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摘要

摘　要

随着云计算的广泛应用，其中的资源管理的需求越来越大。对于复杂场景中

资源管理的进行优化的一个重要前提是对于云计算系统运行状态的聚类和预测，

包括工作负载、能耗、环境温度等方面。聚类问题受到不同数据集准确性的影响，

因此，很难找到一种能够处理所有情况的聚类算法。本文采用基于约束的半监督

聚类方法，为了提供很少的监督，本研究采用了诸如成对约束之类的方法。在应

用方面，本文提出了半监督聚类算法并应用于云计算领域。由于较大的复杂性和

数据中心及其工作负载的非线性特征，传统的启发式或静态的基于资源管理的规

则经常无法找到有效的解决方案。本文的创新之处在于，提出了一种适用于不同

现实世界数据集的新型聚类集成，并提出了四种不同的聚类算法来估计云数据中

心的能耗。因此，本研究侧重于利用回归的基于机器学习的预测方法，并提供半

监督聚类算法来预测非线性工作负载和能耗状态。本文的主要工作如下：

首先，对基于机器学习的资源管理进行了全面回顾，确定了现有工作中的挑

战问题，并在此基础上提出了未来的研究方向。传统的资源管理依赖于静态规则，

这些规则对各种动态设置施加了限制，促使云服务提供商转向数据驱动、基于机

器学习的技术。本文评估了基于机器学习的资源管理研究中当前面临的挑战，包

括它们的优缺点，以及解决这些问题的当前技术，并基于目前的研究问题和局限

性，提出了未来的研究方向。

然后，描述了基于单一聚类算法的半监督聚类集成方法。现有方法在集成生

成步骤和聚类集成方法的共识函数中经常使用不同的聚类算法，导致不同聚类算

法之间在工作能力方面存在兼容性问题。本文提出了一种基于单一聚类算法（称

为 CES）的独特聚类集成技术。由于其产生随机数簇的性质，本研究在该方法的
集成生成步骤中循环聚类算法亲和传播（AP）十次，以在每次迭代中创建具有高
度多样性的各种基本分区。此外，使用相同的方法（AP）并提出了一种新颖的共
识函数，用于将这些基本分区集成到单个分区中，并进行一些调整。AP仅限于使
用这些信息在数据集中产生实际数量的聚类中心，而不是随机数量的聚类，这极

大地提高了最终结果的准确性。

接着，介绍了基于机器学习的云数据中心中的工作负载预测和能量状态估计

方法。提出了一个基于机器学习的模型来预测负载和能量，从而以这种方式协助

资源管理决策。出于建模的目的，本研究提出了基于迁移学习的 GRU模型，并
将其与现有算法进行了比较。在评估指标方面，本文采用均方根误差 (RMSE)用
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摘要

于评估预测结果。根据实验数据,GRU的所有工作负载性能都达到了最低的 RMSE
值，结果优异。同时提出了四种不同的用于能耗状态估计的聚类算法，包括基于

迁移学习的半监督亲和传播 (TSSAP)，以根据可能影响能耗的特征而不是为每个
虚拟机估计能耗来找到相似的虚拟机组。

最后，应用机器学习技术于云数据中心热能管理中的环境温度预测。当前用于

估计温度的解决方案由于其计算复杂性和不准确性而效率低下。这部分的目的是

提出一个基于循环神经网络预测环境温度（CPU和入口温度的组合）的模型。模
型可以从单个输入归一化数据中学习，将这些数据与观察到的训练和测试 RMSE
值一起进行预测，以确保所提出混合模型的有效性。本文提出了一个 GRU-RNN
混合模型，并将训练和测试 RMSE值与已有的先进算法进行了比较。

关键词：机器学习,聚类,半监督学习,云计算,智能算法
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ABSTRACT

ABSTRACT

With the widespread application of cloud computing, the demand for resource man-
agement is increasing. An important prerequisite for optimizing resource management in
complex scenarios is clustering and predicting the operational status of cloud computing
systems, including workload, energy consumption, environmental temperature, and other
aspects. Clustering problems suffer from issues of accuracy on different datasets. So, it
is very difficult to find a clustering algorithm which deals with all the situations. This
research employs constraints based semi-supervised clustering in this investigation. To
give little supervision, this research employs constraints such as pair wise constraints. In
terms of application, this research proposed semi-supervised clustering algorithms and
used them in the field of cloud computing. Due to the immense complexity and nonlinear
characteristics of the data centre and its workloads, conventional heuristics or static rule
based resource management rules frequently fail to discover an effective solution. There-
fore, this research focuses onmachine learning (ML) based predictions utilising regression
based approaches, and offers semi-supervised clustering algorithms to predict nonlinear
workload and energy consumption state. This research advances the state-of-the-art by
making the following key contributions:

The second part of this research represents a comprehensive review that focuses on
ML based resource management that identifies challenges in the existing work and pro-
posed future research directions based on it. Traditional resource management has relied
on static regulations, which impose restrictions in a variety of dynamic settings, pushing
cloud service providers to turn to data driven, ML based techniques. This study assesses
current challenges in ML based resource management research, including their benefits
and drawbacks, as well as current techniques to tackling them. Finally, this research sug-
gests potential future research directions based on present research problems and limita-
tions.

The third part of the dissertation depicts semi-supervised cluster ensemble based on
a single clustering algorithm. Existing methods frequently use distinct clustering algo-
rithms in both the ensemble generation step and the consensus function of the clustering
ensemble approach, resulting in a compatibility issue in terms of working capability be-
tween different clustering algorithms. This research presents a unique cluster ensemble
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technique based on a single clustering algorithm called CES. Due to its nature of producing
a random number of clusters, this research loops a clustering algorithm affinity propaga-
tion (AP) ten times in the ensemble generation step in this method to create various base
partitions with a high level of diversity in each iteration. Furthermore, the same method
AP is utilised to propose a novel consensus function for integrating these base partitions
into a single partition with a few adjustments. AP is confined to producing an actual num-
ber of cluster centres in a dataset rather than a random number of clusters by using this
information, which greatly improved the accuracy of final results.

The fourth part presents workload forecasting and energy state estimation in cloud
data centers approach based on machine learning (ML). This research presents an ML
based model to anticipate load and energy to assist resource management decisions in this
way. For the purpose of modelling, this research proposed GRU model based on transfer
learning and compared with state-of-the-art algorithms. Standard evaluation metrics such
as root mean square error (RMSE) are used to assess forecasts. GRU has been discov-
ered to have performed admirably by achieving the lowest RMSE value for all workload
performances based on experimental data. This part proposes four different clustering al-
gorithms for energy state estimation, including semi-supervised affinity propagation based
on transfer learning (TSSAP), to find similar groups of virtual machines (VMs) based on
features that may influence energy consumption rather than estimating it for each VM.

The fifth part represents ambient temperature prediction in the thermal management
of Cloud data centers by using ML techniques. Current solutions for estimating tempera-
ture are inefficient because of their computational complexity and inaccuracy. The aim of
this part is to present a model for predicting ambient temperatures (combination of CPU
and inlet temperatures) based on a recurrent neural network. Models can learn from sin-
gle input normalized data, which must be predicted along with both train and test RMSE
values observed in order to ensure the validity of the proposed hyrid model. This study
proposed a GRU-RNN hybrid model and compared train and test RMSE values with state-
of-the-art algorithms.

Keywords: Machine Learning, Clustering, Semi-supervising Learning, Cloud Comput-
ing, Intelligent Algorithms.
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Chapter 1 Introduction

Chapter 1 Introduction

Clustering is an unsupervised learning technique that divides items into clusters, with
things in similar clusters being similar and those in different clusters being different. This
method looks for clusters of comparable objects based on their similarities. For this job,
several clustering techniques have been proposed. Clustering algorithms’ fundamental
purpose is to partition data sets into clusters so that similarities between clusters may be
maximised while differences between clusters can be reduced. Generally, dataset features
such as noises, overlaps, varied shapes and densities, and so on wreak havoc on cluster-
ing problems. As a result, finding a clustering algorithm that works in all cases is quite
challenging. Noises affect the partitioning-based clustering technique k-means, increas-
ing the mean value for the cluster centre. DBSCAN, a density-based clustering technique,
is ideal for noises, forms, and densities, and automatically determines the number of clus-
ters. However, it contains two parameters that must be set by the user. Affinity Propaga-
tion, an affinity-based clustering algorithm, produces a random number of clusters. Semi-
supervised learning, which integrates both supervised and unsupervised data, has gotten
a lot of attention in recent years. Some prior knowledge, such as pair-wise constraints, is
used to improve semi-supervised learning methods. Graph-based clustering, mean-shift
clustering, and constrained-spectral clustering are examples of frameworks that combine
pairwise constraints with unsupervised learning approaches. Finding labeled data was ex-
tremely challenging; but, acquiring a large volume of unlabeled data was rather simple.
As a result, semi-supervised learning was developed, in which a tiny quantity of super-
vised data is provided to increase the algorithm’s accuracy. By merging semi-supervised
learning and clustering methods, all of these issues were able to be tackled. The rest of the
research is based on applications that use advanced semi-supervised clustering algorithms
to optimise energy utilisation of cloud-based data centres.

Cloud computing environments include data centres. Due to multitenant users, shift-
ing workload conditions, and increasingly complicated infrastructures, resource manage-
ment in a data centre is often a tough operation. Workloads in modern data centres are
highly non-linear. According to an IBM survey, cloud applications’ average CPU and
memory use range from 17.76% to 77.99% [1]. According to a Google study, a cluster’s
CPU and memory utilisation cannot surpass 60%, resulting in significant resource waste
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in cloud data centres [2]. As a result of the workload’s non-linear usage patterns, perfor-
mance is erratic, energy consumption is excessive, and service quality is impaired (QoS).
It also raises operating costs and reduces revenue for service providers. Because data
centres are costly to develop and operate, resource utilisation must be maximised. While
ensuring the application’s Quality of Service, an intelligent energy prediction technique
can successfully tackle the issue by increasing resource consumption and lowering op-
erational expenses (QoS). To address the above challenges of clustering algorithms and
energy usage of cloud data centres’ resource management system, many solutions have
been proposed including cluster ensemble and power model-based solutions respectively.

Energy consumption in cloud data centres as an application of advanced semi-
supervised clustering is dealt with. In data centre resource management, energy estimation
is critical. Energy consumption is a major issue in data centres, and providers are working
to reduce overall energy use through better resource management. In today’s data centres,
hosts feature a variety of sensors that monitor energy at the host level. Recent research
has focused on calculating energy usage for each virtual machine (VM) using multiple
power models [3, 4]. However, calculating the energy consumption of VMs at the software
level is difficult. For example, memory energy consumption is calculated based on the
events raised by each VM on the last level cache of each core (LLC). To calculate energy
consumption, these LLC measurements need to be collected, which makes estimating the
energy of each VM a difficult operation [5]. Rather than estimating energy for each VM,
patterns of comparable VMs in various energy-consumption situations are looked at. This
is accomplished by looking at the available energy usage features and using clustering
analysis to find VMs with similar patterns. Finally, this research focuses on advanced
semi-supervised clustering algorithms and their application in cloud data centre energy
state prediction by proposing a novel semi-supervised cluster ensemble based on a sin-
gle clustering algorithm and four different semi-supervised clustering algorithms to find
similar VMs based on features that affect energy consumption the most respectively.

1.1 Motivations

Massive energy difficulties have arisen as a result of the huge growth of cloud data
centres. In the worst-case scenario, data centres might consume up to 8000 terawatts
of power by 2030 if essential steps are not taken. This vast energy consumption may
be reduced to roughly 1200 terawatts if best practises are implemented across the Cloud

2
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computing stack. Adopting energy-efficient strategies into the various levels of data centre
resource management platforms is required to accomplish this best-case scenario (such as
optimised use of computing and resources such as CPU).

As a result, this research looks at how it can apply ML techniques, particularly clus-
tering and deep learning approaches, to various data centre resource management chal-
lenges to optimise resource usage and energy consumption. This necessitates the use of
proper ML algorithms to learn and predict desired outputs, as well as appropriate cluster-
ing approaches. Both scenarios, such as workload forecasting and energy status estimate,
are crucial for a data center’s energy efficiency and must be handled. As a result, mon-
itoring the energy of each VM about the total energy of a host is a good idea [6]. Each
component of a host, such as the CPU, RAM, and disc, contributes to the total energy of
the host. Thus, awareness of energy consumption at the VM level can assist energy moni-
toring of hosts, but measuring the energy consumption of VM devices at the software level
is exceedingly challenging. Because LLC (last-level-cache) events triggered by each VM
on each core must be collected at the VM level, measuring becomes more challenging
[5]. As a result, rather than evaluating the energy of each virtual machine, this research
opted to look at the patterns of similar virtual machines that are over- or under-utilized.
To find VMs with similar patterns, clustering analysis might be performed. The focus of
the research is on automation. Thus, this research employs an ML approach such as clus-
tering to teach the machine these states automatically. Clustering automatically discovers
similarities between features and classifies data into similar and different categories.

1.1.1 Dissertation Statement

Numerous subsystems in data centres, including computing (application and stor-
age servers), networking equipment, cooling systems, and other facility-related systems,
collaborate closely to offer consumers reliable services. Two important subsystems that
consume a large amount of energy are cooling and computation. As a result, improv-
ing the efficiency of these two subsystems is critical for making cloud data centres more
energy-efficient. This research presents novel semi-supervised clustering techniques and
shows how theymay be applied to cloud data centre workloads tomake themmore energy-
efficient. To attain this goal, this research addresses the following research questions to
solve key nonlinear workload challenges.

Q1. How can this research find future research directions in ML-based resource
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management in cloud data centres?
Q2. How this research can cluster the data by using amore accurate and time-efficient

cluster ensemble which can be further used in many resource management tasks?
Q3. How this research can predict highly non-linear workload accurately and the

energy consumption state of VMs at the software level?
Q4. How does this research predict the highly non-linear ambient temperature of

hosts accurately while ensuring efficient training of the model?

1.1.2 Dissertation Contributions

This research systematically addresses the energy efficiency problem of cloud data
centres through various proposed semi-supervised clustering techniques. It presents a de-
tailed survey of the existing resource management techniques where ML has been ap-
plied, identifies challenges and proposes potential future research directions. Individual
research papers offered a new semi-supervised clustering technique and its application to
cloud computing. The important contributions of this research are stated below, based on
the research problems mentioned above:

(1) Identifies challenges in machine learning (ML)-based resource management and
proposes potential future research directions based on identified challenges. (addresses
the Q1).

(2) Proposes a novel semi-supervised cluster ensemble based on a single clustering
algorithm. It uses the same clustering algorithm in both stages of a cluster ensemble such
as the ensemble generation step and consensus function. (addresses the Q2).

(3) Proposes workload forecasting and energy state estimation in cloud data centers
approach based on ML. It first forecasts non-linear workloads by using various ML tech-
niques and then it clusters VMs based on the features that affect energy consumption the
most by proposing four different semi-supervised clustering algorithms. (addresses the
Q3).

(4) Proposes ambient temperature prediction in thermal management of cloud data
centers by using ML techniques. This work proposes a model by using recurrent neural
networks and predicts the ambient temperature of hosts. (addresses the Q4).
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1.2 Dissertation Organization

This research examines several semi-supervised clustering algorithms and their ap-
plicability to various types of data sets, including real-world data sets and data centre
workloads. To begin, this research give surveys of existing ML-based cloud computing
systems, in which this research identifies issues and limitations of existing work and rec-
ommends future research areas based on it. Then, based on semi-supervised learning, this
research proposes a novel cluster ensemble technique that clusters real-world datasets.
This research proposes four distinct semi-supervised clustering algorithms and groups
VM’s non-linear workload to predict energy state using this idea. This research also looks
into several deep learning techniques for predicting non-linear workloads, which was nec-
essary to recognise the important characteristics of this workload for the research.
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Chapter 2 A Review of ML Centric Resource Management

2.1 Outline

As a method for providing utility computing services over the Internet, cloud com-
puting has quickly gained popularity. The model of cloud computing known as “Infras-
tructure as a Service” (IaaS) is one of the most significant and expanding ones. Some of
the key components of cloud computing for IaaS include scalability, quality of service, op-
timal utility, fewer overheads, better throughput, lower latency, specialised environment,
cost-effectiveness, and a simplified interface. Static policies have been used for resource
management in the past, but they have significant limits in a variety of dynamic settings,
which has led cloud service providers to adopt data-driven, machine-learning-based strate-
gies. Workload estimate, task scheduling, VM consolidation, resource optimisation, and
energy optimisation are just a few of the resource management activities that are handled
by ML. An in-depth analysis of resource management systems based on ML is provided
in this research. Fundamental cloud computing ideas, such as service models, deploy-
ment methods, and ML applications are introduced. Then, the problems with resource
management in cloud computing are examined, classified according to different aspects
of resource management types like workload prediction, VM consolidation, resource pro-
visioning, VM placement, and thermal management, reviewed the available solutions to
these problems, and assessed their main advantages and disadvantages. Finally, based on
observed resource management issues and deficiencies in existing techniques to address
these challenges, potential future research topics are suggested.

2.2 Introduction

Cloud computing has paved the path for the rise of computing as a fifth utility by
allowing users to utilise software and IT infrastructure [7]. In cloud computing, resource
management in data centres is still a challenge, and it is highly reliant on the application
workload. In traditional cloud computing settings, such as data centres, applications were
connected to particular physical servers, which were frequently overprovisioned to man-
age difficulties associated with peak demand [8]. The data centre was costly to run in terms
of resource management due to the squandered resources and floor space. On the other
side, virtualization technology has demonstrated that it may make data centres easier to
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manage. Server consolidation and greater server utilisation are only two of the advan-
tages of this technology. Google, Microsoft, and Amazon, for example, have huge data
centres with complex resource management. Servers, virtual machines (VMs), and other
management roles are all part of the resource management of these enormous data centres
[9]. A server host is allocated multiple VMs with varying workload types and amounts in
these data centres. Because of the fluctuating and unexpected demand, a server may be
overworked or underworked, resulting in an imbalance in resource use allotted to VMs
on a particular hosting server. This might lead to difficulties including uneven quality of
service (QoS), imbalanced energy usage, and service level agreements (SLA) breaches
[10]. According to a survey on imbalanced workload, the average CPU and memory util-
isation were 17.76% and 77.93%, respectively, while comparable research at the Google
data centre discovered that the CPU and memory utilisation of a Google cluster could not
surpass 60% and 50%, respectively [11]. A data center’s productivity decreases as a result
of the unbalanced workload, resulting in greater energy usage. It is proportional to the
operational costs and financial loss of the data centre. Because an ideal machine absorbs
more than half of the maximum energy consumption, excessive energy consumption has a
direct influence on carbon footprints, which should be avoided [12]. Data centres utilised
about 35 Twh (Tera Watt hour) of energy in 2015, according to an EIA (Energy Informa-
tion Administration) assessment, and this figure is anticipated to grow to 95 Twh by 2040
[13].

The best mapping between VMs and servers must be determined in order to balance
resource usage [14]. This is a difficult problem class that is NP-complete. As a result,
to fulfill QoS standards while also boosting data centre benefits, an intelligent resource
management strategy is required [15]. Future insights will be generated by the intelligent
processes, which will help applications in mapping to machines with improved resource
use [16]. However, predicting future insights is difficult due to the nonlinear and unpre-
dictable behaviour of workloads for VMs. However, there are two ways to get this future
insight: historical workload-based prediction methods, which generate insight by learning
trends from historical workload data, and homeostatic-based prediction methods, which
provide an upcoming future workload insight by subtracting the previous workload from
the current workload [17]. In addition, the mean of the preceding workload may be static
or dynamic. Both techniques have benefits and drawbacks, although historical-based pre-
dictions are regarded as more straightforward and well-known in this field.
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Thus, intelligent resource management will play a crucial role in optimising the data
center’s SLA, energy use, and operating costs by undertaking effective and intelligent
resource provisioning. In data centres, resource management covers a wide range of oper-
ations, including resource supply, reporting, workload scheduling, and a number of other
tasks [18]. The provisioning of resources is central to many of these tasks. The goal of re-
source provisioning is to assign cloud resources to VMs based on end-user demands while
ensuring that SLAs such as availability, dependability, response time limit, and cost limit
are met to the greatest extent possible [19]. It should allocate resources based on end-user
demand and avoid over- or under-provisioning, such as allocating more or less resources
to VMs. There are two methods to use this resource allocation technique: proactive and
reactive. Resource provisioning is centred on workload before prediction in proactive
approaches, which is calculated by learning trends from historical workload, whereas re-
active measures are implemented after resource demand has arrived. As a result, it can
be deduced that the experience of historical-based prediction methods may be effectively
included in proactive approaches to provide intelligent dynamic resource scaling, which
contributes to intelligent dynamic resource management. Other activities, such as virtual
machine consolidation, task scheduling, and thermal management, can also be done based
on forecasts to improve resource utilisation, reduce energy consumption, and improve
QoS. Computer vision, pattern recognition, and bioinformatics all use machine learning
(ML) techniques. The progress of machine learning algorithms has benefitted large-scale
computing systems [20]. Google [21] recently produced a paper describing their efforts to
optimise electricity, cut expenses, and enhance efficiency. By providing data-driven ap-
proaches for future insights, machine learning has brought attention to dynamic resource
scaling, which is seen as a promising way to anticipate workload quickly and correctly.

