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Abstract

Cloud computing supports on-demand provisioning of resources in a virtualized,

shared environment. Although virtualization and elasticity characteristics of cloud re-

sources make this paradigm feasible, however, without efficient management of re-

sources, the cloud system’s performance can degrade substantially. Efficient manage-

ment of resources is required due to the inherent dynamics of cloud environment such

as workload changes or hardware and software functionality such as hardware failures

and software bugs. In order to meet the performance expectations of users, a compre-

hensive understanding of the performance dynamics and proper management actions

is required. With the advent of data analysis techniques, this goal can be achieved by

analyzing large volumes of monitored data for discovering abnormalities in the perfor-

mance data.

This thesis focuses on the anomaly aware resource scaling mechanisms which uti-

lize anomaly detection techniques and resource scaling mechanism in the cloud to im-

prove the performance of the system in terms of the quality of service and utilization of

resources. It demonstrates how anomaly detection techniques can help to identify ab-

normalities in the behaviour of the system and trigger relevant resource reconfiguration

actions to reduce the performance degradations in the application. The thesis advances

the state-of-the-art in this field by making following contributions:

1. A taxonomy and comprehensive survey on performance analysis frameworks in

the context of cloud resource management.

2. An Isolation-based anomaly detection module to identify performance anomalies

in web based applications considering cloud dynamics.

3. An Isolation based iterative feature refinement to remove unrelated and noisy fea-

tures to reduce the complexity of anomaly detection process in high-dimensional

data.
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4. A joint anomaly aware resource scaling mechanism for cloud hosted application.

The approach tries to identify both the anomaly event and the root cause of the

problem and trigger proper vertical and horizontal scaling actions to avoid or re-

duce performance degradations.

5. An adaptive Deep Reinforcement Learning (DRL) based scaling framework which

leverages the knowledge of anomaly detection module to decide on proper de-

cision making epochs. The scaling actions are encoded in DRL action space and

the knowledge of actions values are obtained by training multi-layer Neural Net-

works.
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Chapter 1

Introduction

With the advent of cloud era, the outsourcing of storage and computing resources as

well as large scale computing-intensive applications are becoming more popular. Cloud

allows the delivery of off-premise resided services where the complexities of hardware

and software maintenance are transferred to cloud providers. The technology is impact-

ing many organizations and industries in an optimistic manner. Nowadays, many indi-

viduals are exploiting the storage capabilities of cloud-based services such as DropBox

and Google Drive; Many organizations are using the power of the cloud-based commu-

nication services such as emails and social networks; Many legacy systems are migrated

toward the cloud to access more powerful resources with higher scalability and relia-

bility. Moreover, the up-front investment in hardware, software implementation and

maintenance or license costs can be avoided by utilizing fully deployed infrastructure

and variety of services offered by cloud providers. According to RightScale survey statis-

tics, in the year 2019, around 94% of respondents are using at least one public or private

cloud with 79% of their workloads running on the cloud (Fig. 1.1)[1].

However, the flexibility of IT infrastructure in cloud systems brings a new era of

challenges and opportunities in terms of the management of resources. Efficient man-

agement of computing resources is necessary to guarantee Service Level Agreements

(SLA) in terms of the quality of delivered services. Small scale applications with a few

numbers of clustered computing resources can be handled easily as both demands and

supplies are predictable and controllable. In cloud computing, however, the resources

are shared, the workload is heterogeneous and mostly unpredictable and the scale of

management is large and distributed, comprising geographically scattered data cen-

ters with hundreds and thousands of physical resources. While over-previsioning of

1
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Figure 1.1: RightScale 2019 report on cloud usage statistics.

resources seems an easy solution for this problem, in reality, the resources are finite and

wasted resources increase the costs and energy consumption. RightScale2019 reports an

estimated amount around 27%-35% of wasted resources in the cloud. The report also

mentions that while the costs from wasted resources is a top challenge for cloud users,

only a minority of companies are implementing automated policies to manage resources

such as rightsizing instances [1]. Therefore, automated management of cloud resources

to adapt to the real requirements of the environment is still a big challenge to be in-

vestigated. In this regard, the big decision for cloud providers is how to control the

amount of resources to ensure the Quality of Services (QoS) as expected by the users

while avoiding under-utilized states with wasted resources.

With the advances in the storage capabilities, a huge volume of log data from moni-

toring application and system level attributes has been provided for the administrators.

These data provide a valuable source of traceable information on the performance of the

system components. However, with this volume of data, manual policies are difficult to

be enforced and tracked down. On the other hand, the advance in data analyzing and

self-learning techniques is offering missing parts for an automated performance aware

resource management solution for cloud providers. The idea is that the violations of QoS

or the wastage of resources are detectable from the logs of the performance indicators,

utilization metrics and other collected attributes from the environment. Therefore, by

analyzing the recorded data, the system can provide information for questions such as

when a problem happens, where and in some cases why it is happening and as a result

trigger a proper response in terms of the allocated resources.
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Figure 1.2: An abstract view of main models of cloud services.

This thesis addresses the problem of efficient management of cloud resources in

the presence of performance problems using data analysis and anomaly detection tech-

niques. Anomaly detection is used for identifying performance problems during the

execution of cloud-hosted applications. We propose a detailed survey and taxonomy

on performance aware resource management in cloud including various performance

analysis techniques and corresponding resource adjustment solutions. Additionally, the

applicability of anomaly detection is studied in terms of the effectiveness in cloud per-

formance analysis and also high dimensional data. Then, a joint anomaly analysis and

resource management module is proposed which demonstrates the efficacy of perfor-

mance analysis in improving the quality of decisions in cloud resource management

process.

1.1 Background

This section briefly reviews some of the main concepts and terms for this thesis.
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Figure 1.3: A simple view of resource provisioning performance problems.

1.1.1 Cloud Computing

Cloud Computing is a paradigm to offer a pool of resources (processing, storage, net-

work, software, etc) over the Internet on an on-demand, pay-as-you-go policy. The of-

fered resources can be categorized into three main models [2, 3] as shown in Fig. 1.2

:

• Infrastructure as a Service (IaaS): A model which provides the base resources such

as computing, storage and network to enable customers to deploy and run their

standalone applications, and operating systems. Examples of public IaaS providers

include Amazon EC2 [4] and Google compute engine [5] which offer their re-

sources with a variety of configurations and pricing models.

• Platform as a Service (PaaS): A model which offers the base platform including

programming language tools, libraries and services to enable application develop-

ers to build and deploy their applications in the cloud.

• Software as a Service (SaaS): A model which provides applications and softwares

such as email services, entertainment applications and social networks to be ac-

cessed by customers from interfaces such as web browser. Users can easily access

the software through designed interfaces without worrying about installation or

maintenance tasks.

IaaS is the lowest layer where the main interaction with hardware components is
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happening. While physical resources are finite at this layer, virtualization and elasticity

features of cloud create a virtual view of a ”pool of infinite resources” for the upper

layers. Virtualization enables the sharing of physical resources by creating the concept

of virtual machines (VM). VMs are units of computing which can share the resources on

the same Physical Machine (PM) while isolating the running of their own applications

from the rest of the system. Elasticity is another feature of cloud which helps to add and

remove resources automatically to adapt to the current demands in the system.

In this thesis, we focus on the problems of IaaS layer in terms of the elasticity of re-

sources with regard to VMs. With the inherent dynamicity of cloud, originated from dy-

namic changes in the workloads, finite sharable resources and possible complexities in

the functionality of software and hardware, making proper and on-time decisions about

the configuration of resources is becoming more complicated. Static solutions can not

capture the dynamicity of the environment and suffer the delayed decisions, violations

of QoS or wasted resources as shown in Fig. 1.3. Therefore, resource providers have to

continuously monitor the performance of resources and applications to make proper deci-

sions at the right times to correct performance problems and maintain the expected Quality

of Services(QoS). In the following, we briefly discuss the main terms in this definition.

1.1.2 Cloud Computing Performance

System Performance is usually defined in terms of the duration of performing a task

or collection of tasks delivered as a service to the end users. For example, response

time (RT) is a common attribute in web based applications that measure the duration

from receiving a user’s request to returning a response of the server. The concept of

the performance is closely related to the definition of SLAs. From user’s perspective,

there is a range of variations in the performance that is acceptable and violating these

levels requires the resource provider’s attention or it causes penalties such as monetary

costs. The expected services can be formulated in SLA contracts and service and re-

source providers are responsible for the fulfillment of these expectations. Therefore, the

providers need to regularly monitor the demands and quality of delivered services to

ensure the compliance of the SLAs.
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There are two main approaches to measuring the performance of an application: 1.

Performance is evaluated by directly targeting the metrics that evaluate the goodness of

the functionality of services in the context of a specific application (ex. monitoring RT in

a web-based service). However, this approach requires access to the VMs to evaluate the

quality of the delivered services 2. Performance is evaluated indirectly by measuring the

attributes of the running system. The idea is that if the running system shows signs of

the problem in terms of the performance of resources (ex. CPU and memory utilization),

these problems eventually affect the execution of hosted services. This approach may

not be able to capture the application level problems, but it can be an effective way for

detecting system-level problems especially when the decision makers do not have direct

access to the target application and services.

1.1.3 Performance Anomalies

Performance problems are unexpected changes in the performance that may affect the

experience of users with regard to the quality of delivered services. As they are abnor-

mal compared to the normal behavior of the system, these problems are also known as

anomalies. They are identified by continuously monitoring and analyzing the perfor-

mance metrics and comparing the measurements with past behavior or known patterns

of acceptable behavior. Quick identification of performance anomalies is a necessity to

guarantee the satisfaction of SLAs. To better understand how these problems can im-

pact the production environment, a real world problem is discussed in the following

example:

In October 2011, Bank of America Online Banking suffered a series of slowdowns and outages

in their site for six consecutive days which affected 29 million on-line customers. Bank attributed

this problem to a combination of technical issues and higher than anticipated website traffic. The

problem was noted as the result of a ”multi-year project” upgrade. Testing of certain features and

high traffic at the end of the month also contributed to the delays [6].

In the above example, the source of the problem is attributed to multiple reasons.

However, the signs of the problem were identified with the experienced slow-downs of

the service by customers. An autonomic resource management system should be able



1.1 Background 7

0

2

4

6

8

10

12

14

16

10 110 210 310 410 510

Response Time

Figure 1.4: An example of latency anomalies in a plot of application response time.

to learn and predict the patterns of the traffic to pro-actively prepare extra resources for

the duration of high load intervals without delays. Moreover, unexpected performance

problems such as slowdowns and outages should be detected by monitoring the per-

formance indicators and managed by reactive reconfiguration of resources. Fig. 1.4 is a

plot of RT against time. The solid red dots are some examples of latency spikes that are

detected as anomaly compared to the rest of the values.

Performance problems can happen at different levels of granularity such as hardware

fault, software bug and mis-configurations, network attacks, and etc. In this thesis, we

target a category of problems known as resource bottlenecks [7] which happens when

the limitations of one or more resources cause performance degradation in the whole

system. This is especially important for large scale cloud-based web applications where

the stream of requests from users can change frequently. Unexpected changes affect the

patterns of resource utilization with regard to the future requirements. For example,

web applications are known to be prone to many performance problems which involve

CPU and memory resources [8].

1.1.4 Resource Configuration Decisions

Resource configuration encompasses a variety of decisions including amount, type and

location of allocated resources to an application. VMs are common unit of resource

which can be configured. Public providers such as Amazon offer a variety of VM tem-
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plates in terms of the CPU, RAM or storage to be added/removed (known as horizontal

scaling solutions) during execution of the application. On the other hand, recent hard-

ware and software advancements make fine-grained controls on resources (vertical scal-

ing technology) possible. This enables the on-the-fly resizing of an active VM to adjust

the amount of allocated resources to the workload of the VM. Horizontal and vertical

resource configurations, as shown in Fig. 1.5, are two types of the scaling techniques that

change the amount of active resources in the system. This thesis exploits both techniques

as possible solutions for reactive and pro-active management of resources in response to

the performance problems.

1.2 Research Problem and Objectives

This thesis addresses the adaptive scaling of cloud resources by exploiting performance

anomaly detection techniques. The objective is to decrease the adversary effects of per-

formance degradation in terms of the QoS and SLA satisfaction during execution of an

application. Therefore, we formulate the problem as proposing an adaptive model for

the scaling of resources in the presence of performance problems with regard to the fol-
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lowing research questions:

• Q1: When a scaling decision should be triggered: To answer this question, we first

need to answer when a performance problem happens in the system. A variety of

techniques such as time series analysis, statistical profiling, machine learning and

etc can be utilized to identify abnormal and unexpected patterns in the collected

performance data. The final solution should be sound in terms of the accuracy of

detected anomalies and quick to be applicable for real-time applications such as

web-based systems.

• Q2: What type of the scaling should be triggered: Current literature mostly ap-

ply one of the above-mentioned scaling techniques with the majority of horizontal

scaling. However, depending on the level of performance problems, one tech-

nique may outperform the other. For example, a system-level load problem (over-

utilization) may require new VMs to be added. On the other hand, a VM-level re-

source shortage such as temporal increases of memory consumption from a back-

ground process can presumably be alleviated by a quick increase of allocated mem-

ory for target VM (Vertical scaling). The final solution should be scalable to fit the

large scale applications in the cloud environment.

• Q3: How the model should be adapted to the changes: Adaptability of the model

is a challenge to be tackled at both data analysis part and scaling decision maker.

Anomaly detection models require regular updates to capture the recent normal

state of the performance. Otherwise, the old models result in many false alarms

and trigger unnecessary resource adjustments. On the other hand, the scaling de-

cision maker requires a model to map the performance problem to correct scaling

action. Considering the dynamics of the cloud environment, the decision makers

may need to update their mapping rules to adapt to the new performance patterns.

1.3 Thesis Contributions

Based on the aforementioned research questions, the contributions of this thesis are as

follows:
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1. A comprehensive taxonomy and survey of performance aware resource manage-

ment in cloud, including performance analysis solutions and corresponding re-

source adjustment actions.

2. Investigating efficient anomaly detection in the context of the cloud performance

and high dimensional data (Q1)

• Deploying an anomaly injection module on a web-based testbed to generate

web performance data with a variety of performance anomalies.

• A time-series based model for identifying performance problems in web per-

formance data

• Validation of anomaly detection accuracy with a multi metric based approach

with regard to both AUC and PRAUC

• A new Bagging based anomaly detection technique

• A novel iterative feature refinement to make the anomaly detection testing

faster and feasible for high-dimensional data.

3. A novel distributed joint anomaly triggering and rule-based computing resource

management framework (Q2)

• A cause inference model to identify the cause of the performance problem.

• A model updating algorithm for on-line updating of anomaly detection mod-

els.

• A two-level distributed algorithm for combining horizontal scaling (System

level) and vertical scaling (Local VMs) actions.

4. An adaptive Deep Reinforcement Learning (DRL) based resource management

(Q3)

• Exploiting RL learning concept to improve the self-adaptivity of resource

management in the context of real-time applications with performance prob-

lems.
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Figure 1.6: The thesis structure.

• A new event-based RL framework for scaling decisions. Decision epochs are

defined based on the anomalous events instead of conventional time-based

epochs.

• Combining scaling solutions into RL action space to adjust the amount of

VM-level CPU and memory as well as the number of VMs in the system.

•

1.4 Thesis Organization

The structure of this thesis is shown in Fig. 1.6 and Fig. 1.7 and is derived from several

conference and journal papers published during PhD candidature. The remainder of

this thesis is organized as follows:

• Chapter 2 presents a taxonomy and survey on anomaly and workload aware re-

source management in the cloud. This chapter is derived from:
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• Time-Series based Anomaly Detection (Chapter3)
• Iterative based Feature Refinement (Chapter4)

Q1: When a scaling decision 
should be triggered?

• Anomaly-aware resource scaling Framework (Chapter5)Q2: What type of the scaling 
should be triggered?

• Adaptive Deep RL-based Scaling Framework (Chapter6)Q3: How the model should be 
adapted to the changes?

Figure 1.7: The connection of research questions and thesis chapters.

- Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, Performance-

Aware Management of Cloud Resources: A Taxonomy and Future Directions,

ACM Computing Surveys, Volume 52, No. 4, Aug 2019.

• Chapter 3 presents a fast time-series based anomaly detection approach for dy-

namic and heterogeneous workloads of web applications in cloud. This chapter is

derived from:

- Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, Perfor-

mance Anomaly Detection Using Isolation-Trees in Heterogeneous Workloads of

Web Applications in Computing Clouds, Concurrency and Computation: Practice

and Experience (CCPE), Volume 31, No. 20, ISSN: 1532-0626, Wiley Press, New

York, USA, Oct 2019.

• Chapter 4 presents a novel iterative algorithm to refine features of high-dimensional

data with the aim of improving the efficiency of anomaly detection in terms of the

training and testing times. This chapter is derived from:
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- Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, ITL: An

Isolation-Tree based Learning of Features for Anomaly Detection in Networked

Systems, Future Generation Computer Systems (FGCS)(under 2nd review).

• Chapter 5 proposes a novel anomaly-aware computing resource management so-

lution with a two-level combination of horizontal and vertical scaling actions for

SLA fulfillment. This chapter is derived from:

- Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, ACAS:

An Anomaly-based Cause Aware Auto-Scaling Framework for Clouds”, Journal

of Parallel and Distributed Computing (JPDC), Volume 126, Pages: 107-120, ISSN:

0743-7315, Elsevier Press, Amsterdam, The Netherlands, April 2019.

• Chapter 6 proposes an adaptive Deep-Reinforcement Learning based resource man-

agement with anomaly-based decision epochs. This chapter is derived from:

- Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, ADRL:

A Hybrid Anomaly-aware Deep Reinforcement Learning-based Resource Scaling

in Clouds, IEEE Transactions on Parallel and Distributed Systems (TPDS) (under revi-

sion).

• Chapter 7 concludes the thesis by summarizing the findings and discussion on

future works.





Chapter 2

A Taxonomy and Review of
Performance-aware Management of

Cloud Resources

This chapter proposes a taxonomy to depict the main approaches in existing researches from the

data analysis side to resource adjustment techniques. The main requirements and limitations in

resource management including a study of the approaches in workload and anomaly analysis in the

context of the performance management in the cloud are discussed. The detailed survey of existing

approaches and their classification based on the proposed taxonomy is presented. Finally, considering

the observed gaps in the general direction of the surveyed works, a list of the new research gaps for

future researchers is proposed.

2.1 Introduction

Cloud computing as an on-demand, pay-as-you-go environment has been modelled

based on two main concepts of elasticity and virtualization. The inherent flexibility

brought by these techniques in the area of high performance computing is accompanied

with the complexity of managing distributed resources while meeting the expectations

of the users. The emergence of the public Cloud Service Providers (CSP) such as Amazon

and Google which are extending the scientific limited applications of the cloud environ-

ment to industrial, academic and personal use cases make the need for more advanced

This chapter is derived from:

• Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, Performance-Aware Man-
agement of Cloud Resources: A Taxonomy and Future Directions, ACM Computing Surveys, Vol-
ume 52, No. 4, Aug 2019.

15
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and complex resource management solutions highly important.

The main goal for CSPs is to find better ways of utilizing resources while keeping

the service level agreements (SLA) as expected. SLAs are contracts among CSPs and

customers to maintain the minimum Quality of Service (QoS) delivered by the offered

applications. Breach of the SLAs costs the CSPs both money and their reputation. Con-

sidering dynamic characteristics of cloud including unreliability and heterogeneity in

resources and workloads, simple static resource planning solutions do not work. There-

fore, traditional resource management architecture is extended with monitoring mod-

ules which can provide timely information on the performance of the application along

with the resource utilization of system components. The collected data from monitor-

ing the system and application provide a source of highly valuable information about

the health of the system. On the other hand, advances in data learning methods have

provided missing parts of a data aware performance management offering all the con-

cepts and tools for analyzing data to find patterns, trends and interesting changes in the

behaviour of monitored components. The integration of two parts of performance data

analytics and automated resource management brings new challenges and opportuni-

ties in both areas of theoretical concepts and practical implementations. In this chapter,

we try to identify the major challenges and corresponding solutions in the problem of

data aware performance analysis and resource management in the cloud. We present a

taxonomy to depict various perspectives of the performance management in the cloud,

covering all aspects of data collection, analytics, and resource adjustment solutions.

The rest of this chapter is organized as follows: Section 2.2 describes the main blocks

of performance data aware resource management and existing challenges followed by

listing the most influencing factors in this area. Section 2.3 introduces two main ap-

proaches in utilizing data as a source of extra knowledge for resource management.

Then, sections 2.4 to 2.8 review different characteristics of data analysis and resource

management modules based on the categories identified in the taxonomy. Finally, sec-

tion 2.9 discusses the main gaps and directions for future researchers and section 2.10

summarizes the chapter.
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Figure 2.1: The Taxonomy of Performance Data-aware Management of Cloud Com-
puting Resources.

2.2 Background

The concept of resource management in the cloud environment encompasses all the

techniques and procedures that help to adjust the configuration of resources according

to the demands of the users and applications in the system. For example, auto-scaling

solutions are based on a characteristic that allows system resources to expand or shrink

automatically at different levels of granularity (Virtual Machines (VMs), CPU, RAM,

etc) according to the perceived state of the system. To be clear about these concepts, we

pursue the following definitions in the rest of the chapter:

Performance Indicators: All the measurable attributes from the resources and appli-

cations which demonstrate the degree of functionality of the corresponding unit in the

system. These indicators continuously change over time and are initial sources of infor-

mation for the health of the system. For example, the time it takes to load a page known

as response time (RT) from a web based application is the most perceptible sign that the

system is performing at the expected level or not. Longer than usual RTs trigger the

warnings of having some sort of the problem, requiring technical considerations form
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the system administrators.

System State: State or behaviour of the system at each time is an abstract represen-

tation of all the operational attributes and performance indicators of the system which

can be recognized in normal or abnormal/anomalous condition.

