose,
Calif., 1988), pp. 104-111.

LivNy, M. High-throughput resource management. In The Grid: Blueprint
for a New Computing Infrastructure, 1. Foster and C. Kesselman, Eds. Morgan
Kaufmann, 1999, pp. 311-337.

LOEBEL-CARPENTER, L., LUeEkiNG, L., Moorg, C., PoOrDEs, R.,
TruUMBO, J., VESELI, S., TEREKHOV, [., VRANICAR, M., WHITE, S., AND
WHITE, V. SAM and the particle physics data Grid. In Computing in High-
Energy and Nuclear Physics (Beijing, China, 2001).

Lv, Q., Cao, P., CoHEN, E., L1, K., AND SHENKER, S. Search and replica-
tion in unstructured peer-to-peer networks. In 6th annual ACM International
Conference on supercomputing (ICS) (2002).

MAKSE, H. A., HAVLIN, S., AND STANLEY, H. E. Modeling urban growth
patterns. Nature 377 (1995), 608-612.

MOCKAPETRIS, P. Domain names—concepts and facilities. In RFC 1054. 1987.

MuTtkA, M., AND LivNy, M. The available capacity of a privately owned
workstation environment. Performance Evaluation 12, 4 (1991), 269-84.

NEGRA, M. D. Cms collaboration. Tech. Rep. CERN LHCC 94-38, CERN,
1994.

NEWMAN, M. Scientific collaboration networks: I. Network construction and
fundamental results. Phys. Rev. E 64 (2001).

NEWMAN, M. Scientific collaboration networks: II. Shortest paths, weighted
networks, and centrality. Phys. Rev. E 64 (2001).

NEWMAN, M. The structure of scientific collaboration networks. Proc. Natl.
Acad. Sci. USA 98 (2001), 404-409.

NEWMAN, M. The structure and function of complex networks. Tech. Rep.
cond-mat /0303516, Los Alamos Archive, 2003.

NEWMAN, M., FORREST, S., AND BALTHROP, J. Email networks and the
spread of computer viruses. Phys. Rev. E 66, 035101 (2002).

NEwMAN, M., STROGATZ, S., AND WATTS, D. Random graphs with ar-
bitrary degree distribution and their applications. Phys. Rev. E 64, 026118
(2001).

38

[89]

[90]

[95]

[96]

[97]

98]

[99]

121

NEwMAN, M., WaTTs, D., AND STROGATZ, S. Random graph models of
social networks. Proc. Natl. Acad. Sci. USA 99 (2002), 2566-2572.

PraxrTon, C. G., RAJARAMAN, R., AND RICHA, A. W. Accessing nearby

copies of replicated objects in a distributed environment. In ACM Symposium
on Parallel Algorithms and Architectures (SPAA) (1997).

PrubpHOMME, T., KEsseLMAN, C., FiNHOLT, T., FOSTER, I., PARSONS,
D., ABRAMS, D., BARDET, J.-P., PENNINGTON, R., TOWNS, J., BUTLER,
R., FUTRELLE, J., ZALUZEC, N., AND HARDIN, J. NEESgrid: A distributed
virtual laboratory for advanced earthquake experimentation and simulation:
Scoping study. Technical Report 2001-01, NEESgrid, 2001.

RAMAKRISHNA, M. V. Practical performance of Bloom filters and parallel
free-text searching. Communications of the ACM 32, 10 (1989), 1237-1239.

RAMAN, R., LivNy, M., AND SoLOMON, M. Matchmaking: Distributed

resource management for high throughput computing. In 7th IEEE Symposium
on High Performance Distributed Computing (HPDC-7) (1998), IEEE Press.

RANGANATHAN, K., AND FOSTER, I. Design and evaluation of dynamic repli-
cation strategies for a high performance data Grid. In International Conference
on Computing in High Energy and Nuclear Physics (2001).

RANGANATHAN, K., IAMNITCHI, A., AND FOSTER, I. Improving data avail-
ability through dynamic model-driven replication in large peer-to-peer com-
munities. In Global and Peer-to-Peer Computing on Large Scale Distributed

Systems Workshop (2002).

RATNASAMY, S., FraNcis, P., HANDLEY, M., KARP, R., AND SHENKER,
S. A scalable content-addressable network. In SIGCOMM (2001), ACM.

REDNER, S. How popular is your paper? An empirical study of the citation
distribution. European Physical Journal B 4 (1998), 131-134.

RIPEANU, M., AND FOSTER, I. "a decentralized, adaptive, replica location

service”. In proceedings of 11th IEEE International Symposium on High Per-
formance Distributed Compuing (HPDC-11) (July 2002).