As a result, this article focuses on a review based on issues encountered in state-
of-the-art research in resource management using ML algorithms, covering provisioning,
VM consolidation, temperature prediction, and other management approaches. Then this
research will go over the benefits and drawbacks of different state-of-the-art resourceman-
agement research projects that employ machine learning methods. This research will also
go over the experimental setup, as well as the data sets used and performance improve-
ments. Finally, this research suggests future study directions based on present research
problems and limits. Figure 2-1 depicts the cloud computing components while using
machine learning.
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Figure 2-1 Components of Cloud Computing Paradigm Using Machine Learning

2.2.1 Aim and Motivation of Research

Resource management is problematic in cloud operations because multi-tenant end-
users demand nonlinear workloads, resulting in many over- and underutilised servers. It
has a direct impact on whether electricity is used excessively or inefficiently, resulting in
high operational costs. As a result, a prior estimate of workload based on historical data
can help intelligent resource management. Static policies are frequently used to manage
resources in cloud computing systems, and they have two flows: they are based on a static
threshold value that is adjusted in offline mode, and they appear to require reactive be-
haviour, whichmay result in excessive overheads and delays in customer responses. These
tactics fail in a dynamic situation, such as when the load reaches a static threshold and then
swiftly lowers, showing that VMmovement isn’t required in the case of VMconsolidation.
They are also unable to grasp the dynamics of technology and workload in complex dy-
namic contexts (such as Cloud and Edge) and so fail to progress [18]. To overcome these
drawbacks, machine learning has replaced static heuristics with dynamic heuristics that
adapt to the actual workload in production [22, 23]. Machine learning approaches provide
predictive management by providing future insight based on historical data. As a result,
in an ML-centric RMS, a data-driven Machine Learning (ML) model can estimate future
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workload demand and govern resource auto-scaling accordingly. Consumers and service
providers who wish to improve their QoS and maintain a competitive edge in the market
would benefit greatly from such techniques. In the case of cloud resource management,
machine learning has been found to provide more accurate forecasts than more traditional
methods like time-series analysis [24, 25]. For intelligent resource management, several ma-
chine learning techniques have been developed to forecast prior workload. Moreover, a
number of IT behemoths have started to look into machine learning-based resource man-
agement in production [26]. Google uses a neural network [27] to optimise fan speeds and
other energy variables. Microsoft Azure [9] uses a framework resource centre to give
online forecasts of various workloads using multiple ML Gradient Boosting Trees. De-
spite these earlier initiatives and prospects, the optimum strategy to incorporate machine
learning into cloud resource management remains unknown at the moment. As a result,
it’s more important than ever to provide research that addresses current difficulties and
indicates potential future study routes while simultaneously emphasising the merits and
limitations of existing research.

2.2.2 Research Questions

There are several research questions that need to be addressed, of which this research
will mention a few here and propose potential future research directions.

(1) How to reduce the time complexity ofML algorithms inML-based resourceman-
agement in data centres?

(2) How can the accuracy of workload prediction ML algorithms be improved?
(3) How can training time be reduced while developing an ML model?
(4) How can VMs collaborate in similar groups to estimate the state of energy con-

sumption?
(5) How to reduce energy consumption more effectively?
(6) How do different workloads, such as disc, network, CPU, and memory, affect

energy consumption and play an important role in VM consolidation and resource provi-
sioning?

2.2.3 Our Contributions

The following are the main contributions of our work:
(1) This research presents a review of ML-based resource management approaches

in cloud computing based on identified challenges in the state-of-art research.
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(2) This research identifies the advantages and drawbacks of these methods, as well
as their experimental configuration, data sets used, and performance improvements.

(3) This research proposes potential future research directions based on identified
challenges and limitations in the state-of-art research to strengthen resource management

2.2.4 Related Surveys

A few research on ML-based resource management in cloud computing have been
published. The researchers offered a comprehensive overview of the most relevant re-
search initiatives on data centre resource management, with the goal of optimising re-
source use [28]. The essay then summarises two important components of the resource
management platform and discusses the advantages of precisely anticipating workload in
resource management. The researchers focused on resource provisioning, resource allo-
cation, resource mapping, and resource adaptation, among other essential resource man-
agement techniques [29]. The researchers surveyed the state of the algorithms, organised
them into categories, and addressed closely related topics such as virtual machine migra-
tion, forecast methods, stability, and availability [30]. The researchers reported consid-
erable improvements to previous work based on approach optimization, techniques, and
objective models [31]. The researchers lay forth a conceptual framework for cloud re-
source management and use it to organise the state-of-the-art review [32]. The researchers
presented a detailed assessment of the most up-to-date VM placement and consolidation
techniques utilised in green cloud, with a focus on increasing energy efficiency [33]. The
researchers presented a broad overview of IT consolidation at various levels of cloud ser-
vices, as well as a virtualized data centre and consolidation overview [34].

These articles do not go into greater depth on ML-based resource management or
the obstacles and issues that exist in current state-of-the-art and future research paths.
As a result, it’s critical to give a comprehensive survey that covers the numerous ML
algorithms employed in the data centre resource management scenario, as well as their
flaws, obstacles, and possible directions, as per the vision. As a result, before moving
forward with new ideas in this direction, researchers can use this article to analyse present
ML scenarios in cloud resource management and their inadequacies.

2.2.5 Chapter Structure

The remaining sections of this chapter are organised as follows: The background
details and definitions for cloud computing components and ML are given in Section 2.
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Section 3 discusses the challenges of ML-based resource management in cloud computing
systems, as well as the benefits and drawbacks of current research. Section 4 proposes
future research directions based on the challenges and limitations pointed out in state-of-
the-art research, and Section 5 concludes this chapter.

2.3 Background and Terminologies

2.3.1 Cloud Computing

Cloud computing is the provisioning of resources such as memory, CPU, band-
width, disc, and applications/services over the Internet. According to the National In-
stitute of Standards and Technology (NIST), [35] Cloud computing is a concept for giving
on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, software, and services) that may be supplied and released fast
with no administration effort or service provider participation. This cloud model has five
key elements, three service models, and four deployment choices. Two more qualities
have been added based on the literature.

A client-server architecture is used in this computing model to enable for centralised
application deployment and compute offloading. On both the client and server sides, cloud
computing is cost-effective in application delivery and maintenance, as well as flexible in
resource provisioning and detaching services from related technologies. Many advanced
computing systems have been released to the market, including Alibaba Cloud, Microsoft
Azure, Adobe Creative Cloud, ServerSpace, Amazon Web Services (AWS), and Oracle
Cloud. Cloud computing and its supporting technology have been investigated for years,
and many advanced computing systems have been released to the market, including Al-
ibaba Cloud, Microsoft Azure, Adobe Creative Cloud, ServerSpace, Amazon Web Ser-
vices (AWS), and Oracle Cloud.

2.3.2 Core Features of Cloud Computing

(1) On-demand self-service: A client can use an online control centre to query one
or more services as needed and pay utilising a “pay-and-go” mechanism without engaging
with living beings.

(2) Broad network access: Resources and services in various cloud provider areas
can be accessed from a variety of locations and provisioned using common protocols by
incompatible thin and thick clients. This characteristic is also known as “global” reach
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capacity and “easy-to-access” standardised methods [36, 37].
(3) Resource pooling: It offers a set of resources that act as if they were one blended

resource [38]. In other words, the client is not aware of the location of the provided services
and is not expected to be. This strategy enables vendors to dynamically include a variety
of real or virtual services in the cloud.

(4) Rapid elasticity: Scalability is a synonym for elasticity, which refers to the ability
to scale resources up or down as needed. Clients have the ability to request as many
services and resources as they desire at anymoment. Because of this consistency, Amazon,
a well-known cloud service provider, named one of its most popular and widely used
services the elastic compute cloud [39].

(5) Measured service: For both vendors and users, various aspects of the cloud
should be automatically regulated, monitored, optimised, and recorded at several abstract
levels.

(6) Multi-Tenacity: This is the fifth cloud characteristic proposed by the Cloud Se-
curity Alliance. Models for policy-driven compliance, segmentation, separation, gover-
nance, service levels, and chargeback/billing for distinct client categories are required for
multi-tenacity [40].

(7) Auditability and certifiability: It is critical that services plan records and trials in
order to analyse how well laws and rules are being followed [36].

2.3.3 Cloud Computing Service Models

(1) Software as a service (SaaS) [41]: A client can access the service provider’s cloud-
hosted apps using this service model. Applications are accessed using web portals. This
strategy has made production and testing easier for providers because they have access to
the applications.

(2) Platform as a service (PaaS) [42]: The service provider offers fundamental neces-
sities such as network, servers, and operating system under this service model, allowing
the customer to create new applications and maintain their configuration settings.

(3) Infrastructure as a service (IaaS) [43]: The user has already generated all of the
required applications and only needs a basic infrastructure. In such circumstances, vendors
could include processors, networks, and storage as facilities with customer provisions.
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2.3.4 Deployment Models for Cloud Computing

(1) Public cloud [44]: This is the most common cloud computing paradigm, in which
the cloud owner delivers public services over the Internet in most circumstances, based on
specified rules, restrictions, and a business model. With a large number of regularly used
resource bases, suppliers can provide customers with a variety of options for selecting
relevant resources while ensuring QoS.

(2) Private cloud [45]: A private cloud is built and configured to give a corporation
or institution most of the benefits of a public cloud. Due to the utilisation of corporate
firewalls, setting up such a system would result in fewer security issues. The high costs of
building a private cloud are a fatal weakness because the company in charge of the system
is responsible for all aspects of it.

(3) Community cloud [46]: A group of organisations comes together to share cloud
computing with the customers of their community members based on shared criteria, con-
cerns, and standards. A third-party service provider or a group of community members
can supply the necessary cloud computing infrastructure. Cost reductions and cost-sharing
among community members, as well as excellent security, are the most significant advan-
tages of a community cloud.

(4) Hybrid cloud [47]: By combining two or more independent public, private, or
community clouds, a new cloud model known as the hybrid cloud was born, in which con-
stituent services and infrastructure retain their unique characteristics while also requiring
standardised or agreed-upon functionalities to enable them to communicate in terms of
application and data interoperability and portability.
ML is the study of teachingmachines tomake predictions or recognise itemswithout being
specifically programmed to do so [48]. One of its fundamental assumptions is that by com-
bining training data with statistical approaches, it is feasible to create algorithms that can
predict previously unknown values. ML has progressed from a research project to a widely
utilised commercial technology in the previous two decades. ML has emerged as the pre-
ferred tool for designing functional apps for computer vision [49], speech recognition [50],
natural language processing [51], robot control [52], self-driving cars [53], effective web
search [54], purchase recommendations [55] and other applications in the field of artificial
intelligence (AI). Many AI system developers now understand that, for many applications,
training a system by showing it examples of desired input-output actions is much simpler
than programming it manually by predicting the desired answer for all possible inputs.
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This success is primarily owing to the accessibility of massive data and increased effi-
ciency in the processing power of servers and GPUs [56]. Based on the modeling objective
and the problem at hand, machine-learning algorithms are categorised as supervised learn-
ing, semi-supervised learning (SSL), unsupervised learning, and reinforcement learning
(RL). Unsupervised learning is categorised as clustering and dimension reduction [57–59],
among other things, while supervised learning is categorised as the classification prob-
lem (e.g., sentence classification [60, 61], image classification [62–64], etc.) and regression
problem.

2.3.5 Machine Learning

(1) Supervised learning [65]: In supervised learning, each data sample is made up of
numerous input attributes and a name. The learning process is to get as near to a mapping
function that connects the features to the label as possible. The mapping function can then
be used to produce label predictions for the data based on new input features. This is the
most extensively used ML method, and it’s been applied to a wide range of applications.
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Supervised learning is exemplified by the classification problem, which is identifying an
object based on its features, such as classifying a mobile phone by its brand name and
specifications. This is a regression task if the supervised learning task is to forecast a
continuous variable like stock pricing. As shown in Figure 2-2, this research can further
categorise supervised learning based on the model form.

(2) Unsupervised learning [66]: In contrast to supervised learning, unsupervised
learning occurs when this research has merely input features but no names to go with
them. As a result, the goal of unsupervised learning is to figure out the data distribution
and show how the data points differ from one another. Unsupervised learning is shown
by the clustering problem, which involves discovering data groupings, such as grouping
VMs based on their resource use patterns.

(3) Semi-supervised learning [67]: It’s a type of ML that tries to bring these two
tasks together. By combining knowledge from the other, SSL algorithms normally strive
to improve efficiency in one of these two jobs. Additional data points with unknown
labels, for example, may be employed to aid in the classification process when dealing
with a classification problem. Knowing that several data points belong to the same class,
on the other hand, will aid in the learning process for clustering methods.

(4) Reinforcement learning [68]: RL differs from both supervised and unsupervised
learning in various ways. When utilising reinforcement learning to train an agent, it is
not required to employ labeled input/output pairings or explicit correction on sub-optimal
decisions. Instead, through interacting with the environment, the agent tries to achieve a
balance between exploration and exploitation. The agent is rewarded by the translator for
making good decisions or acting in a certain way. It would be sanctioned if it wasn’t. In
robot and computer game agent research, reinforcement learning is widely employed.

2.4 Challenges, State-of-the-art Research and their Limitations

In this section, this research discusses challenges identified in ML-based resource
management in state-of-the-art research. In addition, this research explores current ap-
proaches to addressing these challenges, as well as their advantages and limitations.

2.4.1 Performance and Online Profiling of Workload

In cloud resource management research, the primary components of large commer-
cial providers’ workloads are not thoroughly addressed. They don’t look at the lifetime
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virtual resource use of VMs, for example. The vast majority of research focuses on offline
workload profiling, which is impractical because the input workload may not be available
until the VMs are not in production. On the other hand, online profiling is tough since
it’s impossible to tell when a random VM has demonstrated representative behaviour. Re-
source management can be more effective if diverse task characteristics can be reliably
forecasted with little time complexity. As a result, prediction algorithms face another
challenge in terms of accuracy and time complexity.

The researchers presented an ML-based prediction system on Microsoft Azure com-
pute fabric [9]. This system may learn behaviour from previous data and provide predic-
tions to various resource managers, such as Server health manager, migration manager,
container scheduler, and energy capping manager, via a rest API. They also disclosed ex-
tensive Microsoft Azure real-world workload traces from this system, which demonstrate
that numerous VMs exhibit peak CPU utilisation in varied ranges on a constant basis.
In the case of overloaded servers, they changed Azure’s VM scheduling to use resource-
central benefit forecasts. This forecast-based timetable helps to avoid physical resource
misuse and tiredness. However, despite the fact that memory consumption plays a key
influence in physical resource exhaustion, (1) they did not consider memory utilisation in
released traces or the predictive system RC. (2) They analysed CPU utilisation time series
to establish whether a VM is interactive or delay-insensitive, classified the workload into
these two groups, and performed supervised classification of these VM workloads using
an Extreme Gradient Boosting Tree (EGBT). However, they did not consider the issue
of a distributed data centre, where data is dispersed and incomplete labels for these two
classes may exist; in this instance, there will be insufficient labels to train their algorithm.

2.4.2 Multiple Resource Usage in VM Consolidation

In order to power off the remaining hosts and save energy, VM consolidation tech-
nologies seek to consolidate more VMs on a smaller number of hosts. In this procedure,
most researchers used current CPU use to determine if a host was overwhelmed or not.
This could result in unnecessary VM migration and host power mode shift, reducing the
efficiency of the consolidation operation. The host with the highest CPU utilisation is the
destination host for migrating VMs, but due to a lack of future estimates, this may result
in overutilization. As a result, future resource utilisation estimation can help to solve this
problem. Other resource use, such as memory and disc, can overburden the host, making
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the consolidation process complex and challenging.
To improve energy usage, the researchers proposed an intelligent VM consolidation

technique [69]. This technique anticipated resource utilisation in the past based on previous
data and used that prediction to select a host with higher utilisation in advance for VM
migration. This problem was solved using a dynamic consolidation approach. An ML
method called Linear Regression (LR) was utilised to forecast the future utilisation of all
VMs. Real workload traces from PlanetLab VMs [70] were used for this exercise. To
model a data centre and apply their VM movement approach to save energy, they used
the CloudSim toolkit. On a bigger simulated benchmark with 7600 hosts, their method
provided the key benefit of taking into account time overheads while lowering energy
use. However, if this strategy is employed in the creation of real-world workloads, the
time overhead is a significant element that is also influenced by the data training time of
the ML algorithm. They did, however, explore the LR technique, which relies on a variety
of factors to predict the target variable, making it time-intensive and potentially hurting
the data center’s reaction time.

2.4.3 Cloud Network Traffic

The present VM allocation research includes a variety of strategies for allocating a
single VM to a host and allocating various VM resources by guaranteeing that each host
has the capacity to handle the task. Because the application demand varies from time to
time, with a combination of high and low resource utilisation, this method results in inef-
ficient resource utilisation. Various applications have different resource demands, which
are assigned to appropriate VMs in data centres, resulting in varying resource demand
patterns. Furthermore, many VM placement methods only evaluate current resource util-
isation, such as CPU demands; nevertheless, a constantly changing workload presents a
problem with such solutions. Future resources, such as CPU demand, may be more useful
in VM placement techniques. Cloud network bandwidth is becoming another hard aspect
in data centre resource management, in addition to CPU resource requirements [71] [72].
Research reported that there will be 51,774 GB/sec amount of internet traffic would be
produced because of computing as a service via cloud computing and this would affect
the cloud network as well [73]. This key factor affects the VM migration time in case of
dynamic VM placement and violates SLAs [74].

The researchers developed a network-aware predictive VM placement heuristic that
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considers CPU demand as well as network bandwidth to reduce energy consumption and
SLA breaches [75]. The main benefit of their work was that they were able to design a dy-
namic VM placement strategy that was based on the prediction of both CPU utilisation and
network bandwidth. Estimating network bandwidth in the case of large VM migrations
aids in making better scheduling decisions and makes VM placement more efficient and
reliable. As a result, VM placement techniques should take into account future resource
insights in order to balance restricted resource availability and manage energy efficiently.
They did not, however, evaluate another factor, disc throughput, which could affect VM
migration time [76].

2.4.4 Host Temperature

Minimizing host temperature in modern cloud data centres is a difficult task. This is
caused by the heat that is emitted during the host’s energy consumption process. To keep
the temperature of the host below the threshold, cooling systems are used to remove this
dissipated heat. This higher temperature has a direct impact on cooling system costs and
has become a difficult problem to tackle in resource management systems. It also causes
various system failures by creating host spots in the system. As a result of the dynamic
behaviour of the host’s temperature, thermal management is both required and difficult.

The researchers proposed a thermally aware predictive scheduling method for low-
ering a host’s peak temperature and energy usage [77]. Because most data centres contain
monitoring devices that record a variety of factors such as resource utilisation, energy
consumption, thermal readings, and fan speed measurements, this type of information
was gathered from the University of Melbourne’s private cloud data centre. They used
different ML methods to predict host temperature and created a thermal aware schedul-
ing strategy to reduce energy consumption by minimising host peak temperatures while
transferring VMs to the fewest hosts possible. The prediction model is used in this ap-
proach to anticipate the host temperature, and further scheduling is guided. In compared
to existing algorithms, their work reduces peak temperature by up to 6.5◦ and 34% energy
usage, that reducing temperature by even one degree can save up to millions of dollars
in a large-scale data centre [27]. They use the host’s ambient temperature for prediction
rather than the CPU temperature, which is a combination of inlet and CPU temperature;
nevertheless, this may increase algorithm overhead.
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2.4.5 False Host Overloaded Detection

Overloaded host identification is unreliable due to the current resource utilisation pre-
diction, especially when the current resource utilisation exceeds a threshold value. The
difficulty occurs in choosing whether or not the VMs assigned to this host should be re-
located because the load drops rapidly after a short period of time, resulting in a false hot
detection point, i.e., false overloaded host detection. However, VMs must be relocated if
the length of load decrease is long enough to minimise over-utilization. The resource man-
agement system faces a unique difficulty in avoiding unnecessary VMmigration overhead
with such a VM consolidation approach.

The researchers suggested a VM consolidation technique based on multiple-use pre-
diction and multi-step prediction to restrict unwanted VMmigrations and reduce data cen-
tre overheads and energy consumption [78]. As a result, based on historical data for a spe-
cific PM, this mechanism was generated to estimate the long-term utilisation of several
resources such as CPU and memory. The basic goal of VM consolidation is to identify
overcrowded and underloaded hosts. To identify the overloaded and underloaded hosts,
they took into account both current and predicted resource usage. Based on local historical
data, an efficient multiple usage prediction technique was presented to compute the long-
term utilisation of various resource kinds. A VM consolidation based on multiple usage
forecasts was also presented to save energy by minimising unwanted VMmigrations from
overcrowded hosts. As a result, the combination of present and expected resource use is
critical for detecting overloaded and underloaded hosts. According to this definition, a
host is overloaded if it meets two criteria: (1) it is overloaded in both current and expected
resource use, and (2) it is in normal condition but will be overloaded in the future. Follow-
ing these two limits, VM consolidation was conducted based on the discovered overloaded
hosts. They did not, however, explore the issue where a host is overloaded in the now but
will not be overloaded in the future. This is something that should be taken into account
while putting together a VM consolidation plan.

2.4.6 Energy Metering at Software-level

Modern servers contain several energy metres to track energy usage, but they can’t
track the energy of a single virtual machine, which is difficult to achieve because energy
is difficult to measure at the software level. Energy consumption has become a tough as-
pect to consider for a successful VM consolidation phase, according to data centre energy
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budgets. The previous study focused solely on server resource use for VM consolidation,
which contradicted the energy capping method by growing across the levels of particular
servers during the process, violating energy limits. The term “energy capping” is used to
describe a hardware-based procedure. As a result, lowering the CPU frequency lowers
the combined server’s energy usage, which is in violation of the energy constraints. As a
result, lowering the server’s CPU clock owing to the load of one VM has a knock-on effect
on all other running VMs. As a result, the efficiency of workloads operating in VMs suf-
fers, breaching SLAs and the virtualization’s isolation characteristic. In data centres, the
two most frequent solutions are VM consolidation and energy capping, however, neither
allows for reliable monitoring of energy usage for individual VMs.