The main indicators of an abnormal state are the presence of the unexpected patterns

or values in the performance indicators of the system.

Performance Degradations are caused by abnormal behaviors when they affect the

performance indicators adversary. For example, in the case of the increase in the number

of requests (increased demand from customers) to a web server, if current resources can-

not handle the newly received requests, the RT observed by users will increase. The un-

acceptable increases in the RT are considered as performance degradation which should

be avoided. One solution can be to add new resources corresponding to the overloaded

component of the application so the amount of resources is in accordance with the in-

coming load to the system.

Considering aforementioned definitions, any automated Resource Management Mod-

ule (RMM) is dealing with two main challenges:

When a performance degradation is happening in the system? In an ideal, highly reliable

environment where no abnormal behaviour is expected and applications show consis-

tent behaviour with stable performance, traditional static scheduling solutions will work

and dynamic scaling of the resources is not required. However, in a real environment

with a wide range of internal and external factors which can affect the behaviour of the

system, performance degradation has become an important challenge to be dealt with

accurately. There is a wide range of causes identified for these problems from fluctua-

tions in the incoming workload to a malfunctioned hardware or a buggy software that

can affect the performance of the application or VMs. Therefore, the onset time of the

degradations should be known so a proper and timely corrective action can be started.

Monitoring sensors which track the performance of each component generate a vast

amount of data which include hidden patterns and signs of the health of the system.

Previously, we had to rely on the expert of the human operators to skim the data and

find alerting behavior. However, considering the scale of the generated data from hun-

dreds and thousands of machines located in different geographical locations, the manual
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approach is not feasible anymore. Therefore, researchers have started to take advantage

of the advanced data analytics methods and more powerful and cost-effective comput-

ing hardware to automate and accelerate the process and find better quality knowledge

about the performance of the target systems.

What type of corrective action should be performed? In order to alleviate the performance

problems of the system, RMM should start a corrective action in the form of load re-

distribution, resource provisioning, migrations, etc. Current resource providers such

as Amazon or Azure offer migrations or simple threshold based scaling services which

change the number of VMs in the system. There are also more customized resource

management policies such as on the fly changes in the resource configuration of one VM

which is offered by some CSPs such as [9]. The selection of proper action can be depen-

dent on many factors including technical or business limitations, type of the problem,

etc. We have identified some of the most important factors as follows:

• Technical limitations: Virtualization is the key concept for cloud models. It en-

ables hosting different applications or the components of one application inde-

pendently on one Physical Machine (PM) with migration capability available to

move them to other PMs without significant downtimes in the system. Currently,

many public resource providers such as Amazon and Microsoft Azure offer the

required environment for CSPs to host their applications on VMs and dynamically

add/remove VMs in the system. There are also more fine grained controls avail-

able to configure resources at VM-level known as vertical scaling. In this process,

size of the VM can change on-the-fly without any rebooting of the VMs. However,

the functionality needs support from both hypervisor and the kernel of the VM.

Currently, providers such as Amazon [4, 10] and Microsoft Azure do not support

this functionality.

• Business considerations: There are a vast amount of the resources offered by

cloud resource providers with various pricing strategies. For example, Amazon

offers on-demand instances with hour/seconds based pricing or much cheaper re-

served instances with long-term contracts [4]. There are different pricing rules for

vertical scaling of the VMs such as offered rules by [9]. CSPs should consider these
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options when deciding on the configuration of their system and scaling policies.

As a result, selecting the best action will be limited to the available budget prede-

fined by the application owners. For example, in the case of the budget shortage,

some levels of the performance degradations may be acceptable from the owner’s

perspective.

• Root cause of the problem: In traditional threshold based scaling, changes in the

number of the VMs is the most common response to performance problems in

the system. However, there is a wide variety of reasons from hardware faults to

local software bugs in the application or security issues such as Distributed Denial

of Service (DDoS) attacks that can create the signs of performance degradations.

In cases that resource shortage is not the main reason for the problem, adding

new instances to the system may temporally alleviate the problem, but it is not

optimal as a long-run solution. Moreover, as the vertical scaling is becoming more

prominent as a scaling option, having the knowledge of the underlying reason

has become more interesting for a more cost or resource effective solutions. For

example, in the case of a local memory shortage in one VM, a VM-level increase

of the available memory may be more effective than adding new VMs. A more

detailed explanation of the pro and cons of these types of decisions are presented

in section 2.8.

• SLA agreements: SLA agreements are contracts between users and CSPs which

identify the expected QoS received by customers. These expectations are usually

based on the outputs of the system perceivable by customers such as the availabil-

ity of the service or the delays in the response. Having specific requirements for

the output of the system may limit available choices of the RMM. For example,

CSPs may consider over-provisioning as a better option than dynamic scaling to

manage high loads in the system when having a stable response time is highly

important for the customers.
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Figure 2.2: General Phases of Data Aware Performance Manager in Cloud

2.2.1 Data Aware Resource Management

Motivated by the aforementioned challenges and requirements, researchers are leverag-

ing various tools and concepts to offer more mature solutions for cloud resource man-

agement. An area which has been vastly investigated is data analytic techniques which

are bringing new opportunities and challenges in the area of distributed performance

management. In order to apply these techniques, researchers are focusing on the obtain-

able knowledge from the data collected from performance indicators of the system and

applications. It has been shown that these data are a valuable source of information on

the health of the system and a starting point for detecting initial symptoms of the abnor-

mal behaviors. Based on the selected performance data to be monitored, the approach

for the abstraction and modeling of the system and the actions that are performed to

mitigate the performance problems, different types of the resource management strate-

gies are proposed. In order to better understand the building blocks of these solutions,

we first briefly review four main components of data aware performance management

framework in the following paragraphs.

The main parts of the automated resource management in the cloud can be explained

based on a classic control loop known as MAPE (Monitor, Analyse, Plan, Execute) loop

[11] which is shown in Figure 2.2. The performance of the system is continuously mon-

itored and a range of attributes from resources and applications are collected. The col-

lected data are cleaned, modelled and analyzed to identify any symptom of changes in

the normal behaviour of the system. Finally, based on the output of the analysis phase,

a proper action is selected and the target components are informed to start the execu-
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tion of the action. We briefly explain each phase and list the related categories of the

taxonomy to each part as follows:

Monitoring: The performance of the system can be tracked by collecting the values

of the attributes from the components of the system. These attributes include all the

workload metrics, system traces, network features or performance indicators of the sys-

tem such as CPU and memory utilization, the number of incoming requests, the number

of threads or response time of the application. The Data Learning Approach of the tax-

onomy indicates different levels of the data collected during the monitoring phase.

There are a variety of tools to help monitoring and collecting data from system com-

ponents including Top and Iostat packages or Ganglia framework [12]. One can select a

proper tool based on the factors such as the granularity of data to be collected, the level

of access to the system components, scalability and characteristics of the system.

One point worth mentioning is how to select a proper monitoring interval time. The

interval can be selected as small as 1 second or a large value as 1 hour. Smaller intervals

make it possible to capture the fast changing patterns or fluctuations with higher accu-

racy. However, the amount of the storage required for keeping all the recorded data and

the overhead of processing and cleaning of the data significantly increases. Selecting

larger intervals reduces the overhead and required storage, but the possibility of miss-

ing or delayed detection of changes in the pattern of the performance data increases

which can cause delayed triggering of the corrective actions and more SLA violations.

One should select a proper interval considering the trade-off between the accuracy and

computation complexity, the reliability of the environment and type of the application

[13, 14]. For example, one approach is to define the sampling interval as a function of the

dynamicity of application by following the pattern of changes in the workload or per-

formance indicators and adjusting the sampling interval accordingly. Another approach

follows a fine-grained dynamicity analysis which considers the behavior of metrics sep-

arately. In this approach, the monitoring intervals can be tuned at the metric level by

having larger intervals for the metrics with no change points in the past data. Smaller

intervals are selected for highly dynamic metrics which their changing behavior is di-

rectly impacting the performance indicators of the application.

Analyzing: In general, two main blocks of the data analyzer module are data prepa-
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ration and performance modeling/analyzing. Therefore, all the steps required for clean-

ing and filtering, dimensionality reduction, building the models, analyzing new obser-

vations and deciding on the model updates when the state of the system changes are

parts of this phase. A wide range of techniques and algorithms can be used to learn a

model based on the historical behaviour of the system. The Data Learning Approach

and Performance Analysis Approach parts of the taxonomy present different catego-

rization of existing methods for this phase.

Planning: The inputs for the planning module are the information about the current

or future state of the system from the analyzer, the current configuration of the resources

from the application environment and the objectives and constraints from customers

or resource providers. Depending on the obtained knowledge, the module can select

from a range of possible actions such as adding/removing VMs, changing the configu-

ration/placement of multiple VMs or inbound traffic balancing. Decisions can be for-

mulated based on past experiments and knowledge about possible causes of changes in

the system. Therefore, the process can be implemented as a simple sequence of If-else

rules or at a larger scale, as a database that can map a combination of influential param-

eters to their corresponding mitigation action. The subcategory presented in Figure 2.5

focuses on the this phase. A detailed explanation of possible actions can be found in

section 2.8.

Execution: This is where the final execution of planned actions in the system is per-

formed. The module utilizes existing libraries and APIs to communicate with applica-

tion components or deployed VMs to add new resources, remove the idle ones, change

the configurations of existing VMs or updating load balancer configuration files. This

phase more concerns the development strategies and techniques which are out of the

scope of the current research.

In the following sections, we present different aspects of a data aware resource man-

agement solution based on the categories shown in the Figure 2.1 and subcategories

presented in 2.4 and 2.5. Based on the categories and identified approaches, we map

each work to the corresponding features in Table 2.2 to give the readers a quick view of

the main contributions of each work.
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2.3 Performance Management in Cloud

Monitoring tools collect a valuable source of the data to be analyzed and provide a

timely update on the performance state of the application and resources. Data learn-

ing approaches offer the researchers all the necessary concepts and tools to sift through

the collected data and predict the future behaviour or find interesting patterns of un-

expected behaviors or anomalies with their possible causes. In this section, two main

approaches for analyzing the performance of the system are presented.

2.3.1 Workload-driven Performance Management

Performance of the system can be modelled and predicted based on the workload-

related features such as the number of requests received or the amount of processing

required at each time interval. Di et al.[15] propose a method for long-term load predic-

tion in Google data centres. They consider load in the system as the main factor affecting

the performance of the system and ignore other sources of data. In order to have a better

representation of the statistical properties of the load including trends and seasonality,

different metrics based on the load measurement values are derived. The prediction is

done by training a Bayes classifier and exploiting a time window approach which is a

suitable way to smooth high fluctuations in the load. However, other types of anomalies

which can be directly related to specific performance metrics can not be detected by this

approach meaning that unexpected behaviour can occur in the system, possibly causing

negative impacts on the user experience. Work presented by Cetinski and Juric[16] con-

siders a single attribute, number of required processors at a certain time, to estimate the

utilization of resources. They expand the training dataset by introducing new attributes

based on similar patterns in historical data. The results show that these new attributes

improve the prediction accuracy of Random Forest compared to K-Nearest Neighbor

algorithm. However, their prediction does not include the concept of unexpected be-

haviors resulting from various anomaly sources. VScaler proposed by Yazdanov and

Fetzer[17] leverages a combination of workload prediction and reinforcement learning

(RL) to automatically scale VM resources with regard to the user-provided SLAs. RL

approach in this framework helps to automate the learning process, considering the
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uncertainty of environment in the form of changes in the workload model of the ap-

plication. Another work by Yang et al.[18] presents a cost aware resource auto-scaling

mechanism which considers both costs of adding new VMs as well as business software

license during scaling up procedure. A combination of linear regression based workload

prediction, integer programming based pre-scaling and threshold based real-time scal-

ing is introduced for capacity planning and resource management. The real-time scaling

can be considered as a reactive step to compensate prediction errors, but the simulation

based validation of this approach ignores many complexities and time requirements of

mentioned methods and these assumptions must be carefully verified.

In the workload explained performance management approach, the changes in the

pattern of the workload are the primary influential factor that can affect the performance

and hence the resource decision making of the system. The definition of the workload is

dependent on the application and can be demonstrated as the number of requests sent

to an interactive application such as web based systems, number of tasks/jobs running

in the system and etc. One can also consider the resource demands of the jobs to be pro-

cessed at each time as a representation of the existing load of the system. However, this

assumption should be verified whether the resource consumption is a sole function of

the load of the target application or the dynamic factors such as the effect of background

applications and sharing of resources are considered in the process.

2.3.2 Anomaly Aware Performance Management

A different approach to address the problem of performance management targets the

abnormality in the system behaviour as a starting sign for possible problems to be ad-

dressed by the resource management module. In the context of big data enhanced solu-

tions, these performance problems are considered as outliers and anomalies in the data

which can be identified by utilizing a variety of methods such as statistical or machine

learning algorithms. Therefore, we first define the term of anomaly in a general context;

Then, the problem of identifying anomalies in the context of the cloud is explained and

existing works that follow this approach are discussed in more detail.
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What are Anomalies?

Anomalies are the patterns in the data that do not conform to the usual behaviour of

observed data. The concept of anomalies and anomaly detection area are very general

and presented under different names including outliers and novelty detection, finding

surprising patterns in data, fault or abnormal behaviour detection in the systems [19].

These areas have been investigated over a long period of time as part of the medical

and clinical data clustering, image processing and surveillance cameras, financial fraud

detection, and several other applications.

Performance Anomaly Identification in Cloud Environment

In general definition of anomaly detection, the goal is to model the normal behaviour

of the system, so any unexpected change in the patterns can be seen as an anomaly.

However, considering the user centric approach in resource management decisions in

the cloud, the application owners are more interested in the events that can affect the

performance of the system and degrade the quality of service experienced by the user.

We refer to all of these events as performance anomalies. Considering that performance

degradations can cause resource wastage, loss of reputation and cost penalties for cloud

service and resource providers, many researchers have investigated the relation between

measurements from the system and application-dependent performance indicators to

have a better understanding of different causes of performance problems. We identify

three levels of knowledge obtained from the process of performance anomaly analysis

as shown in Figure 2.3 which are detailed in the following paragraphs:

Performance Anomaly Detection The goal of a data analyzer module at the perfor-

mance anomaly detection level is to find any abnormal pattern in the behaviour of the

system that can be a symptom of the performance problems. Therefore, the input for

these frameworks is usually the system and application performance indicators while

the output is a performance alert when an anomaly is detected in the system. Having

this goal and considering the fact that a correlation of different metrics can be related to

various types of anomalies, Guan and Fu[20] present an automatic anomaly identifica-

tion technique for adaptive detection performance anomalies such as disk and memory
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Figure 2.3: Different levels of knowledge from performance anomaly analysis

related failures. Proposed method investigates the idea that a subset of principal com-

ponents of metrics can be highly correlated to specific failures in the system. A combina-

tion of Neural Network method and Adaptive Kalman Filter is utilized in a procedure of

learning from historical data, updating the prediction models based on the current pre-

diction errors and adapting to the newly detected anomalies to improve the detection

performance. The work presented in [21] focuses on two general categories of anomaly

sources, workload related and performance related data in streaming servers. They jus-

tify this separation as a requirement to select the best repair action in the response to

degradations caused by targeted faults. A feature selection procedure based on Naive

Bayes is employed and the most relevant features are reported. Ashfaq et al.[22] target

the problem of anomaly detection from a new perspective, highlighting the scalability

problem of data analytic solutions for resource management issues in the cloud environ-

ment. They propose a general framework for anomaly detection based on the splitting

feature space into multiple disjoint subspaces and applying anomaly detection methods

on each subspace separately. The idea behind using feature space slicing is to decrease

the likelihood that a high number of normal instances can average out the effect of a few

dispersed numbers of malicious instances during anomaly identification. Since this ap-

proach requires higher computation resources, as it needs to run multiple simultaneous

instances of the algorithm on different subspace, it is more suited for high performance

computing platforms.

BARCA (Behaviour Identification Architecture)[23] is a framework for online iden-

tification of anomalies in distributed applications. It divides the anomaly detection pro-
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cess into two steps. First, a one-class classifier distinguishes normal behaviour from

unexpected ones. Then, a multi-class classifier is used to separate different types of ab-

normal behaviours. The framework generates time series of different collected perfor-

mance data and extracts new features such as skewness and mean of data which better

represent the characteristics of the time series and also help to reduce the dimensionality

of feature space.

The above-mentioned works target the reactive anomaly detection problem in the

cloud environment. In order to be able to move the system back from abnormal to the

normal state with minimum negative impact, we need to know about the probability of

having abnormal values in the future. In the proactive approaches, systems are able to

exhibit goal-directed behaviour by anticipating possible future abnormalities and taking

initiatives [24]. Gu and Wang[25] investigate proactive anomaly detection in data stream

processing systems. Their proposed solution includes a phase of predicting resource

utilization and then applying an anomaly identification algorithm on predicted data.

Considering time sensitiveness of stream data, proposed procedure is online and the

classifier will be updated periodically based on the new data. To address the prediction

problem, they apply Markov chain to capture changing pattern of different metrics to

predict future resource utilization. Markov chains are based on the idea that future

state only depends on the current state and not the past values. This assumption can

be problematic, especially for the data with recurrent patterns and events. Tan et al.[26]

address this problem by integrating a 2-dependent Markov model as the predictor with

Tree-Augmented Naive (TAN) Bayesian networks for anomaly detection. Another study

by [27] investigates unsupervised behaviour learning problem for proactive anomaly

detection. The proposed framework uses Self-Organizing Maps (SOM) to map a high

dimensional input space (performance metrics) to a lower dimensional map without

losing the structural information of original instances.

Performance Bottleneck Identification Performance bottleneck identification goes

one level deeper in the process of finding anomaly events in the data, trying to find

possible bottleneck metrics that are closely related to the observed performance degra-

dations as well. This approach is closely related to the problem of resource management

as it targets finding possible system resources that need to undergo a reconfiguration so
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the provided resources meet the requirements of the application. Tan et al.[26] leverage

TAN to distinguish normal state from abnormal ones as well as reporting the most re-

lated metrics to each type of the anomaly. Canonical correlation analysis and Support

Vector Machine (SVM) based feature selection are used by FD4C framework[28] to di-

agnose faults in the web applications. They utilize a recursive approach based on the

feature elimination to rank the most important metrics for each type of the anomaly.

Xiong et al.[29] have a different approach for detecting the performance bottlenecks.

They try to find the most relevant metrics to the performance of the application and fol-

low the changes in these metrics as a sign of the performance problems. However, they

show that the predicted metrics are also good indicators of the source of analyzed per-

formance problems, pointing to the source host and type of the bottleneck resource. UBL

presented in [27] uses the topological properties of SOM to compare the anomaly and

normal states and identify the metrics that are different between these states as faulty

metrics.

Performance Anomaly Cause Inference and Diagnosis The aforementioned anomaly

detection approaches mostly focus on detection of the abnormal symptoms and a coarse-

grained identification of the possible resource level metrics that contribute to the perfor-

mance degradations. However, none of them dig deep into the data obtained from the

application to find the underlying reasons for the observed problems. Indeed, identified

bottleneck metrics can be the indicators of having an application or VM level fault or

inconsistency in the system. For example, high incoming load to the application or a

faulty loop in the software code which saturates the CPU of the VM or the problem of

VM/application contentions which may cause degradations in memory utilization.

We can identify different directions in the fine-grained analysis of the source of the

faults. First, the works that aim to localize the source of the fault to one component such as

nodes, VMs or application components. For example, the works done in [30, 31] address

the fault localization problem in distributed applications. The proposed frameworks

combine the knowledge of inter-component dependencies with change point selection

methods, taking into account that abnormal changes usually start from the source and

propagates to other non-faulty parts based on the interactions of the components.

Another direction is to distinguish among different types of the faults. Dean et al.[32]
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Figure 2.4: Source of Performance Problems

propose PerfCompass which analyzes the generated system calls in the system to distin-

guish between internal and external faults. They focus on software related bugs such as

endless loops as the target internal faults. Cid-Fuentes et al.[23] apply a set of the SVM

based binary classifiers to distinguish among livelock, deadlock and starvation faults.

To achieve a more fine-grained identification of the cause, Dean et al.[33] propose

PerfScope to analyze the anomalies occurring due to the software bugs of the applica-

tion. The framework studies the patterns in the system calls and tries to find anomalous

interactions between user and kernel. Triage[34] is another online software failure di-

agnosis which identifies the conditions as well as the code and variables involved in the

failure state. TaskInsight presented in [35] focus on the thread and process level perfor-

mance information which helps to localize the problem to the target anomalous task.

Cloud Performance Anomaly Root Causes

Cloud application owners typically start to allocate resources based on the recommended

application requirements and then change resource configurations by continuously mon-

itoring performance indicators to find performance violations. The root cause of these

performance problems can vary widely as shown in Figure 2.4.

Hardware faults include the problems that are originated from the corrupted or per-

formance degraded hardware that host target applications [36, 37]. Software related

problems can be caused by a buggy code in the application or misconfiguration that
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causes inconsistency in the functionality of software or interactions among components.

This type of problem also can be caused by network related bugs and misconfiguration

that happen at the application level, including reported bugs in skype, MySQL or IPv6

compatibility issues [38].

Security problems including attacks are another source for unexpected behaviours

caused by the unusual pattern of requests such as successful port-scans, attacks on the

application server, etc. A wide variety of literature target this area, proposing various

types of intrusion detection systems based on the concepts of statistical feature ana-

lyzing, classification and clustering [22, 39, 40]. In order to identify these types of the

problems, one needs to collect network layer datasets including packet header informa-

tion or the frequency of sender IP addresses to detect unusual patterns in the requests

[22, 41]. Other sources of data to help recognize the access patterns to the application

are server log files which record the history of authentication and user access requests

over time.

