

GridSim:

"Java-based Modelling and Simulation of Deadline and Budget-based Scheduling for Grid Computing"

Rajkumar Buyya and Manzur Murshed

Monash University, Melbourne, Australia

www.buyya.com/ecogrid

www.gridcomputing.com

Simulation Parameters

Resources

- Cost : cheapest: 10, Expensive: 20 (normal distribution for costing.
- Speed: 0.5 to 1.5 (1, standard machine. normal distribution for speed).
- Users:
 - Users job contains 20 tasks with variation of +/-2 with random submission.
 - Users submitted jobs only after completion of previous job.
- Jobs = 20 tasks
 - Each task takes 50units.
 - Heterogeneous tasks (future)
- Simulation Time = 7*60*60 units (approx.7hours).
- As the number of users grows, the probability of getting at least one resource per user, throughout the deadline, decreases.
- This low probability demands high (>> 1) D_Factor and B_Factor in order to achieve very high job completion rate.

D-Factor

 Job_Time_{MAX} = Time to process all the tasks, serially, using the slowest resource

 Job_Time_{MIN} = Time to process all the tasks, in parallel,

giving the fastest resource the highest priority

 $D_Factor = \frac{Deadline - Job_Time_{MIN}}{Job_Time_{MAX} - Job_Time_{MIN}}$

- Any job with *D_Factor* < 0 would never be completed</p>
- As long as some resources are available throughout the deadline, any job with D_Factor ≥ 1 would always be completed

B-Factor

 $Job_Cost_{MAX} = Cost \text{ to process all the tasks, in parallel} \\ \text{within } deadline, giving the costliest \\ \text{resource the highest priority} \\ Job_Cost_{MIN} = Cost \text{ to process all the tasks, in parallel} \\ \text{within } deadline, giving the cheapest \\ \text{resource the highest priority} \\ B_Factor = \frac{Budget - Job_Cost_{MIN}}{Job_Cost_{MAX} - Job_Cost_{MIN}}$

- Any job with *B_Factor* < 0 would never be completed
- As long as some resources are available throughout the deadline, any job with *B_Factor* ≥ 1 would always be completed

Job Completion & Time Optimise

Time Utilisation & Time Optimise

Budget Utilisation & Time Optimise

Job Completion & Cost Optimise

Time Utilisation & Cost Optimise

Budget Utilisation & Cost Optimise

Job Completion for Optimise Time

Time Utilisation for Optimise Time

Budget Utilisation for Optimise Time

Job Completion for Optimise Cost

Time Utilisation for Optimise Cost

Budget Utilisation for Optimise Cost