The iMeter energy consumption prediction methodology, which is based on the Sup-
port Vector Regressor ML algorithm, was proposed by the researchers (SVR) [79]. They
used principal component analysis (PCA) to find the most closely related components that
drove VM energy consumption, as well as to forecast individual VM and multiple consol-
idated VM energy consumption for a variety of workloads. Due to the numerous types of
cloud resources stored in the VM, such as CPU, memory, and IO, and the fact that differ-
ent cloud end users can require varying quantities of the same resources at the same time,
estimating the energy consumption of a single VM is difficult. In addition, the resource
manager must make individual decisions for each VM, slowing end-user response time
and violating QoS.

2.4.7 SLA-based VMManagement

Data centres have traditionally employed over-provisioning to avoid the worst-case
situation of high load utilisation while still maintaining SLA commitments. The hosts,
on the other hand, utilise very little energy during regular hours, resulting in resource
waste. The researchers looked at actual workload traces of VMs’ resource utilisation from
the Google data centre and discovered that the average CPU and memory utilisation was
less than 60% and 50%, respectively [2]. As a result of overprovisioning services, more
maintenance costs in host cooling and administrative activities are incurred [28]. The aim
of research has been to solve this difficult problem by using dynamic resource provisioning
of resources in virtualization technology, but it primarily focuses on a particular form of
SLA or application, such as transactional workload. However, computationally intensive
applications are increasingly becoming a part of enterprise data centres, which runmultiple
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types of applications on multiple VMs without taking into account SLA criteria, such as
the deadline that results in an under-utilized host. In the case of resource estimation, this
factor presents a unique challenge.

The researchers proposed a novel resource management approach for multiple apps
running on various VMs that took into consideration various types of SLA criteria [80].
Non-interactive compute-intensive jobs and transactional applications are both addressed
by this strategy. Both types of applications had a wide range of SLA criteria and spec-
ifications. The main benefit of their work was that they were able to forecast potential
insight using historical CPU utilisation data combined with SLA penalties, allowing them
to make complex placement decisions in response to shifts in transactional workload and
scheduled jobs, taking into account CPU cycles in the event of under-utilisation during
normal or off-peak periods. The data was used to train an artificial neural network (ANN)
to forecast VM CPU utilisation for the next two hours, with the results shown versus ac-
tual usage. The X-axis was supplied every 5 minutes at a regular interval. At this time,
this research noticed some flaws in their work: (1) The ANN forecast deviates from the
real value in some situations when there is a large variance in preparation; (2) In a few
cases, it also predicts low CPU utilisation from the actual value; (3) They did not take into
account extremely non-linear data. Non-linearity in workload is a serious issue currently,
as data centres have extremely high non-linearity in workload, which results in a range
of concerns such as excessive energy consumption, inconsistent QoS, and SLA violations
[11].

2.4.8 QoS-aware Resource Provisioning

The pattern of evaluating apps installed on running VMs in modern data centres
changes over time, with multiple users attempting to access the application at the same
time. As a result, static resource allocation to SaaS apps in the cloud has been found
to be wasteful due to non-linear resource utilisation during periods of low demand and
high utilisation. When demand is low, available resources are squandered, resulting in
high overhead and costs for the cloud service provider; when demand is high, available
resources may be insufficient, resulting in poor QoS. This issue can be overcome using
dynamic resource provisioning, however, the challenge in this scenario is calculating the
optimum number of resources to deploy in a particular period of time to meet QoS require-
ments when a fluctuating workload is available. This problem is being approached from
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two perspectives: reactively and proactively. Because it is dependent on future load vari-
ations prior to their occurrence, the latter has been extensively adjusted, i.e., estimating
the QoS parameters in advance.

A workload prediction model based on ARIMA was proposed by researchers [81].
The expected requests were utilised to dynamically create VMs in an elastic cloud envi-
ronment while taking into consideration QoS metrics such as response time and rejection
rate, which was the main benefit of their work. The accuracy of predicted user requests
was also evaluated to examine how it impacted resource usage and QoS factors. This re-
search would like to draw your attention to the following limitation in this work, though.
They took historical web request data from the Wikimedia Foundation [82] and fed it into
aWorkload Analyzer component of their proposed model. In this component, the ARIMA
model was employed to provide a future estimation for a specific time interval that could
be changed for a particular application. For optimal system utilisation, the time interval
should be long enough to allow for the introduction of a newVM. If a VMdeployment time
is smaller than this static time interval, the extra leftover time may affect QoS parameters
like response time, which could cause problems.

2.4.9 Varying Patterns of a Service Tenant in Resource Allocation

In a multi-tenant service cloud context, resource demand prediction requires histori-
cal data to learn the past profiles of service tenants, which is difficult owing to the neces-
sity to update the prediction model on a frequent basis as service tenants’ profiles or trends
change. Another challenge is maintaining the amount of resources required by a service
tenant to conduct its operations, which is dependent on a number of factors, including (1)
the operation type, (2) the specific period during which the operation is conducted, and
(3) the service tenant’s load at any given time. As a result, it poses a problem because the
resource requirements of a service tenant can fluctuate. When dealing with resource pro-
visioning using proactive approaches for a single service tenant as well as multiple service
tenants, this is an important problem to handle.

The researchers suggested a dynamic resource demand prediction and provisioning
strategy to assign resources in advance in multi-tenant service clouds [83]. They separated
the service tenants into categories based on whether their resource usage was likely to
increase in the future. As a result, the suggested system prioritised resource demand fore-
casting for only those service tenants whose resource demand was predicted to increase,
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lowering the time necessary for prediction, which may affect the overall duration of all
operations, consequently affecting QoS. Furthermore, by merging service tenants with
matching VMs and distributing them to physical machines, the proposed technique used
the Best-fit decreasing heuristic method to assess the efficiency of maximum physical
machines (PMs) use. The most important part of this research is that it classifies service
renters based on whether resource demand will rise or not, and then forecasts resource de-
mand for tenants whose resource demand will increase, reducing computing time and cost
of prediction. However, despite the fact that labeling data is required in order to categorise
it using supervised learning approaches, (1) This research is unable to identify on what ba-
sis they associate binary (0,1) with the service tenants’ attributes. (2) Assuming that the
service tenants’ features were labeled with binary based on some condition, labeling the
data in a large-scale multi-tenant cloud would take time and increase the prediction cost.
(3) In a large-scale distributed multi-tenant cloud, some data may be accessible without
labels, in which case supervised classification would be useless.

2.4.10 Single ML Model in Energy Consumption Prediction

In offline mode, the bulk of cloud service providers’ tools calculate and estimate a
host’s or a group of hosts’ energy usage, but doing so in real-time running applications is
difficult. Furthermore, due to the non-linear workload across different hosts, a single ML
method cannot be considered capable of doing this task well. A Google cluster or node,
does not employ more than 60% and 50% of its CPU and RAM, respectively [2]. As a
result, ensemble learning can be an important part of delivering correct predictions in a
cloud architecture.

In a cloud computing context, the researchers proposed an ensemble learning ap-
proach for forecasting future energy efficiency in virtual machine resources such as CPU
utilisation, infrastructure, and service levels [84]. Themajor benefit of their study is ensem-
ble learning, which uses four different prediction methodologies such as moving average,
exponential smoothing, linear regression, and double exponential smoothing. In each time
iteration, they forecast the next use of VM resources, such as CPU consumption, and cal-
culate the mean absolute error (MAE) of all iterations to select the best-performing model
predictions for measuring and forecasting energy efficiency and ecological efficiency in
an IaaS setting in real-time. They do not, however, anticipate measures such as Last-level-
cache (LLC) and disc throughput, which have an impact on a host’s energy usage at the
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VM level [85]. Furthermore, rather than being generalised for all data, the accuracy of the
chosen model is workload-dependent, i.e., interactive and batch workloads.

2.4.11 Prediction Accuracy in Auto-scaling of Web Applications

When and how resources are distributed for cloud-based apps is determined by auto-
scaling. There are two types of auto-scaling: reactive and proactive. The reactive strat-
egy allocates resources when system events such as CPU utilisation, number of requests,
and queue length surpass a preset threshold. The proactive method entails forecasting
the quantity of resources needed ahead of time to avoid needless events. Furthermore,
proactive approaches include forecasts based on classical statistical time-series analysis,
which does not fit all circumstances in terms of accuracy, making it a difficult assignment.
Statistical learning also has the following disadvantages:

(1) Statistical learning is based on rule-based programming, which is formalised as
a variable relationship.

(2) Statistical learning is based on a dataset with a limited number of attributes.
(3) Statistical learning is based on assumptions like as normality, non-

multicollinearity, and homoscedasticity.
(4) In statistical learning, the sample, population, and hypothesis generate the ma-

jority of the ideas.
(5) Statistical learning is a math-intensive subject that uses the coefficient estimator

and requires a deep understanding of a dataset.
In order to acquire the highest-performing prediction results for web application auto-

scaling, a genetic algorithm is employed to fit a proper weight to each time-series predic-
tion model in the system.

(1) Auto-scaling can adapt to any new workload as its characteristics vary over time,
which is one of the main benefits of their job.

(2) The sort of prediction models used has no bearing on this method.
(3) Adapting to a range of more advanced prediction models is simple.
However, because of the high time complexity of this strategy, it may impair the

response time of any web application housed in cloud infrastructure, resulting in a breach
of SLAs.
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2.4.12 Time-series Prediction Data

In modern data centres, workload follows a time series trend. As a result, time series
prediction models should be trained on historical data, as future trends are assumed to
be identical to those observed previously. However, data centres have very non-linear
workload fluctuations, which is why new patterns emerge frequently, making the model
difficult to understand correctly. Because there is no single model that is adequate for all
sorts of time series prediction data, an ensemble technique is being utilised to solve this
problem dynamically. Furthermore, most ensemble models for time series prediction are
built on a set of fixed predictors, which might be homogeneous or heterogeneous, making
it difficult for the models to learn pattern change.

The researchers proposed a new ensemble method for swiftly responding to trend
shifts in time-series prediction by dynamically updating the predictors in the ensemble
approach [86]. The primary feature of this work is that the ensemble method dynamically
modifies the models. It’s adjustable, as additional models can be added and removed as
needed, based on how well it handles non-linear workload. To evaluate which predictor
is working well and which is not, they set a threshold value of 5 and a floor limit of
0. A score is assigned to each predictor, which rises and decreases in proportion to the
predictor’s outcomes. If this predictor’s score reaches the threshold value, it is chosen
as a representative predictor; otherwise, it is rejected if it falls below the floor limit. On
the other hand, these fixed parameters produce excellent results for their chosen dataset,
resulting in a non-generalized strategy.

2.4.13 Data Training

Virtual resources such as virtual CPUs (vCPUs) and memory (vRAMs) exhibit non-
linear resource demand in modern cloud systems, resulting in complex resource utilisation
behaviour. As a result, with such a high volume of work on a daily basis, virtual resource
performance improvement is essential. Large firms like Amazon, Alibaba, and others
have failed on occasion due to a lack of resource management strategy. As a result, fore-
casting virtual resources (such as vCPU and vRAM) is difficult. Furthermore, resource
forecasting poses some difficulties:

(1) resource prediction should be dynamic in order to respond to changing workload
patterns over time;

(2) training data should be chosen in such a way that it has the greatest impact on
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the target variable so that the model can learn to predict it effectively.
The researchers developed amodel that takes a range of criteria into consideration in a

virtualized platform to anticipate virtual resources with the fewest SLA breaches [87]. This
strategy used a Bayesian approach to identify numerous factors and take the best training
data into account. The main benefit of their work is that it finds changeable dependencies
in a systematic manner using non-linear workloads from multiple data centres such as
Amazon, EC2, and Google. However,

(1) they do not account for the combination of multiple application types,
(2) this approach lacks generalisation because it relies on the dependencies of a spe-

cific problem,
(3) this method ignores high-level metrics such as transaction throughput and latency

of underlying resources, such as vCPU cores, for prediction.

2.4.14 VMMulti Resources

In cloud data centres, flexible resource provisioning frameworks are required to man-
age host load based on diverse requirements. As a result, data centres use prediction
models to anticipate the number of resources required in advance for variable workloads
throughout time. Its goal is to use historical usage trends to forecast future VM request
workloads. However, because VM requests comprise a range of virtual resources such as
CPU, memory, disc space, and network throughput, forecasting demand for each type of
resource independently is highly difficult and complex. The multi-resource presence of
a VM poses a unique issue when picking an ML prediction model. Furthermore, various
cloud users can make distinct cloud resource demands. As a result, it’s impossible and
unrealistic to anticipate demand for each type of resource.

The researchers provided a method for categorising VM clusters and building pre-
diction models for each cluster [88]. The main advantage of their research is that (1) they
employ Extreme Learning Machines (ELMs), which can discover the best weight for the
predictor in a single step. (2) Gradient-based learning methods such as NN and ANFIS
use ELMs to circumvent issues such as halting conditions, learning rate selection, learn-
ing period size, and local minimums. (3) Because it works with nonlinear processes, this
study can handle the LR method’s linear behaviour. (4) It uses a single network to predict
VM demands in each cluster. (5) Each cluster has the ability to have its own prediction
network. They set the number of clusters to 3 in K-means clustering, resulting in a model
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with a fixed number of VM clusters.

2.5 Future Research Directions

2.5.1 Performance and Online Profiling of Workload

Many elements influence the efficiency of an intelligent resource management sys-
tem, including the prediction model’s accuracy and time complexity. Large firms like
Google, Microsoft, Amazon, and others are in charge of incredibly complex data cen-
tres that handle a diverse set of workloads. As a result, in the context of such a highly
changing or nonlinear workload for VMs, a more accurate assessment of prior workload
through the use of more advanced ML and DL modes is a future research topic. In addi-
tion, an algorithm’s time complexity is a measure of its performance in terms of the time
it takes to run the input code. As a result, the method should be constructed to have as
little temporal complexity as possible. Furthermore, online profiling is required to avoid
VM blackouts till they are running in development, as well as other resource utilisations
such as CPU and memory, which are important contributors to physical resource exhaus-
tion and should be taken into account when predicting. The researchers performed online
workload profiling and analysis to identify whether a virtual machine is interactive or
delay-insensitive [9, 26]. They employed supervised classification to divide VMs into these
two groups. Semi-supervised learning [89] may play a critical role in this case, and it may
be a viable research direction for training data with these partial labels and performing
classification with high accuracy in large-scale distant data centres.

2.5.2 Multiple Resource Usage in VM Consolidation

During the VM consolidation phase, a host is considered overcrowded if CPU util-
isation reaches a throughput threshold, such as 80% [78]. Other resource usage, such as
memory and bandwidth usage [90], however, results in host overloading. As a result, at
the VM consolidation phase, detecting overloaded hosts using a combination of CPU,
memory, and bandwidth usage is a possible study direction. The estimation of current
and future CPU, memory, and bandwidth usage should be addressed for an efficient VM
consolidation operation. The present research uses a range of ML algorithms, such as
linear regression and multiple regression, in which the model is trained using numerous
features to simulate a target variable, such as CPU use [69, 90]. The VM migration time in
the VM consolidation process is affected by the training time of numerous features, which
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has an impact on QoS and SLAs in large-scale distributed data centres with millions of
VMs in production. As a result, dealing with the training duration of ML models could be
a promising study topic in the future. Different deep learning (DL) approaches, such as
Long Short-Term Memory (LSTM) networks [91] and Gated Recurrent Unit (GRU) [92],
can reduce training time by avoiding multiple feature overheads by using a single feature,
such as a vector of CPU utilisation, as an input for training to predict its next state in the
future.

2.5.3 Cloud Network Traffic

When considering current resource utilisation inVMallocation on a host, the problem
of varying patterns of distinct types of workloads is a hurdle. As a result, forecasting
future resource consumption, such as CPU and network bandwidth, has shown to be a
viable alternative [75]. However, disc throughput is an important consideration in addition
to these resources. Taking disc throughput into account in VM placement heuristics is
a new research direction. It works out how much data can be saved, read, and written
each second. According to researchers, disc tail latency, particularly reads, is a critical
element for delivering online services where a user is waiting for a response [76]. As a
result, disc throughput might affect VM migration time, causing tail latency to increase
and SLA violations. As a result, a prior maximum estimate of disc throughput will be
crucial in preventing delays.

2.5.4 Host Temperature

The researchers developed a scheduling technique to minimise host temperature,
which was based on a host temperature prediction generated using numerous ML algo-
rithms [93]. As a result, anticipating host temperature can aid thermal management de-
cisions such as VM migration to lower host temperature (i.e., CPU temperature). The
ambient temperature, which is a combination of CPU and inlet temperature, was taken
into consideration for prediction by [77]. It’s possible that this will result in an increase in
algorithm overhead. Furthermore, they discovered that CPU load and power consumption
have the greatest impact on the host’s CPU temperature. As a result, the host is waiting
for the CPU to get overloaded, causing the temperature to rise and incurring additional
cooling costs. Prior CPU estimation-based resource provisioning, as a prospective future
research topic, can prevent the CPU from getting overloaded and conserve energy. Fur-
thermore, due to the training of many features, several MLmethods require a large amount
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of training time, which might slow down VM migration. It will postpone VM migration,
which will slow down host temperature decline and increase costs. As a result, adopting
an ML or deep learning method like GRU, where the inlet temperature is utilised as an
input to train a model that can predict its future state using single-feature training, could
be an option. This will avoid an overhead algorithm, a VM migration delay, and a delay
in lowering the host temperature.

2.5.5 False Host Overloaded Detection

The static threshold for overloaded host detection can lead to unreliable VM migra-
tion. There is no need to move a VM if its resource use degrades in a short period of time.
In this situation, the method should have a dynamic resource utilisation threshold that
stops VM migration when it hits a set threshold, taking into consideration data from the
near future. This is the next research direction for efficient VM migration in VM consoli-
dation. Furthermore, VMs should be transferred if there is a long period of load decrease
in the near future.

2.5.6 Energy Metering at Software-level

Visibility of energy usage at the host and VM levels will help with many power man-
agement decisions, such as power capping. Energy consumption is easy to predict or
calculate at the host level because modern data centres have several built-in sensors that
track it, but it is difficult to measure at the VM level because to measure memory-induced
energy consumption, this research must collect LLC (last-level-cache) events raised by
each VM on each core, which is difficult to do [5, 85]. Clustering analysis can be used
to assess the status of VMs in terms of energy consumption, such as low, moderate, or
critical, rather than calculating or estimating energy consumption at the VM level. As a
result, partitioning VMs by doing clustering analysis based on highly co-related variables
with energy usage at the VM level is a possible research topic, and no host-level infor-
mation would be required. To determine the link with energy use, ML approaches such
as ChiSquare Score, Fisher Score, Gini Index, and Correlation-based Feature Selection
(CFS) can be utilised [94]. A clustering analysis can then be performed using a clustering
algorithm or a clustering ensemble [95] to discover which VMs are in low and essential
energy consumption phases. A collection of VMs can be handled together in the resource
management system of a data centre, potentially lowering response time and increasing
QoS.
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2.5.7 SLA-based VMManagement

Dynamic resource provisioning and dynamic VM consolidation, which take into ac-
count various types of VM resources such as CPU, memory, and bandwidth, current and
future resource needs, and SLAs such as compute-intensive non-interactive jobs and trans-
actional applications, are two future research directions for avoiding non-linear resource
utilisation in modern data centres. Both of these approaches rely largely on resource pre-
diction accuracy. For example, the researchers gave long-term CPU utilisation projections
that deviated significantly from actual test phase data due to a considerable shift in CPU
utilisation during the training phase, which is crucial for dealing with non-linear utilisa-
tion in modern data centres [80]. Hyperparameters utilised in Artificial Neural Network
(ANN) learning, such as mini-batch size, epochs, and amount of neurons, will be opti-
mised in a future study. If the model is trained on the data in an optimised manner, it
is said to work better. When both plots begin moving closely and consistently, it may
signal that the model has learned a lot, and learning should be stopped at these optimised
hyperparameters.

2.5.8 QoS-aware Resource Provisioning

The goal of this research is to improve QoS metrics such as response time and re-
jection rate by adopting constructive dynamic resource provisioning based on workload
estimation using historical data. Future studies could focus on reacting to it, with resource
supply taking place after resource demand, such as the number of requests, has arrived.
Furthermore, according to the current study, adhoc decisions in dynamic resource provi-
sioning can help to decrease request prediction error, which can help to improve low QoS
efficiency [81]. Furthermore, there is a potential research direction to forecast peak CPU
use using more sophisticated ML models such as XGBoost [96], LSTM [91], and GRU [92]

in a correct manner that cannot be equipped with the ARIMAmodel. Furthermore, no sin-
gle ML algorithm can handle any non-linear workload with time-series data, necessitating
an ensemble learning strategy in the future, where different ML and DL approaches might
be employed. The best-performing model can then be chosen for possible application. As
explained in Section 2.4.8, The researchers predict web requests based on a static time
period that can affect response time [81]. As a result, it can be handled by anticipating
future web requests with a dynamic time interval that varies dynamically dependent on
the time it takes for the VM to deploy. If the VM deployment time is considerably lower
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than this static time interval that influences the QoS parameter like the response time, the
estimation time interval can be similar to the VM deployment time, and the remaining
time can be saved. To satisfy the criterion of equivalence with the estimated time of the
request prediction, a prior calculation of VM deployment time based on historical data
should be generated and applied in the above-mentioned situation.

2.5.9 Varying Patterns of a Service Tenant in Resource Allocation

As a future research direction, clustering analysis, which does not require any data
labelling, could be utilised to classify service tenants. Similar patterns of service tenants
can be automatically obtained based on previous resource demands. Service tenants with
high and low resource demand can be differentiated using clustering approaches, and pre-
dictions for those with high resource demand can be offered using ML and DL regression
techniques. In the case of a distributed data centre where data is dispersed and partial
labels are available, a concept known as semi-supervised clustering [97] can be used, in
which unsupervised data is given a little supervision using partial labels and techniques
such as instance-level constraints [98] and relative distance constraints [92].