Resource shortage issues are another reason for the performance problems when the

lack of enough resources to satisfy existing requests causes service interruptions and

degradations in the performance. The limitation can be due to the budget constraints

or business policies that do not allow adding extra resources to the system or reduces

the amount of the existing resources. Unexpected termination of instances performed

by resource providers is one case of these problems that can expose the system to a state

that the performance and throughput of the system will be degraded [42].

Bottleneck problems are another reason for the performance problems which are

caused by insufficient resources in one or more components of the application. The

problem can be due to the specific requirements of offered services such as working with

a CPU intensive software and the lack of consistency among the application demands

with provided resources. Another example is the effect of the background processes

which can temporarily saturate the resources of the machine, ignoring the requirements

of other installed applications. It is worth noting that if the components are dependent

and have interactions, the bottleneck problem in one part of the system can quickly affect

other dependent components and as a result, the performance problem will propagate

in the system causing application performance degradations [25].
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2.4 Target

The body of literature in performance aware resource management addresses the effec-

tiveness of triggered actions from different perspectives in terms of the target area of the

final solution. We distinguish two main factors that can affect this decision and accord-

ingly design of the proposed frameworks. These factors are explained in the following

paragraphs.

2.4.1 Users

To establish a distributed, shared, pay-as-you-go environment, different players with

heterogeneous and even conflicting objectives should be able to cooperate. Current lit-

erature mostly recognizes 3 main players/layers, cloud resource provider (CRP), cloud

service provider (CSP) and final users as contributing roles in the design of the resource

management frameworks [43]. CRP, also known as the infrastructure provider, provides

access to the pool of resources in the form of physical machines, storage, network and

other types of resources which are necessary blocks for creating a distributed computing

environment. This can happen as a direct access to the physical resources or through vir-

tualization technologies, usually as the units of virtual machines. CSPs perform as the

interface between CRPs and the final users and offer a range of services hosted on com-

puting resources leased from CRPs. The final users are the customers that demand the

cloud hosted services by sending requests and data through predesignated interfaces.

The separation of the layers is not always clear and sometimes more than one role can

be performed by one entity. For example, some CRPs also offer customized software

packages as a service without the intervention of third-party providers [5]. Another ap-

proach distinguishes a broker layer which acts as a mediator between CRPs and CSPs.

The broker has the information from both interactors including user SLA and resource

prices and usually performs negotiations with multiple resource providers to find the of-

fer which best meets the SLA requirements [44]. Although these layers have each their

own responsibilities, from our perspective in the study of performance management, we

identify two main groups as the target users as follows:

• Cloud users/Application owners who have access to the application dependent infor-
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mation including the code-level data, components design, workload patterns and

QoS requirements at the VM level.

• Resource providers/owners who have information on the hardware characteristics of

PMs and make decisions on VM allocation/placements.

Depending on the target users, resource management can be adapted to address the im-

provements of measurable metrics in the favor one or both groups [45, 46]. The selection

of the target users can affect the selection of the objective as well as the source of the data

to be processed in the learning procedure. The objective of RMM determines the direc-

tion of decision makings in terms of the measurable metrics to be improved. Moreover,

each group of the users has access to different sources of data and can help the RMM

decision making through managing various parts of application, network and hardware

configurations. We have explained these concepts in sections 2.4.2 and 2.6, respectively.

It is worth noting that in all cases, while one user group may be mentioned as the main

executor of the proposed solution, other groups can also be involved when the final de-

cisions indirectly affect their respective goal attainment. For example, CSPs may need

to be considered when the final decisions (such as VM migrations/scalings) can violate

the budget constraints or predefined security concerns.

2.4.2 Objectives

Depending on the beneficiary of the proposed solutions, a variety of metrics are selected

as the objective of the improvements during the resource management decision making.

As it is shown in Figure 2.1, we identify 4 main categories with regard to the target

objective metrics. It is worth noting that a combination of these objectives is usually

considered in a trade-off based optimization problem or through a list of the constraints

provided by users.

• Energy: Energy-aware solutions try to minimize the power consumption of system

through a variety of mechanisms including application optimizations, dynamic

scaling, VM configuration, allocation and consolidation techniques [47]. Energy

consumption of system is usually calculated with regards to the resource utiliza-

tion of PMs. Consolidation techniques concern the minimization of the active PMs
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by placing VMs so that the machines can be utilized effectively while reducing

the number of underutilized machines as much as possible [48, 49]. VM place-

ment [48, 50] and VM reconfiguration including hardware tuning techniques [51]

are other solutions that try to save energy by improving the performance of ma-

chines and reducing the power usage of hardware components. Load distribution

is also among traditional approaches of SLA aware resource management which

can also be used for the purpose of energy saving by prioritizing low-energy or

renewable powered datacenters during the resource allocation process [52]. These

solutions are mainly focused on resource provider objectives and require direct

access to the resources and information that may not be available for the service

providers. In contrast, solutions that address the energy problem from service

providers perspective focus on the component level optimization of applications

and green software designs [53, 54]. For example, [53] proposes an algorithm to

dynamically select application components to be deactivated as a response to the

performance degradations in an overloaded machine. This helps the cloud service

to be responsive to the users during the high loads on the system by keeping the

non-essential components of the applications in suspended mode.

• Cost: Considering the model of pay-as-go as the basis of cloud systems, market

based models focus on the monetary value of offered resources and services for

cloud providers and consumers [45, 55, 56]. These models provide solutions to

optimize the total cost of executing tasks considering a variety of pricing mod-

els. Resource utilization metrics such as memory and CPU consumptions, stor-

age, bandwidth and etc are among measurable metrics to be attributed as the cost

indicators in proposed solutions. The cost effectiveness of the final solution usu-

ally inversely impacts the QoS values (higher delays or runtime). Therefore, it is a

common approach to consider a trade-off between the cost and target performance

metrics as the objective function to reduce or penalize the adverse impacts on the

QoS [55, 57].

• SLA: Alternatively, a large body of literature addresses the problem of resource

management with more customized approaches to target the specific application
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requirements. These requirements are usually noted in the SLA contracts and

their violations incur penalties. A variety of indicators such as response time,

service up-time and scalability are included in this category [45, 58, 59]. For ex-

ample, [45] addresses the availability aware resource provisioning by considering

service agreements on the minimum accepted up-times. The violation of these

SLAs causes penalties which are taken into account in the optimization problems.

• Security: Security aware solutions offer mechanisms to protect the safety and in-

tegrity of users, data, applications and underlying infrastructure [60]. Alongside

intrusion aware frameworks which make use of the traffic or VM related data to

detect possible attacks on the application, this category also deals with policies to

protect data including user data provided to the application or user behavior pat-

terns. A variety of solutions are combined to secure the integrity, availability and

confidentially of data during phases of data life cycle in the system [60]. These

solutions can be coarse grained approaches including VM migration/placements

and workload isolation or fine-grained solutions that directly target the data secu-

rity by encryption, isolation and cleansing techniques [61, 62].

2.5 Architecture

In an environment with geographically distributed resources, the decisions on the plac-

ing and interaction among components can highly affect the performance of the system

and corresponding corrective actions. Various factors such as the amount of available

storage, resource demands or the speed of information dissemination can contribute to

these decisions. In the following, we briefly discuss three main approaches for the place-

ment of different components of a resource management framework in the environment.

2.5.1 Centralized

Traditional frameworks to analyze the health state of the system, typically follow a cen-

tralized approach. In a centralized structure, all data from local components including

performance indicators and resource configurations are sent to a master node. The mas-
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ter node is responsible to maintain a continuously updated model of the whole system

and triggers alarms when a performance problem is happening. All the tasks about

workload prediction, resource utilization estimation or performance problem analysis

are done at this module [63–65].

An advantage of a master node approach is to have all system related performance

information in one place; therefore, one can analyze the interactions and relation among

the metrics at different layers and tracks the fault propagation among connected compo-

nents. However, as the scale of the system increases, there will be more components and

resources to be monitored usually in geographically distributed regions. The process

generates a huge volume of collected data to be transferred and analyzed in one place.

This makes the system modeling and abstraction as well as triggering a proper resource

management action to be traversed across all the involved resources, super complex,

computationally intensive and time consuming.

2.5.2 Distributed

In a dynamic and scalable system, administrators are more inclined to deploy comput-

ing modules as decentralized components [25, 26, 66]. Therefore, each VM/physical

machine or small clusters of machines in the system will have a local analyzer dedicated

to processing locally collected monitored data to model the behaviour of the system

and locally decide the resource configurations. This approach can be easily deployed

and has higher scalability and manageable computation time. Moreover, failures in one

node do not affect the functionality of remaining processing modules. This approach is

also used in Fog-computing based Internet Of Things (IoT) infrastructures to model a

fine grained connectivity that extensively uses the advantages of having multiple lay-

ers of distributed computing for a highly scalable environment to connect people and

devices [67]. Distributed computing helps to significantly decrease the decision-making

time as it deals with smaller environments (monitoring one VM or host compared to the

whole environment) with reduced amount of data or problem-causing factors.
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2.5.3 Hierarchical

While distributed architecture solves the scalability issue of the centralized approaches,

the lack of a central manager makes it hard to include the interaction and dependency

among components during analysis. Each module has an abstract performance model of

its local environment, completely ignoring the effect of any external factors such as the

dependency among different layers of multi-tier applications. Moreover, the distributed

modules do not have a big picture of the system to decide on resource adjustments at

higher levels of granularity such as adding new VMs. As a solution for this problem, one

can consider a combination of the centralized and distributed architecture in a hierarchal

model, where each monitored component has a local analyzer module to get up-to-date

information on the local behavior and trigger local corrective actions [68]. They can also

share a summary of the local state of the component to a central module [30, 69]. Cen-

tral module utilizes a combination of the knowledge from local states, the dependency

among components and high level information of the functionality of local components

to create a general model of behaviour for the whole system. This approach combines

the scalability and flexibility of distributed methods with system wide knowledge of the

centralized master node which helps the system to respond to local problems quickly

while having enough knowledge to diagnose and plan for the global problems.

2.6 Data Learning Approaches

Data learning module of the RMM receives a set of the raw data as input and tries to

extract up-to-date information on the performance state of the system to be sent to the

decision making module. Depending on the objective of the solution as described in sec-

tion 2.4.2, the required metrics are collected from the system and processed with a vari-

ety of data analysis techniques including statistical and machine learning approaches. A

discussion of the sources of data to be monitored and the techniques for analyzing data

are presented in the following sections.
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2.6.1 Data sources

Monitored metrics are the measurable features which provide a basis to describe and

model the state of the system. Depending on the target users and the objective of the

proposed solutions, a variety of metrics from system resources and application com-

ponents can be collected. In general, we have identified four primary sources of data

that give information on the system from different perspectives to be processed by the

analyzer.

System-Level: System level metrics refer to the collection of attributes that can de-

scribe or predict the behaviour of running environment including VM or physical ma-

chine. One category of these attributes is resource level metrics which act as the per-

formance indicators of the running system at different levels of granularity from VMs

to specific processes and threads. For example, one can present the number of assigned

CPU cores or the percentage of used CPU, Memory or Disk I/O at different time inter-

vals as indicators of the functionality of the system during runtime of the applications.

Another source of data which can be categorized as part of the system metrics are gener-

ated system calls which show the pattern of interactions with operating system services.

It is shown that these patterns can be affected by different types of internal and external

faults which help to detect and localize the source of the faults [32, 33].

Many cloud resource providers offer monitoring services to collect data from phys-

ical and virtualized machines. Amazon CloudWatch is an example of these services.

There is also a range of system monitoring and application debugging tools such as

htop, Iostat and strace, each offering a level of information about the utilization of re-

sources or pattern of interactions among processes in the system. While these tools give

valuable information about the functionality of one machine, their usage for a cluster of

machines needs more scripting and data management. For a more flexible monitoring

of the distributed systems, advanced frameworks such as Ganglia are introduced [12].

Ganglia is a distributed framework based on the hierarchical design which uses tech-

nologies such as XML and RRDtools for monitoring different components of the system.

It is accompanied with a dashboard to view live statistics of the monitored system while

the recorded data is also available for deeper analysis. A detailed analysis of character-

istics of various monitoring tools is presented in [70].
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One point worth mentioning here is that some of the above-mentioned tools require

one to directly access the monitored VMs, or some components of the monitoring mod-

ules should be installed on the machines beforehand. Therefore, the outputs of these

monitoring components are accessible by cloud application owners (cloud users) who

have access to the VMs. Moreover, cloud users have direct access to the components

of the application. Therefore, QoS aware solutions that require the knowledge of the

performance of the system are designed with the assumption of having an access level

same as the application owners. Alternatively, there are works that follow the black-

box rules, trying to avoid or decrease the dependency on the application or guest VMs

by utilizing hypervisor capabilities to collect data from outside of the VMs [16, 26, 65].

These solutions can be utilized by cloud resource providers. A combination of having

VM-level information and knowledge accompanied with the capability to access the un-

derlying hardware (including hardware tunings, VM/Storage server placement) gives

the resource providers a great power to manage and adjust the utilization as well as SLA

such as privacy and security requirements of applications owners [14].

Application-Level: Application level metrics are collected from application compo-

nents deployed in the system. Since these metrics are directly related to the runtime

state of the application, they can be very informative and good indicators of the health

of the application or environment. For example, in a web based application, response

time which is the delay from initiating the request until the user receives the results is

considered as an indicator of the quality of the offered web service. Longer response

times can be warning signs for a high number of requests or some problem inside the

systems [18, 26]. There are also more fine-grained works that study the software code

and debug the flow of data, compare the effect of various input variables or environment

configurations [34]. These works are more related to the field of software debugging or

runtime diagnosis. However, we have included them in our survey as they can help to

distinguish internal application faults from external ones which consequently affects the

type of corrective actions from service provider side.

Network-Level: There is a body of works which study the obtainable knowledge

from analyzing network level data such as packet headers or the frequency of received

packets from specific users which makes them suitable for identifying network related
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issues and particularly security threats such as DDoS attacks [22, 41]. The source of the

problem in these cases is usually associated with the external factors and therefore these

frameworks are complementary to the ones that directly target the internal state of the

system and resources.

Structural-Level: While a per component monitoring gives valuable information on

the functionality of individual parts of the system, these components are in continuous

interactions in a distributed system. In other words, the functionality of one part may be

dependent on the correct execution of another part. Therefore, the fault in one compo-

nent can quickly spread based on the application architecture and the path of flow of the

data/commands among components. Having the information on the execution order of

application components along with the timestamped data of performance metrics can

give new insights into localizing actual sources of the faults which are propagated from

different layers of the application [30, 31].

2.6.2 Methods

The core part of the data aware resource management is the data analysis module which

obtains the knowledge on the current or future state of the system to select the best

action and keep the system compliant with the SLA requirements. There are differ-

ent approaches to help learning and analyzing the health of the system from collected

measurements. We categorize and summarize the characteristics of the identified ap-

proaches in the following subsections. It is also a common approach to combine two or

more of these techniques for different parts of data analysis and decision making mod-

ules.

Signature Based Analysis

A state in the system can be characterized by the values of the attributes of its compo-

nents at different levels of granularity. Considering that various types of the faults or

performance problems leave distinctive signs on the attributes, one can capture a snap-

shot of all values during abnormal/normal behaviour and represent it as the fingerprint

of this state. The works presented in [71] and [72] distinguish performance problems
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caused by anomalies from the ones which are the results of an application update or the

changes in the resource consumption models. They create a profile of the application

performance based on the concept of transaction processing times and corresponding

resource utilization. The profiles are used for the comparison between old and new ap-

plication performance to detect the changes. While these works leverage the application

related measurements to create profiles, Brunnert and Krcmar[73] utilize resource pro-

files to detect the performance changes in the enterprise applications (EA). The resource

profiles are defined as the amount of required resources including CPU and memory

for each transaction of an EA version. Resource profiles are not dependent on hardware

characteristics or workloads, therefore, they are more robust solutions for areas such

as capacity planning or energy estimation. Another approach is to use the profiles of

events for diagnosing the type of anomalies. For example, Sharma et al.[74] propose a

fault management framework which first detects an anomalous behaviour by statistical

analyzers. Then, detected deviations are matched with the pr-defined signatures of the

faults to identify the cause of the problem.

While the signature based approaches usually show low false positive rates, an im-

portant challenge is the creation of baseline profiles which capture the target states of

the system. Regarding anomaly detection problems, creating signatures need the do-

main knowledge of the problem and there is always a high chance of missing unknown

anomalies which increases the false negative rates in the results.

Threshold based Approach

Threshold based approach is a simple yet popular way among cloud providers to define

a set of rules to manage the resources in the system [4]. The idea behind this approach

is that anomalies can cause an unusual increase or decrease in the utilization of the re-

sources, affecting the values of attributes of the system or application. One can define

the scaling up/down rules by identifying a threshold for the acceptable utilization in

the system. If the target utilizations exceed the threshold, scaling actions are triggered.

Therefore, two main parts of each threshold based rule are the condition and the action.

Regarding the condition part of the rule, an attribute of the system which can be a re-



42 A Taxonomy and Review of Performance-aware Management of Cloud Resources

source level metric or application level performance indicator is selected. Then, proper

lower/upper thresholds are identified. Whenever a threshold value is exceeded, the

conditions are met and the action is started. The second part of the rule is defining ap-

propriate actions such as deciding on the number of VMs to be added or the VMs which

can be shut down in the system. These actions, also known as horizontal scaling poli-

cies, are offered by most of the cloud resource providers. Gmach et al.[75] investigate

the reactive threshold based approach to detect over-utilized or underutilized servers.

Yang et al.[18] extend this approach with a linear regression based prediction phase

and apply one of the vertical or horizontal policies when a violation of the threshold is

met. There are also works which implement the threshold based policies for the baseline

comparison with their proposed frameworks [76, 77]. For example, Hong et al.[77] com-

pare Markov based anomaly detection scheme with a threshold based monitoring which

triggers anomaly alerts when the resource utilization thresholds are violated. While this

approach is very common and easy in terms of the implementation, it requires a deep

understanding of the workload patterns and trends. Considering the dynamic nature of

today’s applications, threshold based solutions can not fulfill the complex -sometimes

conflicting expectations- of application and resource owners.

Control Theory

To improve the degree of adaptation to the changing environment, the mathematical

concepts of control loops are investigated to create more responsive strategies for the

dynamicity of the environment. Control loops help to automate the resource scaling

decisions by creating a systematic way of adapting to the changes in the system. The

controller should trigger proper corrective actions by adjusting the values of input vari-

ables to maintain the output or controlled variables close to a baseline. The process

usually is designed as a loop with a variety of metrics from the system as input. The

outputs are translated to some type of the action in terms of the system configuration ad-

justments. Regarding Open-loop controllers, the corrective action is selected solely based

on the inputs, while in the closed-loop also known as feedback controllers, the changes in

the controlled variable are received as the feedback to be considered by the controller
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for the next action. While the latter is the most common architecture for implementing

the adaptability in the dynamic environments, two other extensions of this architecture

known as Observe-Decide-Act (ODA) and Monitor-Analysis-Plan-Execute (MAPE) are also

exploited in the area of autonomic cloud resource management [78]. The ODA frame-

works typically cover 3 main roles of observer, decider and executer with the main goal

of decoupling the responsibility at different steps among respective players involved

during system development process [79]. The separation of responsibilities allows ap-

plication and system developers to deeply focus on the knowledge from their part of

the problem and also makes the final system more adaptable to different applications

and systems. The MAPE framework is another extension which breaks the action part

of the general loop into two subproblems of analyze and execution. Following this ar-

chitecture, Aslanpour et al.[80] propose a cost aware auto-scaling framework with the

focus on possible improvements at the execution level. Nevertheless, in general, the

feedback controllers are the most common architecture to be investigated in this section.

Integration of the Kalman filter and feedback controllers are studied in [81] to man-

age the allocation of the resources based on the CPU utilization of VMs. Al-Shishtawy

and Vlassov[82] combine feedback and feedforward controllers, harnessing the power

of both approaches for multi-tier applications. Feedforward part is acting as a predic-

tive controller to proactively avoid SLA violations caused by unexpected increases in

the workload. In the case of the violations, feedback controller reacts to compensate the

deviations in the performance.

Lyapunov control is another approach for solving optimization problems especially

for online decision makings where the detailed information on the system behavior is

not available. The Lyapunov based systems are also applied in optimization problems

when the stability of the system (for example the queuing delays) is a point of interest

[83, 84]. For example, Lu et al.[84] uses this approach to provide a cost minimization

model with controllable provisioning delays in an auction based resource management.

This approach has been shown to perform better compared to traditional methods in

terms of dealing with the dimensionality problems in large systems without the pre-

knowledge of statistical features of controlled components [85].

Proportional-Integral-Derivative (PID) based controllers are another technique ex-
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ploited in [86] for managing the number of VMs in the system, aiming at keeping the

service quality in accordance with the agreement levels. Alternatively, considering the

need for more flexible systems with the capability of regulating more than one metric,

Persico et al.[43] combine a fuzzy based scheduling algorithm with a PID controller for

horizontally scaling of the resources. In contrast to the model based controllers which

need some knowledge of the dynamics of the environment [81, 87], PID based controller

makes the system more flexible in a model free adaption, usually through the iterative

tunings of the parameters. However, despite the inherent simplicity of PID controllers

to cover a broad range of applications, they may suffer from the oscillation or delayed

convergence especially in highly unstable systems.