RipeaNu, M., FOSTER, I., AND TAMNITCHI, A. Mapping the Gnutella net-

work: Properties of large-scale peer-to-peer systems and implications for system
design. Internet Computing 6, 1 (2002), 50-57.

RiPEANU, M., IAMNITCHI, A., AND FOSTER, I. Cactus application: Perfor-

mance predictions in Grid environments. In European Conference on Parallel
Computing (EuroPar) (2001), vol. LNCS 2150, Springer-Verlag, pp. 807-816.

122

[100] RipEANU, M., IAMNITCHI, A., AND FOSTER, I. Performance predictions for
a numerical relativity package in Grid environments. International Journal of
High Performance Computing Applications 15, 4 (2001).

[101] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In Middleware (2001),
pp- 329-350.

[102] SarTO, Y., KARAMANOLIS, C., KARLSSON, M., AND MAHALINGAM, M.

Taming aggressive replication in the Pangaea wide-area file system. In OSDI
(2002).

[103] SAROIU, S., GUMMADI, P. K., AND GRIBBLE, S. D. A measurement study

of peer-to-peer file sharing systems. In Multimedia Computing and Networking
(MMCN) (San Jose, CA, USA, 2002).

[104] SENDAG, R., CHUANG, P.-F., AND LiLJA, D. J. Address correlation: Ex-
ceeding the limits of locality. Computer Architecture Letters 2 (May 2003).

[105] Seti@home: The search for extraterestrial intelligence,
http://setiathome.berkeley.edu.

[106] SHIRKY, C. What is p2p... and what isn’t? In Peer-to-Peer: Harnessing the
Power of Disruptive Technologies, A. Oram, Ed. O’Reilly, 2001.

[107] Sloan Digital Sky Survey, http://www.sdss.org/sdss.html.
[108] http://www.slyck.com.

[109] Song, H., Liu, X., JAKOBSEN, D., BHAGWAN, R., ZHANG, X., TAURA, K.,
AND CHIEN, A. The microgrid: a scientific tool for modeling computational
Grids. In Supercomputing (2000).

[110] SRIPANIDKULCHAI, K. The popularity of Gnutella queries and its implications
on scalability, 2001.

[111] SRIPANIDKULCHAI, K., MAGGS, B., AND ZHANG, H. Efficient content loca-
tion using interest-based locality in peer-to-peer systems. In INFOCOM (San
Francisco, 2003).

[112] SToicA, I., MoRRIS, R., KARGER, D., KAASHOEK, M. F., AND BAL-

AKRISHNAN, H. Chord: A scalable peer-to-peer lookup service for internet
applications. In SIGCOMM (San Diego, USA, 2001).

[113] THOMAS, M. P., MOCK, S., AND BOISSEAU, J. Development of web toolkits
for computational science portals: The npaci hotpage. In 9th IEEE Symposium
on High Performance Distributed Computing (HPDC-9) (2000).

123

[114] vAN DONGEN, S. Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, May 2000.

[115] vAN DONGEN, S. MCL ~ a cluster algorithm for graphs,
http://micans.org/mcl/.

[116] VAN RENESSE, R., MINSKY, Y., AND HAYDEN, M. A gossip-style failure
detection service. Tech. Rep. TR98-1687, Cornell University, Computer Science
Department, 1998.

[117] VAN STEEN, M., HOMBURG, P., AND TANENBAUM, A. Globe: A wide-area
distributed system. IEEE Concurrency (1999), 70-78.

[118] VoGELs, W., R., v. R., AND BIirMAN, K. Using epidemic techniques for
building ultra-scalable reliable communication systems. In Workshop on New
Visions for Large-Scale Networks: Research and Applications (Vienna, VA,
2001).

[119] WATTS, D., AND STROGATZ, S. Collective dynamics of ’small-world’ networks.
Nature 393 (1998).

[120] WATTS, D. J. Small Worlds: The Dynamics of Networks between Order and
Randomness. Princeton University Press, 1999.

[121] WiLcox-O’HEARN, B. Experiences deploying a large-scale emergent net-
work. In Proceedings of the 1st International Workshop on Peer-to-Peer Sys-
tems (IPTPS’02) (Cambridge, MA, USA, 2002), P. Druschel, F. Kaashoek, and
A. Rowstron, Eds., Springer-Verlag.

[122] ZuAO, B. Y., KuBiatowicz, J. D., AND JosEPH, A. D. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Tech. Rep.

CSD-01-1141, Berkeley, 2001.