2.5.10 Single ML Model in Energy Consumption Prediction

A system power model contains memory, disc, and network components in addition
to the CPU, therefore these components could be evaluated as well. The current research
focuses on the linear link between these measurements and energy usage; however, non-
linear relationships, such as polynomial or exponential relationships, could be investigated
in the future. Furthermore, the best individual model is picked in an ensemble learning ap-
proach, which may or may not be the optimal solution. Another alternative is to aggregate
and analyse the information offered by each separate model. This can be done by esti-
mating the average using weights depending on the mean average error of each individual
prediction. In addition, each workload type necessitates a unique set of configuration pa-
rameters. The goal of future research is to maintain track of the model parameters that
have raised the maximum resource utilisation in the past and apply them in real-time sce-
narios to adapt the models to the workload type of each unique VM. Furthermore, a quick
shift in resource usage has an impact on forecast accuracy. As a result, another potential
research topic is to provide the ML model with average workload performance, such as
CPU usage.

32



Chapter 2 A Review of ML Centric Resource Management

2.5.11 Prediction Accuracy in Auto-scaling of Web Applications

ML models, rather than statistical methods, can be used to forecast future workload,
which has a number of benefits: (1) Without the requirement for explicit programming,
ML learns from data. (2) ML can learn from billions of observations and features, and
(3) ML is less reliant on assumptions and, in most situations, ignores them. (4) Predic-
tions, supervised learning, unsupervised learning, and semi-supervised learning are all
highlighted in ML. (5) ML identifies patterns in a dataset through iterations, requiring
significantly less human work. To forecast the target variable, numerous features must
be trained, which raises the time complexity of ML approaches like regression. When
processing multiple features, ML approaches suffer from latency and computational com-
plexity issues due to the presence of redundant information. The number of functions,
feature dependencies, number of records, feature types, and nested feature categories all
contribute significantly to the processing time of ML approaches in such datasets. As a
result, future research should focus on applying appropriate feature selection approaches,
such as wrappers, filters, embedded methods, and upgraded versions [99], to effectively
overcome the computing speed versus accuracy trade-off when processing big and com-
plicated datasets.

2.5.12 Time-series Prediction Data

A future research goal is the development of a generic ensemble framework for any
form of dataset in cloud time series workload data. In general, deep learning (DL) is a
rapidly growing and extensive study topic involving unique architectures. Researchers,
on the other hand, never know when they’ll have to adapt which methodologies to which
conditions. Global neural network models, which are prone to outlier errors in some time
series, were employed by researchers [100]. As a result, unique hierarchical models con-
taining both global and local characteristics for specific time series must be devised. En-
sembling, which involves training numerous models with the same dataset in different
methods, can be integrated with these models. Furthermore, while CNNs have long been
used to analyse images, they are also being utilised to forecast time series data. Traditional
RNN models are inefficient at predicting seasonality in time series forecasting [101, 102].
As a result, they use a proprietary attention score mechanism for long-term dependen-
cies and CNN filters for local dependencies. The researchers have also used recurrent
skip connections to capture seasonality patterns [101]. Dilated Causal Convolutions were
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developed by researchers [103] to effectively capture long-range dependencies throughout
the temporal dimension. They’ve lately been utilised in combination with CNNs to handle
time series forecasting difficulties. As more advanced CNNs, Temporal Convolution Net-
works (TCN) have been introduced, which integrate dilated convolutions and residual skip
connections [104]. TCNs are prospective NN architectures for sequence modeling tasks,
according to [105] TCNs are promising NN architectures for sequence modeling tasks, in
addition to being efficient in training. As a result, forecasting practitioners may gain a
competitive edge by using CNNs rather than RNNs. As a result, these advanced neural
networks could be utilised to forecast workload time series in cloud infrastructure in the
future.

2.5.13 Data Training

The goal of optimising ML hyperparameters is to determine the hyperparameters for
a specific ML algorithm that results in the best validation data results. In contrast to the
model parameters, the engineer sets the hyperparameters before the training. A hyperpa-
rameter is, for example, the number of trees in a random forest, whereas the weights in
a neural network are model parameters gained during training. Support vector machine
hyperparameters (SVM) and k in k-nearest neighbours (KNN) are size and decay, respec-
tively. Furthermore, by discovering a combination of hyperparameters, hyperparameter
optimization yields an optimal model that decreases a preset loss function and, as a re-
sult, increases the accuracy of given independent data. Hyperparameters can thus have a
direct impact on the training of ML algorithms. Understanding how to optimise them in
order to get optimal performance is consequently crucial. This suggests that optimising
the hyperparameters of ML algorithms for effective dataset training is a potential research
focus. Grid Search, Random Search, Bayesian Optimization, Gradient-based Optimiza-
tion, and Evolutionary Optimization are some of the common heuristics that can be used
to accomplish this [106].

2.5.14 VMMulti Resources

There is a future research direction to categorise the VMs and construct a prediction
model for each cluster to meet the multi-resource demand concerns, as described in the
above sections. However, utilising a clustering technique like K-means can limit the num-
ber of clusters accessible, resulting in a VM being placed in the wrong one. Because it
seeks to combine numerous clustering techniques to achieve a final consensus solution that
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is more robust and accurate than a single clustering algorithm, a clustering ensemble may
be a superior approach to clustering [107]. A number of clustering ensemble approaches
are mentioned in the literature [108]. In addition to clustering accuracy, two other eval-
uation criteria such as time complexity and resource use (CPU and memory utilisation)
were examined in a recent work [95] to evaluate the novel clustering ensemble. As a result,
improved clustering algorithms like clustering ensembles will be employed in the future
to produce the best clusters with the highest precision, the shortest time complexity, and
the smallest resource usage.

2.6 Summary

The challenges of machine-learning-based resource management in a cloud comput-
ing environment are discussed in this chapter, as well as the numerous ways that have been
utilised to address these challenges in recent years, as well as their benefits and downsides.
The amount of studies looking at ways to apply ML techniques to undertake workload
prediction, energy consumption prediction, and other tasks has increased dramatically in
recent years. These strategies employ a variety of ML methods to address a variety of
issues. Finally, new prospective future research topics are given to strengthen the current
ML approaches for resource management in cloud-based systems, based on the problems
and disadvantages revealed in the state-of-the-art study. This chapter’s overall expertise
helps cloud researchers understand cloud resource management and the importance of ML
approaches.

ML models can be employed in cloud computing systems to achieve various opti-
mization goals and deal with challenging jobs, according to the research. The adoption
of ML technologies also brings up new possibilities for resource and application manage-
ment. The progress of ML methodologies in current research is illustrated in this article,
which helps readers comprehend the research gap in this topic. One possible strategy to in-
crease system efficiency is to undertake intelligent resource management using advanced
ML techniques such as reinforcement learning and deep learning.
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Chapter 3 A Cluster Ensemble based on Single Clustering

3.1 Outline

Clustering is a common way of classifying system states in cloud computing. Nu-
merous cluster ensemble approaches have been created recently, however they still have
certain drawbacks. The ensemble generation step and the consensus function of the clus-
tering ensemble technique frequently employ distinct clustering algorithms, which creates
a compatibility problem in terms of how well the various clustering algorithms function.
The end results’ accuracy in a clustering ensemble method is also a crucial consideration.
This study suggests a unique cluster ensemble method based on a single clustering al-
gorithm (CES) to address it. Due to the affinity propagation (AP) clustering algorithm’s
inherent property of producing a random number of clusters, this study iterates AP ten
times in this method’s ensemble generation step to create different base partitions with
a high level of diversity in each iteration. To overcome it, this study proposes a special
cluster ensemble method based on a single clustering algorithm (CES). This study iterates
affinity propagation (AP) 10 times in the ensemble generation step of this method to pro-
duce various base partitions with a high level of variety in each iteration due to the affinity
propagation (AP) clustering algorithm’s inherent attribute of producing a random number
of clusters. The same technique AP is also used to suggest a novel consensus function
for fusing these base partitions into a single partition with a few adjustments. Using pair-
wise constraints with AP and the number of clusters in a dataset, the proposed consensus
function makes use of sparse side information in the form of partial labels. By using this
data, AP is forced to create an actual number of cluster centres rather than a haphazard
number of clusters, greatly improving the accuracy of the results. In order to produce
the appropriate number of clusters in the final partition of a dataset, CES leverages the
same clustering functionality in both stages of the proposed cluster ensemble approach,
which considerably improves accuracy when compared to state-of-the-art cluster ensem-
ble methods. The CES performs better than AP in terms of accuracy and execution time
as a result of these improvements. Studies using actual datasets from a variety of sources
reveal that CES improves accuracy while using 44.60% less execution time than AP and
modern cluster ensemble approaches, respectively, by an average of 5% and 55.54%.
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3.2 Introduction

Clustering is an unsupervised learning technique for dividing a set of data items into
related classes [109–111]. It is a crucial and challenging subject in data mining and ML, and
it has been successfully applied in a wide range of fields, including image processing [112],
recommender systems [113], text mining [114], and pattern recognition [115]. In recent years,
a variety of methodologies have been employed to produce a huge number of clustering
algorithms [116]. For a given dataset, different methods may produce drastically varied
clustering results. Each clustering approach comes with its own set of benefits and draw-
backs. No single algorithm, on the other hand, is adequate for all datasets or applications.
Even with a specific algorithm, selecting the appropriate parameters for the clustering
process might be challenging.

A single clustering algorithm has traditionally been employed to produce a single
clustering result, which has a high rate of error. Cluster ensemble is a new technique
for integrating several clustering results (from different clustering methods or the same
approach with different iterations) into a potentially superior, more resilient, and single
partition [117]. In detail, a cluster ensemble has two stages: the ensemble generation phase
gets several base partitions, and the consensus function merges these base partitions [118].
When compared to discrete clustering techniques, a functional clustering ensemble should
give reconcilable and well-grounded clustering results. However, while constructing an
ensemble for clustering, there were some different and hard issues to cope with, and it
was not as simple as this interpretation suggests. Cluster ensemble is gaining popularity,
and several algorithms have been proposed in recent years [107, 119]. In terms of resilience,
innovation, stability, and confidence estimation, as well as parallelization and scalabil-
ity, cluster ensembles outperform single clustering algorithms [120]. Despite its enormous
progress, the current research continues to encounter significant obstacles. They all have
the same flaw: to get base partitions and a final partition, the existing cluster ensemble
approaches use different clustering algorithms in both stages. Furthermore, the usage of
various clustering methods in both stages of the existing cluster ensemble design may
cause issues with working functionality compatibility. This prompted us to employ a sin-
gle clustering method in both stages of the new cluster ensemble design, which increased
the accuracy of the final results dramatically. As a result, this study offers a new clus-
ter ensemble approach that uses the same clustering in both stages of the process. As a
result, in the first stage of the ensemble generation process, multiple base partitions are
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obtained by running an unsupervised clustering algorithm affinity propagation (AP) ten
times, which provides a high level of diversity among base partitions in each iteration be-
cause it generates a random number of clusters [121]. Furthermore, it collects all available
diverse information about a data set, which may aid clustering efficiency. Then, known
as cluster-based similarity, a similarity matrix is calculated between these basis divisions
[107]. The generated similarity matrix is then supplied as a parameter in the novel consen-
sus function proposed in the cluster ensemble method’s second step, which employs the
same clustering algorithm AP but with some alterations. Furthermore, this research uses
pairwise constraints [98] that employs the concept of must-link (two objects must be in the
same cluster) and cannot link (two objects cannot be in the same cluster) with the same
clustering algorithm AP to provide a little supervision to the computed similarity matrix
in the proposed consensus function. This supervised little information is then added to
the computed similarity matrix, which aids in boosting clustering efficiency. The sim-
ilarity matrix is updated with the Gram matrix at this point, which improves clustering
efficiency. Furthermore, as previously mentioned, AP has a problem in that it generates
random number clusters. As a result, the number of clusters produced by AP is restricted
to the number of classes in a dataset. When this proposed consensus function was applied
in the proposed cluster ensemble approach, this novel innovation in AP served to greatly
raise the accuracy of the final outcomes. As a result, the cluster ensemble method’s sug-
gested innovative consensus function merges the basis partitions into a single partition.
Because this research applies the same functionality in each stage of the proposed tech-
nique, this research calls it “A Novel Cluster Ensemble based on a Single Clustering Al-
gorithm (CES)”, as shown in the left of Figure 3-1. The main advantage of CES is that it
reduces the burden of employing two different clustering paradigms in both stages, mak-
ing it compatible and enhancing clustering outcomes such as accuracy over current cluster
ensemble approaches. Furthermore, when compared to AP, the unique change improves
accuracy and execution time greatly.

The contributions of this chapter are given below:
(1) This research proposes a new cluster ensemble approach based on a single clus-

tering algorithm, whereas traditional cluster ensemble methods use distinct clustering al-
gorithms in both stages, resulting in ensemble creation and consensus function compati-
bility issues.

(2) This research proposes a novel AP-based consensus function that combines pair-
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wise constraints, the Gram matrix, and AP limits to produce the actual number of clusters
in the dataset.

(3) In terms of accuracy and execution time, the proposed cluster ensemble technique
outperforms AP.

Dataset

Perform
iteration n

Perform
iteratio

Obtain base partitions

compute clsuter simiarity matrix using base
partitions

Pass S and p in proposed consensus function CF

 Perform
iteration 1

Perform
iteration 1

Perform CF
iteration 1

Perform CF
iteration 1

Perform CF
iteration n

Final Partition

Computer avaiabilaity and responsibility

Eploy 15% dataset's labels to obtain
pairwise constraints

Update similarity matrix with pairwise
constraints

Evalauate distance of each point from
simialarity matrix M

Agian update similarity matrix by M

Restrict AP to produce clsuters equivalent
to K

Figure 3-1 Proposed Methodology: Left is Proposed Cluster Ensemble (CES) and

Right is Proposed Consensus Function (CF)

3.3 Related Work

Using a consensus function, a clustering ensemble merges numerous base partitions
obtained in the ensemble generation step into a robust, accurate, and single partition [119].
Cluster ensemble has the advantage of increasing the accuracy of the results by accounting
for individual solution biases. The researchers proposed the first three cluster ensembles
in 2002 [122]. The first was the cluster-based similarity partitioning algorithm (CSPA),
which was based on data point similarity S, with S varying depending on whether the
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data points were similar or different. The second approach was the hypergraph partition-
ing algorithm (HGPA), which was based on re-partitioning data using provided clusters.
The meta-clustering algorithm (MCLA) was the last one, and it was based on clustering
clusters and rendering each cluster with a hyperedge. The Adaptive Clustering Ensemble
(ACE) was proposed by the researchers [107] and consisted of three stages: the first was
to convert the basis clusters into binary representations. The second stage involved find-
ing similar clusters based on cluster-based similarity, and the third involved dealing with
uncertain objects to produce consensus function outcomes in order to create superior final
consensus clustering partitions of data. In addition, numerous new cluster ensembles have
recently been suggested, such as the quad mutual information consensus function (QMI)
and the mixture model (EM) [120]. QMI is a quadratic mutual information-based consen-
sus function that has been suggested and reduced to k-means clustering in the space of
carefully adjusted cluster labels. EM is an unsupervised decision-making fusion method
that uses a probability model of the consensus partition in the space of contributing clus-
ters to make decisions. The weighted spectral cluster ensemble (WSCE) was proposed
by researchers in 2015 as a new cluster ensemble focusing on group identification arena
and graph-based clustering principles [119]. A proposed consensus function is used to in-
tegrate many base partitions into a single robust partition using a new version of spectral
clustering. The researchers developed a cluster ensemble method based on distribution
cluster structure, with final results generated using a distribution-based normalised hyper-
graph cut methodology [123]. The researchers presented two new cluster ensemble meth-
ods: ensemble clustering using a hierarchical consensus function to propagate cluster-wise
similarities (ECPCS HC) and ensemble clustering using a meta-cluster-based consensus
function to propagate cluster-wise similarities (ECPCSMC) (ECPCSMC) [124]. Some re-
search has focused on the applications of cluster ensembles in many fields. For example,
in the field of pattern recognition, time series analysis has become a hot research topic,
particularly for detecting manufacturing faults. As a result, researchers suggested an auto-
mated alternative based on consensus clustering dubbed control chart pattern recognition
(CCPR) [125]. The researchers also developed a cluster ensemble approach for unsuper-
vised pattern identification that focused on the evolution of damages in composites under
solicitations [126]. The researchers offered a novel approach with the best pure results and
a quick implementation time. It also enhanced accuracy. Rapid Clustering with Semi-
supervised Ensemble Density Centres is the name of this model [127]. The researchers
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developed a clustering ensemble approach via structured hypergraph learning, i.e., the
hypergraph is dynamically learned from base results rather than being generated directly,
which will be more reliable. Additionally, this study enforces the hypergraph’s unambigu-
ous clustering structure during dynamic learning, making it more suitable for clustering
tasks and eliminating the need for any uncertain postprocessing, such as hypergraph par-
titioning [128]. In an effort to offer a new approach to the cluster ensemble problem and
apply knowledge granulation to ensemble learning, a hierarchical cluster ensemble model
based on knowledge granulation is proposed by the researchers [129].

Table 3-1 The Important Notations Used in this Chapter

Definition Symbol/Notation
Dataset D
Data object xi ∈ D, 1 ≤ i ≤ n
Number of objects n
Number of ensemble members m
Ensemble member βi, 1 ≤ j ≤ m
Similarities between objects Sij, 1 ≤ i ≤ n, 1 ≤ j ≤ n
Distance from similarity matrix Pij, 1 ≤ i ≤ n, 1 ≤ j ≤ n
Euclidean distance deuc
Similarities between ensemble members Sm
Preference parameter for ensemble members pm

The following notations will be used consistently in this chapter. Table 3-1 also con-
tains several important notations with their definitions that were used in this article. This
research calls a set of objects D = {x1, x2, ......, xn}, where each object xi ∈ D is repre-
sented by a vector of N attribute values xi = (xi,1 , ....., xi,N). Let Γ = {β1, β2, ......, βm}
be a cluster ensemble with m base partitions, where each base partition is an “ensemble
member”, and returns a set of clusters βh = {βh1, β

h
2, .....βhn}, such that

∪kh
p=1 β

h
p = D,where

kh is the number of hth clustering. For each data point xi ∈ D, βh(xi) indicates cluster label
in the gth base partition to which data point xi belongs to, i.e. βh(xi) = βph, if xi ∈ βph.
As a result, the problem is to find a new partition Γ∗ = β∗

1, β
∗
2, .....β∗

K , where K is the
number of clusters in the final clustering result of the dataset D, which summarises the
details from the cluster ensemble Γ [108].

The proposed cluster ensemble method’s operation is described in more detail below.
Algorithm 3-1 presents the pseudo-code of CES.
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Algorithm 3-1 The pseudo code of the proposed cluster ensemble method CES
Require: data, No. of clusters K
Ensure: the clustering Outcomes Γ∗

1: no_classes← K, random← [ ], temp← [ ], O← [ ], s← [ ] Z← [ ], idx← [ ],
status← [ ], availability← aik, responsibility← rik

2: Calculate m base partitions βi by executing AP ten times
3: Sm ← Euclidean(βi, βi) where Sm is similarity matrix
4: pm ← min(Sm) where pm is preference parameter
5: Pass Sm and pm in proposed consensus function (modified AP, execute consensus
function ten times)

6: Compute aik and rik
7: s← .15(labels)
8: for i = 1 to length(s) do

for j = i + 1 to length(s) do
if (xi, xj) ∈ C then

status← 0
else

status← 1
where C denotes cannot-link constraints

9: return status
10: Sij & Sji = status where i ∈ (1, ..., n), j ∈ (1, ..., n)
11: Pij ←

S21j+S
2
i1+S

2
ij

2 where i ∈ (1, ..., n), j ∈ (1, ..., n)
12: Sij ← Pij where i ∈ (1, ..., n), j ∈ (1, ..., n)
13: Z← set of exemplars
14: Z← Sort(Z, descending)
15: if length(Z) < no_classes then

no_classes← length(Z)
16: random← Random(length(Z), no_classes)
17: O← Z[random]
18: for i = 1 to no_classes do

for j =1 to length(Z) do
temp← Z[j]

if temp = O(i) then
idx← temp

19: return idx
20: Γ∗ ← idx

3.4 First Stage: Ensemble Generation Step

Ensemble creation is the first phase, and the main aim is to producem base clustering
members. The ensemble generation stage is represented by steps 2 to 5 in the method 3-
1 [107]. To create ensemble members, any clustering algorithm can be utilised as long
as it creates as many different members as possible. Using independent runs of various
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clusteringmethods or the same clustering algorithm, multiple partitions of the same dataset
can be produced at this step [117, 124,130]. Then, in the following stage, a consensus function
is used to obtain a final partition from the base partitions generated in the previous stage.
Accordingly, this research uses unsupervised AP, as described in Section 3.5.1, and runs
it (iter = 10) times to create multiple m ensemble members, such that βi ∈ Γ, where
i ∈ (1, ..., n) and n are the number of data objects. The reason for AP’s popularity is that
it generates a random set of exemplars (clusters) in βh, where βh is an ensemble member,
which provides a high level of diversity among ensemble members in each iteration and
acquires all possible distinct information about a data set, potentially improving clustering
performance. In other words, AP delivers unique clusters in each iteration, assuring the
basis of ensemble clustering, which is that ensemble members should have a high level of
variety to capture all of the data in a dataset [107].

As a consequence, this research merges the m base partitions found in Section 3.4
using this approach. To compute similarities between pairs of ensemble members, this re-
search utilises the Euclidean distance, as explained previously in Equation (5-2). Cluster-
based similarity refers to the commonalities between ensemble members. As a result,
the basis partitions are determined as similarities between m ensemble members, and
these base partitions are then clustered together using the proposed consensus function
in Section 3.5.2. For this, the proposed consensus function uses parameters Sm and
pm = min(Sm), which is recommended using AP.