Predictive models are another approach that are commonly applied for complex

highly dynamic environments. Model Predictive Controllers (MPC) consider dynamic

models of the system over consecutive time slots (time-horizons). The current state as

well as the future predictions are taken into account to repetitively optimize the con-

troller model. APPLEware is a distributed MPC based middleware that optimizes both

energy usage and the performance for co-located VMs [88]. The control actions are in

the form of CPU and memory changes and are computed based on the predictions of

energy and performance over prediction horizons to optimize the cost function at corre-

sponding time intervals. Another instance of the predictive models is Receding Horizon

Controllers (RHC) [89] which constantly solve optimization problems over a moving

time horizon [90]. The iterative optimization of RHC is used in [91, 92] to minimize the

cost for reserved and on-demand VMs while meeting constraints on the response times

of application. Similarly, Roy et al.[93] apply this model for minimizing resource alloca-

tion costs considering both costs of leasing resources as well as the penalty costs of SLA

violations. Incerto et al.[94] exploit the iterative optimization of RHC for fine grained

adaptivity at the application level. The control model is used to automate parameter

tuning of software components that are modeled based on queuing networks. While the

iterative optimization of these models helps better adaptability to the changing environ-

ment, it also increases the runtime complexity for solving the optimization models at

each step.
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Statistical Approaches

Statistical approaches usually assume that the key attributes of the system follow a

known or inferable behavior. Therefore, observing and collecting the data on the system

attributes provides a baseline which any deviation from that is identified as an anomaly.

The definition of the baseline behaviour is usually based on some statistical characteris-

tics of the data such as mean and standard deviations. For example, many works on the

anomaly detection are based on the assumption that values of the target attributes follow

a normal distribution. Multivariate Adaptive Statistical Filtering (MASF) is a common

method in this group which tries to find multiple sets of the control limits based on the

statistical analysis of the previous measurements of the features during normal system

operations [95]. The observations outside of the control limits are considered as pos-

sible anomalies in the system. Wang et al.[96] generalize this concept to more flexible

thresholds, being more adaptable to dynamics of the workloads in data centers.

While these solutions are simple and lightweight, the highly dynamic nature of the

cloud requires more flexible solutions which can capture the relation among features.

A body of works [97–99] try to show some type of the correlation among resource met-

rics and QoS indicators, using this information for better understanding of the nature

of the anomalies and further performance analysis such as cause identification. An-

other approach which addresses the problem of proactive resource scaling leverages

regressions based methods to find the relation among metrics and performance indi-

cators [18, 29, 65, 100]. The prediction of the future workloads or resource utilization

gives insights on the possible changes in the system that require a reconfiguration of the

resources. For example, MLscale is an auto-scaler which uses the regression method to

predict the values of the metrics and consequently the performance indicators of the sys-

tem through a hypothetical scaling and decides on the best action based on the results

[100].

Another area within the domain of distributed resource management, where statisti-

cal techniques have been commonly used, is analyzing network level state of the system

which helps to distinguish between normal traffic and network related security issues

such as attacks. Gu et al.[101] employ relative entropy to compare the new traffic data

with the baseline distribution and identify anomalous traffic. Cao et al.[102] target DoS
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attacks launched by malicious tenants of the VMs in cloud data centers. Entropy is cal-

culated based on the resource and network utilization information. They show that the

entropy of VM’s status drops when the attack starts. Ashfaq et al.[22] divide the fea-

ture space of the problem based on the information content concept, putting statistically

similar instances in the same subspaces. The idea behind this approach is to avoid the

effect of averaging out of anomaly points and also localize noise artifacts in separate

subspaces.

Machine Learning

Machine learning concepts include the techniques that enable a system to learn from the

experience over time without being explicitly programmed. The massive amount of the

collectible data from the system is a valuable source of the information to be utilized

by these techniques to learn from the environment. Each technique tries to structure

data in a different way to generate an abstract model relating the input to output vari-

ables. Generally, we can divide these techniques into two main categories Supervised

and Unsupervised. In the following, we explain each category in more detail.

• Supervised Learning Supervised algorithms require the dataset to be labelled, mean-

ing that the desired output should also be clear during the training phase. This

approach is more suitable for problems that the goal is to find a mapping between

the input and output variables, so having the new input observation one can find

the possible output. A common case of utilizing this technique is the classification

of a set of records when each input should be assigned to one of the predefined

classes. In the area of anomaly detection techniques, the classifiers can be used to

categorize different types of anomalies or more generally distinguish between nor-

mal and anomaly state of the system. Following this approach, Gu and Wang[25]

try to detect type of the future anomalies by using naive Bayesian classifier. A set

of binary classifiers is trained to distinguish among different types of bottleneck

problems. The authors show that the proposed classifiers can achieve high accu-

racy, detecting the anomaly symptoms caused by some of the common bottleneck

issues at the application and resource level. Similarly, Tan et al.[26] exploit TAN to
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predict the anomaly state of the system. Cunha and Moura e Silva[21] apply two

classification algorithms, J48 Trees and Naive Bayes, on the historical data through

ten-fold cross-validation. The goal is to differentiate between workload related

anomalies that are caused by higher request rates and other types of performance

anomalies. Decision trees are leveraged in [62] for classification of traffic data by

supervised learning of attack types. The authors suggest that the simplicity and

interpretability of trees can help humans to better understand the nature of prob-

lems and their related features. Supervised learning is also applicable for learning

of the features. Accordingly, Shi et al.[103] exploit the knowledge from principle

component structures and data labels to learn a more robust set of features for

traffic classification.

Neural Networks are commonly applied for the prediction of the future utiliza-

tion, performance indicators or workload metrics to model the performance of the

application [65, 100, 104]. Rather than a direct identification of anomaly events

(only considering the context of the data and patterns), these works usually focus

on finding the symptoms of performance degradations in the application. In con-

trast, Guan and Fu[20] identify anomaly events by combining neural network and

kalman filters to adaptively calculate the principal components of data. The idea

behind their approach is that a subset of principal components is more related to

specific types of failure in the system.

The aforementioned models are trained to find a relation between input and out-

put variables to predict output values for test instances. The outputs can be related

performance metrics such as response time or a category of anomaly states as-

signed to the input instance. A major limitation of these works is the requirement

to have a labelled dataset for the training. The process of labelling a dataset is time

consuming and needs a good knowledge of the domain problem. Moreover, in a

dynamic environment, there is always a chance that the underlying mapping of

the variables changes which require continuous reconfiguration and regeneration

of the models for the new states of the system.

• Unsupervised Learning In contrast to the supervised learning, unsupervised ap-
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proach sifts through data trying to find hidden structures and patterns. There-

fore, it does not need any prior information about the labels of training data. The

objective is to cluster input data based on their features without any assumption

about their distribution [35]. The unsupervised learning is particularly suited for

the cloud environment, where the system administrators may not have access to

the detailed VM utilization states or be unaware of the internal performance of the

application. Following this approach, Dean et al.[27] propose Unsupervised be-

haviour Learning (UBL) and investigate unsupervised learning problem for proac-

tive anomaly detection. UBL is a framework which applies Self Organizing Map

(SOM) to identify the anomalous states in cloud systems. SOM is an unsuper-

vised type of the artificial neural networks that projects data instances from a high

dimensional space to a lower space (usually two) while keeping the topological

structure of data. Comparing the neurons of the generated map, they distinguish

normal and anomaly states while a list of ranked metrics can also be inferred as

a starting hint to find the cause of the problems. Hidden Markov Models (HMM)

are used in [77] to model system as a Markov process. In a Markov process, it is as-

sumed that the state of the system at each time is only dependent on the previous

state. Two hidden states normal and anomaly are determined and the probability

matrices are initialized through an unsupervised training process. A two-phase

clustering approach is proposed in [105] which tries to find a VM placement so-

lution to minimize the number of physical machines as well as reducing the per-

formance degradations caused by the contention between co-located VMs. Hier-

archical and K-means clusterings are applied to cluster VMs based on the peak of

utilization metrics and the correlation among them. Alternatively, Ashfaq et al.[22]

apply clustering as a preprocessing phase to divide feature instances into distinc-

tive categories based on their statistical attributes. These clusters form the basic

blocks of data to be analyzed separately by anomaly detection modules.

While the traditional methods of behavior learning can help to identify anoma-

lous events, the detection is usually a by-product of other purposes such as clus-

tering/classification. Isolation-based technique is another unsupervised approach

that addresses this problem by directly targeting the characteristics of anomaly in-
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stances which are few and different than normal instances [106, 107]. This method

is leveraged in [108] to design a sequential unsupervised learning of the features

where the calculated scores from Isolation-based trees are used as a signal for the

selection of a subset of features for next iterations.

Unsupervised learning helps the system to detect both known and unknown anoma-

lies. The process does not assume any prior knowledge about the statistical fea-

tures or patterns in the data and tries to find common characteristics observed

among different sets of the instances. However, depending on the level of the de-

tails provided in data, the accuracy of unsupervised learning to recognize the exact

categories of anomalies may be affected.

Reinforcement Learning

Reinforcement learning (RL) focuses on the gradual learning through sequential inter-

actions of the agents with the environment. The target goal of the agent is to maximize

a reward function by selecting the best possible action based on the state of the system.

The important feature of this approach is learning by experience from the environment

which helps to start the process without prior knowledge of the system. In the area of

cloud resource management, auto-scaler can act as an agent which interacts with the

system components including VMs and physical machines. The state of the system is

represented by the system attributes and performance indicators, while the reward is

shown by the degree of QoS (such as response time or throughput) achieved by the

application. The set of actions includes all possible corrective actions such as resource

and application level reconfigurations to avoid the performance degradation. Dutreilh

et al.[109] compare threshold based and Q-learning approaches for the problem of hori-

zontal auto-scaling in the cloud. They investigate the functionality of each method in the

presence of the main instability sources in the control systems, listing the observed po-

tentials and weak points for each case. Duggan et al.[110] target the problem of VM live

migration considering the available bandwidth and network congestion problem. They

formulate the problem as an autonomous control system through utilizing RL and cre-

ating a multidimensional state/action space based on the VM utilization and available
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bandwidth. VScaler proposed in [17] is another framework for the fine-grained resource

management in the cloud which utilities RL to decide on the times to scale up/down in

the system. To speed up the process of learning and exploration of the controller, they

introduce the parallel technique which enables multiple agents to collaborate in different

parts of the state space.

As we can see, the gradual learning concept provided by RL fits the nature of the

problems in cloud performance management very well by involving the dynamism and

uncertainty factors during the learning procedure. However, a main challenge that RL

based solutions suffer is the size of the possible states and actions for the system. Con-

sidering the continuous nature of time series measurements and the scale of the target

machines to be handled in large scale distributed environments, the problem of high

dimensionality is becoming more important. To overcome this limitation, different ap-

proaches such as fuzzification of the table or using more abstract representation of data

to limit the possible states or actions are proposed in the literature [68, 111]. Arab-

nejad et al.[111] extend a rule-based fuzzy controller with 2 different RL approaches,

Q-learning and SARSA. The fuzzy concept helps to reduce the dimensionality of the

state/action table which is an important issue affecting the complexity of the RL al-

gorithms. Alternatively, a combination of dimensionality projections and sparsity based

data structures are used in [112] to overcome the dimensionality problem. The proposed

approach is used to manage efficient migration of VMs in real-time with respect to the

energy and performance of the system. Adaptive partitioning of state space is another

approach which initiates the model with one or few states and gradually decides on the

partitioning of states during the interactions with the environment [113].

2.7 Action Trigger Timing: from Reactive to Proactive

When a corrective action should be triggered is a challenging question as it is highly

dependent on the nature of the application and SLAs. Traditional approaches to this

problem are mostly reactive. In reactive methods, any decision about the changes in the

number of VMs, the configuration of resources or VM replacements is a response to the

abnormal behaviour of the system indicators that identify changes in the performance
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or QoS. As the degradation already has occurred and considering the delays before cor-

rective actions take effect, an amount of the SLA violations should be allowed in SLA

contracts. Moreover, in an unreliable environment involving various factors to affect

the stability of the system, fluctuations in the performance are a common observation

which can increase the number of occurrences of SLA violations. Usually, these ap-

proaches follow a threshold based strategy where the scaling starts after the measured

metrics exceed an accepted value [4, 114]. For example, when the CPU utilization of

server exceeds the threshold, new resources are added to the system. Therefore, reactive

approach does not consider the performance anomaly as a gradually happening event

with detectable pre-signs.

A step further in adaptive design of the resource management system is to include

periodical actions to resolve possible performance problems at each time interval. While

reactive approach performs resource adjustment action as a response to the performance

degradations, periodical solutions are triggered by time. For example, software rejuve-

nation is a preventive technique that tries to clear the state of the software. This pro-

cess can be repeated at regular intervals to resolve software performance degradations

or avoid possible problems caused by software aging phenomenon [115, 116]. These

time-triggered techniques can also be categorized as proactive approaches when regular

updates of the system help to alleviate performance problems before they cause viola-

tion of SLAs. Alternatively, event driven proactive approaches perform corrective actions

when an event is detected which is suspected to affect the behavior of the system in an

undesired way. Event-driven proactive methods attempt to find the warning signs be-

fore they can cause unacceptable levels of performance degradations, so they can start

preventive actions such as migrating VMs or adding new resources [18, 26]. They focus

on the future events and are mainly based on the prediction of the future values and

states. If proactive analysis of data can give an early enough alert of a possible per-

formance problem, it helps RMM to plan and quickly start a proper action before the

system goes into an anomaly state. Accordingly, the system returns or continues the

normal condition, reducing the number of violations. One point worth mentioning here

is how to decide on a proper value for the period of prediction. Short-term predictions

are more accurate in the case of the workload related metrics because the measurements
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Figure 2.5: Cloud Performance Adjustment Techniques

close in time show higher correlations compared to the observations for longer in time.

Longer time predictions are more challenging and better fit the data with regular pat-

terns or seasonality. Di et al.[15] investigate long-term prediction problem for workload

data in cloud data centers. They propose a Baysian-based method to predict the aver-

age load in the system, based on the derived features that capture different aspects of

the statistical characteristics of data. Another strategy to decide on prediction interval

is considering the required time for the corrective action to be effective in the system.

If the workload is predicted for an interval shorter than the action time, the value of

proactive resource management diminishes. Islam et al. follow this approach to deter-

mine a prediction interval based on the time it takes to launch a new VM. Therefore,

upon receiving an alert of a possible load problem, the system has enough time to start

the scaling action. Finally, Hybrid solutions are based on a combination of reactive and

proactive approaches. These solutions are more realistic ones for the applications in the

real environment where there is always the possibility of happening new and unknown

events that are not detected by proactive mechanisms [18, 75]. In these cases, the reactive

component helps the system to decrease the adversary effects of undetected anomalies

in the system while the proactive module can learn the new undesired behavior by up-

dating prediction models with recent observations.
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Table 2.1: An overview of performance adjustment methods

Method Contributing
users

Advantage Limitations

Application
Level

CSP No dependency on CRPs,
No cost from newly

added resources

This approach may not solve
non-application originated problems
and is not applicable for all types of

the applications. It may cause
short-term performance degeneration
caused by non responsive components

during deactivation time

Over-
provisioning

CRP, CSP Increases reliability for
highly dynamic

workloads

Resource wastages, Higher costs

Horizontal
Scaling

CRP, CSP No need for special
hardware support

Increases all resource types without
considering the source of the problem

(homogeneous VM types), Start-up
delays

Vertical Scaling CRP, CSP Custom resource
adjustment (cost

effectiveness), No need
for new software
instances (License

problems)

Require special hardware supports

Load
Distribution

CRP, CSP No extra resources (cost
effectiveness)

Limited applicability (especially for
non-stateless systems)

Load Shedding CSP No extra resources (cost
effectiveness)

Performance degradation by ignoring
some requests

VM Migration CRP, CSP No extra resources (cost
effectiveness), Reducing

cold spots (energy
saving)

Short-term performance degeneration
during movement, Security/Privacy

issues
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2.8 Performance Adjustment Methods

Upon receiving an alert of an ongoing or possible performance problem in the system,

RMM should start an adjustment process so the active resources meet the new require-

ments of workloads and applications. There are different solutions to alleviate the per-

formance problems in the system including changing resource configurations, adding

new computing units or replacement of the VMs. In this section, we explain these tech-

niques more and especially focus on coarse-grained methods at resource and VM level

as shown in Figure 2.5. Table. 2.1 presents an overview of some of the advantages as

well as limitations of these methods. As explained in Section 2.4.1, CSPs are included

as the contributing users for all types of decision making to highlight the importance of

considering the application side SLAs regarding the related objectives such as budget

and security constraints during the decision making process.

2.8.1 Application Level Methods

This category of actions is directly applied to the application and its environment, and

therefore they are not specific to cloud systems. This approach targets the degradations

in the performance of the application or operating system caused by the internal prob-

lems such as data corruption, numerical error accumulation or exhaustion of operating

system resources [117]. Software rejuvenation is a possible corrective action in these

types of the problems which tries to identify the problematic application or system com-

ponent, clean its internal state and restarts the components. Indeed, simple application

or VM restarts which are used by the system administrators as the first reaction to many

performance degradations are preliminary cases of applying this approach. Dynamic

component activation can also be triggered at this level, when the deactivation of op-

tional components helps the system to manage higher loads or save energy according to

the SLA requirements [53]. Since the application level methods directly affect the func-

tionality of the application, CSPs or application owners are actively involved in making

these decisions.
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2.8.2 Over-provisioning

In order to efficiently utilize the capacity of cloud offered resources, it is vital to have

a proper estimation of required resources that keep the performance and QoS of ap-

plications at an acceptable level. However, resource estimation is a complex problem

especially for dynamic workloads with time-dependent fluctuations. A traditional so-

lution to handle the uncertainty in resource demands of the applications is to provide

enough resources to process the maximum expected workload in the system. This so-

lution guarantees a stable application performance in the presence of workload fluctua-

tions. However, the peaks in the workloads are usually transient events that do not last

long and happen very rarely which means that most of the times resources are under-

utilized and incur extra costs for CSPs. Considering dynamic nature of the applications

such as web workloads, over-provisioning is not avoidable in the fault-tolerant resource

management solutions; However, researchers try to find a proper trade-off between the

level of fault tolerance of the system and over-provisioned resources to have more con-

trol over the functionality of the system [42].

2.8.3 Auto-Scaling Methods

Scaling is defined as increasing or decreasing the amount of resources (ex: CPU, RAM,

Disk, etc) for meeting SLA and performance standards. The scaling of resources can be

done by changing the number of machines in the system or at the VM level by changing

the configuration of one VM. In the following paragraphs, we explain each of these

approaches in more details.

Horizontal Scaling

Horizontal scaling which is the primary block of every RMM framework helps to pro-

vide more resources by adding new VMs in the system [18, 114, 118]. The unit of changes

in horizontal scaling is one VM. However, the newly added VMs can have a customized

resource configuration (CPU, RAM, I/O) or pre-configured VMs can be launched by se-

lecting one of the instance types offered by the provider. For example, Amazon offers
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a range of VM types with different levels of configurations from small to very large in-

stances [4]. As a complementary option, Google also offers users the chance to define

their requirements with more details by launching customized instances.

The time it takes for a new VM to be launched, also known as VM start-up time, is

highly important, especially for proactive RMMs. If start-up times are longer than the

predicted point for a possible breach of the SLA, the effect of the scaling process will

be same as the reactive strategies with the added overhead of data analysis module.

Considering this, Mao and Humphrey[119] try to investigate possible influential factors

such as the type of the instance, OS image size or VM location for different providers.

The study provides researchers a basic understanding of the contributing factors which

should be constant during the experiments and also estimated average times to be taken

into account in the simulation of cloud environment [120].

Vertical Scaling

While horizontal scaling is a conventional strategy in the management of resources of-

fered by providers, the advent of virtualization techniques has introduced new resource

level scaling opportunities including elastic VMs. In vertical scaling, the VM elasticity

feature is utilized to change existing VM configurations, virtual cores or RAM, on the fly

to adapt to new requirements of the system [18, 121]. The online reconfiguration without

turning the VM off is getting more attention especially when the time and cost factors

are considered in RMM decisions. First of all, maintaining SLA objectives becomes chal-

lenging when there are sudden changes and spikes in the workload, and RMM needs a

quick solution to increase the resources in the system. In horizontal scaling, the time it

takes to launch new VMs can be a bottleneck when a fast effective solution is needed.

On the other hand, new VMs require new software to be installed which can lead to

additional license costs. Elastic VMs can offer the required concepts and technologies

to implement practicable strategies for these problems. Indeed, depending on the ap-

plication, resource level scalings might be the most fitting idea in the case of resource

shortages. For example, a CPU saturated system hosting a CPU intensive application

can be scaled by adding a new core to the VM without wasting memory, bandwidth and
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other resources. Moreover, the same VM can continue the execution of existing requests

without a need for interruption or transferring their execution profiles to a separate VM.

However, the elastic VMs need the support from both the guest VM OS and hy-

pervisor. Therefore, due to added complexity, many public providers do not offer this

functionality. [9] is one of the Infrastructure as a Service (IaaS) providers that supports

the live vertical scaling of CPU cores, RAM, Network Interface Card and Hard disks. To

have a better understanding of the extent of support for vertical scaling, one can refer to

work done by [122] which studies this capability for some of the common hypervisors

and guest OS as well as OpenStack framework in the cloud environment. It should be

highlighted that the capabilities of vertical scaling for the VM is limited to the physical

host. This means that the amount of resources which can be added to the VM can not be

more than the available resource on the physical host. Therefore, in the case of resource

shortage on the host, a new host with the available amount of resources can be selected

and VM migrations precede vertical scaling to provide required resources for upgrading

VM configuration.

2.8.4 Load Distribution

In a large scalable environment, we can find many replicas of one service such as database

or application server components. The problem of distributing application requests

among existing replicas of one component is a functionality provided by load balancers.

