GridSim:

"J ava-based Modelling and Simulation of Deadline and Budget-based Scheduling for Grid Computing"

Rajkumar Buyya and Manzur Murshed

Monash University,
Melbourne, Australia
www.buyya.com/ecogrid

Simulation Parameters

- Resources
- Cost : cheapest: 10, Expensive: 20 (normal distribution for costing.
- Speed: 0.5 to 1.5 (1, standard machine. normal distribution for speed).
- Users:
- Users job contains 20 tasks with variation of +/-2 with random submission.
- Users submitted jobs only after completion of previous job.
- Jobs = 20 tasks
- Each task takes 50units.
- Heterogeneous tasks (future)
- Simulation Time $=7 * 60 * 60$ units (approx. 7hours).
- As the number of users grows, the probability of getting at least one resource per user, throughout the deadline, decreases.
- This low probability demands high ($\gg 1$) $D_{\text {_ }}$ Factor and B_ Factor in order to achieve very high job completion rate.

D-Factor

$J o b_{-}$Time $_{\text {MAX }}=$ Time to process all the tasks, serially, using the slowest resource
$J o b _$Time $_{\text {MIN }}=$ Time to process all the tasks, in parallel, giving the fastest resource the highest priority

- Any job with D_ Factor < $\mathbf{0}$ would never be completed
- As long as some resources are available throughout the deadline, any job with D_Factor $\geq \mathbf{1}$ would always be completed

B-Factor

$$
\begin{aligned}
J_{o b} \text { Cost }_{\text {MAX }}= & \text { Cost to process all the tasks, in parallel } \\
& \text { within deadline, giving the costliest } \\
& \text { resource the highest priority } \\
J_{\text {ob_Cost }}^{\text {MIN }}= & \text { Cost to process all the tasks, in parallel } \\
& \text { within deadline, giving the cheapest } \\
& \text { resource the highest priority } \\
B_{-} \text {Factor }= & \frac{\text { Budget }- \text { Job_Cost }_{\text {MIN }}}{\text { Job_Cost }_{\text {MAX }}-\text { Job_Cost }_{\text {MIN }}}
\end{aligned}
$$

- Any job with $\boldsymbol{B} _$Factor < 0 would never be completed
- As long as some resources are available throughout the deadline, any job with \boldsymbol{B} _Factor ≥ 1 would always be completed

J ob Completion \& Time Optimise

Time Utilisation \& Time Optimise

Budget Utilisation \& Time Optimise

Users=21, Resources=25, Optimization: TIME

J ob Completion \& Cost Optimise

Users=21, Resources=25, Optimization: COST

Time Utilisation \& Cost Optimise

Users=21, Resources=25, Optimization: COST

Budget Utilisation \& Cost Optimise

Users=21, Resources=25, Optimization: COST

J ob Completion for Optimise Time

B-factor = D-factor $=110 \%$, Optimization: TIME

Time Utilisation for Optimise Time

B-factor = D-factor = 110\%, Optimization: TIME

Resources

Budget Utilisation for Optimise Time

J ob Completion for Optimise Cost

Time Utilisation for Optimise Cost

Budget Utilisation for Optimise Cost

B-factor $=$ D-factor $=110 \%$, Optimization: COST