3.5 Second Stage: Consensus Function

Another essential component of the cluster ensemble technique is the consensus func-
tion, which is responsible for obtaining the final partition of the data utilising base parti-
tions created during the ensemble creation stage. Because the consensus function has a
direct impact on the performance of the cluster ensemble technique, this research proposes
a very effective and efficient consensus function, as detailed in the sections below. The
consensus function step is represented by steps 6 to 20 in the method 3-1. Rather than
computing similarities between data objects, the fundamental concept behind presenting
a novel consensus function is to calculate cluster-based similarities between pairs of en-
semble members or clusters [107]. The operation of the proposed consensus function is
explained further below. This research gives basic information regarding the classic clus-
tering method AP in Section 3.5.1, and then explains how it is enhanced and utilised in

43



Doctoral Dissertation of University of Electronic Science and Technology of China

proposing the consensus function in Section 3.5.2.

3.5.1 Affinity Propagation (AP)

Affinity Propagation (AP) [121] is a clustering algorithm that works on the principle
of message passing between data objects. Unlike other clustering algorithms such as k-
medoids or k-means, AP does not seek to determine the number of clusters before running
the algorithm. AP, like k-medoids, seeks “exemplars”, or members of the input set that
are representative of clusters. In other words, rather than taking the number of clusters
K as input, AP takes the collection of real-valued similarities Sik, which indicates how
well the data object at index k is suited to be an exemplar for the data object i for two data
objects (xi, xk) ∈ D. In addition, AP accepts real numbers Skk as input, with the possibility
of selecting high-similarity data objects as exemplars (number of clusters), referred to as
preference p. The exemplars are influenced not only by p but also by message passing.
This value can be changed to generate a different number of clusters. Moreover, this value
can be a median of the input collection of real-valued similarities that yields a moderate
number of clusters or a minimum of these that yields the fewest clusters. Additionally,
two real-valued messages which are the “responsibility” rik from data object xi to xk that
depicts how well deserved the data object xk is to serve as the exemplar of data object xi
and the “availability” aik from data object xk to xi that depicts how suitable it would be for
data object xi to select xk as its exemplar, are computed. rik and aik can be considered as log-
probability ratios. Initially, availabilities aik were set to zero: aik = 0. The responsibilities
rik are then computed using Equation (3-1).

rik ← Sik −max
k′ s.t. k′ ̸=k

{aik′ + Sik′} (3-1)

Because aik is set to 0 in the first iteration, rik has been assigned the difference of sik and
the largest of the similarities between the data object at index i and the other candidates.
As a result, if some data objects are assigned to exemplars in subsequent iterations, their
availabilities aik fall below zero, as shown by the Equation (3-2). These negative availabil-
ities will have an effect on the similarities Sik′ in Equation (3-1), and the corresponding
exemplar will be removed from the competition. And in the Equation (3-1), for i = k,
the responsibilities become rkk, which is equivalent to input preference and the point at
indexed k or i is chosen as an exemplar. This condition allows other candidate exemplars
to compete to be an exemplar for a data object and updates availabilities using Equation
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(3-2) below.

aik ← min
{
0, rkk +

∑
i′ s.t. i′ /∈{i,k}

max
{
0, ri′k

}}
(3-2)

Thus, in Equation (3-2), availabilities aik are assigned to the sum of self-responsibility
rkk and positive responsibilities received by the candidate exemplar at index k from other
data objects. Only positive responsibilities are added here because it is required for a good
exemplar. If self-responsibility becomes negative, the availability of data objects at index
k can be increased, and self-availability akk is updated using Equation (3-3).

akk ←
∑

i′ s.t. i′ /∈k
max{0, ri′k} (3-3)

As a result, these messages are exchanged between two data objects with pre-computed
similarities. At any point, availabilities and responsibilities can be combined to identify
a potential exemplar. As a result, (aik + rik) should be the maximum to determine which
data object at index i should be chosen as an exemplar. Knowing i = k leads to knowing
the data object that is an exemplar for the data object at index i.

3.5.2 Proposed Consensus Function

This research use limited side-information in the suggested consensus function, such
as pairwise constraints [98], which are made up of two constraints: must-link and cannot-
link. It has aided in improving accuracy and precision. This research assumes that partial
class information is provided in the form of pairwise constraints showing whether two
objects are members of the same (must− link constraint) or different (cannot− link con-
straint) clusters. The cluster information is expressed via a set Ψ ⊂ D × D, ml = {xi, xj}
where Ψ = M ∪ C, is a set and

M = {(xi, xj) ∈ D × D : xi and xj ∈ same cluster}

C = {(xi, xj) ∈ D × D : xi and xj ∈ different clusters}

where i , j ∈ (1, 2, ..., n)

(3-4)

Consider the following scenario: this research has pairwise restrictions for certain data
items and wishes to include this side information in the proposed model. The first question
is how this research can make use of this additional information. One method is to use a
function that applies the constraints to connect the hidden variables corresponding to data
points that must be in the same cluster, and an appropriate function [131] to connect the
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hidden variables corresponding to cannot-link data items. Another option is to play with
the similarity between the data items. This research can maximise similarities between
two data objects if they are in the same cluster and minimise them if they are in separate
clusters. As a consequence, this researchmay deduce that clustering efficiency is inversely
proportional to data object similarity.

Definition 2: Let us suppose there two data objects such that (xi, xj) ∈ D where
i ∈ (1, 2, ..., n), j ∈ (1, 2, ..., n), the similarities between these objects Sij or Sji will be
adjusted according to Equation (3-5) below.

(xi, xj) ∈ M ⇒ Sij = 1 & Sji = 1

and (xi, xj) ∈ C ⇒ Sij = 0 & Sji = 0
(3-5)

As a consequence, by increasing the probability of similar constraints being in the
same cluster as much as feasible, this adjustment in similarity can increase supervision to
enhance clustering performance. AP, like other algorithms like k-means and k-medoids,
accepts as input a collection of data object similarities and a preference that might be the
median or minimum of the input similarities; unlike other algorithms like k-means and k-
medoids, it does not take as input the number of exemplars K. It also produces a random
number of exemplars to compute aik and rik after exchanging real-valued messages, which
may impact its clustering performance. As a result, this research employs the number of
exemplars K as an input parameter in AP to solve this problem. The real-valued messages
aik and rik are calculated after that. This research now incorporates the idea of pairwise
constraints, and 15% of the real labels were enforced to know restrictions for each pair
of data objects, resulting in similarities being updated. This research already has Sm and
pm in the AP’s parameter from Section 3.4. Therefore, Sm is iteratively updated with 1 (if
they are in the same cluster) or 0 (if they are not) (if they are in different clusters), for two
data objects (xi, xj) ∈ D, where i ∈ (1, 2, ..., n) and j ∈ (1, 2, ..., n).

After adjusting similarities with constraints, new similarities are again updated with
Gram Matrix as shown in Equation (3-6).

Sm ⇐ Pij (3-6)

When this consensus function was used in the suggested cluster ensemble technique CES,
it resulted in an increase in clustering accuracy. Finally, utilising the updated similari-
ties, as indicated in Equation (3-6), a good collection of exemplars is obtained. At this
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stage, this research solves the unsupervised AP problem, which creates a random number
of exemplars, as previously stated. By iterating the acquired fine set of exemplars, this
research leverages side information such as the number of exemplars K passed as input to
AP and constrains it to create exemplars corresponding to K. As a consequence, the accu-
racy of AP clustering and the execution speed have greatly improved. Thus, this research
presents a novel consensus function that is used in the proposed cluster ensemble method
CES. Finally, a single robust dataset partition is produced in Γ∗ equivalent to a number of
clusters in the dataset.

3.6 Performance Evaluation

3.6.1 Experimental Design

The proposed clustering ensemble method CES is compared to several representative
clustering ensemble methods on a variety of real-world data sets using representative as-
sessment criteria to assess its performance. The proposed method is tested in ten separate
runs. This research chooses a standard evaluation criterion, such as micro-precision, to
assess its performance, which compares real labels to predicted labels to assess clustering
approaches’ accuracy [132]. The researchers have evaluated the consensus cluster’s accu-
racy in terms of true labels using micro-precision [129]. This assessment criterion is also
taken into account by the researchers [133]. As a result, this research has used the only con-
sidered evaluation criterion to compare the CES approach to other clustering approaches
in order to further evaluate its performance. The following are the remaining paragraphs in
this section: The datasets used for comparisons will be addressed first. Then this research
will go over the assessment criteria and the steps of the experiment in detail.

This research chooses a variety of real-world data sets to implement the experimen-
tal study of the proposed CES approach, which are described in Table 3-2. The twelve
real-world data sets, which include different samples, features, and classes, were gath-
ered from various sources, including the UCI repository and the Microsoft Research Asia
Multimedia (MSRA-MM) image dataset obtained from Microsoft [134]. These data sets
are also used in classification due to the availability of class labels, but class labels are
not used in clustering for the evolutionary process of clustering [135]. This research uses
micro-precision to assess the accuracy of the consensus cluster with respect to the true
labels. Matlab R2019a was used to design the experiment. The experiment is divided into
two phases: generating ensemble members for these real-world datasets using the cluster-
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Table 3-2 The Real-world Data Sets Taken from Different Sources

No. Dataset number of objects Features Classes
1. aerosol 905 892 3
2. alphabet 814 892 3
3. aquarium 922 892 3
4. banana 840 892 3
5. basket 892 892 3
6. blog 943 892 3
7. book 896 892 3
8. heartdisseaseh 294 13 5
9. glass 214 10 6
10. heap 155 19 2
11. wing 856 899 3
12. water 922 899 3

ing algorithm AP and obtaining consensus function results using the proposed consensus
function described in Section 3.5.2. To begin, a similarity matrix is computed using pair-
wise Euclidean distance and the number of objects n and features f in a dataset, yielding a
n×n similarity matrix S. The preference parameter p is then set to p = min(S)/iter×0.3,
where iter denotes the iteration number for this step, which is set to 10 to produce m en-
semble members. The value iter × 0.3 is used to generate various base partitions and has
an impact on clustering performance. The similarity matrix Sm is computed using these
acquired base partitions and the preference parameter is set to pm = min(Sm))/ iter× .09
after receivingm base partitions after 10 execution of unsupervised AP. These parameters,
as well as the number of classes K, are passed as input parameters into the proposed con-
sensus function for further calculations to determine the final partitions of a dataset in K
clusters. The introduced consensus function is also executed with iter = 10. The primary
goal of this experiment is to evaluate the performance of CES and to see how effective
the proposed algorithm is when compared to other traditional clustering ensemble meth-
ods. CES also outperforms AP in terms of accuracy and execution time due to innovative
changes.

3.6.2 Results and Discussions

Table 3-3 shows how the accuracy of CES and other classic cluster ensemble meth-
ods is tested on real-world data sets collected from various sources and assessed by micro-
precision. The accuracy and execution time of AP and CES are compared in Tables 3-4
and 3-5. The experimental results are divided into two sections: (1) accuracy compar-

48



Chapter 3 A Cluster Ensemble based on Single Clustering

Table 3-3 The Comparison of Accuracy Evaluated Using Micro-precision between

CES and other Cluster Ensemble Methods

Dataset CES CSPA HGPA MCLA WSCE EM QMI ECPCS MC ECPCS HC CESH RCSSEDC
aerosol 54.03 50.28 50.28 50.28 51.27 39.67 50.61 53.26 51.05 52.26 51.36
alphabet 51.97 47.30 47.30 47.30 47.30 37.59 48.40 47.91 48.16 48.36 50.12
aquarium 70.17 70.17 70.17 70.17 69.63 36.23 70.07 65.73 69.96 65.16 64.12
banana 47.98 42.74 42.74 42.74 44.29 39.40 44.17 43.57 43.21 43.12 44/26
basket 56.28 56.05 56.05 56.05 56.28 37.89 55.83 52.58 56.28 55.12 55.56
blog 73.59 73.49 73.49 73.49 72.64 35.42 73.49 66.49 73.49 72.71 71.12
book 57.70 57.48 57.48 57.48 57.59 36.27 57.48 56.70 57.37 55.12 54.12
heartdisseaseh 66.33 63.95 63.95 63.95 50.00 30.27 54.08 55.10 57.82 55.17 56.12
glass 65.42 35.51 35.51 35.51 58.88 45.79 45.79 52.34 52.80 51.12 50.26
heap 79.35 54.84 54.84 54.84 77.42 59.35 59.35 59.35 58.71 59.12 59.86
wing 62.03 61.92 61.92 61.92 61.68 37.38 6168 57.59 61.68 61.12 62.01
water 57.16 56.94 56.94 56.94 56.29 36.66 56.62 55.86 57.05 57.01 56.18
Avg 61.83 55.89 55.89 55.89 58.61 39.33 56.46 55.54 57.30 57.10 58.12

Table 3-4 The Comparison of Accuracy between CES and AP

Dataset AP CES
aerosol 20.99 54.03
alphabet 15.36 51.97
aquarium 15.08 70.17
banana 18.21 47.98
basket 27.35 56.28
blog 19.72 73.59
book 22.99 57.70
heartdisseaseh 39.80 66.33
glass 53.74 65.42
heap 59.35 79.35
wing 22.90 62.03
water 14.43 57.16

isons between CES and other cluster ensemble techniques on real-world data sets, and (2)
accuracy and execution time comparisons between AP and CES.

As a consequence, Table 3-3 shows that, when compared to alternative clustering
ensemble methods, CES has obtained promising results in accuracy evaluation on all
datasets. Although CSPA, HGPA, MCLA, and CES achieved comparable accuracy of
70.17% in the dataset aquarium, WSCE, ECPCSHC, and CES also achieved comparable
accuracy of 56.28% in the dataset basket, CES outperformed state-of-the-art clustering
ensemble methods WSCE, ECPCSMC and ECPCSHC by 5.21%, 6.29% and 4.53% on
average respectively. Additionally, CES beat all cluster ensemble techniques by an aver-
age of 5%. CES outperformed CESH by 7.32% and RCSSEDC by 6%. For the dataset
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Table 3-5 The Comparison of Execution Time between CES and AP

Datasets AP(Avg) AP(Max) CES(Avg) CES(Max)
aerosol 5.6822 6.2422 2.6765 2.7853
alphabet 1.9892 2.8138 1.8246 1.8878
aquarium 2.2208 3.1873 2.2521 2.3075
banana 3.5394 4.6083 1.9807 2.0751
basket 5.0143 5.5720 1.9964 2.0163
blog 1.9467 2.9702 2.2170 2.2603
book 1.8947 2.2981 2.1448 2.2040
heartdisseaseh 0.3843 0.6017 0.4923 0.5328
glass 0.3037 0.5951 0.2521 0.2709
heap 0.1677 0.4678 0.1893 0.2066
wing 1.9915 2.8967 1.9963 2.0228
water 4.7009 5.4571 2.2588 2.3218
Avg 2.4863 3.1425 1.6901 1.7409

alphabet, QMI and, CESH obtained almost equal accuracy. Moreover, CES and RC-
SSEDC have obtained almost equal accuracy for the dataset alphabet. For the dataset
basket, CES, CESHa and RCSSEDC obtained the nearest accuracy. Additionally, for the
dataset blog, ECPCS HC, CESH and RCSSEDC acquired almost equal accuracy. For
dataset wing, CES, ECPCS HC, CESH and RCSSEDC obtained almost equal accuracy.
For dataset water, CES and CESH obtained almost equal accuracy. The employment of
the same clustering functionality in both cluster ensemble phases may increase clustering
accuracy by increasing the stability of clustering results. Because this research limits AP
to creating the actual number of clusters in the suggested consensus function, this research
notices a considerable improvement in high-dimensional data sets containing noises, such
as aerosol, alphabet, aquarium, banana, basket, blog, book, wing, and water.

When compared to AP, CES has greatly improved in terms of accuracy and execu-
tion speed. When compared to AP, Tables 3-4 and 3-5 clearly indicate that CES obtained a
considerable improvement in clustering accuracy and execution time. Furthermore, across
all twelve datasets, CES has an average accuracy of 61.83%, but AP has an average accu-
racy of 27.49% with a 55.54%. When it comes to execution time, CES has significantly
outperformed AP as shown in Table 3-5. CES has taken 3.4569 seconds, 0.926 seconds,
0.8798 seconds, 2.5332 seconds, 3.5332, 3.5557 seconds, 0.79099 seconds, 0.0941 sec-
onds, 0.0689 seconds, 0.3242 seconds, 0.2612 seconds, 0.8739 seconds, and 3.1353 sec-
onds less than AP in 10 rounds. Finally, on all real-world datasets, CES took 1.4016
seconds less than AP; moreover, the proposed technique required 44.60% less time to ex-
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ecute than AP. On some datasets, AP excels in terms of average time, but only by a small
margin. CES, on the other hand, has spent 32.02% less time than AP when the average
time consumed across all datasets is considered.

3.7 Summary

In this chapter, this research proposes a new cluster ensemble method (CES) that
overcomes the limitations of traditional cluster ensemble methods, which rely on differ-
ent clustering algorithms to generate base partitions in the ensemble generation step and
a single partition in the consensus function, potentially causing compatibility issues in
cluster ensemble architecture. Furthermore, dealing with the correctness of the final re-
sults was a major concern. On 10 real-world benchmark datasets, this research tested
the suggested approach. The suggested clustering ensemble technique outperforms state-
of-the-art clustering ensemble methods such as the CSPA, HGPA, MCLA, WSCE, EM,
QMI, ECPCSMC, ECPSCS HC, CESH and RCSSEDC algorithms on average, according
to the findings. The proposed cluster ensemble approach has numerous advantages. For
starters, the framework is more compatible because both phases use the same clustering
capabilities, which increases accuracy considerably over existing cluster ensemble meth-
ods. Second, it uses a newly proposed consensus function to combine base partitions into
a single partition that uses cluster centre information present in a data set to limit AP to
produce an actual number of clusters rather than a random number of clusters, resulting
in a significant improvement in accuracy and execution time when compared to AP.

Researchers can benefit from the suggested cluster ensemble technique in a num-
ber of ways. In knowledge reuse, cluster ensemble is the ideal method for reclustering
previously acquired knowledge or hidden patterns from the clustering algorithm. The
suggested cluster ensemble technique may be utilised to reuse and recluster clustering al-
gorithm knowledge using the same clustering algorithm. As a consequence, the overheads
of incorporating another clustering method for the consensus function are avoided.

This researchwill improve the accuracy of CES in the future and compare it to sophis-
ticated cluster ensemble techniques and datasets. This research will modify CES till it’s
on par with other cluster ensemble algorithms in terms of time complexity. Other cluster
methods will be investigated, such as AP characteristics such as density peaks [136], which
can greatly improve accuracy.
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Chapter 4 Workload and Energy State Estimation in Data Centers

4.1 Introduction

Predicting load and energy consumption is also crucial in cloud computing systems.
This chapter will focus on their research.

Cloud computing is an Internet-based computing paradigm that allows end-users to
access on-demand services by virtualizing hardware resources in data centres [137]. Due
to multitenant users, shifting workload conditions, and increasingly complicated infras-
tructures, resource management in a data centre is often a tough operation. Workloads in
modern data centres are highly non-linear. According to an IBM survey, cloud applica-
tions’ average CPU and memory use ranges from 17.76% to 77.99% [1]. According to a
Google study, a cluster’s CPU and memory utilisation could not surpass 60%, resulting
in significant resource inefficiencies in Cloud data centers [2]. As a result of the work-
load’s non-linear usage patterns, performance is erratic, energy consumption is excessive,
and service quality is impaired (QoS). It also raises operating costs and reduces revenue
for service providers. Because data centres are costly to develop and operate, resource
utilisation must be maximised. While ensuring the application’s Quality of Service, an
intelligent resource prediction technique can successfully tackle the issue by increasing
resource consumption and lowering operational expenses (QoS).

Based on a rich historical workload, a prediction system generates insights into the
future demand for a given resource such as CPU, memory, disc, and network. These pre-
dictions can be used in data centres to deal with non-linear resource utilisation and energy
consumption, as well as resource management decisions like resource provisioning and
VM consolidation. For example, a resource provisioning method based on these future in-
sights can handle resource allocation efficiently (i.e., allocating more and fewer resources
to VMs based on their needs). Furthermore, rather than the existing reactive approach,
decisions can be proactive (e.g., provisioning required resources beforehand to improve
QoS and avoid bottlenecks such as resource bootup time). ML approaches can be used
to produce workload forecasts, in this case, [21]. Because they are drawn from real fea-
tures and capable of learning extremely non-linear workload behaviour caused by various
factors in data centre environments, machine learning-based forecasts are ideal. Recent
resource prediction works focus on CPU, and memory usage and ignore provisioned (re-
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quested) resources such as CPU and memory [26, 138]. When a new VM is instantiated on
a host, these provided resources also make a significant contribution to energy consump-
tion [139]. Furthermore, resource metrics such as disc throughput are ignored, which has a
direct impact on a host’s energy usage [6]. Network throughput [75] is another important
factor to consider when condensing virtual machines to conserve resources. Furthermore,
a variety of machine learning methods have been tried to do this task, but no single ma-
chine learning algorithm is capable of effectively handling any non-linear workload. As
a result, it would be advantageous to use an ensemble learning method involving several
machine learning algorithms to predict both provisioned and used non-linear workloads
with various metrics such as provisioned CPU, provisioned memory, CPU usage, memory
usage, disc throughput, and network throughput.

Energy estimation, like workload forecasting, is critical in data centre resource man-
agement. Energy consumption is a major issue in data centres, and providers are working
to reduce overall energy use through better resource management. In today’s data centres,
hosts feature a variety of sensors that monitor energy at the host level. Recent research
has focused on calculating energy usage for each virtual machine (VM) using multiple
power models [3, 4]. However, calculating the energy consumption of VMs at the software
level is difficult. For example, memory energy consumption is calculated based on the
events raised by each VM on the last level cache of each core (LLC). To calculate energy
consumption, this research needs to collect these LLC parameters, which makes comput-
ing the energy of each VM difficult [5]. Rather than estimating energy for each VM, this
research looked at patterns of comparable VMs in various energy-consumption situations.
This is accomplished by looking at the available energy usage features and using clustering
analysis to find VMs with similar patterns.