A load balancer such as haProxy can be configured with a weight for each replica and

distribute the loads according to this configuration among multiple VMs. Amazon Web

Service Elastic Load Balancer (AWS ELB) [4] offers a simple round-robin strategy which

assigns an equal weight for all active VMs and selects them from a list in the order of

appearance. Therefore, in a round-robin based balanced environment, the utilization

of all VMs is affected similarly. Noticeably, this approach does not provide a cost or en-

ergy efficient solution especially in an underutilized environment, where a small fraction

of the provided computing and storage resources are enough to maintain the required

SLA. A more efficient version of this approach assigns weights based on the specific

server characteristics such as the load of the server which helps to send new requests
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to least utilized servers first [123]. Grozev and Buyya[120] follow this approach to con-

solidate web requests in a few servers without violating the QoS. The proposed method

monitors CPU and RAM utilizations of the servers along the availability of the network

buffer capacity to assign new requests. Soni and Kalra[124] prioritize the servers based

on their hardware characteristic, distributing loads based on the computation power and

availability of the machines. These approaches help the system to balance the workload

among existing resources to keep the performance at the acceptable level. However, load

distribution is a task level resource management which does not control the amount of

resources in the system. Therefore, they should be integrated with other scaling meth-

ods which help to maintain enough resources to handle the existing workload of the

application.

2.8.5 Load Shedding

Load shedding is a type of self-healing approaches, primarily used in electrical power

management to handle high loads in the system. The idea behind this approach is to

maintain the availability of the system by sacrificing some quality of service in the pres-

ence of faults. In data stream mining, load shedding refers to mechanisms that try to

find when and how much of data can be discarded so the system can continue work-

ing with acceptable degradation of performance [125]. This approach is not effective

for the applications with highly dynamic workload and strict QoS requirements [126].

However, one can consider request admission and resource reservation policies in the

system in terms of the SLA agreements so the extra requests that can not be handled by

available resources will be rejected, saving time and money for both users and service

providers.

2.8.6 VM Migration

The scalability feature of cloud systems is highly dependent on virtualization technology

that enables multiple applications to reside on one physical machine by sharing avail-

able resources. VMs are preferably not dependent on one machine and can be moved

among different hosts when needed. This capability brings new opportunities for im-
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proving the utilization of cloud applications by finding proper placement of VMs in

the system [127]. Migration can be done to fulfill different objectives. Migrating VMs

from underutilized hosts and consolidating them in few hosts enable the system to shut

down unused hosts, saving costs and energy. Duggan et al.[110] investigate this prob-

lem while considering the available bandwidth as a factor to determine the best time for

migrations. An over-utilized host, where the guest VMs are consuming all the available

resource offered by the host, is another target which can benefit from migration. In this

case, the application on the overloaded host may experience performance degeneration

as there are requests that can not be handled in time due to the saturated resource and

long waiting queues. Accordingly, Sommer et al.[128] propose a prediction based mi-

gration strategy to find the overloaded hosts and triggers migration procedure to move

some of the VMs to the existing underloaded hosts. A combination of multiple forecast-

ing methods is employed to predict the future resource consumptions of the VMs and

identify the possible overloaded hosts based on the predicted values.

Migration is also a complementary procedure when the host can not fulfill the re-

quests to increase the resource capacity required for vertical scaling actions. PREPARE

proposed in [26] utilizes this strategy to correct the performance problems caused by

internal faults or load anomalies. The live migration is called when the vertical scaling

action is ineffective or not possible due to the lack of the resources on the host.

2.9 Gap Analysis and Future directions

Based on the analysis of different aspects of performance-aware resource management in

clouds, a number of challenges have been observed that needs to be investigated more

thoroughly. Accordingly, we propose a list of the potential research areas and future

directions in the following sections.

2.9.1 VM Elasticity Analysis

Vertical elasticity is one of the rather new functionalities introduced for cloud resource

scaling which has not yet been prevalent compared to horizontal scaling. Technical limi-
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tations to support VM elasticity along with the higher complexity of fine-grained scaling

(CPU and RAM level compared to VM level) management in data centers makes this

approach limited in practice and most known public providers do not offer this service.

Therefore, a more detailed study of the characteristics of vertical elasticity especially

time sensitivity analysis for different resource types, OS and hypervisors is required to

help the design of accurate solutions in the area of proactive resource management.

2.9.2 Adaptable Learning in Cloud

The effectiveness of many advanced machine learning methods is highly dependent on

pre-configurations that define a proper threshold or parameter values, usually based on

the characteristics of data and applications. There are many works targeting the prob-

lem of parameter configuration of learning methods in the field of data prediction and

anomaly detection. However, prediction and control of system behavior is becoming

more complex with the growth of highly dynamic environments such as cloud. Con-

sidering these challenges, robust statistics metrics and model/assumption free frame-

works are among techniques which require more attention to have more realistic so-

lutions. These mechanisms help to increase the flexibility and robustness of models

which is highly important for improving the adaptation of systems to a variety of ap-

plication and datasets. Dynamic tuning of model parameters in accordance with recent

changes and feedbacks of the system are interesting approaches for developing robust

solutions to be applicable for different workload patterns. Self-adaptable systems which

are discussed in section 2.6.2 and gradual learning frameworks such as reinforcement

learning from Section 2.6.2 are among approaches that can be effectively combined with

the data learning techniques to enable a mechanism of live interactions with environ-

ment to have adaptable resource management decision makings. However, a common

point of failure for these mechanisms is the exploration capability in terms of dealing

with large state/action tables which affect the accuracy and convergence rate of the so-

lutions. While new approaches such as adaptive partitioning of state space [113] are

introduced that address these types of the problem, the applicability and efficiency of

proposed solutions should be more investigated.
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2.9.3 Anomaly Cause Inference

Anomaly cause inference has been studied as part of the data analysis module to help

RMM better decide on selecting corrective actions. However, existing works in this area

mostly are coarse-grained, giving suggestions about the bottleneck metrics based on

the resource level information. Moreover, the contribution of knowledge from cause

identification in the process of RMM planning and resource management has not been

fully investigated. A more autonomic and integrated cause identification process which

has continuous interaction with planning module to get timely feedbacks on the quality

of information is a challenge for future researchers.

2.9.4 Application Dependent Detection Accuracy Trade-offs

In data analysis part of the investigated problem, Area Under the Curve (AUC) com-

monly is used to show the performance of anomaly detection algorithms in detecting

anomaly points. However, in the area of cloud performance analysis, the number of

normal instances in the collected data usually is much higher than anomaly points. The

lack of the balance in the number of instances for different classes raises the question of

whether AUC metric is biased by true negative points. We believe that presenting the

performance results by comparing both metrics AUC and Precision-Recall Area Under

the Curve (PRAUC) which demonstrate the functionality of the algorithms from dif-

ferent points of the view is an important part of the anomaly detection problems in this

area. This is a point that can be very important for some applications which require com-

plex recovery points in the case of the true anomaly events. For example, for prevention

mechanisms that target disk related problems with expensive mitigation actions, a so-

lution with higher precision and minimum of false alarms may be preferred. Referring

to our survey, this is an interesting point which is highly neglected and requires a de-

tailed analysis of the effectiveness of proposed anomaly detection methods considering

service owner preferences.
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Table 2.2: Comparison of Data Aware Performance Management Approaches in Large Scale Systems

Work Data Level Learning Approach

(ML: Machine Learning,

RL: Reinforcement

Learning)

Anomaly

Aware

Anomaly problem Cause

Inference

Level

Proactive Resource Adjustment

Techniques (H:

Horizontal,

V:Vertical)

Module

[15] System ML X X Load balancing Data

[16] System ML, Statistical X X Data

[18] System Threshold, ML X X V, H Data, Plan

[114] System,

Application

Threshold, Statistical X X H Data, Plan

[21] System,

Application

ML X X Data

[22] Network Statistical X Network X Data

[30] System,

Structure

ML X Software bug, Resource

bottleneck

Component,

Metrics

X Data

[20] System ML X Resource bottleneck Type of

Anomaly

X Data

[25] System,

Application

ML X Resource bottleneck Type of

Anomaly

X Data
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[23] System ML X Deadlock, Starvation,

Livelock

Type of

Anomaly

X Data

[27] System ML X CPU/Mem leak,

Network hog

Metrics X Data

[26] System ML X Resource bottleneck Metrics X V, Migration Data, Plan

[68] System RL, ML X X H Data, Plan

[40] Network Signature, ML X Network Type of

anomaly

X Data

[28] System,

Application

ML, Statistical X Resource bottleneck Metrics X V, Migration Data, Plan

[29] System,

Application

ML, Statistical X Resource bottleneck Metrics X Data

[31] System Statistical X Resource bottleneck,

Offload bug, Load

balancing bug

Component X Data

[32] System Statistical X Resource bottleneck,

software bugs,

multi-tenancy problem,

network packet loss,

deadlock

Type of

Anomaly

(external vs

internal)

X Data

[33] System ML, Signature X Software bugs Code level X Data
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[34] Application Statistical X Software bugs Code level X Data

[35] System ML Resource bottleneck,

Database abuse

Target

Thread/Process

X Data

[65] System ML, Statistical X X Data

[41] Network Statistical X DDos Attacks X Data

[63] System,

Application

Statistical X Resource bottleneck Metric X Data

[71] System,

Application

Signature X X Data

[72] System,

Application

Statistical, ML,

Signature

X Resource bottleneck,

Application update

X Data

[73] System,

Applica-

tion,

Structure

Signature, Statistical X X Data

[74] System,

Application

Statistical, Signature,

ML

X Load, Software bugs Metrics, Type

of Anomaly

X V, H, Migration Data, Plan

[75] System Threshold X H, Migrations Data, Plan

[76] System,

Application

Threshold X X H, V Data, Plan
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[91] System,

Application

Control Theory X P H Data, Plan

[77] System ML X Resource bottleneck X Data

[86] System Control Theory X Load, Hardware failure X H Data, Plan

[81] System,

Application

Control Theory X X V Data+Plan

[82] System,

Application

control Theory X X H Data+Plan

[96] System Statistical X Resource bottleneck,

Software bugs

X Data

[97] System Statistical X Resource bottleneck X Data

[98] Application,

System

Threshold, Statistical X Metrics X Data

[99] System,

Application

Threshold, Statistical X Resource bottleneck Metrics X Data

[100] System,

Application

ML, Statistical X X H Data, Plan

[101] Network Statistical X Port scan Packet

Information

X Data

[102] System Statistical X DoS Attack X Data
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[104] System,

Application

ML X X Data

[105] System ML X Resource bottleneck X VM Placement Data, Plan

[109] System,

Application

Threshold, RL X X H Data, Plan

[17] System RL, Statistical X X V Data, Plan

[110] System RL X X Migration Data, Plan

[111] System,

Application

RL X X H Data, Plan

[42] System Signature X Resource Shortage X H, Over-provisioning Data, Plan

[129] System,

Application

Signature, ML X Resource bottleneck X V, Migration Data, Plan

[121] System Threshold X Resource bottleneck X V, Migration Data, Plan

[127] System,

Application

Threshold, Statistical X Resource bottleneck X Migration Data, Plan

[128] System Statistical X X Migration Data, Plan

[38] System Rule X Network related

Application bugs

Target System

Calls

X Data

[4] System Threshold X X H Data, Plan
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2.10 Summary

This chapter investigates different approaches in the performance management of cloud

environment. Identifying the major limitations and considerations in these approaches

and their impacts on the selection of the best strategies for proper resource configu-

ration highlights the need for more advanced and automate procedures to handle the

dynamism of the environment. We have proposed a taxonomy of problem focusing on

the value of the data as a source of knowledge for resource management decision mak-

ing and presented a survey of the existing works, accordingly. The listed categories

in the taxonomy are defined based on the characteristics of the existing works within

the scope of this thesis and include their base architecture, granularity of collected per-

formance data, targeted performance problems and the types of resource management

actions. Based on the reviewed works, a list of observed gaps and possible directions is

discussed which can give new insights for further research in this area. In the follow-

ing chapters, we present our research contributions in this area addressing some of the

discussed challenges and gaps in this chapter.





Chapter 3

Performance Anomaly Detection
Using Isolation-Trees in Computing

Clouds

In order to efficiently manage resources in cloud, continuous analysis of the operational state of the

system is required to be able to detect performance degradations and malfunctioned resources as soon

as possible. Every change in the workload, hardware condition or software code, can move the state of

the system from normal to abnormal which causes performance and quality of service degradations.

These changes or anomalies vary from a simple gradual increase in the load to flash crowds, hardware

faults, software bugs, etc. This chapter addresses the first research question introduced in Section 1.2

by proposing an Isolation-Forest based anomaly detection (IFAD) framework based on the unsuper-

vised Isolation technique for anomaly detection in a multi-attribute space of performance indicators

for web-based applications. We empirically validate the effectiveness of proposed technique with re-

gard to various workloads and anomaly types which shows that IFAD can achieve good detection

accuracy especially in terms of precision for multiple types of anomaly.

3.1 Introduction

The emergence of cloud service providers (CSPs) such as Amazon, Google and Microsoft

has moved the previously limited, community specific capabilities of high performance

computing to a new era of public, on-demand, pay-as-you-go computing. These new

This chapter is derived from:

• Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, Performance Anomaly
Detection Using Isolation-Trees in Heterogeneous Workloads of Web Applications in Computing
Clouds, Concurrency and Computation: Practice and Experience (CCPE), Volume 31, No. 20, ISSN: 1532-
0626, Wiley Press, New York, USA, Oct 2019.
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characteristics offered by cloud providers mainly highlight the need for more complex

and robust resource management solutions that decrease the need for human involve-

ment. The main goal for CSPs is to find better ways of resource management to improve

resource utilization and guarantee the quality of service (QoS) experienced by their cus-

tomers. Any violation of these service level agreements (SLA) can cost providers penal-

ties for SLA violations or losing their reputation. However, considering the dynamic

nature of cloud systems, every change in the workload, hardware condition or software

code, can change the state of the whole system from normal to a state of abnormal be-

havior which can affect the performance and QoS. The degradations in the performance

can result in higher monetary costs and energy wastage for under-utilized resources

which are negative sides of the dynamic environment from resource provider perspec-

tive, highlighting the need for automated ways of detecting performance problems [7].

This is a highly important observation, especially for large scale web application sys-

tems where the interaction from users to web servers can change frequently, affecting

the pattern of workloads and resource requirements. For example, it is shown that web

applications are prone to many of the performance problems which involve CPU and

memory resources [8].

Taking into account that each type of performance problem can impact the system

or application metrics differently, defining proper rules that cover all types of problems

is becoming complex and out of the expected knowledge of application owners. It is

vital for every resource management solution to consider utilizing timely and adaptive

algorithms to identify the anomalies in the system as soon as possible. Therefore, re-

searchers are looking for more powerful solutions for performance analysis of resources

in the cloud. An automatic anomaly detection module should be able to analyze the

collected performance metrics from cloud resources and build models which can detect

deviation points where the system moves to an anomaly state. In the process of collect-

ing metrics, building models and triggering alerts, there are some challenges that should

be considered:

• Scalability: One of the main characteristics of cloud dependent applications is

scalability which makes it possible to scale up the system components to hundreds

and thousands of virtual machines (VMs). In such a dynamic environment, cen-
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tralized anomaly detection approach becomes a problem especially if we want to

capture the state of the whole system in one model. As a solution for this problem,

we assume that each machine monitors the performance metrics of its own VMs

which breaks down the problem of anomaly detection to one host. Furthermore,

we are utilizing an easy to deploy monitoring tool, known as Ganglia that can be

easily managed in a large distributed environment.

• Unsupervised learning: Cloud environment is prone to different types of anoma-

lies that affect the performance of the system in different ways. Therefore, it is

reasonable to assume that we do not have access to labels that identify the state of

the system as normal or anomaly. Accordingly, the proposed anomaly detection

module does not assume prior knowledge of the system and would perform in an

unsupervised manner.

• Recurrent model parameters tunning: Due to the heterogeneous nature of web

applications in the cloud, the normal state of the system can change significantly

based on the number of requests sent to the system. In this case, detecting anoma-

lies in a previously unseen normal environment is another challenge that we should

consider. Most of the existing algorithms require tunning and parameter settings

to be done before updating the models. This procedure adds extra overhead to

the system, particularly for frequently changing environments. The proposed

anomaly detection approach is fast which requires no workload dependent con-

figuration or any time consuming data preparation which makes it a fit for our

target environment.

• Application preferences: The problem of anomaly detection is highly applica-

tion and data dependent. We need to consider cases when the application owner

prefers an algorithm with a higher precision, sacrificing the sensitivity of the al-

gorithm or vice versa. For example, applications concerning disk drive failure

analysis or medical tests for rare diseases require low and more controlled false

alarms rates considering the costs of triggered actions for predicted anomalies

[130]. Hence, in this work, we evaluate the effectiveness of the proposed IFAD

framework with different algorithms in terms of both measures of AUC (Area Un-



72 Performance Anomaly Detection Using Isolation-Trees in Computing Clouds

der the Curve) and PRAUC (Precision-Recall AUC) and the trade-off between false

negative and positive rates in the results. The study helps to better understand the

capabilities of algorithms from the perspectives that are usually ignored in current

research.

With regard to these challenges, this chapter focus on the first two phases of MAPE

loop (Monitoring and Analyzing) as discussed in Section 2.2.1 and investigates an unsu-

pervised anomaly detection approach for analyzing different types of anomalies (CPU,

memory, disk, ...) in heterogeneous workloads of web applications in the cloud. We de-

ploy a realistic prototype for Web2.0 applications based on the CloudStone benchmark

and integrate that with an injection module by implementing five types of performance

anomalies in cloud environments. The contributions of this work are therefore, a time-

series based anomaly detection module that can handle various types of web workloads

in terms of trend and seasonality features in the presence of performance anomaly prob-

lems. Especially, through our experiments, we show that analyzing the performance

results by comparing both metrics AUC and PRAUC, which demonstrate the function-

ality of the algorithms from different points of view, is an important part of the anomaly

detection problem that should be further investigated. Moreover, interesting character-

istics of Isolation-Trees based anomaly detection to offer a low overhead algorithm with

a simple yet effective procedure makes it a new alternative to analyze other types of

anomalies or applications.

The rest of this chapter is organized as follows: Section 3.2 reviews some of the exist-

ing works in the field of performance management and anomaly detection. Section 3.3

presents the motivation and an overview of the main parts of IFAD framework. In Sec-

tion 3.4, we detail the functionality of each part including characteristics of the collected

data followed by data processing and finally anomaly detection module. The details of

all experiments and the results are presented in Section 3.5 and finally, we summarize

the work and findings in Section 3.6.
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3.2 Related work

In this work we have proposed an Isolation based anomaly detection framework to de-

tect performance anomalies in the 3-tier web-based applications and investigated the

effectiveness of multiple algorithms based on AUC, PRAUC and DET measurements.

This is a starting point to give insights to system administrators about the importance

of the specific requirements of their application in selecting a suitable data analysis ap-

proach. In this section, we first discuss anomaly detection algorithms in general and

then focus on the anomaly detection applications in cloud environment.

3.2.1 Anomaly Detection

The concept of anomaly detection has been widely studied under different names out-

lier or novelty detection, finding surprising patterns or fault and bottleneck detection in

operational systems. There are a variety of survey and review papers that try to classify

existing algorithms based on their requirements and computation approach into differ-

ent categories[19, 131]. Distance based algorithms utilize an approach that addresses

the problem of outlier detection based on the concept of the distance of each instance

to the neighborhood objects. Greater the distance of an instance to the surrounding ob-

jects, more likely that the instance is an outlier [132]. Another approach defines the local

density of target instance as a measure for the degree of outlierness of that instance. Ob-

jects that reside in the low degree regions are more likely to be known as an anomaly

[133, 134]. While distance and density based approaches show promising results in var-

ious types of the datasets, they usually require complex computations which are not

preferable in the high dimensional or fast-changing environments.

Another anomaly detection approach which demonstrates promising characteristics

in terms of the time complexity and memory requirements is isolation-based technique

[107]. In contrast to the traditional approaches of anomaly detection that anomalies

are detected as a by-product of another problem such as classification and clustering,

isolation-based technique directly targets the concept of the anomalies based on the idea

that an anomaly instance can be isolated quickly in the attribute space of the problem

compared to the normal instances. This approach has been also explored in other types
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of the applications such as fraud detection problems. For example, [135] addresses the

categorical values and proposes an isolation based anomaly detection based on the hori-

zontal partitioning of the data. They show that the proposed method can detect some of

the hidden anomalies in the subsets of data that can be ignored when the whole data is

analyzed. However, their method is highly domain specific and needs pre-knowledge of

the structure of datasets. Another work by [108] proposes a sequential feature selection

and outlier scoring framework which tries to filter the important subset of features. An

outlier scoring algorithm calculates the scores and they try to find a regression formula

among outlier scores and original features as the predictors. They have also demon-

strated their approach based on the isolation technique as an outlier scoring algorithm

and have shown the effectiveness of proposed filtering approach in the high dimen-

sional data. In contrast, our approach utilizes time series analytics and isolation based

technique for detecting bottleneck anomalies in the cloud hosted web applications.

3.2.2 Anomaly detection in cloud

The idea of using anomaly detection to find faults in the computing and storage systems

has been widely investigated. For example, [130] studies specific requirements of disk

performance analysis to have a controlled false alarm, proposing improvements on ex-

isting algorithms to avoid high penalties during the disk failure analysis. Hence, they

propose statistical testing based approaches and multivariate decision rules to predict

disk failures with the aim of reducing false alarms in the prediction process. [63] stud-

ies the application of tree-augmented Bayesian networks (TAN) classifiers to relate the

resource performance metrics to SLO violations for web-based applications. Although

they investigate the effect of different workloads and SLO thresholds, their work does

not compare TAN performance with other learning algorithms and neither studies the

PRAUC or DET metrics as our work. The work presented in [136] investigates the feasi-

bility of isolation technique to detect anomalies in the data from IaaS datacenters. How-

ever, their focus is on the behavior of IForest in the presence of seasonality/trends in

their dataset and they do not consider types of anomalies or compare the detection ca-

pabilities of IForest with other algorithms for different performance problems and with
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a variety of workloads.