To create the prediction models in this study, this research used real-world workload
traces. This research mostly uses Bitbrains data [140], which covers provisioned and con-
sumed resource performance of tens of thousands of VMs housed across many Clouds.
Prediction modeling is proposed for two tasks, namely workload prediction and VM en-
ergy state estimate. The ResourceManagement System (RMS) and the PredictionModule
are the two components of the system model. In this chapter, this research will show you
how to use the Prediction Module. This chapter studies various machine learning algo-
rithms for workload prediction in this regard, and the best models are selected for subse-
quent RMS activities. To deal with energy state estimation, this research uses an ensemble
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learning approach and proposes four different clustering methods from semi-supervised
affinity propagation based on transfer learning (TSSAP), CLA based on transfer learning
(TCLA), K-means based on transfer learning (TKmeans), and P-teda based on transfer
learning (TP-teda). According to the tests, the TSSAP beat other approaches by achieving
the highest cluster accuracy. In this strategy, this research also employs the Univariate
selection method in conjunction with the ChiSquare (χ2) test to choose the highly signif-
icant features associated with energy-consuming states. After that, this research clusters
these features in the two-dimensional plane using t-Distributed stochastic neighbour em-
bedding (t-SNE). Eventually, this clustered data is transferred to a different domain for
further clustering analysis by using four clustering algorithms such as AP [121], CLA [141],
Kmeans [142] and P-teda [143].

In summary, the following are the work’s important contributions:
(1) This research proposes a machine learning-based intelligent prediction model for

two tasks: workload prediction and energy state estimate.
(2) Using characteristics from a cloud-hosting distributed data centre, this research

investigates alternative machine learning algorithms for workload prediction in nonlinear
situations. Performance measures such as provisioned CPU, provisioned memory, CPU
utilisation, and memory utilisation, as well as disc throughput and network throughput,
are among the features.

(3) This research describes an ensemble learning approach to VM-level energy status
estimation that incorporates four proposed clustering approaches for identifying compa-
rable groups of VMs based on VM-level variables that may affect energy usage.

(4) GRU has the lowest RMSE values for all features in the workload prediction
models.

(5) In comparison to previous clustering models, TSSAP achieves a substantial ac-
curacy of 53.80% in identifying VMs’ classes in the energy state estimate models.

The rest of this chapter is organised as follows: Section 4.2 discusses the relevant
literature for this project. Section 4.3 explains the motivations for this work as well as
the implications of resource management in the cloud. A resource management model
is proposed in section 4.4. The used cloud workload traces are described in section 4.5.
Section 4.8 is where performance and results are analysed. Finally, Section 4.9 concludes
this chapter and provides the future directions.
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4.2 Related Work

Machine learning-based prediction has been extended to a wide range of applications.
Workload prediction and E-state prediction are two tasks performed by the model. The
important work associated with both tasks is mentioned below.

First, this research addresses related work for the first task of the proposed model.
[26] used the Random Forest approach to forecast CPU use in disclosed traces of Microsoft
Azure VM workloads in the proposed system Resource Central (RC). This solution col-
lects VM features and uses machine learning to understand these behaviours offline be-
fore delivering online predictions to various resource managers via a client-side library.
Based on the machine learning technique Linear Regression, [144] suggested an evolution-
ary approach to create an effective prediction model for CPU use for adaptive resource
provisioning in the cloud (LR). It can assist e-commerce apps with resource management
scheduling and capacity planning that is dynamic and proactive. They worked using data
from the TPC-W benchmark. In Google Cloud workload traces, [145] employed a tai-
lored support vector regression method to estimate CPU and memory usage with the goal
of proactively resource provisioning to keep resource utilisation and service level agree-
ments (SLAs) at an acceptable level. Based on each host’s historical data, [146] utilised
Linear Regression to forecast short-term future CPU use. During live VM migration, this
procedure was utilised to identify whether a host was overloaded or underloaded based
on expected future CPU utilisation. Some VMs relocate to other hosts when a host be-
comes overcrowded, and when it becomes underloaded, it goes into sleep mode to save
energy. VM consolidation is the term for this procedure. The k-nearest neighbour re-
gression method was used by [147] to forecast CPU utilisation in a real-world PlanetLab
workload. For this workload, the CPU usage performance of over a thousand VMs was
measured at 5-minute intervals. During the VM consolidation process, this forecast was
used to reduce energy consumption. [90] employed many criteria such as CPU, memory,
and bandwidth use rather than simply CPU utilisation for prediction utilising Multiple
Regression using real workload traces in the VM consolidation process to improve en-
ergy consumption. From two real workload traces, Google cluster and PlanetLab, [138]

employed a regression method to forecast CPU and memory use. During the VM con-
solidation process, they assess both current and future resource utilisation to determine
whether a host is overloaded or not, minimising wasteful VM migration and lowering a
host’s energy consumption.
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This section discusses the related work for the model’s second task. Joulemeter is a
virtual machine power metering system suggested by [85] that evaluates energy consump-
tion at the VM level using VM resources at runtime. They offered power models that mea-
sured energy at the VM level using virtualized platform resources such as CPU, memory,
and disc. [148] developed a linear energy model in the GreenClouds project that described
the behaviour of a single host and contained numerous components, such as CPU, RAM,
and HDD, all of which contribute to a single host’s total energy consumption. [149] pre-
sented a VM power metering approach based on performance events counter values from
resources such as the CPU and RAM because VM energy consumption cannot be detected
by any power sensor. The possibility and difficulty of constructing models for black-box
online monitoring in VM power metering were investigated in [150], which offered a lin-
ear model to track the system’s power. [151] presented a linear model for calculating total
energy consumption based on static and dynamic resource consumption. [3] proposed
an energy-based cost model in the TANGO project, which uses energy consumption as
the major parameter in relation to VM’s actual resource usage. A tree-regression-based
method for calculating the power consumption of VMs on the same host was reported in
[4]. [152] displayed a two-dimensional lookup table for each VM. The table includes CPU
utilisation, last-level cache (LLC) miss rate, and the power value estimated from CPU
utilisation and LLC miss rate.

4.3 Motivation: Intricacies in Cloud Data Center’s Resource Manage-
ment

Resource management is an important part of running a distributed cloud data centre.
Because of the presence of multi-tenant users and their diverse workloads, calculating
workload levels and energy consumption is difficult. The hosts in cloud data centres have
varied amounts of virtual machines at any one time. As a result, the host’s workload and
energy usage fluctuate. It’s critical to study the non-linearity of VM workloads, as well
as host characteristics like whether they’re over- or under-utilized, and make resource
management decisions based on that information (e.g., resource provisioning and VM
consolidation). To reduce energy and optimise resource utilisation, data-driven solutions
based on machine learning are being investigated. CPU, RAM, disc, and idle power all
contribute to the total energy of a host [6]. All of the relevant contributing elements should
be considered when estimating the host’s energy usage.
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When executing CPU-intensive programs, the CPU has a substantial impact on the
host’s energy usage. The authors of [85] conducted a series of tests and discovered that
the CPU consumes 58% host’s energy in mixed workloads. Memory accessing and page
swapping at the host level account for 20% to 30% of a host’s total energy, according
to previous research [153] and [85]. Due to the necessity to gather LLC (last-level cache)
events raised by each VM on each CPU, measuring the power of each VM at the VM
level is difficult. [5] Disks, on the other hand, generate energy through spinning platters
and disc head movement. In their research, [85] also presented a linear energy model based
on disc read and write throughput. The two basic approaches to energy efficiency are re-
source provisioning and VM consolidation. By consolidating VMs to fewer hosts via VM
migration while maintaining SLAs, VM consolidation attempts to enhance resource util-
isation and energy efficiency [154]. These days, intelligent predictive VM consolidation
is being implemented, which is thought to be more efficient. On the other hand, network
throughput is a crucial parameter that can aid in VM consolidation to save energy indi-
rectly by decreasing resources [75]. According to a study, computing as a service via cloud
computing would generate 51,774GB/sec of internet traffic by 2020, which will have an
impact on cloud networks [73]. As a result, this element will affect VMmigration time and
breach SLA [74] in the event of dynamic VM placement. Some researchers, on the other
hand, explored projecting CPU utilisation exclusively in the situation of VM consolida-
tion in order to conserve energy [137]. As a result of the foregoing facts, elements such
as memory and disc throughput, as well as network throughput, should be considered for
VM consolidation prediction in order to conserve energy.

Furthermore, resource provisioning is the distribution of physical resources based on
a forecast in order to maximise resource use and energy efficiency. This estimation, which
is based on the forecast of future resource behaviour, can help with resource provision-
ing efficiency. This estimate, which is based on future resource behaviour predictions,
can aid in more effective resource provisioning. The bulk of research focused only on
the utilisation of physical resources like CPU, memory, storage, and network bandwidth
for a prediction-based estimate in resource provisioning [155]. However, while making
forecasts, the current study does not take into consideration both supplied and consumed
resources. The power models in [139] reveal that provided CPU and memory have a linear
connection with energy consumption when a host instantiates a new VM. As a result, re-
source provisioning based on estimating the combined provisioned and utilised resources
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Figure 4-1 VM-1: FastStorage: CPU Usage [%]

Figure 4-2 VM-2: FastStorage: CPU Usage [%]

can give IaaS service providers a better idea of how much energy they can save.
This research conducted a case study on workload traces to better understand the

complexities of a host’s power consumption. Figure 4-1 and Figure 4-2 show the CPU
utilisation (%) of two separate VMs taken at 5-minute intervals in a fastStorage trace
derived from Bitbrain’s data collection. It is regarded as over-utilized if a host’s peak CPU
utilisation exceeds a fixed threshold (e.g., 80%) [156], and it is considered under-utilized
if it goes below a chosen threshold (e.g., 30%) [137]. This research looked at 1250 VMs’
fastStorage data over a month. For example, in Figures 4-1 and 4-2, peak CPU utilization
is between 80% and 100% and 3.5% to 4% for two different VMs, respectively. The
CPU capacity for both of these VMs in the same trace is the same. As a result, it is clear
that during a given month, CPU utilization for VM-1 reached up to 97.87%, while CPU
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utilization for VM-2 could not exceed 3.8%, indicating that a host is either over-utilized
or under-utilized in this long run. The CPU has a direct linear relationship with the host’s
total energy usage, according to [6]. It means that if a host’s VM’s CPU is overworked, it
uses a lot of energy, and if it’s underworked, its processing capacity is wasted while still
using a lot of energy in the form of idle power.

Both scenarios, such as workload forecasting and energy state estimate, are crucial
for a data center’s energy efficiency and must be handled. As a result, monitoring the
energy of each VM in relation to the total energy of a host is a good idea [6]. Each com-
ponent of a host, such as the CPU, RAM, and disc, contributes to the total energy of the
host. Thus, awareness of energy consumption at the VM level can assist energy monitor-
ing of hosts, but measuring the energy consumption of VM devices at the software level
is exceedingly challenging. Because LLC (last-level-cache) events triggered by each VM
on each core must be collected at the VM level, measuring [5] becomes more challeng-
ing. As a result, rather than evaluating the energy of each virtual machine, the patterns of
similar virtual machines that are over-utilized or under-utilized will be investigated. To
find VMs with similar patterns, clustering analysis might be performed. The focus of the
research is on automation. Thus, this research employs a machine learning approach such
as clustering to teach the machine these states automatically. Clustering automatically
discovers similarities between features and classifies data into similar and different cat-
egories. Based on the factors discussed above, this research considers the four different
cases of peak CPU utilization as low, medium, high, and critical, respectively, 0%-40%,
40%-70%, 70%-95% and above 95%. The cases low and (high, critical) correspond to
under-utilized and over-utilized i.e., low and high, critical energy-consuming states de-
noted by “E-state” (see Table 4-1). This type of analysis is done by looking at which VMs
are correctly separated utilising the four clustering algorithms that have been proposed.
The technique isn’t confined to these limits; testing with alternative ranges depending on
workload data demonstrates this.

Table 4-1 E-states with CPU Utilization

Peak CPU Utilization (%) E-state
0-40 Low
40-70 Medium
70-95 High
Above 95 Critical
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Figure 4-3 Proposed System model

4.4 System Model

A cloud platform is made up of numerous physical machines that provide end-users
with on-demand services, and virtualization techniques are used to deploy applications
on these actual machines. A diagram of the system model is shown in Figure 4-3. This
research picked a data-driven, machine-learning strategy that uses historical application
workload to learn from the past and forecast future workload levels and energy states
of virtual machines. ML algorithms learn from historical data and assist in data-driven
decision-making.

The work is divided into two categories:
(1) Workload prediction, for which this research evaluatesmultiplemachine learning

algorithms before selecting the model with the lowest RMSE.
(2) For detecting which virtual machines are in low and high-energy-consuming

states, this research offers four distinct clustering algorithms for categorising virtual ma-
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chines based on energy-related variables.
This research employs real workload traces to deal with these two activities, which

comprise numerous information such as provisioned (CPU, memory) and used resources
(CPU, memory, disk, and network throughput). The proposed model’s main component
is the Prediction Module. The Resource Management System (RMS) can make decisions
for different resource management tasks in cloud data centres; also, it makes energy man-
agement decisions with the help of the Cluster Management System from the Prediction
Module. This research only presents the implementation of its Prediction Module in this
chapter. The future work will include the performance of RMS for resource provisioning,
VM consolidation, and other management functions based on the output of the Predic-
tion Module. Therefore, the following subsections discuss the critical components of its
Prediction Module.

4.5 Workload Traces

The data used to train the model in the data centre domain [157] is as good as the
data used to train the ML-based prediction system, and training data can include appli-
cation and physical level variables. Physical resources include CPU, Memory, IO, and
other host-level resources, whereas application features include CPU cycles, cache met-
rics, and other features. This research uses two traces representatives that comprise a
business-critical workload that was gathered from a distributed cloud hosting data centre
and released by [140]. A service provider that specialises in managed hosting and business
computation for corporations obtains a business-critical workload. Table 4-2 shows the
details of this business-critical workload, while Table 4-3 shows the definitions of each
feature. In these traces, which are taken every five minutes, the vCloud Operation tools
record seven performances per VM.

Table 4-2 Distributed Cloud Data Center’s Trace for this Work

Trace VMs
Collection
Period Memory

CPU
Cores

Collection
Interval

fastStorage 1250 30 days 17729 GB 4057 5 Minute
Rnd 500 90 days 5485 GB 1444 5 Minute

These two traces capture data for 1750 virtual machines (VMs) over 5000 cores and
20 TB of memory over the course of four months, totaling over 5 million CPU hours, mak-
ing them long-term and large-scale time series. FastStorage, the first trace, has 1250 virtual
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Table 4-3 Definition of Features in Workload Trace

Features Definition (Average)
RCPU Provisioned CPU capacity [MHZ]
UCPU CPU usage [MHZ]
Rmemory Provisioned memory capacity [KB]
Umemory Memory usage [KB]
Dthr Disk read throughput [KB/S]
Dthw Disk write throughput [KB/S]
Nthr Network received throughput [KB/S]
Ntht Network transmitted throughput [KB/S]

machines (VMs) connected to SAN storage devices, and its performance was monitored
for a month. The Rnd trace, which has 500 virtual machines (VMs) connected to substan-
tially slower Network Attached Storage (NAS), has been examined for three months. By
averaging each performance reported for each VM [158], the dataset is smoothed. For one
month, this research computes 1250 entries as the average of each feature for each VM in
fastStorage trace, and for three months, this research computes 500 entries for Rnd. As a
result, this research has 1500 entries in total for Rnd.

4.6 Workload Estimation Using Prediction Algorithms

This research chooses regression-based methods for the workload prediction to esti-
mate a numerical output variable like CPU utilisation, which have also been used in earlier
work on non-linear workloads such as (Linear Regression (LR), Ridge Regression (RR))
[155], ARD Regression (ARDR) [159], ElasticNet (EN) [160]. This research also chooses
a deep learning method, recurrent neural networks (RNNs) with gated units (GRUs) [92],
because it outperforms regular RNNs with other units [161]. This research always takes the
average of each VM resource across one month and three months of data for fastStorage
andRnd traces and generates estimates for theseVMs based on that. In Section 4.2, the jus-
tification for choosing the average value was explored. Furthermore, as shown in Figure
4-1, the peak CPU utilisation in red rectangular boxes rapidly decreases after a short time
interval, making it feasible and efficient to train the ML model using the average of each
VM and forecast the average prediction value of each VM provisioned and used resources
based on this learning. This research utilises the sci-kit learn [162] package to implement all
of the ML methods, and the Keras [163] package to create the deep learning method GRU.
The arguments for each of theMLmethods are set to their default values in this implemen-
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tation. For RR, the parameters are alpha = 0.2 and normalise = true. All ML-regression
algorithms are trained using numerous features to predict the target variable. For exam-
ple, if the objective variable is set to average CPU utilisation, the remaining features for
training the ML regression algorithms are chosen from the traces. Furthermore, this re-
search evaluates the goodness of fit of various techniques using the Root Mean Square
Error (RMSE) metric, which is a typical evaluation metric in regression-based situations
[164].

As a result, the model will be more accurate if the RMSE values are lower. In addi-
tion, the model is examined to be more precise if its RMSE value is adjacent to 0.

The performance of several ML-regression approaches and deep learning methods
is shown in Tables 4-6 and 4-7. The RMSE value for various features of the selected
traces is represented in these results. The deep learning method GRU has very low RMSE
values, meaning that residuals or prediction errors are reduced and predictions are more
accurate, as shown in these tables. Furthermore, similar results have been obtained using
several regression approaches. Because the GRU results are the most promising and have
the lowest RMSE. As a result, this research will focus more on this algorithm in Section
4.6.1 to investigate it more and explain it.

4.6.1 Learning with Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is a gated recurrent unit introduced by [92] (GRU).
This research trains the model with 80% of the goal variable, such as CPU utilisation,
and the trained model predicts with 20% of the target variable in this manner. The GRU
architecture is defined by the following equations:

ut = σ(Wuxt + Uuht−1 + bu),

rt = σ(Wrxt + Urht−1 + br),

h̃t = tanh(Whxt + Uhht−1rt + bh),

ht = utht−1 + (1− ut)h̃t

(4-1)

The vectors ut and rt, for example in Equation (4-1), correspond to the update and reset
gates, respectively. The state of the vector at time t is represented by ht. The activation
function of both gates is sigmoid function which is represented by σ. This function is in
charge of limiting the range of values for ut and rt from 0 to 1. Furthermore, a hyperbolic
tangent tangent function evaluates the candidate state h̃t. The GRU network is fed with in-
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put xt (in the case, a vector of CPU usage (UCPU) values) and the feed-forward connections
Wu, Wr, and Wh, as well as the recurrent weights Uu, Ur, and Uh. Before nonlinearities in
the network, the trainable bias vectors bu, br, and bh are included.

In addition, the Pandas and Numpy [165] libraries are used to load workload traces as
a pandas data frame and convert integer numbers to floating-point values that are better
suited for neural network operations. The MinMaxScaler is used to rescale the data from
0 to 1. The original dataset is then used to convert the dataset to a new shape, with the
look-back parameter set to 1, indicating the number of prior time steps to be utilised as
input variables to predict the following period [155]. Furthermore, this model has one in-
put layer, one hidden layer, and one output layer, with one input, five neurons, and one
output forecast as optimised results. In addition, the model can be enhanced by adding
more neurons to produce better results. Finally, the network is trained for epochs=100
and batch size=64 using mean square error as a loss function and Adam as an optimiser
[166]. As mentioned in Section 4.8.2, this research has optimised performance for certain
hyperparameters. In the training phase, this research also uses the validation data param-
eter, which is the date on which the loss and other model metrics are validated at the end
of each epoch, but the network is not trained on it. The RMSE is used to evaluate the
model’s performance on test data after it has been fitted.

4.7 VM Energy State Estimation Using Clustering Algorithms

To build similar groups of VMs, this research proposes four clustering strategies.
This research forecasts a VM’s energy state, such as low, high, or critical. These models
would aid in resource management decisions that would improve resource efficiency.

These techniques are based on the four clustering algorithms listed below:
(1) AP [121]: This is an exemplar-based algorithm that is used to propose TSSAP.
(2) CLA [141]: Every data point in this algorithm is given a mass and is linked to a

special force called the local resultant force (LRF) generated by its neighbours.
(3) Kmeans [142]: This algorithm aims to group n data points into K classes, with

each data point being a neighbour of the cluster centre closest to it.
(4) P-teda [143]: This algorithm is designed to handle high-frequency data. This

method incorporates the TEDA theory concept and inherits all of its benefits.
This research employs the [167] transfer learning methodology in all of these methods

to learn resilient clusters for the target domain utilising knowledge from the source domain.
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As a result, as explained in Section 4.7.1.1 for TSSAP, this research supplies identical
source domain information to all methods. Apart from transfer learning, this research
limits the affinity propagation (AP) approach to produce a number of clusters equal to the
actual number of clusters and add semi-supervised learning utilising pairwise [98] and non-
matrix factorization [168]. The proposed approaches are known as semi-supervised affinity
propagation based on transfer learning (TSSAP), CLA based on transfer learning (TCLA),
K-means based on transfer learning (TKmeans), and P-teda based on transfer learning (TP-
teda). This research will largely focus on TSSAP in the following subsections to discuss
it in detail because it has achieved encouraging clustering results.

TSSAP is a semi-supervised clustering algorithm that uses a tiny amount of super-
vised data in the form of partial labels to supervise unsupervised data and generate more
accurate related clusters. The information regarding similar clusters is supplied to the
CMS since the results are promising. Before sending the clusters of VMs to the Broker,
which then sends these three clusters to the RMS for further analysis, it divides them into
Low, High, and Critical energy-consuming states. The proposed workflow of TSSA is
depicted in Figure 4-4. The operation of this approach is discussed in full below.

4.7.1 Transfer Learning-based Semi-supervised AP

Transfer learning Transfer learning [169] is a sort of learning that focuses on learning
robust classifiers for a target domain utilising knowledge from a source domain. This
research employs the univariate feature selection technique, which involves utilising uni-
variate statistical tests such as the chi-square test [94] to choose the best features. It’s used
to test if the class label is independent of a specific feature in the context of feature selec-
tion on a labeled dataset.

After getting the best characteristics that are most connected to class labels, this re-
search utilises t-Distributed stochastic neighbour embedding (t-SNE) [169] to reduce high-
dimensional features to two-dimensional features via a matrix of pair-wise similarities. It
efficiently separates data into clusters, which this research then clusters further using a
modified AP approach that enhances clustering accuracy.

Modified AP In AP, the input parameters are similarities S(i, j) between data points and
preference p, which is the median or minimum of calculated similarities. As a result, two-
dimensional features derived from the t-SNE operation were used to calculate input sim-
ilarities using Euclidean distances like S(i, j) = −||xi − xj|| and preference, p = min(S).
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Figure 4-4 Workflow of TSSAP

The number of classes in data is not used as a parameter in AP, which results in a random
number of exemplars. It could have an impact on AP’s clustering performance. There-
fore, in AP’s input, this research passes this supervised information, such as the number
of classes K, along with S(i, j) and p. The real-valued messages a(i, k) and r(i, k) are
then computed by AP. This research uses non-matrix factorization (NMF) [168] to update
similarities at this point.

Definition 1: Assume this research has a X matrix with m features and n samples.
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NMF decomposes matrix X into two matrix A(m× q) and B(q× n) such as that,

X ≈ AB (4-2)

In detail, it can be expressed as,

X = AB+ e (4-3)

The matrix norm of X − AB is computed as e. X is made up of similarities between
data points calculated using the S(i, j) Euclidean distance. As a result, the NMF method
is applied to S(i, j), which is decomposed into A and B. These elements are upgraded
repeatedly in order to reduce the estimation error X ≈ AB. Various operations, such as
Euclidean distance, can be used to calculate the distance between AB and X,

deuc(A,B) = 1
2
||X− AB||2 (4-4)

and similarities S(i, j) is updated with matrix A, such that

S(i, j) = A(i, j) (4-5)

This research employs semi-supervised learning to provide extra supervision to the
updated similarities from NMF. Semi-supervised learning combines labeled and unla-
belled components to bridge the gap between unsupervised and supervised learning.
The learning rate increases when unlabeled input is paired with supervised data. Semi-
supervised clustering has lately acquired popularity, in which limited supervision is sup-
plied by leveraging various side information strategies to boost precision in unlabeled data
partitions, such as instance-level constraints, partial labels, and relative distance compar-
isons. This method makes use of the instance-level constraints introduced by [98] to im-
prove the accuracy of the results. These constraints indicate that two data points must link
must − link if they are in the same cluster, but cannot link cannot − link if they are in
different clusters.

Definition 2: Assume that a data set Y = {y1, y2, ...yn} exists, and that the cluster
information is represented by a set γ ⊂ Y × Y , where γ = ml ∪ cl, and that for
(i, j) ∈ (1, 2, ..., n),

ml = {(yi, yj) ∈ Y × Y : yi and yj ∈ same cluster}

cl = {(yi, yj) ∈ Y × Y : yi and yj ∈ different clusters}
(4-6)
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The constraints for each pair of data points were determined using 30% of the actual
labels, and the similarities obtained fromNMFwere updated again using these constraints.
Similarities S(i, j) for two data points (yi, yj) are updated with 1 or 0 if they are in the same
cluster or not, respectively, for (i, j) ∈ (1, ..., n), such that,

(yi, yj) ∈ ml ⇒ S(i, j) = 1 & (yi, yj) /∈ ml ⇒ S(i, j) = 1 (4-7)

Finally, a fine set of prospective exemplars is created using this similarity matrix, as
shown in Equation (4-7). By introducing a modest quantity of supervised data K into AP’s
input, this research also confined AP to producing a random number of exemplars. As a
result, the accuracy of clustering improved. Algorithm 1 shows the TSSAP pseudo code:

Algorithm 4-1 Pseudo code of the proposed clustering approach TSSAP
Input: Features, labels, No. of clusters K
Output: E-state

1 R = [ ], temp = [ ],X = [ ], f1 = [ ], f2 = [ ];
/* Transfer Learning */

2 f1 ← χ2(Feature, labels)
3 Select highest 4 in χ2 score features from f1
4 x← tsne(f2, euclidean)
/* Semi-supervised AP */

5 S(i, j)← Euclidean(xi, xj)
6 p← min(S)
7 Pass S(i, j) and p in AP’s input
/* Execute AP, iter = 10 times */

8 Compute A(i, k) and R(i, k)
9 (a, b)← nnmf(S(i, j))
10 S(i, j)← a(i, j)
11 s← .3(lables)
12 for i = 1 to length(s) do
13 for j = i + 1 to length(s) do
14 if (xi, xj) ∈ cl then
15 S(i, j)← 0
16 else
17 S(i, j)← 1

/* where C denotes cannot-link constraints */

18 return idx
19 E-state← idx
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4.7.1.1 Learning with Semi-supervised Affinity Propagation based on Transfer
Learning (TSSAP)

For the proposed method’s learning, this research chooses one month of fastStorage
trace data, which comprises the performance of 1250 VMs running in a dispersed data cen-
tre. The data from these VMs was analysed based on peak CPU use and categorised into
different ranges, as mentioned in Section 4.2. Because peak CPU utilisation significantly
influences under- and over-utilization, i.e., low and high, essential energy consumption
in the case of VMs allocated to hosts, these ranges correlate to distinct energy-consuming
states. As a result, the suggested method’s input is based on the characteristics of the 1250
VMs. As a result, analysing similar patterns based on these performances and seeing the
findings with these ranges would be realistic and reasonable. The proposed approach’s ini-
tial step is to use the univariate selection method to analyse the attributes. This method’s
SelectKBest uses a χ2 test with k = 4 to select the best 4 features with a χ2 score. This re-
search uses t-Distributed Stochastic Neighbor Embedding (t-SNE) to cluster the selected
features such as RCPU, UCPU, Rmemory, and Umemory in a 2-dimensional plane after captur-
ing the best features related to defined E-state. The data is subsequently sent to the input
of the improved AP model, which clusters the data more precisely into different energy-
consuming states.

Predicted Class 1250 VMs←−−−→
E-state

Cluster(RCPU,UCPU,Rmemory,Umemory) (4-8)

In detail, this information is used to compute a similarity matrix using pairwise Euclidean
distance with n number of data points, resulting in a n × n similarity matrix S. Following
that, the preference parameter p is set to p = min(S) / iter × 0.3, with iter denoting
the iteration number, which is iter = 10. To improve accuracy, the preference parameter
p can be tweaked with different input values. In this case, p = min(S) / iter × 0.3
provides optimal performance. The parameters S and p, as well as the number of classes
(K) and labels labels, are passed into AP’s input for further calculations in order to eval-
uate the final clusters. TSSAP also generates anticipated labels for VM partitions. i.e.,
the expected energy consumption states of each of the 1250 virtual machines. Standard
evaluation criteria such as micro-precision are used to compare these anticipated labels
to actual labels. This measure was chosen because it assesses the accuracy of clustering
techniques by comparing real labels to anticipated labels [132]. As a result, because this
research creates distinct ranges based on peak CPU use, it also applies to the scenario.
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4.8 Performance Evaluation

In this section, this research assesses the performance of the proposed model in con-
junction with the prediction module, as well as compares the results.

4.8.1 Experimental Setup

The tests are run on a systemwith a 1.90 GHz Intel(R) Core(TM) i3-4030U processor
and 4 GB of main memory. The Prediction Module of the proposed model does two tasks:
(1) implements various prediction algorithms using PyCharm Community 2020.2, and
(2) predicts E-state using the provided clustering approaches using PyCharm Community
2020.2 and Matlab R 2019a.

To execute all ML-based regression algorithms, this research uses the sci-kit learn
package [162]. GRU is also implemented using the Keras [163] deep learning library. This
research uses [140], a real-world dataset from Bitbrain, which this research discusses in
Section 4.4. This dataset was chosen because it includes both supplied and used resources
that fulfill the criteria for the first targeted task, and it also includes real-world cloud in-
frastructure utilisation patterns. Because the model requires the most promising forecasts
from all of the prediction algorithms applied, all of the prediction algorithms are compared
using RMSE to see which one has the fewest residual errors when compared to actual data.
This research utilises Pycharm 2020.2 to extract knowledge from one-month data from the
fastStorage trace using Pycharm’s chi-square test and Matlab’s t-sne for the second chal-
lenge. The data is then sent into Matlab’s programming tool, where it is clustered using
four distinct algorithms: modified AP, CLA, Kmeans, and P-teda. All of the proposed
clustering approaches are examined with micro-precision in order to discover the most
promising outcomes. In Section 4.8.2, this research primarily focuses on TSSAP results
because, in this instance, it has produced the most promising clustering results in contrast
to other offered approaches.

4.8.2 Analysis of Results

In the suggested model, the prediction Module is employed to handle two tasks:
workload prediction and E-state prediction. This research will start with the workload
prediction results. The workload prediction module can experiment with various machine
learning approaches to generate workload forecasts for various workload kinds. This re-
search investigates different machine learning (ML) methods and a deep learning method,
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such as LR, RR, ARDR, EN, and GRU, for predictions on different types of workloads,
including provisioned and utilized. The lower the RMSE, the more accurate the forecast.
The parameters for each ML method and GRU are detailed in Sections 4.6, while the out-
comes of predicted cases in terms of performance measure are shown in Tables 4-4 and
4-5 for fastStorage and Rnd traces, respectively. These tables show the RMSE values
achieved using the various methods. Tables 4-4 and 4-5 show that none of the ML algo-
rithms, LR, RR, ARDR, and EN, fit the dataset well and produce consistent predictions.
By observing the results, it is concluded that when the workload feature has a small digit
value, the RMSE value is very low.

Table 4-4 FastStorage: RMSE Values of Different Algorithms in Predicting Dif-

ferent Features

Features GRU LR RR ARDR EN
RCPU 3.46 417.66 1899.17 418.29 605.21
UCPU 0.44 911.95 1002.97 1886.30 923.67
Rmemory 9.29 9448342.05 7930792.37 8929672.01 9089470.08
Umemory 372.42 365978.61 384364.48 366817.80 366030.14
Dthr 0.37 3176.39 3192.39 3245.52 3183.62
Dthw 0.06 325.19 323.77 338.36 324.26
Nthr 0.33 53.17 54.18 68.22 53.37
Ntht 0.23 93.83 93.22 101.90 94.21

Table 4-5 Rnd: RMSE Values of Different Algorithms in Predicting Different Fea-

tures

Features GRU LR RR ARDR EN
RCPU 5.22 449.59 1541.14 442.51 449.59
UCPU 1.79 754.13 772.98 1134.96 766.42
Rmemory 9.85 24629258.91 25318293.39 24638065.90 24616865.76
Umemory 1262.93 441097.03 440142.87 433219.81 437761.33
Dthr 1.59 746.05 722.07 744.29 750.16
Dthw 0.76 407.76 396.37 435.44 403.39
Nthr 0.9 664.48 670.55 666.83 664.10
Ntht 0.61 603.97 604.41 605.55 609.79

The deep learning method GRU, on the other hand, accumulates extremely few
RMSE values for all features, compared to other ML algorithms that have very large
RMSE values suggesting poor performance. When it comes to modeling workload time
series, GRU outperforms ML regression methods. The availability of two vectors that de-
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Figure 4-5 Fast Storage: RCPU
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Figure 4-6 Fast Storage: UCPU
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Figure 4-7 Fast Storage: Rmemory
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Figure 4-8 Fast Storage: Umemory
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Figure 4-9 Fast Storage: Dthr
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Figure 4-10 Fast Storage: Dthw

cide what information should be transmitted to the output is one of GRU’s most essential
aspects. They are remarkable in that they can be taught to remember information from
the past without it being washed away over time or information unrelated to the forecast
being removed.
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Figure 4-11 Fast Storage: Nthr
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Figure 4-12 Fast Storage: Nthw
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Figure 4-13 Rnd Storage: RCPU
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Figure 4-14 Rnd Storage: UCPU
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Figure 4-15 Rnd Storage: Rmemory
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Figure 4-16 Rnd Storage: Umemory

GRUs perform better as a result of their ability to retain track of context-specific
temporal connections between task features for longer periods of time while making future
predictions. The results also suggest that GRU delivers greater accuracy when the dataset
is large. The model can extract more patterns and modify the layer weights more precisely
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Figure 4-17 Rnd Storage: Dthr
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Figure 4-18 Rnd Storage: Dthw
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Figure 4-19 Rnd Storage: Nthr
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Figure 4-20 Rnd Storage: Nthw

Table 4-6 GRU Model Training at Different Hyper Parameters

epochs batch_size Train score Test Score
10 32 2.09 0.81
40 32 1.77 0.39
100 32 1.76 0.46
10 64 2.66 1.26
40 64 1.79 0.52
100 64 1.76 0.44

as more data is collected, whereas with classic regression algorithms, the smaller the data,
the greater the accuracy. The accuracy of standard regression methods is reduced by a
huge dataset, as seen in the tables.

Furthermore, this research can expect fewer residual errors in prediction offered by
GRU with a larger training dataset and more hyperparameter adjustment if this research
uses a better infrastructure, such as a GPU cluster. This research does not want to use
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hyperparameter optimization to acquire the optimal model; instead, this research would
like to supply a generic model that can be usedwith other models. To train the GRUmodel,
this research employed different hyperparameter values, such as epochs and batch size.
Epochs are the number of iterations across which the input data is delivered. The batch
size parameter specifies the number of samples to be updated per gradient update; it is set
to 32 by default. Table 4-6 shows how the model is trained using various hyperparameters.

It is considered that if the model is well-trained on the data, it will perform better.
The model trained at epochs=100 has the least trained RMSE score in both batch sizes,
32 and 64, as shown in Table 4-6. The amount of samples per gradient update is either 32
or 64. The model will definitely train faster with a batch size of 64 than with a batch size
of 32. In order to train the model with the optimum performance, this research uses the
epochs=100 and batch size=64 tuning case for all features. Because the GRU results have
been proven to be promising, this research chooses to represent them aesthetically. The
visual representations of GRU findings for fastStorage and Rnd are shown in Figures from
4-5 to 4-20. The total samples for fastStorage and Rnd are 1250 and 1500, respectively.
Eighty percent of the data is used to train the model, and twenty percent is used to test it.
As a result, the findings of 250 and 300 samples for both traces can be plainly seen. The
actual (blue) and anticipated (red) statistics are clearly shown in both pictures. During
epochs=100, the training and validation loss graphs for each feature of both traces are
displayed in Figures 4-21 to 4-36. The model performs similarly on both training and
validation data, as seen by the loss graphs. The learning should be terminated if these two
loss plots begin to move consistently. All subfigures in Figures from 4-21 to 4-36 display
consistent movement at epoch =100, demonstrating that the model has learned extremely
well. By fine-tuning hyperparameters, the model can be trained more effectively.
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Figure 4-22 Fast Storage: UCPU
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Figure 4-23 Fast Storage: Rmemory
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Figure 4-28 Fast Storage: Nthw

Now this research will talk about the results of the E-state estimation. This re-
search proposes four different clustering algorithms to cluster similar types of VMs
based on their energy-consuming state, i.e. E-state, and compare the forecasting re-
sults obtained by the proposed methods. This research selects one-month data from fast-
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Figure 4-34 Rnd Storage: Dthw

Storage traces, which includes 1250 VMs with various features such as RCPU, Rmemory,
UCPU,UCPU,Dthr ,Dthw ,Nthr ,Ntht . As discussed in Section 4.2, this research also defines differ-
ent energy-consuming states. This research uses the univariate selection method on these
features, along with the χ2 test, to find the best four features to use on these range labels,
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and to ensure that they are independent of other features. During this test, the variables
RCPU, UCPU, Rmemory and Umemory appear with the highest χ2 score of 3.234e+5, 3.644e+5,
1.374e+9, and 1.032e+8, respectively. As can be seen, provided resources like RCPU and
Rmemory have an impact on a host’s energy usage. As a result, the suggested cluster-
ing algorithms use these selected features to locate similar groups of VMs based on these
features, which have been shown to be accurate and precise. On the specified dataset,
the proposed clustering algorithms, TCLA, TKmeans, and TP-teda, achieved 12.48%,
50.88%, 51.20%, and 66.48% accuracy, respectively, as shown in Figure 4-37. Further-
more, TSSAP has the highest clustering accuracy of all of them, at 66.48%. The AP
clustering technique, which has an accuracy of 8.32%, is used to propose TSSAP. As a
result, TSSAP outperforms AP by 87.48% and outperforms the average of other proposed
approaches by 53.80% since it incorporates two types of learning, transfer learning and
semi-supervised learning, into its functionality. As this research learns the ideal attributes
that have the greatest impact on energy consumption, the accuracy of transfer learning im-
proves. Furthermore, this research limits the AP technique to produce the actual number
of VM clusters rather than a random number of VM clusters using minor side information
such as the number of classes. Pairwise constraints, a semi-supervised method, have also
contributed to an increase in accuracy. Nearly 831 of the 1250 virtual machines are suc-
cessfully detected in energy-consuming modes, according to the 66.48 percent accuracy.
Although, because CPU and memory are the largest energy consumers in a host [139], this
research chooses only the best four features by performing a χ2 test. Disk throughputs,
on the other hand, contribute to a host’s energy usage; thus, if more features are included,
the precision of locating similar VMs can be improved. The accuracy can be improved by

78



Chapter 4 Workload and Energy State Estimation in Data Centers

AP TCLA TKmeans TP-teda TSSAP
Clustering Algorithms

0

10

20

30

40

50

60
E-

st
at

e 
[A

cc
ur

ac
y 

(%
)]

Figure 4-37 Clustering Accuracy Comparison for E-state Evaluated Using

Micro-precision

applying multiple state-of-the-art clustering works and several sorts of ML algorithms to
analyse the features instead of the χ2 test and the t-SNE. This research is mostly interested
in putting its new energy-saving notion into practise, which is to discover similar virtual
machines based on features that affect energy use largely at the VM level.

4.9 Summary

This research investigated workload and energy state estimation in cloud data cen-
tres in this chapter. Predicting workload in advance has grown difficult due to the high
non-linearity of data centre workload, and existing ML-based workload prediction sys-
tems primarily evaluate the utilisation metrics CPU and memory, ignoring other crucial
characteristics. Provisioned resources like CPU and RAM are also responsible for energy
consumptionwhen a newVM is created on a host, in addition to real utilisation levels. Fur-
thermore, disc and network throughput have an impact on the host’s energy consumption.
Data centre energy management requires visibility into energy utilisation. The virtual-
ized platform, unlike the host in modern data centres, does not have any built-in sensors
to monitor energy use. Furthermore, evaluating the energy usage of VM resources like
CPU, memory, and disc at the software level is challenging. However, the current work
proposes energy models that quantify energy at the VM level using the VM resource per-
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formance of CPU,memory, and disc. However, in order to evaluate memory energy usage,
this research must gather the last-level cache (LLC) events triggered by each VM on each
core, which is incredibly difficult to obtain, further complicating the measurement.

In this case, this research provided a machine learning-based model with a Predic-
tion Module to handle the two tasks mentioned above. This research looked at a variety of
machine learning algorithms, including LR, RR, ARDR, EN, and GRU, a deep learning
method. Its predictions, which are based on the best-performing model, assist RMS in
making effective decisions. Instead of monitoring each VM’s energy consumption, this
research came up with the new notion of classifying comparable VMs into various groups
based on variables that affect energy consumption in the second job. Because clustering
analysis is a powerful tool for analysing data similarities, this research chooses it as the
method of choice for this work. TSSAP, TCLA, TKmeans, and TP-teda are four different
clustering methods this research suggested to discover related groups of different energy-
consuming states (E-state). The following are the primary advantages of the model: (1)
It is evaluated using real workload traces that include both provisioned and utilised re-
sources, as well as all metrics performance such as provisioned CPU, provisioned mem-
ory, CPU utilisation, memory utilisation, disc throughput, and network throughput; (2) It
is efficient and adaptable because it can select the best results from a variety of machine
learning methods; and (3) It makes use of semi-sustainably provisioned CPU, provisioned
memory, CPU utilisation, memory utilisation, disc throughput, and network through

Based on the best-performing findings of multipleML approaches given in this work,
this research plans to incorporate the RMS component of themodel for resource provision-
ing and VM consolidation in the future. In order to increase workload forecast accuracy
and performance across all measures, more sophisticatedmodels will be investigated. Sev-
eral grouping and learning methods, such as kernel learning rather than paired constraints,
will be investigated in the future.
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Chapter 5 Ambient Temperature Prediction of Hosts in Cloud

5.1 Outline

According to the research review in Chapter 2, another key system state that needs
to be predicted is temperature, which will affect the effective energy conversion rate of
the entire system. In the previous chapter, we studied the prediction of system load and
energy consumption. In this chapter, we mainly consider the prediction of temperature in
the system environment.