[30] addresses the fault localization problem in distributed applications. The pro-

posed framework combines the knowledge of inter-component dependencies and change

point selection methods, taking into account that the abnormal changes usually start

from the source and propagates to other non-faulty parts based on the interactions of the

components. Principal component analysis is another method to analyze the data, espe-

cially to reduce the dimensionality of attribute space. Accordingly, [20] presents an auto-

matic anomaly identification technique for adaptively detecting performance anomalies

by proposing an idea that a subset of principal components of attributes can be highly

correlated to specific failures in the system. In contrast, our work focuses on unsuper-

vised bottleneck anomaly identification and can be used complementary to these works

to detect previously unseen anomalies.

[99] addresses the problem of bottleneck and cause diagnosis by finding the corre-

lation among attributes and application performance metrics. A subset of correlated

metrics is selected based on the predefined thresholds and is analyzed to find possi-

ble causes of performance anomalies which are injected in the simulated data. How-

ever, the proposed approach is sensitive to the degree of temporal correlation among

attributes. [137] targets the security issues that can arise after migrating VMs to new

hosts. They propose a combination of an extended version of Local Outlier Factor (LOF)

and Symbolic Aggregate ApproXimation (SAX) to detect and find possible causes of

anomalies. The SAX representation helps LOF to consider the time information during

analysis. However, LOF is a semi-supervised algorithm which is sensitive to the pres-

ence of anomaly in the training data. [114] applies a threshold based approach for the

problem of resource management in web applications. The proposed framework starts

to add new resources as a response to detected anomalies based on the observed vio-

lation of Response-Time or CPU utilization; moreover, a regression-based predictive al-

gorithm method detects over-provisioned resources to be released. The work presented

by [16] considers a single attribute, number of required processors at a certain time, for

the resource utilization estimation. They propose a combination of machine learning

and statistical methods based on the idea that the former is more reliable in long-term

prediction whereas the latter can have more accurate predictions for the short-term in-
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tervals. However, their prediction does not include the concept of unexpected behaviors

resulting from various anomaly sources. Compared to these works, our work is more

general in terms of considering richer feature space and other sources of unexpected

behavior.

The application of unsupervised Hidden Markov Models to detect cloud perfor-

mance anomalies is investigated by [77]. They propose a distributed and online anomaly

detection framework, focusing on the 3 main attributes of Memory, CPU and disk. Our

work, in contrast, targets higher dimensional problems with large number of features

and therefore needs faster detection solutions with less computation complexity and

adaptation requirements. [35] exploits unsupervised clustering to detect anomaly pat-

terns at the thread and process level. They collect system level metrics based on the

application characteristics and utilize DBSCAN method to detect non-normal behav-

iors. However, their method requires an off-line clustering of the normal data before

starting the anomaly detection process.

[25] investigates proactive anomaly detection in data stream processing systems. The

target anomalies are injected and the training phase is done on a labeled dataset of dif-

ferent anomaly occurrences in historical data. [26] addresses the same problem by in-

tegrating a 2-dependent Markov model as a predictor and TAN for anomaly detection.

They utilize TAN models to distinguish normal state from the abnormal ones as well as

reporting the most related metrics to each type of the anomaly. These works follow a

supervised approach, targeting stream processing applications.

In contrast to existing works, our approach investigates the unsupervised anomaly

identification in a multi-attribute space for heterogeneous workloads of web applica-

tions. Moreover, we highlight the importance of workload characteristics as well as

application specific requirements by studying the relation of different measurements

obtained from anomaly detection process.

3.3 Motivation and System Overview

The virtualized environment of cloud models is prone to various types of performance

problems that make the resource management solutions more complex and challeng-
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ing. Any change in the configurations of the resources is a response to a performance

degradation or SLA violation which is influencing one or a group of related VMs host-

ing the application. This is an important issue, especially for web applications in which

the behavior of users plays an important part in the performance of the application. For

example, the sudden surges in the number of users due to the release of a new prod-

uct requires an immediate response by adding enough resources to handle the requests.

Resource management modules should be aware of these violations to take corrective

actions immediately.

On the other hand, many existing anomaly detection techniques are not optimized

for the highly changing conditions of the heterogeneous applications hosted on the

cloud. A large number of clustering and classification techniques are based on the

notions of distance and neighborhood density of instances in the feature space of the

problem which leads to high computational complexity and memory requirements. The

problem becomes more important in the area of cloud performance analysis, where a

range of performance indicators from application and system levels can be affected by

various types of faults in the system. The more features to be included during anal-

ysis, the more complex feature space with higher dimensionality. Moreover, the pri-

mary function of these algorithms usually targets other problems such as clustering and

classification and anomalies are detected as a by-product of data categorization while

Isolation technique directly addresses the anomaly detection problem [19, 107].

Regarding the problem of web performance analysis in the cloud, heterogeneity of

workloads and different types of possible failures are two contributing factors that can

make the above mentioned challenges even more important. Therefore, the first problem

is identified as providing a framework that can quickly and effectively model different

patterns of workload variations which include a signature of some of the common bottle-

neck problems. The second addressed problem in this work is the lack of comprehensive

study on the effectiveness of various algorithms with regard to the precision of detection

results. We have observed that the most common evaluation metrics discussed in the lit-

erature focus on the detection accuracy in terms of the true positive points. However,

the results of corresponding metrics can be misinterpreted in the problems with highly

imbalanced classes which highlights the need for other types of evaluation.
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Figure 3.1: 3-tier Web Layers

Motivated by the above limitations, we formulate the problem as detecting unusual

behaviors that may be a sign of the beginning of an abnormal state in the system with

the possibility of changes in the normal patterns of the workload. We show how data

analytics techniques can help to overcome the complexities of time series to better cap-

ture the pattern of data and anomalies. Regarding this definition, it should be clear what

types of abnormal behavior are targeted. Given one VM measurement, we focus on a

category of performance problems known as the resource bottlenecks. We try to find

point anomalies which are measured records that are not consistent with the previously

seen measurements of performance indicators of the system. As an example, consider

a situation in which a memory-intensive background application starts working in the

same VM with the target application. System observes an increase in the memory related

metrics while the incoming workload of the application does not show any significant

change. The unusual increase of the memory should be detected as an abnormal be-

havior as it can cause a performance degradation in the application due to the lack of

enough available memory for handling user requests. Similarly, we consider the impact

of the unusual increases in CPU, disk and load of the system. It should be noted that

the primary focus of this work is to detect unexpected behaviors in terms of the vari-

ations of system performance. Therefore, the abnormalities in the resource utilizations

are considered as the signs of application performance degradations which is consistent

with the previous observations [8]. Moreover, our work concerns a data centric analy-

sis of performance anomalies which do not rely on user perceived measurements such

as response time and considers the violations in input data (collected metrics) as possi-

ble signs of misbehaving in the system which causes user side SLA violations. This is

a common approach in studies that investigate the performance of anomaly detection

techniques in cloud systems [77].
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Figure 3.2: A High Level System Model

Accordingly, two main parts of the IFAD framework are identified as data prepara-

tion modules for each VM to analyze the specific characteristic of the time dependent

datasets including trends/seasonality, and the anomaly detection modules. The target

application in our model is a 3-tier web-based application which is a standard architec-

ture employed by many web applications [138]. As shown in Figure 3.1, in this architec-

ture, the functionality of the application is divided into 3 layers:

• Presentation Layer: The interface that user interacts to access the application layer.

• Application Layer: The main parts of the application/business logic are imple-

mented in this layer.

• Data Layer: The persisted data that can be accessed by application layer is man-

aged by one or more database servers in this layer.

It is shown that this type of applications is prone to many of the above mentioned

performance problems [8]. The main focus of this work is the performance of the server
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side VMs which can be easily affected by the behavior of users, buggy codes or other

malfunctioning applications.

Figure 3.2 depicts a high level model of the proposed framework. In order to be able

to investigate the effect of different performance changes in the system, a prototype in

a virtualized environment is deployed. The prototype models the components of 3-tier

applications which are common, yet simple to be manipulated for anomaly injection

parts. A set of workloads with different configurations is generated to simulate normal

state of the system. Consequently, different types of anomalies are injected into the

benchmark components to show how each type of the anomaly can change the state of

the system from normal to abnormal.

The VM monitoring module continuously tracks the performance indicators on the

VM that is hosting the application. Every VM monitors its own performance metrics at

regular intervals and sends them back to the anomaly detection module. The per-VM

monitoring policy enables the system to quickly isolate the source of the problem to the

target VM and focus on the identification of underlying reason in the machine. This type

of problem may be ignored by system-wide solutions that monitor the average values

of performance indicators in the system.

The collected metrics are either system related such as CPU, free disk and memory or

application specific metrics such as SQL database attributes. Table 3.1 presents a list of

some of the major attributes collected in our system. One point worth mentioning here

is how to select a proper logging interval for monitoring modules. Selection of a proper

log time is highly dependent on the nature of the workload, type of the application and

reliability of the environment. Existing works select a range of values from a few seconds

to hour(s) based on the target application and problem [16, 26, 77]. In our case, Ganglia

gives us the flexibility to select any interval and based on our experiments we have used

a configuration of 15 seconds interval to collect the values for all monitored attributes

to have a desirable trade-off between storage and accuracy in the system. Collected

measurements are processed by different filtering techniques before they are sent to the

anomaly analysis module.

The aim of monitoring performance indicators is to detect any abnormality com-

pared to the past observations. Upon receiving the filtered measurements for each VM,
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Table 3.1: Some of the monitored metrics in the Application or Database servers. In
total, there are 98 metrics collected from the monitored machines.

Metrics Description

CPU CPU utilization

CPU IO The time waiting for IO operations

MEM FREE Available memory

MEM DIRT Memory waiting to be written to disk

DISK READ The time in seconds spent reading

DISK WRITE The time in seconds spent writing

BYTES IN Number of bytes received

BYTES OUT Number of bytes sent

ABORTED CONNECTS Failed connection attempts to MySQL

THREAD CONNECTED Currently open connections to MySQL

the system needs to have an abstract model of the past behavior as a reference for the

comparison. Anomaly detection module has the responsibility to initialize and update

the models by training target anomaly detection algorithm with the past observations.

Therefore, the core part of this module is an algorithm which generates the models by

learning from training data and applies them for detecting anomalies in the test data.

IFAD leverages isolation based approach for this problem which is detailed in Section

3.4.4. The output of this module is the anomaly scores for new observations. One can

use the obtained knowledge from anomaly detection module to improve decision mak-

ing procedure of resource management frameworks to start proper mitigation actions

or alleviate performance degradations in the system. This can be done by various pre-

ventive actions such as changing resource configurations or scaling resources which are

discussed in the next chapters.
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3.4 System Design

In this section, we explain the data collection and preparation procedure followed by

the details of the anomaly detection module.

3.4.1 Data Collection

In order to have a better understanding of current state of the system and possible drifts

to abnormal states, two sources of data are considered: 1) Application data which is

workload and component related 2) System data which represents the current state of

the resources by combining different metrics such as CPU utilization, memory and disk

usage. However, there is no public dataset that provides all the required measurements

from application characteristics to VMs performance states. To be able to validate the

anomaly detection procedure we need to have a labeled dataset which shows the exact

points where an anomaly occurs. Moreover, the source of anomalies can be different.

Since we want to have a signature of each type of the anomaly, different anomalies such

as CPU or memory bottlenecks should be injected randomly in time in the system. To

address these issues, the analysis is performed by generating typical workloads through

a standard web benchmark based on CloudStone framework [139]. Each component

is installed on a separate VM and the proposed framework is deployed on Australian

virtualized cloud infrastructure named Nectar.

To collect the performance indicators of the components, Ganglia framework which

is a scalable, distributed monitoring system is utilized . Ganglia is based on a hierarchi-

cal architecture with a multicast-based send/receive protocol to monitor the state of the

machines in a cluster and aggregates the monitored states in a few representative nodes.

The robust design of the data structures and algorithms helps us to easily extend the

functionality of the framework by adding new scripts to collect customized measure-

ments from monitored components. For example, the RAM related metrics provided

by Ganglia does not include the active memory metric. Active memory shows the amount

of memory recently used considering the fact that some parts of the allocated memory

https://nectar.org.au/research-cloud/
http://ganglia.info/
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Table 3.2: The range of CPU utilization for each workload level

Workload Level CPU Utilization

Low 10% - 40%

Medium 40% - 60%

High 60% - 100%

which are included in other metrics such as consumed memory are not being used by the

application and are set to be freed. Therefore, active memory is a more accurate estima-

tion of RAM utilization of the application in each time interval. We have extended the

basic monitoring module of Ganglia by adding the scripts to calculate this value in our

installation. Table 3.1 shows a list of some of the major attributes collected in our sys-

tem. The framework collects data in RRD (Round Robin Dataset) format and sends the

collected files to the analyzer module. Data analyzer module can read monitored perfor-

mance data from these files and perform data preprocessing steps before applying the

detection algorithms.

As we already stated, the increase/decrease in the number of users interacting with

web application can highly impact the pattern of the workload and the utilization of the

resources. In order to have a comprehensive validation of the effect of possible trends

in the experiments, five types of the dataset are generated by changing the frequency

of increase in the number of concurrent users in the system. The changes in the num-

ber of users can happen at the start of each step which corresponds to one run of the

benchmark. For reproducibility of data by other researchers, we annotate each dataset

with the level of resource consumption from the starting point to the end. Having these

annotations, we can regenerate the datasets on machines with different specifications.

We define three levels of the number of users based on the observed resource utilization

during different experiments on the benchmark. Since the target workloads are more

CPU intensive, we correspond each level to a range of CPU utilization for the applica-

tion server. Table. 3.2 shows three ranges of CPU utilization for these levels. The details

for each dataset are as follows:

Dataset1: The number of concurrent users in the system is medium. Therefore none
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of the resources is overloaded and there is plenty of free CPU and Memory space. The

frequency of changes in the number of users is very low, so it simulates a workload

without any load related fluctuations, and anomalies show a distinguishable pattern in

all parts of the data.

Dataset2: The number of concurrent users in the system is very high. Therefore the

utilization and fluctuations of resources especially for CPU are high, which makes it

hard to get a well separated pattern of anomalies. The changes in the number of users

are very low, so it simulates a workload without any recognizable trend.

Dataset3: We start to increase the concurrent number of users from a low level to a

medium level which creates a visible trend in the number of users as well as resource

utilization. The increase is performed by adding 10 users every 10 steps. However, due

to medium level of resource utilization, anomalies still show distinctive patterns in the

attribute space.

Dataset4: We start to increase the number of concurrent users from a low level to a

very high level. Therefore it simulates a fast-changing workload sent to the web server

and causes higher utilization and fluctuations compared to dataset3. The increase is

performed by adding about 10 users every 7 steps.

Dataset5: We start to increase the concurrent number of users from a low level to

medium level by adding 10 users every 5 steps. Due to the high rate of increase in

request numbers, the noise from high fluctuations is affecting all parts of the data.

CloudStone helps to generate these workloads with dynamic characteristics of web

loads, considering various patterns in terms of seasonality and trends in a stream of

requests. Therefore, training and testing can be done on consecutive windows of time

series as described in Section 3.5.

3.4.2 Data Preparation

When applying IForest to learn from training data with the injected anomalies, we found

that a combination of multiple data transformations is required to improve the detection

efficiency of algorithms. First, all the features with constant variance are removed as

they usually do not provide new information about changes in the system and their
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Algorithm 1: Data Preprocessing

input : D = (X1, X2, ..., Xm), Xi ∈ Rn×1 : D is a matrix of n records, each record
including m features

Parameter: k: Moving Average Window Size
w: Piecewise Median Window Size

output : s: Normalized Extended Data
1 s← ∅
2 for X ∈ D do
3 Extract seasonal Sx component using STL method from X
4 Extract trend Tx component using Piecewise Median from X
5 Rx ← X− Sx − Tx
6 s← s ∪ Rx

7 end
8 for X ∈ D do
9 Normalize X

// Compute K-moving average
10 initialize all indicators in aj to 0
11 for j← 1 to n do
12 a[j]← Average(X[max(1, j− k) : max(1, j− 1)])
13 end
14 s← s ∪ a
15 end
16 return (s)
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existence just increases the dimensionality of the problem. Second, different features

have different ranges of values. For example, CPU values can be between 0 and 100,

but memory can vary from 0 to 8192. Therefore, we apply a standard normalization to

convert all the values to a range between 0 to 1.

Another point to mention is that collected datasets include values from different fea-

tures over a period of time that create a time series of each feature. Existing trends and

seasonality characteristics related to these time series change the pattern of normal data

over time. Therefore, as Algorithm 1 shows, we have used STL (Seasonal and Trend

decomposition using Loess) technique [140] which is a filtering procedure based on

LOESS (local polynomial regression fitting) smoothing to decompose series of various

features and extract the trend and seasonality components. However, as [141] shows,

the trend component obtained with this method has a problem of introducing some ar-

tificial anomalies in the remainder of data which consequently affects the accuracy of

anomaly detection algorithms. Therefore, we obtain the Piecewise Median introduced

by [141] to calculate approximate trend of time series. The median has shown to be a

more robust metric in the presence of anomalies compared to the average values. Hav-

ing the seasonality and trend components, the remainder component of time series is

calculated and have been used as extra features for each dataset.

3.4.3 Feature Smoothing and Time Dependent Information

The collected datasets have similar characteristics to time series that present the patterns

in data through underlying trend and seasonality features. According to our observa-

tions, there are some transient spikes and noises which are introduced during runs of

the benchmark. The noise can be a result of wrong or missing measurements or caused

by specific characteristics of the benchmark at the start of each run. In order to reduce

the effects of transient values, one can consider an average of the consecutive values

in predefined time windows which help to smooth these variations. On the other hand,

the time of occurrence for each measurement is an important feature which can affect the

interpretation of the state of the system. In other words, the behavior of the system pre-

sented by nearby instances can affect the decisions to identify an instance as an anomaly
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or not. The average value of the recently observed instances can help to have an un-

derstanding of the previous state of the system and better highlight significant changes

between adjacent time windows. Therefore, to further improve our model and include

the basic knowledge of time dependent changes in the dataset, we can extend the raw

data with a summary of historical data as presented in lines 10-14 of Algorithm 1. To

achieve this goal, a window of k previous samples for each instance is considered and

the values of the attributes are averaged out, including them as new features for each

sample. The technique which is known as k-point moving average helps to decrease the

effect of transient spikes and adds time dependent information into the attribute space.

3.4.4 Anomaly Detection Approach

Upon receiving enough observations from data preparation module, IFAD is able to start

the anomaly detection process. This process can be divided into two main parts: model

generation based on the training data and anomaly identification for the test data. In the

following, we explain these two parts in more details.

IFAD leverages Isolation technique as the core part of its functionality. This tech-

nique is a decision-tree based ensemble approach named Isolation Forest (IForest) intro-

duced in [106, 107]. We choose Isolation technique for our anomaly detection problem

based on our observations that the target types of anomaly in the cloud performance

data usually change the values of metrics suddenly and these changes are rare compared

to the normal behavior of the system. Therefore, we suggest that there is a high chance

that these rare unseen values can be detected based on the partitioning of attribute space

in the presence of normal points. This will eliminate the need for calculating distance or

density which results in high memory and computation complexities. Traditional clas-

sification methods cannot deal with highly skewed distributions. Anomaly detection

is a classic example of highly skewed data. Isolation based technique is extremely fast

and has been shown to work with a wide variety of distributions of data and does not

require prior knowledge of these distributions. They can also be run in parallel to de-

tect anomalies and its cost is negligible compared to many existing anomaly detection

algorithms. The basic assumption of IForest is that anomalies are rare and different and
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Figure 3.3: A simple Isolation Tree for two attributes CPU and Memory.

as a result, anomaly instances can be isolated faster than normal ones in the attribute

space. This problem is formulated as a binary tree and each node is created by blindly

(no need for the labelled dataset) selecting features and values as the conditions to split

existing instances. The input of IForest for the model generation part is a sequence of n

observations with extended attributes prepared as described in sections 3.4.1 and 3.4.2

to be used as the training data. In order to generate the first binary tree, IForest ran-

domly selects ψ <= n instances from the input observations. An attribute c from the

column space of the training data and a value for the attribute is selected. Then, all ψ

instances are divided into two categories based on the comparison of their values for

the attribute c. The generated categories are assigned to two new nodes that create left

and right children for the root node of the tree. The process of selecting an attribute and

dividing existing instances into sub nodes repeats for new children nodes until the ter-

mination conditions are met, which means that there is only one instance left at the node

or all the instances have the same values or the maximum length for the tree has been

reached. Figure 3.3 shows a simple Isolation Tree for two attributes CPU and memory.

Let X = (x1, x2, ..., x7) be a subsample of input observations to be isolated by their two

columns. The root node divides X by selecting value c1 for attribute CPU. As you can

see in the figure, all instances except x1 are moved to the right child node and x1, as the

only instance left, creates a leaf node at the left of the tree. The right child node divides
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remaining instances by selecting value m1 for memory which creates a leaf node at the

right containing x2 instance while other instances move to the left child node. This pro-

cess continues until the conditions for termination are met. As we can see, instance x1

can be a possible anomaly point in our sample set as it seems to be in a different range of

CPU values compared to the other instances. To create an ensemble of the binary trees,

this process repeats to generate t trees. The ensemble represents an abstract model of

the current state of the system that can be referenced to find behavior deviations from

the past.

The second part of the problem is the identification of the anomalies in the test data.

Every test observation should traverse all the generated trees based on its values for the

selected attribute of each node until it reaches a leaf node. The path length of the tree

from the root to the leaf node represents the number of required partitions to isolate an

instance on its values. The anomaly score is calculated based on the average path length

of traversing the trees using a formula presented by [107].

We should highlight two points regarding the adaptability of Isolation technique in

our target performance analysis problem. First, this method is an unsupervised learning

approach which shows a low linear-time complexity with small memory requirements. These

are essential characteristics for the problem of performance management in clouds to

have fast and low-overhead solutions with the capability of finding previously unseen

performance problems. Indeed, the worst time for training and testing of the algorithm

is O(tψ2) and O(Ltψ) respectively, where ψ is the number of selected subsamples and

L is the size of testing dataset. This also leads to the conclusion that the training com-

plexity is constant when the subsample size and the number of trees in the ensemble

are fixed [107]. Furthermore, for the problem of anomaly detection in highly dynamic

environments, there is a significant issue that usually is neglected about the impact of

the workload heterogeneity in the accuracy of the models. The heterogeneity in web ap-

plications due to the resource configurations or internal and external events can change

the normal pattern of data in the system. A fast anomaly detection procedure which

does not require time consuming parameter tunings is an essential requirement which

is satisfied by the IFAD framework.
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3.4.5 Evaluation Metrics

In order to evaluate the detection accuracy of different algorithms, we distinguish four

cases. True Positive (TP) that represents a case that an anomaly instance is reported cor-

rectly by the algorithm as anomaly. False Negative (FN) that shows a missed anomaly

instance which is not detected by our algorithm. False Positive (FP) which refers to

cases that normal instances are detected as anomaly and True Negative (TN) that shows

a normal instance is correctly identified as normal. Considering these definitions, two

metrics, True Positive Rate (TPR) and False Positive Rate (FPR) can be calculated based

on Equation 3.1 and Equation 3.2. In probability based detection algorithms that calcu-

late anomaly scores for each instance, the values TPR and FPR depend on the selection

of a threshold that distinguishes anomaly instances from normal ones. Receiver Oper-

ating Characteristics (ROC) is a curve that represents a trade-off between TPR and FPR

for different thresholds (cutoffs) of anomaly scores. Most of the existing works report

the Area Under the Curve (AUC) for this curve as a measure of detection capability of

an algorithm for target datasets.

TPR =
TP

TP + FN
(3.1)

FPR =
FP

FP + TN
(3.2)

However, in the addressed problem to identify anomalies in the cloud environment,

the number of normal instances is much larger than anomaly instances which means

that the positive and negative class labels are highly unbalanced. In the cases with highly

unbalanced values for class labels, [142] shows that the RPAUC value may capture some

patterns in the detection efficiency of algorithms that cannot be represented by ROC

curve. PRAUC is calculated as the area under the curve for Precision and Recall values

which can be calculated based on Equation 3.3 and Equation 3.4. Precision is a measure

of the fraction of detected anomalies that are true anomalies and Recall is a measure of

the fraction of true anomalies that can be detected by the algorithm.
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Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)

These metrics combined together, enable us to have a better understanding of real

capabilities of different algorithms for evaluation.

3.5 Performance Evaluation

The experiments are performed by deploying a realistic web serving benchmark on the

Australian research cloud environment. In order to select a proper benchmark, some

of the existing benchmarks such as RUBIS and PetStore that are extensively used in the

literature to monitor the performance of VMs were considered [26, 63] . However, these

benchmarks cannot capture the interactive functionalities of today’s Web 2.0 applica-

tions. Therefore, for the implementation part, a 3-tier web application based on Cloud-

Stone benchmark is deployed [139]. CloudStone is part of the CloudSuite which is a

benchmark for cloud services. The benchmark highlights the distinctive characteristics

of Web 2.0 workloads and aims to generate real web workloads to capture web func-

tionality in a scalable cloud environment. The three main layers of the benchmark are

shown in Figure 3.4. It includes a Markov-based workload generator for emulating user

requests, application and database servers. Workload generator enables the benchmark

to have a fine-grained control over parameters that characterize the workload behavior

[139]. CloudStone employs Faban, deployed on all the machines, to control the runs and

emulate the user behavior. Application servers host a PHP based social network appli-

cation in nginx servers. The generated requests sent from Faban client, are processed in

application and database servers and the results are sent back to the client machine.

Benchmark represents a Web 2.0 social event application that mimics real user be-

havior in an interactive social environment with a combination of individual and social

operations (such as creating events, tagging, attending an event or adding comments).

Each request from the user includes a sequence of HTTP interactions between client and
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Figure 3.4: CloudStone Components.

server which accomplishes one of the mentioned tasks. We have also installed Ganglia

that is a scalable, distributed monitoring component to monitor and collect performance

indicators of system and applications.

3.5.1 Data Generation and Anomaly Injection

For the purpose of evaluating the performance of IFAD on workloads with different

characteristics, five datasets are collected based on the specifications defined in Section

3.4.1 and each dataset includes about 15 hours of performance data. In order to gen-

erate each dataset, the workload generator starts to send a sequence of requests to the

web server as part of the normal behavior of the system which generates time-series

of performance and utilization data resulted from the interactions of user with the ap-

plication. Then, anomalies are injected at random times to VMs hosting application or

database server. The duration of different types of the anomaly may differ, but the con-

tamination rate of the final data with anomaly instances is kept in the range 7-11% for

all experiments. This is a rate that corresponds to a low anomaly intensity which is

more common in cloud environment [77]. In the following experiments, five types of

anomalies are tested:

Memory Load: A process is started on the same VM hosting the application server

that allocates the available memory of the VM, but forgets to release it. As a result, after
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Table 3.3: Experiment Configurations

Variable Description Value

Anomaly
Contamination

The rate of anomaly instances in each dataset 7%− 11%

t Number of trees 100

ψ Number of random samples selected from each
dataset

256

n Total number of instances in training dataset 1650 - 1850

some time, the web application server encounters the problem of finding the required

memory to process requests received as part of the normal operation of the system.

CPU Load: A CPU-intensive process is started on the VM that hosts the application

server.

Disk Load: A series of I/O intensive tasks (read and write multiple files) are per-

formed on the VM that hosts the database server.

Server Fault: The application server is shut down for some time. As there is no server

available to respond to the requests, the utilization of the host VM decreases without

any significant change in the number of incoming requests.

Flash Crowd: The number of concurrent users is suddenly increased to simulate a

spike in the number of requests. Therefore, all measurements show a higher utilization

of VM resources in response to this change.

The anomaly injection scripts are generated with the help of a variety of the packages

including stress-ng and Cpulimit and the generator files for different types of anomalies

are distributed to the target machines to be called by the master node at identified start

times.

The final dataset, after applying preparation filters and adding new features, in-

cludes 29 features for the application server and 69 features for the database server.

The dataset includes various types of performance indicators such as CPU and memory.

Table 3.1 shows some of the major attributes collected for this dataset.
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3.5.2 IFAD Settings

The base functionality of IFAD is on the assumption that anomalies are rare and dif-

ferent. To achieve this goal, IForest builds an ensemble of trees on a selected sample

of data. The anomaly points are detected as instances with the shortest average path

length on the generated trees. Corresponding to each node of the tree, one attribute is

selected and the existing instances at the node are partitioned, creating two nodes based

on the values of the selected attribute. In this work, we apply two different approaches

for attribute selection phase of this algorithm:

• Random IForest (IForestR): This is the default procedure for attribute selection

which splits each node of the tree based on a randomly selected attribute and a

random value for this attribute.

• Deterministic IForest (IForestD) which tries to select an attribute that best divides

the sample space into two categories with different distributions.

We develop and test anomaly detection models in IFAD using IsolationForest package

implemented in R environment. The training parameters used in all the evaluations are

the same and equal to the values presented in Table 3.3.

3.5.3 Evaluation Results

To validate system anomaly detection for web applications, we have conducted exten-

sive experiments to evaluate different aspects of IFAD using several datasets collected

from the deployed environment on Nectar virtualised environment. To perform com-

parisons, three unsupervised algorithms are also implemented as follows:

• KNN: The k-nearest neighbor distance is computed for each sample as a score of

anomaly. The curve is computed based on the adjustment of cutoff value on the

distance measure. In order to select k, we have tested different values from 2 to 10

and based on the results, a proper value is selected.

https://sourceforge.net/projects/iforest/
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Table 3.4: AUC of all methods

IForestD KNN OCSVM L2SH IForestR

Dataset1 90.3 95.0 95.2 94.8 92.4

Dataset2 79.0 83.2 80.3 78.1 87.0

Dataset3 92.2 92.0 91.3 91.5 88.9

Dataset4 88.3 71.9 65.9 68.8 73.8

Dataset5 86.1 92.0 86.1 88.5 89.6

• One-class SVM (OCSVM): OCSVM is another algorithm with a non-linear kernel

which calculates a soft boundary of normal instances and identifies outliers as data

points that do not belong to the normal set. OCSVM is basically used for the nov-

elty detection. However, as the selection of decision boundaries are soft, it can be

applied in unsupervised problems as well. In order to select kernel parameter, we

have tested different configurations through a 5-fold cross validation and selected

the parameter γ based on the best results.

• L2SH: L2SH is a family of Locality-Sensitive Hashing isolation forests (LSHiFor-

est) proposed by [143]. LSHiForest is a generalized version of the isolation based

anomaly detection forests in which IForest and L2SH are two special cases of this

family applying different types of the similarity measure and LSH functions. The

base idea of LSH functions is that similar instances should be hashed to the same

bucket with a higher probability than other non-similar instances. Therefore, in

LSH trees, an internal node can be partitioned into more than two branches which

is dependent on the number of buckets from hashing procedure. Regarding simi-

larity measures, L2SH is associated with l2-norm or Euclidean distance.

Algorithms with random characteristics including IForestD, IForestR and L2SH are

repeated 10 times in each experiment and the average of the results are reported. Though

our methods are unsupervised, to be able to validate the accuracy of algorithms, we

track the time of the anomaly injection and consider the indices of corresponding mea-
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Table 3.5: PRAUC of all methods

IForestD KNN OCSVM L2SH IForestR

Dataset1 75.9 57.0 68.8 66.3 54.5

Dataset2 47.0 44.0 36.8 36.9 45.1

Dataset3 67.6 39.5 44.8 43.8 40.8

Dataset4 54.7 44.4 35.8 35.8 40.7

Dataset5 50.0 53.6 47.3 50.8 49.2

surements as the true anomaly points and the remaining measurements as true normal

points.

For the first scenario, we train algorithms with both normal and abnormal instances.

Then, each model is tested on another part of the data that includes all types of anoma-

lies. The results for both metrics AUC and PRAUC are reported for all the datasets in

Table 3.4 and Table 3.5. For each dataset, the best results with a difference of maximum 5

percent are highlighted. As the result shows, IForest can detect anomalies with high ac-

curacy and performs particularly well in PRAUC with the highest results in all datasets.

KNN and IForestR perform well in 4 out of 5 datasets followed by IForesD and L2SH

in terms of the AUC while IForestD also achieves high PRAUC for all the datasets. These

observations are expected as IForestD tries to select the best splitting attribute at each

node so there is a higher probability to isolate anomaly points with a very different

distribution than normal points at the top of the trees while it may miss some points

with more similar distributions to the normal space. For dataset1 and dataset3 other

algorithms also show good AUC while their PRAUC is less than IForestD. Regarding

dataset2 which shows a high variance in the values of collected attributes, anomaly in-

stances can hardly be detected and as a result, the average precisions of all algorithms

are low. Regarding other datasets, as the variance of data increases, data becomes more

scattered and the pattern of anomalies can be masked by some of the normal instances

resulting from high fluctuations in the data. In all these cases, IForestD shows good

AUC and PRAUC compared to other algorithms.
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Figure 3.5: A comparison of train and test times for IForestR and IForestD. The aver-
age testing time for one instance is around 0.1 milliseconds considering the size of test
datasets for different workloads.

Figure 3.5 shows a comparison of average training and testing times on all datasets

between two versions of IForest used in this work to better demonstrate the effect of

attribute selection complexity on the timing of the IForest. We observe that IForestR

which selects the attributes randomly is very fast with a training time less than 1 second

while IForestD has a training time around 3 seconds which is slower than the random

version. However, in the worst case, updating of the models happens at each monitoring

interval which is 15 seconds in our work and this interval can be higher based on the

stability of application and environment [77]. Moreover, considering the number of

instances in the test data, testing for one instance takes around 0.1 milliseconds. This

is a reasonable result especially considering that the booting of new VM instances can

take around 2 minutes or more based on the performance study done by [119].

Figure 3.6 depicts the detection error trade-off (DET) curves for all algorithms and

for each dataset. The curves are computed based on defining different thresholds on

anomaly scores and computing the log rate of the missed anomalies (FN) and false

alerts (FP). FN represents the rate of missing anomaly cases while FP is a measure of
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Figure 3.6: Plots of Detection Error Trade-off (DET) curves for all algorithms and dif-
ferent datasets
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Table 3.6: Anomaly Detection for each type - AUC of all methods

IForestD KNN OCSVM L2SH IForestR

Memory 88.2 94.0 93.0 82.4 75.8

Disk 97.5 90.7 95.9 96.4 96.1

CPU 99.4 96.0 96.7 98.44 90.4

Load 88.2 96.8 99.8 99.2 99.9

Server 96.4 90.2 92.3 93.4 93.9

false alarms that can wrongly cause the application administrators to start preventive

actions. This trade-off is an important observation especially for the applications that

have tight restrictions on the accepted rate of positive/negative false alerts [130]. As

we can see, no algorithm shows the best FP and FN for all thresholds or datasets which

is expected especially due to the heterogeneity of datasets. For example, IForestD per-

forms better in dataset1, dataset2 or dataset3 for FP less than 1%. The observed results

confirm the idea that we need to have a more precise understanding of the real require-

ments of application to be able to select proper approaches that fit the specifications of

our problem. This can be achieved by manually identifying the preference of the appli-

cations in terms of the precision or recall values or using the concepts of majority voting

and ensemble approaches which try to combine the results of several algorithms. As an

example case, for prevention mechanisms that target disk related problems with expen-

sive mitigation actions, one may prefer to have a method that has a high precision with

minimum false alarms. In contrast, for the Load problems, the high detection rate of the

problem may be more important, so an algorithm with a better recall value is preferred.

For the second set of experiments, we investigate the detection performance of dif-

ferent methods for each type of anomaly. The results are shown in Table 3.6 and Table

3.7. All methods have a high AUC value for CPU anomaly which shows they can accu-

rately identify anomaly points corresponding to the high utilization of CPU. However,

IForestD also shows a high precision for this type of anomaly that represents a lower

false alarm rate. For Disk and Server anomalies, IForesetD again shows a high AUC and
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Table 3.7: Anomaly Detection for each type - PRAUC of all methods

IForestD KNN OCSVM L2SH IForestR

Memory 44.1 68.9 89.2 64.8 50.9

Disk 95.1 32.8 67.0 84.0 78.8

CPU 93.9 75.4 79.7 86.0 59.5

Load 44.1 68.6 98.7 91.0 99.5

Server 76.4 46.1 58.3 67.2 69.4

RPAUC value compared to other algorithms. However, it has a low precision for mem-

ory and Load anomalies. The reason can be due to the gradual increase of these two

types of anomalies that create a denser cluster of anomaly points which can decrease

the difference between normal and abnormal anomaly scores. L2SH has a more stable

performance in these cases and usually avoids the worst case performance in different

scenarios.

Finally, we show the effect of multi-attribute compared to the single attribute per-

formance analysis. We have repeated experiments with the IForestD algorithm for three

scenarios of feature selection. In the first run, we include the CPU metric as the only

feature to detect anomalies. In the second run, we add the Memory feature and obtain

the result of anomaly detection based on a combination of two features. We compare

these two scenarios with another run of the algorithm on all collected features. The

comparison is performed by measuring AUC and PRAUC metrics and shown in Figure

3.7. We can see that the single metric of CPU is not that much informative as we miss

many anomaly points and the precision of detection is very low. When we consider both

features of CPU and Memory, the results of AUC and PRAUC show significant improve-

ments. However, including all the metrics shows further improvements in the results of

the anomaly detection. This leads us to conclude that in a dynamic environment with

different types of anomalous problems, a combination of multiple metrics is much more

informative and precise than single-feature based solutions.

In summary, the proposed IFAD framework shows higher levels of precision for a
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Figure 3.7: Plots of ROC and PRROC for IForestD algorithm based on different metrics

range of datasets and anomalies. These results accompanying the unsupervised fast

execution of anomaly detection process and the ability to work with the default configu-

rations in various types of workloads which reduces the overhead of tuning steps during

model updating makes it a good candidate for applications with a highly dynamic na-

ture, demanding higher precisions or requiring to perform in completely unsupervised

manner.

3.5.4 Time Complexity

In order to have a better understanding of the performance of proposed method, we

identify the main blocks of preprocessing and behavior learning steps as follows: The

main parts of any anomaly detection framework are data preparation and model gen-

eration/testing. Algorithms 1 shows the detailed steps of data preparation based on

the concepts of time series analysis. The input is a matrix of n rows (instances) with m

columns (features). Assuming fixed seasonality patterns with default parameters, the

complexity of data preparation step which is dominated by STL process is O(mn).

Considering that all target models in our work can take the advantage of detrend-

ing and seasonality smoothing done in the preparation phase, the main difference in the

runtime complexity of the evaluated learning algorithms comes from model generation

and parameter tuning. As explained in [107] and section 3.4.4, considering a constant

number of trees and sub sampling size for each isolation tree, the training and space

complexities of IForest are constant which makes it suitable for large datasets. L2SH is
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another version of Isolation-Tree based methods that utilizes locality sensitive hashing.

While the distance measure is different compared to IForest version, it shows the same

runtime complexity[143]. In contrast, OCSVM and KNN both need the pre-tuning of

parameters and show higher runtime complexities. OCSVM involves a quadratic pro-

gramming problem which increases the complexity between O(n2) to O(mn2) depending

on the cashing capabilities and the sparsity of columns. The KNN algorithm requires the

computation of the distance to recognize anomaly points. The referenced K for distance

calculations highly depends on the distribution of data and one needs a careful test-

ing of different K values especially when the workload characteristics change over time.

Having an efficient data structure for implementation, the complexity of the algorithm

can be improved to O(mlogn). Referring to the comprehensive analysis of Isolation-Tree

based methods in [107] which shows the robustness of the algorithm with the default

values of parameters (100 trees, 256 sample size) and the possibility of having a parallel

implementation for ensemble trees generation to further improve the speed, Isolatin-

Tree based anomaly detection shows a promising capability for environments where the

models need to be updated regularly.

3.6 Summary

This chapter presents IFAD framework which utilizes the concept of Isolation-Trees to

detect abnormal behavior in the time series of performance data collected from the ap-

plication and underlying resources. In addition, the effects of different performance

anomalies on various types of the workload in a web-based environment are investi-

gated. The results show that IFAD achieves good AUC and higher precision in detecting

performance anomalies. Another observation highlights that depending on the type of

heterogeneity in the workloads or changes in the performance of resources, some algo-

rithms can have a better detection rate or average precision. Moreover, a combination of

different metrics can improve the learning process compared to single metric solutions

based on the common features CPU or Memory. IFAD can be utilized as the anomaly

detection module in a resource auto-scaling framework where the knowledge from de-

tection process can help to recognize the possible anomalies in the system behavior.
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Our method addresses the problem of resource bottleneck identification in the web-

based application where the target anomalous behavior is due to the large changes of

attribute values. The fast and memory-efficient execution of IFAD makes it a good ap-

proach for detecting anomalies in fast changing environment. However, another prob-

lem for on-time processing of high-volume information is dealing with datasets with

many attributes. Therefore, in the next chapter, we propose a feature refinement process

to improve the efficiency of anomaly detection process with regard to high-dimensional

datasets.





Chapter 4

An Isolation-Tree based Learning of
Features for Anomaly Detection

Isolation-based method is an effective approach for detecting anomalies. However, a common chal-

lenge of iTrees as well as other anomaly detection techniques is dealing with high dimensional data

potentially consisting of many irrelevant and noisy features. This is an important issue for cloud

hosted applications where a variety of problems can affect different groups of features. Therefore,

refining the feature space for removal of irrelevant attributes is a critical issue. In this chapter, we

introduce an iterative iTree based Learning (ITL) algorithm to handle high dimensional data. The re-

sults show that ITL can achieve significant speedups with appropriate choice of the number of iTrees

while achieving or exceeding AUC values of other state of the art Isolation-based anomaly detection

methods.

4.1 Introduction

Anomaly detection is an important field of the knowledge discovery with a rapid adop-

tion in a variety of applications. In the context of cloud environment, this process is

utilized for a variety of performance management applications. For example, intrusion

detection systems provide frameworks that monitor the performance of the network

to find misbehaving users, possible misconfiguration or serious conditions from an at-

tack on the system [19]. Similarly, SMART(Self-Monitoring, Analysis and Reporting

Technology)-based disk failure prediction applications perform regular monitoring and

This chapter is derived from:

• Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, ITL: An Isolation-Tree
based Learning of Features for Anomaly Detection in Networked Systems, Future Generation Com-
puter Systems (FGCS)(under 2nd review).
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anomaly detection analysis to increase the reliability of storage systems [144].

With the advances in data collection techniques, storage capabilities and high per-

formance computing, a huge volume of monitoring data are collected from continuous

monitoring of the system attributes. Despite the appealing benefits of access to larger

amounts of the data for better diagnostics of the anomalous events, the great challenge

is how to deal with high volume of information that should be processed effectively in

real-time. The increase in the volume of data is due to: 1) Recording of fine grained

measurements for long periods of time which increases the number of records to be

processed. 2) High dimensional data with many features that describe various aspects

of target system. The curse of dimensionality or having many features can make the

problem of anomaly detection in high dimensional data more complex in terms of the

runtime efficiency and accuracy [145]. This is also becoming a critical issue in cloud sys-

tems which are exposed to several performance problem at different layers of comput-

ing. As a result, the collected performance data is heterogeneous and includes a variety

of attributes from low-level operating system logging data to hardware specific features,

applications performance data or network related information. On the other hand, these

performance data are exposed to a variety of problems such as different types of attack

and intrusion patterns in network related performance data. Particularity, the general

anomaly detection techniques can not perform well for high dimensional network data

with a variety of data types and embedded meaningful subspaces [146]. Moreover, the

collected data is dynamic and rapidly changing. All of these, together, highlight the

need for highly adaptable and fast analytic solutions. Therefore, researchers are inves-

tigating more efficient techniques with the goal of better explorations of collected data

and improving the quality of the extracted knowledge.