In recent years, cloud computing has revolutionized computing, but its data centres
hosting cloud services consume an enormous amount of energy. Hyper-scale cloud data
centers have a critical problem with thermal management. Hotspots result from an in-
creased host temperature increase cooling costs and affect reliability. It is imperative to
accurately predict host temperatures in order to manage resources effectively. Due to
thermal variations in the data center, estimating temperature is a non-trivial task. Cur-
rent solutions for estimating temperature are inefficient because of their computational
complexity and inaccuracy. The use of ML to predict temperature using data is a promis-
ing approach. Additionally, researchers are putting consistent efforts into improving it.
Current works do not consider the train and test root mean square error (RMSE) values to
ensure consistent, reliable, and accurate predictions. The aim of this chapter is to present a
model for predicting ambient temperatures (a combination of CPU and inlet temperatures)
based on a hybrid GRU and Recurrent neural network. Models can learn from single in-
put normalized data, which must be predicted along with both train and test RMSE values
observed in order to ensure the validity of the proposed model. This study performed the
experiments on a benchmark dataset from the University of Melbourne that consists of
several physical machine features and compared them with state-of-the-art algorithms.

5.2 Introduction

The cost of operating a server is increasingly influenced by thermal concerns. A
primary factor limiting peak performance is thermal effects. As a result of this metric,
the server may be able to carry out reasonably long intervals of execution at a maximum
amount of heat and power, with short-lived crossings over this threshold (on the order
of microseconds) being allowed. Server racks in modern cloud data centers can consume
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1,000 watts each and reach temperatures exceeding 100 degrees Celsius [170]. The electric-
ity spent by a host is lost as heat into the environment, and the cooling system is designed
to remove this heat and keep the temperature of the host below the threshold [93]. An
increase in host temperature is a bottleneck for a data center’s normal operation because
it raises cooling costs. It also causes hotspots, which have a negative impact on system
reliability due to cascading failures produced by damaged silicon components.

Commercial data centres are under tremendous pressure to minimise cooling costs
and carbon emissions. A new paradigm is emerging in response to this pressure, allowing
for higher inlet water temperatures for the liquid cooling frequently used in these systems.
These systems are designed to make use of the server processors’ thermal headroom (also
known as the guard band).

As a result, this study requires accurate estimates of thermal dissipation and power
consumption of hosts based on workload level to limit the danger of peak temperature
ramifications and to save a considerable amount of energy. Accurately predicting a host
temperature in a steady-state data centre, on the other hand, is a difficult challenge [157, 171].
As a result, estimating the host temperature in the face of such differences is critical for
effective thermal management. To sense the CPU and ambient temperature, sensors are in-
stalled on both the CPU and the rack. These sensors can be used to determine the present
state of the environment’s temperature. However, for crucial RMS operations like re-
source provisioning, scheduling, and regulating the cooling system parameters, anticipat-
ing future temperature based on changes in workload level is equally important. To reduce
energy use and costs, data-driven solutions based on ML are being investigated. Google
has published a list of their work in this direction [21], in which they use ML to optimise
numerous of their large-scale computing systems in order to save money, and energy, and
improve performance. Furthermore, recent research has looked into ML algorithms for
predicting data centre host temperature [93, 157, 172], They do not, however, look at both the
train and test root mean square error (RMSE) values of temperature predictions in order
to get trustworthy, consistent, and accurate results. To say that the model has trained well
on a large data set, the train and test RMSE values should be almost comparable.

This study uses data from our university’s proprietary research cloud for this. On
the basis of this data, a data-driven model for temperature prediction is proposed. As a
result, this chapter contributes to the creation of a temperature prediction model based on a
recurrent neural network that can more accurately predict the ambient temperature, which
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is a mix of CPU and intake temperature.
The proposed model learns and extracts the pattern from workload rather than using

simple statistics like mean and others. The patterns discovered are then used to make more
predictions. The model is trained using several epochs in order to reduce train and valida-
tion loss. These predictions can also be used to suggest a dynamic scheduling approach
for lowering the peak temperature of a data centre host [93]. The model was compared to
the deep neural network and long-term short-term memory models on a benchmark data
set of fifty hosts. With a significant reduction in mean squared prediction error and mean
absolute prediction error, the proposed model beat the other two prediction models. A
system model has been shown in Figure 5-1.

Historical
Data

Resource Management
System

ML models

Deploy ModelsTrain Models

Validate Modles

Infrastructure As Cloud

Figure 5-1 System Model

In summary, the following are the major contributions of the work:
(1) Hybrid GRU -RNN-based model is proposed that gives more accurate predic-

tions, as well as tests and trains RMSE values, demonstrating its efficacy in making con-
sistent and dependable predictions.

(2) When the results of the proposed model prediction are compared with those of
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two other state-of-the-art prediction algorithms values for almost 8 hosts.
(3) A private cloud from the University ofMelbourne is used that includes host infor-

mation to estimate ambient temperature. These forecasts can be used to develop a dynamic
scheduling strategy for lowering peak host temperature and other resource management
tasks.

The rest of this chapter is laid out as follows: Predictive modeling is depicted in
Section 3. The fourth section discusses performance evaluation. Finally, Section 5 brings
this chapter to a conclusion while also pointing to future research areas.

5.3 Related Work

Weatherman, a predictive thermal mapping system for data centres, was introduced
by the researchers [173]. They looked at the impact of workload distribution on data centre
cooling and temperature settings. These models are intended to detect thermal abnormali-
ties and manage workload at the data centre level, with no regard for accurate temperature
forecasting. The researchers demonstrated the use of Artificial Neural Networks to iden-
tify thermal anomalies (ANNs) [174]. They employ Self-Organizing Maps (SOM) to de-
tect anomalous data centre behaviour from a previously trained trustworthy performance.
They tested their method with anomaly traces from a real data centre. The researchers
investigated various ML classifiers for configuring various hardware counters to improve
energy efficiency for a specific application [175]. Support Vector Machine (SVM), K-
Nearest Neighbours (KNN), and Random Forest (RF) were among the 15 classifiers ex-
amined. This research just looks at energy as a metric for optimization, ignoring the ther-
mal aspect. Furthermore, these studies are limited to HPC data centres, where temperature
estimate for application-specific applications is performed, which necessitates access to
application counters. They improved their method in a follow-up paper [157], including
more efficient models such as lasso linear and Multilayer Perceptron (MLP). Predictive
models are accurate and perform well in data centre resource management, according to
the findings. The Gaussian process-based host temperature prediction model in HPC data
centres was proposed by researchers [176]. To run the HPC test programs and collect the
training data, they employed a two-node Intel Xeon Phi cluster. They also presented a
greedy approach for application location in order to reduce thermal variations throughout
the system. Many scholars have recently researched thermal management using theoret-
ical analytical models [177, 178]. When compared to the real numbers, these models that
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estimate temperature using mathematical relationships are not accurate enough. Numer-
ous applications have been used to identify the best settings or system configurations to
achieve energy efficiency. However, researchers researched ML approaches particular to
temperature prediction and suggested the Gaussian process-based host temperature pre-
diction model in HPC data centres [176]. They collected the training data and ran the HPC
test programs on a two-node Intel Xeon Phi cluster. They also suggested a greedy ap-
proach for the placement of applications in order to reduce heat differences throughout
the system. They improved their solution in an extended research [157] by incorporating
more effective models like the lasso linear and Multilayer Perceptron (MLP). The find-
ings demonstrate that predictive models are reliable and effective in terms of data centre
resource management.

5.4 Predictive Modelling

5.4.1 DataSet

An ML-based prediction model is only as good as the data it was trained on. To
train the model in the data centre domain, training data can contain application and phys-
ical level features [157]. This research has utilised a dataset from the University of Mel-
bourne private cloud [93]. Instruction count, CPU cycle count, cache metrics (read, write,
and miss), and other features are available in this dataset. Accordingly, physical fea-
tures include host-level resource usage (CPU, RAM, I/O, etc.) and several sensor read-
ings (power, CPU temperature, fan speeds). Physical characteristics include host-level
resource consumption (CPU, RAM, I/O, and so on) as well as a variety of sensor read-
ings (power, CPU temperature, fan speeds, and so on). A brief summary of this data is
presented in Table 5-1.

Table 5-1 Real-world Data Sets Taken from Different Sources

Hosts VMs Cores Memory Duration Interval
75 650 9600 38692 GB 90 days 10 Minute

It contains logs from 75 physical hosts with an average of 650 virtual machines. The
data is kept for three months, with the log interval set to ten minutes.
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Figure 5-2 Model Workflow

5.4.2 Prediction Models

The prediction method entails a number of phases as shown in Figure 5-2. Data X is
normalised in the range (0, 1) in the preprocessing step using Eq (1). Where Xmin and Xmax
are minimum and maximum values respectively obtained from the dataset. The network
receives the value of normalised data x as input. Following that, the network is trained
and evaluated, and temperature predictions are made.

xi = Xi − Xmin
Xmax − Xmin

(5-1)

The predictive model is made up of three layered neural networks as shown in Figure
5-3. The neural network is made up of logical units known as neurons [179]. Different
nodes use the Rectified Linear Unit (ReLU) activation function. Eq. (2) can be used to
determine the activation function for a node. The model is trained using the supervised
learning method. Section 3 delves into the topic of training in greater depth. To anticipate
incoming workload on the data centre at time instance n + 1, the predictive model extracts
patterns from the real workload and analyses n prior workload values. The RNN model
and other comparison methods, DNN and LSTM, are implemented using the Sci-kit learn
package. This research has selected epoch = 100, batch size = 30, verbose = 1 parameter
setting for RNN. The reason for taking epoch =100 has been explained in further sections.

y = max(0,X) (5-2)

In this chapter, a hybrid model that combines GRU and RNN models is proposed.
In order to provide a more accurate and trustworthy forecast on the streamflow data set,
this hybrid model is considered to take advantage of both the strengths of the GRU and
RNN models as well as their characteristics and learning capabilities. Train and test data
sets are split 8:2 in ratio. The data set was split into two sets, a training data set and a
testing data set, each of which contains a number of processes, in order to validate the
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efficacy of the suggested hybrid model. The training part is the first step, and it entails
normalising the data set between 0 and 1 using Min Max Scaler, a straightforward method
for fitting data into a predefined boundary. The time series data input is segmented in the
subsequent phase using a sliding window to calculate the prediction accuracy, which was
set at 3. As it is concatenated and built into a fully connected layer, the RNN model’s
output is fed into the GRU model to create a single, final output. The hybrid model is
used to train and test the network, and each of the fully connected hybrid models has its
epoch, batch size, and verbose set to 31 and 2, respectively. Since this is the multi-layer
perception used throughout the study, the configuration chosen for the hybrid model in
this study is 1-2-1, or one input layer, two hidden layers with the first hidden layer having
5 GRU neurons and the second hidden layer having 5 GRU neurons, and an output layer.
The performance of the model was assessed at the training and testing phases, respec-
tively, using the RMSE of the training and testing data set. The proposed hybrid model’s
flowchart, which includes hybrid blocks with a fully connected hidden layer and shows
the data flow from the input to the output state, is shown in Figure 5-4. The GRU-RNN
is compared with blackhole algorithm [180], deep learning [181], differential evolution [182]

and back-propagation algorithm [183].
The recorded ambient temperature observed over time is retained as historical data

and used as input in order to construct a neural network model for temperature prediction.
The input data is then separated into two parts: training data and testing data. The training
data is used to train the prediction model, while the testing data is used to evaluate the
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model’s prediction accuracy. This research used 80% of the data for training purposes and
30% for testing purposes. The accuracy of the model over unseen patterns is evaluated and
measured using the Root Mean Squared Error (RMSE) once it has been trained. 8 hosts
are selected from the dataset and compared RMSE values with state of art algorithms.

Each host in the cluster has two CPUs that are managed by the same operating sys-
tem in the specified dataset. This research wants to create a model for each host that
appropriately represents its thermal behaviour. As a result, rather than estimating CPU
temperature alone, this research forecasts the host ambient temperature (T), which is a
combination of inlet and CPU temperature [184]. There are various reasons to evaluate
ambient temperature rather than CPU temperature. First, by integrating the inlet and CPU
temperatures, thermal fluctuations caused by both the intake and CPU temperatures may
be captured [93]. Second, rather than individual CPU temperature, cooling settings knobs
in data centres are modified based on host ambient temperature [173]. 

 

 

 

Figure 5-4 Flowchart of Hybrid Model
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Figure 5-5 Training Process Using Different Models for a Host

5.5 Performance Analysis

5.5.1 Experimental Setup

The tests are run on a systemwith a 1.90 GHz Intel(R) Core(TM) i3-4030U processor
and 4 GB of main memory. The proposed model’s Prediction model uses PyCharm Com-
munity 2020.2 to design several deep learning algorithms with the proposedmethod GRU-
RNN and predicts ambient temperature. This research uses the sci-kit learn [185] package
to implement all techniques. These methods are also implemented using the Keras [163]

deep learning framework. Because the model requires the most promising forecasts from
all of the prediction algorithms applied, all of the prediction algorithms are compared us-
ing RMSE to see which one has the fewest residual errors when compared to actual data.
For GRU-RNN, the input data is normalised using a min-max scalar. For all algorithms,
the parameter settings are set by default.
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Figure 5-6 Training Process of the Model Using Different Epoch Numbers for a

Host

5.5.2 Evaluation of Results

In the proposed approach, the prediction model is employed to handle a task: work-
load prediction, i.e., ambient temperature prediction. This research studies and compares
the proposed model for temperature prediction with the algorithms mentioned above. For
each model, the RMSE values are calculated. The lower the RMSE, the more accurate the
forecast. The train and test RMSE values obtained using the various approaches are shown
in these tables. The compared algorithms have extremely high RMSE values, implying
that they are incapable of providing accurate and dependable predictions. In contrast to
these techniques, which have large RMSE values indicating poor performance, RNN only
obtains a few train and test RMSE and MAE values for all hosts. RNNs have a sense of
memory, which aids them in remembering what happened previously in the time series
data, allowing them to obtain context and detect correlations and patterns. In this case,
RNN performs better as the model has learned during training very well with a smooth
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graph coinciding at epoch =100 as shown in Figure 5-5 (a). The model train vs validation
loss graphs are shown in Figures from 5-5 (a-c). The loss in Figure 5-5 (c) is obviously
degrading smoothly and coinciding at the terminal point. They have RMSE values of 0.16
and 0.15 for both Train and Test, which are nearly equal for host-5. The model in Figure
5-5 has been less adequately trained. They had RMSE values of 0.85 and 0.96 in training
and testing, as well as MAE values of 0.63 and 0.61 in training and testing, which are not
nearly equal. For LSTM, the RMSE values are 0.55, and 0.44, while the MAE values are
0.33 and 0.25. As a result of the model’s excellent training, RNN performed consistently
on the dataset. The results also suggest that RNN gives greater accuracy when the dataset
is large. A huge dataset reduces the accuracy of LSTM AND DNN, as shown in the ta-
ble. Furthermore, this research can expect reduced residual errors in prediction offered by
RNN with a larger training dataset and more hyperparameter adjustment if this research
uses a better infrastructure, such as a GPU cluster.

To train the RNN model, this research employed different hyperparameter values
for different epochs. Epochs are the number of iterations across which the input data is
delivered. Figure 5-6 depicts how the model is trained using different epoch numbers for a
host, such as 20, 50, and 100. It is considered that if the model is well-trained on the data,
it will perform better. The model trained at epochs = 100 has the least trained RMSE score
and MAE values, as shown in Figure 5-6 (c). The loss graph in Figure 5-6 (c) coincides,
indicating that the model has been well-trained. The highest RMSE and MAE values are
shown in Figures 5-6 (a) and 5-6 (b). For these reasons, this research sets all algorithms to
epochs = 100. The model performs similarly on both training and validation data, as seen
by the loss graphs. The learning should be terminated if these two loss plots begin to move
consistently. Figure 5-6 (c) displays a steady movement at epoch = 100, demonstrating
that the model has learned quite well. By fine-tuning hyperparameters, the model can be
trained more effectively.

GRU-RNN outperformed BA by 4.42%, DL by 2.35%, DE by 9.59% and BPA by
2.66% in train RMSE values. For test RMSE values, GRU-RNN outperformed BA by
3.05, DL by 2.37, DE by 2.56, and BPA by 6.29. For host 1, the proposed hybrid model
achieved equal RMSE values with DL in Table 5-2. For host 3, BA, DL, DE and BPA
obtained almost equal RMSE values. Moreover, host 4 also obtained the nearest equal
RMSE values for BA, DL, DE and BPA. For host 5, BA DL DE obtained almost equal
RMSE values. For host 6, BA, and DE obtained almost equal RMSE values. For host
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7, BA, and DE obtained almost equal RMSE values. In Table 5-3, for host 3, BA, and
BPA obtained almost equal RMSE values. For host 4, DL and DE obtained equal RMSE
values. For host 5, BA and DL obtained equal RMSE values. For host 8, DL and DE
obtained equal RMSE values.

Table 5-2 Train: RMSE Values

Hosts GRU-RNN BA DL DE BPA
HOST 1 4.5 5.1 4.5 1.2 10.55
HOST 2 1.7 75.1 7.9 11.9 10.9
HOST 3 9.8 24.9 25.3 24.9 24.3
HOST 4 12.9 44.03 44.8 43.8 44.5
HOST 5 1.5 7.0 7.0 7.2 66.8
HOST 6 0.7 4.7 3.3 4.4 5.9
HOST 7 0.9 6.4 6.5 6.8 6.9
HOST 8 0.1 6.9 6.4 6.5 66.8
SUM 32.1 174.13 107.4 327.8 117.5

Table 5-3 Test: RMSE Values

Hosts TGRU BA DL DE BPA
HOST 1 3.5 4.1 5.5 2.2 9.55
HOST 2 0.7 7.1 7.8 15.9 19.9
HOST 3 9.9 20.9 19.3 14.9 20.3
HOST 4 0.9 4.03 4.8 4.8 4.5
HOST 5 1.5 6.0 6.0 9.2 60.8
HOST 6 0.7 5.7 4.3 4.4 5.0
HOST 7 0.9 6.8 6.4 6.6 6.0
HOST 8 0.1 6.7 6.8 6.8 6.8
SUM 18.2 73.83 61.4 64.8 132.85

5.6 Summary

Temperature forecast accuracy can be utilised to reduce data centre energy consump-
tion and operating costs. However, it is a difficult and time-consuming task to estimate the
temperature in a data centre. Existing temperature prediction methods are imprecise and
computationally expensive, and they do not take into account train and test RMSE values
for trustworthy and consistent results. Optimal thermal management combined with ac-
curate temperature prediction can lower data centre operating costs while also increasing
reliability. Because this research was able to take into account CPU and intake airflow
temperature variations throughmeasurements, data-driven temperature estimation of hosts
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in a data centre can offer us a more accurate prediction than simple mathematical mod-
els. In this chapter, this research looks at a dataset with thermal variations and proposes a
model based on recurrent neural networks RNN that takes into account both training and
testing results to ensure that the predictions are stable. The train and test RMSE values
are documented and compared to see if they are nearly similar or not to guarantee the pro-
posed model’s training validity. The proposed model achieved an average RMSE value
that was 82.2% less than the average from DNN and 61.36% less than the average from
LSTM respectively. As part of future work, this research intends to develop a dynamic
scheduling technique driven by temperature prediction for energy-efficient execution of
applications.
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Chapter 6 Conclusions and Future Directions

The dissertation comes to a close with this chapter, which includes a summary of
works and major contributions.

6.1 Summary and Conclusions

Clustering is the division of data into groups that are related and distinct. Cluster-
ing challenges are commonly affected by issues of accuracy across diverse datasets. As a
result, finding a clustering algorithm that works in all cases is quite challenging. As a re-
sult, improved clustering algorithms that can deal with these limitations are required. This
research focuses on semi-supervised clustering in this case, which combines some super-
vised side information with unsupervised data to improve accuracy. This research offers
new clustering methods and shows how they can be used to anticipate energy consump-
tion in cloud data centres. Cloud computing platforms enable highly networked resource-
intensive business, scientific, and personal applications by providing on-demand and flex-
ible access to elastic resources. Demand for cloud computing has risen in distributed,
large-scale, and heterogeneous data centres. To achieve cloud computing sustainability, it
is critical to manage resources and energy efficiently in such architecture. It is also vital
to provide dependable services to application users by meeting their SLA criteria. In cur-
rent cloud systems, state-of-the-art rule-based or heuristics-based Resource Management
Systems (RMS) solutions have proven insufficient. This research focuses on machine-
learning-based predictions using regression-based techniques, and this research presents
semi-supervised clustering algorithms for predicting non-linear workload and energy con-
sumption state. The following significant contributions to the state-of-the-art are made in
this research:

The challenges of machine-learning-based resource management in a cloud comput-
ing environment were discussed in Chapter 2, as well as the various approaches that have
been used to solve these challenges in recent years, as well as their benefits and drawbacks.
In recent years, the number of studies looking into how to use ML techniques to predict
workload, energy consumption, and other tasks has expanded considerably. To solve a
variety of challenges, these tactics use a variety of ML methodologies.
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6.2 Future Directions

(1) Clustering analysis, which does not need data labeling, might be used to charac-
terise service renters as a future study topic. Based on historical resource needs, similar
patterns of service renters may be automatically retrieved.

(2) The creation of a general ensemble framework for every type of dataset in cloud
time series workload data is a future research aim. Deep learning (DL) is a fast-developing
and wide-ranging research field including novel architectures.

(3) Two future research directions for avoiding non-linear resource utilisation in
modern data centres are dynamic resource provisioning and dynamic VM consolida-
tion, which take into account various types of VM resources such as CPU, memory, and
bandwidth, current and future resource needs, and SLAs such as compute-intensive non-
interactive jobs and transactional applications.

(4) The use of a fixed threshold for detecting overloaded hosts might result in inac-
curate VMmigration. If a VM’s resource use degrades in a short period of time, there’s no
need to transfer it. In this case, the technique should include a dynamic resource utilisation
threshold that prevents VM migration when it reaches a predetermined level, taking into
account data from the near future. This is the next research path in VM consolidation for
effective VM migration. In addition, VMs should be moved if there will be a protracted
period of load reduction in the near future.
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