Traditional anomaly detection algorithms usually work based on the assumptions

that highly deviated objects in terms of the common metrics such as distance or den-

sity measures have a higher probability of being anomalous. While these assumptions

are applicable in general, their accuracy can be affected when the base assumptions do

not hold, such as in the high dimensional data [147, 148]. Moreover, in the traditional

methods, anomalies are detected as a by-product of other goals such as classification and

clustering. More recent approaches, such as isolation-based methods directly target the
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problem of anomaly detection with the assumption that anomalies are few and differ-

ent [107, 149]. However, the problem of having high number of noisy features can also

affect these methods. In order to improve the efficiency of detection algorithms in high

dimensional data, a variety of solutions such as random feature selection or subspace

search methods are proposed [150, 151]. However, the proposed approaches are usually

considered as the preprocessing steps which are performed as a separate process from

the anomaly detection. Although this separation makes them applicable for a variety of

algorithms, finding the relevant features in the datasets with many noisy features can be

challenging when the mechanism of target detection algorithms in finding the anoma-

lies is ignored. Therefore, a question arises that is there a way that one can improve

the efficiency of anomaly detection by extracting knowledge from the assumptions and

the process which leads to the identifying potential anomalies in the data? Having this

question in mind, in this chapter, we address the problem of anomaly detection in high

dimensional data by focusing on the information that can be extracted directly from

the Isolation-based mechanism for identifying anomalies. The reason for selecting this

technique as the base process is that it is known as a category of anomaly detection tech-

niques that is designed to directly target the most common characteristics of anomalous

events such as rarity compared to other objects. We exploit the knowledge that comes

from the detection mechanism to identify the features that have higher contribution in

the separation of the anomaly instances from normal ones. This approach helps to iden-

tify and remove many irrelevant noisy features in high dimensional data. The proposed

method, Isolation-Tree (iTree) based Learning (ITL), addresses the problem of anomaly

detection in high dimensional data by refining the set of features with the aim of im-

proving the efficiency of the detection algorithm. These are the features that appear in

the short branches of iTrees. The refining procedure helps the algorithm to focus more

on the subset of features where the chances of finding anomalies are higher while reduc-

ing the effect of noisy features. The process helps to obtain more informative anomaly

scores and generates a reduced set of the features that improves the detection capabil-

ity with better runtime efficiency in comparison to the original method that uses all the

features. The contributions of this work are therefore, an iterative mechanism for struc-

tural learning of data attributes and refining features to improve the detection efficiency
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of Isolation-based methods and reduce the effect of noisy and irrelevant features. The

simplified model is extremely fast to train so that the model can be periodically trained

when the important features largely remain unchanged.

We have compared ITL with the state of the art feature learning based framework

[108] and show that not only ITL improves the results as an ensemble learning method

with the bagging of scores, but also it can discover a subset of the features that can detect

anomalies with reduced complexity.

The remainder of this chapter is structured as follows. Section 4.2 reviews some of

the related works in the literature. Section 4.3 overviews the main assumptions in the

problem formulation. Section 4.4 presents ITL framework and details the steps of the

algorithm. Section 4.5 presents experiments and results followed by time complexity

and runtime analysis, and finally Section 4.6 summarizes the chapter findings.

4.2 Related work

The general concept of anomaly detection indicates the exploration and analysis of data

with the aim of finding patterns that deviate from normal or expected behavior. The

concept has been widely used and customized in a range of applications such as finan-

cial analysis, network analysis and intrusion detection, medical and public health, and

etc [19, 131, 152]. The growing need for anomaly related analysis has led researchers

to propose new ways of addressing the problem where they can target unique charac-

teristics of the anomalous objects in the context of the target applications. For example,

distance based algorithms address the problem of anomaly detection based on the dis-

tance of each instance from neighborhood objects. Greater the distance, the more likely

that the instance presents abnormal characteristics in terms of the values of the features

[132, 153]. Alternatively, [133, 134] define the local density as a measure for abnormality

of the instances. The objects with a low density in their local regions have a higher prob-

ability of being detected as anomaly. Ensemble based methods try to combine multiple

instances of anomaly detection algorithms in order to improve the searching capability

and robustness of the individual solutions [108, 154].

Performance anomaly detection has also widely been applied in the context of cloud
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resource management to identify and diagnose performance problems that affect the

functionality of the system. These problems can happen at different levels of granular-

ity from code-level bug problems to hardware faults and network intrusions. The fast

detection of problem is a critical issue due to the high rate of changes and volume of

information from different sources. A variety of techniques from statistical analysis to

machine learning solutions are used to process collected data. For example, Principal

Component Analysis (PCA) is used in [20] to identify most relevant components to var-

ious types of faults. [144] apply random forests on various exported attributes of drive

reliability to identify disk failures. [27] exploits self-organizing map technique to pro-

actively distinguish anomalous events in virtualized systems. Clustering techniques are

utilized by [22] to split the network related log data into distinctive categories. The gen-

erated clusters are then analyzed separately by anomaly detection systems to identify

intrusion and attack events. [102] uses entropy concept on network and resource con-

sumption data to identify denial of service attacks.

While the above mentioned approaches show promising results for a variety of prob-

lems, the exploding volume and speed of the data to be analyzed require complex com-

putations which are not timely efficient. A common problem which makes these dif-

ficulties even more challenging is the high dimensional data. For example, the notion

of distance among objects loses its usability as a discrimination measure as the dimen-

sion of data increases [145, 147]. Methods based on the subspace search or feature space

projections are among approaches which are proposed as possible solutions for these

problems [155]. The idea of dividing a high-dimensional data to groups of smaller di-

mensions with related features is investigated in [156]. This approach requires a good

knowledge of domain to define meaningful groups. PCA based methods try to over-

come the problem by converting the original feature set to a smaller, uncorrelated set

which also keeps as much of the variance information in data as possible [157]. PINN

[158] is an outlier detection strategy based on the Local Outlier Factor (LOF) method

which leverages random projections to reduce the dimensionality and improve the com-

putational costs of LOF algorithm. Random selection of the features is used in [159] to

produce different subspaces of the problem. The randomly generated sub problems

are fed into multiple anomaly detection algorithms for assigning the anomaly scores.
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While random selection can improve the speed of feature selection process, as the se-

lection is completely random there is no guarantee of having informative subspaces of

data to improve the final scoring. [150] and [108] propose two different variations of

subspace searching. The former tries to find high contrast subspaces of the problem to

improve the anomaly ranking of density based anomaly detection algorithms. The sub-

space searching is based on the statistical features of the attributes and is performed as

a preprocessing step separated from target anomaly detection algorithms. The latter, in

contrast, integrates the subspace searching as a sequential refinement and learning in

anomaly detection procedure where the calculated scores are used as a signal for the

selection of next subset of the features. Our proposed anomaly detection approach is

inspired by such models and tries to refine the subset of the selected features at each

iteration. However, we try to take advantage of the knowledge from the structure of

constructed iTrees instead of building new models for the regression analysis.

4.3 Model Assumptions and an Overview on Isolation-based
Anomaly Detection

The iterative steps in ITL process are based on the iTree structure for assigning the

anomaly scores as well as identifying features. We choose isolation-based approach and

specifically IForest algorithm in this work due to its simplicity and the fact that they

target the inherent characteristic of the anomalies. We note that the target types of the

anomaly in this research are instances which are anomalous in comparison to the rest of

the data and not as a result of being part of the larger groups [19]. This is also consistent

with the definition of anomaly in many cloud related performance problems especially

network and resource consumption abnormalities.

The idea of Isolation-based methods is that for an anomaly object we can find a small

subset of the features that their values are highly different compared to the normal in-

stances and therefore it can quickly be isolated in the feature space of the problem. IFor-

est algorithm demonstrates the concept of the isolation and partitioning of the feature

space through the structure of trees (iTrees), where each node represents a randomly

selected feature with a random value and existing instances create two new child nodes
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based on their values for the selected feature. It is demonstrated that the anomaly in-

stances usually create short branches of the tree and therefore, the length of the branch is

used as a criterion for the ranking of the objects [106]. Consequently, anomaly scores are

calculated as a function of the path length of the branches that isolates the instance in

the leaf nodes on all generated iTrees. This process can be formulated as follows [107]:

Let ht(x) be the path length of instance x on iTree t. Then, the average estimation of path

length for a subset of N instances can be defined as Equation 4.1:

C (N) =


2H(N − 1)− 2 (N−1)

N i f N > 2,

1 i f N = 2,

0 otherwise

(4.1)

where H(N) is the harmonic number and can be calculated as ln(N)+Euler Constant.

Using C(N) for the normalization of expected h(x) of instance x on all trees, the anomaly

scores can be calculated as follows:

s (x, N) = 2−
E(h(x))
C(N) (4.2)

Considering this formula, it is clear that anomaly scores have an inverse relation with

the expected path length. Therefore, when the average path length of an instance is close

to zero, the anomaly score is close to 1, and vise versa.

Figure 4.1 shows a graphical representation of the isolation technique for a dataset

with two attributes X1 and X2. The left and right columns show examples of random

partitions on the attribute space and their corresponding tree structures to isolate a nor-

mal and anomaly instance respectively. As it is shown, instance A (anomaly) can be

isolated quickly considering the sparsity of values of X1 around this instance. Though

this example is a simple case with just two attributes, the general idea can be extended

to the problems with many features and variety of distributions.

Considering the above explanations, ITL process is based on an idea that iTrees can

also give information on important features for detection purposes. Therefore, ITL an-

alyzes the generated iTree structure to extract information about the features that have

more contribution in creating short branches and detected anomalies. In order to bet-
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Figure 4.1: Isolation-based anomaly detection. iTree structures are used to represent
the partitioning and isolation process of instances in a dataset with two attributes. The
left and right columns show example sequences of partitions to isolate normal and
anomaly instances, respectively.

ter explain the problem, let us assume that the input D is a matrix of N instances, each

instance explained with a row of M features such that:

D = {(Xi), 1 ≤ i ≤ N|Xi = (xij), 1 ≤ j ≤ M,

xij ∈ R}
(4.3)

We have excluded nominal data in our assumptions and definition of Equation 4.3.

However, the ITL process is general and can be combined with solutions which convert

categorical data to numerical to cover both cases [108]. We formulate the problem as

follows: Given matrix D as the input, we try to iteratively remove some irrelevant fea-

tures from the feature space of D, keeping the more relevant features for the detected

anomalies at each step in an unsupervised manner. The goal is to increase the quality

of the scores in terms of assigning higher scores to the true anomaly points by reducing

the effect of noisy features. The output at each step k is a set of the scores Sk on a set of
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Figure 4.2: ITL Framework. The initial input is a matrix of N instances with M fea-
tures. An ensemble of iTrees is created. Then, top ranked identified anomalies are fil-
tered. The iTrees are analyzed for filtered instances to create a list of ranked features.

the reduced features Mk. The idea is that the removal of noisy features makes it easier to

focus on the relevant partitions of the data, where the values of the features show higher

deviations for the anomalous objects in comparison to the normal ones. As a result, the

ranking of the input objects would improve with regard to the true detected anomalies.

4.4 ITL Approach

Figure 4.2 shows the main steps in ITL framework. As we already discussed in Section

4.3, the iTree structure forms the base of the ITL learning phase following the assump-

tion that short branches in the structure of iTree are generated by the attributes with

higher isolation capability. In another word, a subset of the attributes which are creat-

ing the nodes in the short length branches can form a vertical partition of the data that

localize the process on anomaly related subset of the data. As we can see in Figure 4.2,

the process is completely unsupervised with the input matrix as the only input of each

iteration (that is we have no information of anomalous instances). There are four main

steps in the ITL process and these are:

1. Building iTrees Ensemble: IForest creates a set of the iTrees from input data. This is

a completely unsupervised process with random sampling of the instances/features
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Algorithm 2: ITL Process

input : D = (X1, X2, ..., XN), Xi ∈ RM : D is a matrix of N records, each record
including M features

Parameter: th: Anomaly score threshold value

output : Reduced Matrix, Scores
1 D′ ← D
2 while not (There are unseen features) do
3 Build iTrees ensemble using iForest on D′

/* Calculate scores for all input instances using
Equation 4.2 */

4 S = (Sk) = (sk1, sk2, ..., skN)← Scores(iTrees, D′)
/* Filter a small part of the input matrix with higher

anomaly scores */
5 D subset← {xi| xi ∈ D′ && si ≥ th}
6 initialize Frequency as an array with length equal to number of features in

D subset all equal to zero
7 for tree ∈ iTrees do
8 for x ∈ D subset do
9 update Frequency of features by adding the occurances of each attribute

seen while traversing from root node to the leaf node that isolates x
10 end
11 end
12 D′ ← {xij|xij ∈ D′ && f requency(j) ≥ Average( f requency)}
13 end
14 return(D′, S)
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to create the splitting nodes in each tree.

2. Horizontal partitioning: The anomaly score for each instance is computed based

on the length of the path traversed by the instance on the generated iTrees [107].

The final score shows the degree of outlierness for the instance. Our goal is to

discover important features based on their contribution to isolation of anomaly

instances. The low score instances do not affect the determination of the important

features for anomaly detection and therefore, we can remove them reducing the

data size.

3. Extracting Feature Frequencies: We create a frequency profile of occurrences of

different features observed during traversal of short branches of iTrees. These fea-

tures have high probability of detecting anomalous instances.

4. Vertical Partitioning: Having a profile of the feature frequencies, a subset of the

features that are identified to have a higher contribution in the abnormality of

data are selected and other features are removed. This process creates a vertically

partitioned subset of data as the input for the next iteration of the ITL.

This process is repeated multiple times until the termination condition is met. As we

continuously refine the features, we expect to see improvement in anomaly detection

process as the detection process becomes more focused on the interesting set of features.

Therefore, the set of iTrees built during consecutive steps can be combined to create a

sequence of the ensembles. Algorithm 2 shows pseudo code of ITL. A more detailed and

formal description of the process is presented in the following section.

4.4.1 Feature Refinement Process

We assume that the input D is a matrix of objects labeled as one of the classes of nor-

mal or anomaly. These labels are not part of the ITL process as it is an unsupervised

mechanism. They are used for evaluating the output results of proposed algorithms and

other benchmarks for validation purpose. The goal is to find a ranking of the objects, so

that the higher values imply higher degrees of abnormality. Considering this objective,

the first step of ITL process is to build the initial batch of the iTrees from input matrix.
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IForest is used to create t iTrees. To create each iTree, ψ random instances are selected

from D and each node of the tree is created by randomly selecting a feature and a value

and splitting the instances based on this selection to form two branches. The output is

iTrees ensemble and anomaly scores S = (s1, s2, ..., sN) computed for all instances based

on Equation 4.2 (Lines 3-4, Algorithm 2).

After creating new iTrees, the next step is to reduce the target instances to be used for

the learning procedure (Line 5). A threshold value (th) is defined and all instances with

an anomaly score lower than this value are discarded. The idea behind this selection is

to focus better on parts of the data which have higher degree of abnormality based on

the iTrees structure as well as reducing the complexity of the problem. As the learning

phase is the most time consuming part of the ITL process, this reduction dramatically

decreases the runtime of the algorithm. The selection can also take advantage of the

expert knowledge on the characteristics such as the contamination ratio of the dataset

for defining a proper cut-off value of anomaly scores. The output of this step is a subset

of the input matrix D (D′) with p instances such that p << |D|. We emphasis that

the process is unsupervised as we do not have the knowledge of anomalous instances.

However, based on the assumption that anomalies are few and different, we expect to

see many of the anomaly instances in D′. It should also be noted that the generation of

each iTree is completely random in terms of the splitting features and value selection.

Therefore, one tree may not be informative per se. However, when the random process

is repeated to generate many numbers of trees, the overall observed patterns confirm the

idea of short branch isolation of anomaly instances [107]. This can be observed in Figure

4.1 as well. Generating iTree structure on high density regions requires many nodes and

splitting conditions to isolate one instance, while for an anomaly instance there is one

feature or more that can quickly differentiate that from the rest of the data.

The instances that passed the filtering procedure from previous step (highly ranked

anomalies) are processed by each iTree from ensemble model to record the frequency of

occurrences of features when traversing the trees. The frequency profile of the features

allows determining the important features relevant to detecting target anomalies. Ac-

cording to the formulas in Section 4.3 and their interpretation as an iTree structure, we

expect to see a subset of more important features for anomalous instances in the short
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branches of trees. It should be noted again that these are the expected observations from

an ensemble of many random trees and are not attributed to any specific iTree. Con-

sequently, we keep the features whose frequencies are higher than the average of the

frequency profile (Lines 6-12).

The above steps are repeated multiple times. The output is a set of the anomaly

scores for each subset of the data, starting from full data with all features. Therefore, the

iteration k of ITL process creates a set Sk of anomaly scores for all instances on reduced

feature set Mk (M0 is the full set of the features for the first iteration). We note that each

iteration would produce potentially different sets of anomalous points and hence differ-

ent frequency profile of the features. The termination condition we choose is when the

frequency of occurrences for all features is greater than one, meaning that every feature

has seen at-least one anomalous point in the short branches of iTrees. The idea behind

this condition is that as the noisy features are removed during the iterative process, ITL

produces better iTrees for detecting true set of anomalies. Therefore, the observed fea-

tures become more important in the detection process. When ITL reaches a state that

all the features are present in the short branches, it indicates that all current features are

contributing to the detection of anomalous instances. Therefore, the termination condi-

tion Tk at iteration k is evaluated as follows:

Tk =


True if Size(Mk) ≤ 1 or

Frequencyk > 0

False otherwise

(4.4)

where Size(Mk) evaluates the number of remaining features at the iteration k. Frequencyk

is the corresponding frequency profile which is an array of length M initialized by zero

(Lines 6). The term Frequencyk > 0 evaluates the condition that the frequencies of all

attributes in Mk are greater than zero. When Tk evaluates to true, ITL process terminates

and the final outputs are evaluated as follows:

• Bagging of the Scores: Each iterative step of the ITL process produces score for each

data point in D which represents the degree of anomalousness based on the corre-

sponding set of the reduced features. As we try to improve the detection capability
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of the ensemble by reducing the noisy features, we expect to get better anomaly

scores in terms of the ranking of instances. Therefore, in this approach, the goal

is to take advantage of the detection results from all iterations by averaging of the

scores and defining a new score for each instance. Accordingly, the final score of

each instance is calculated as follow:

S f (x) =
1
K

k=K

∑
k=1

Sk(x) (4.5)

where S f is the final score and Sk is the score at iteration k from K iterations of ITL

process.

• Reduced Level Scores: ITL produces an ensemble of iTrees on the important features

for the anomaly detection. The generated iTrees on the reduced features can be

used for detecting anomalies in new data. Therefore, the anomaly scores are cal-

culated directly based on the extracted reduced feature set from the process.

4.5 Experiments

In this section, an empirical evaluation of ITL process on two network intrusion datasets

and three benchmark datasets is presented. Two sets of the experiments are designed to

show the behavior of ITL in bagging and reduced modes on the target datasets. First,

Section 4.5.1 presents the datasets and parameter settings of the experiments. Then,

Section 4.5.2 shows the comparison results of ITL in the bagging mode with a recently

proposed state of the art sequential ensemble learning method and then investigates the

improvements made by reduced level features in terms of both AUC and runtime anal-

ysis in a set of the cross validated experiments. Section 4.5.2 and Section 4.5.3 discuss

runtime complexity and weakness/strength points of ITL approach.
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Table 4.1: Properties of Data used for Experiments. N and M are number of instances
and features in each dataset, respectively.

N M Anomaly Ratio (%)

DOS 69363 37 3

U2R 69363 37 3

AD 3279 1558 13

Seizure 11500 178 20

SECOM 1567 590 6

4.5.1 Experimental Settings

Table 4.1 shows a summary of statistics for the benchmark datasets. All datasets are

publicly available in UCI machine learning repository [160]. For U2R and DOS datasets

which are network intrusion data set from Kddcup99, a down-sampling of attack classes

is performed to create the anomaly class. In other datasets, the instances in minority

class are considered as the anomaly.

In order to evaluate the results, we select Receiver Operating Characteristics (ROC)

technique and present Area Under the Curve (AUC) as a measure of the accuracy of the

system which summarizes the trade-off between true positive and false positive detec-

tion rates.

ITL process is implemented based on the publicly available python library, scikit-

learn [161]. Unless otherwise specified, the values of the parameters for iTree generation

step of ITL process are according to the recommended settings as explained in [107]. The

values of other parameters are set based on the experimental tunings. The threshold

value for the horizontal partitioning (th in Algorithm 2) is determined by assuming a

contamination ratio equal to 0.05% for all datasets. This means that the cut-off threshold

is identified so that 0.05% of the objects have a score higher than the th which is good

enough considering the number of instances and the contamination ratio in our target

datasets. The frequency profiling is done on the branches with maximum length of 4. To

ensure comparability, the number of trees for the IForest algorithm in all methods is the

http://archive.ics.uci.edu/ml
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Table 4.2: AUC results for the base IForest, ITL and CINFO. M and M
′

show the size of
the original and reduced features for ITL. The best AUC for each dataset is highlighted
in bold.

IForest CINFO ITL ITL Feature Reduction

M M
′

Reduction

DOS 0.981 0.971 0.981 37 21 43%

U2R 0.874 0.894 0.901 37 18 51%

SECOM 0.551 0.655 0.594 590 80 86%

AD 0.704 0.850 0.856 1558 54 97%

Seizure 0.989 0.987 0.990 178 163 8%

same and is between 600 to 900 trees.

For the comparison, we have selected a recently proposed sequential learning method,

CINFO, designed for outlier detection in high dimensional data [108]. CINFO works

based on lasso-based sparse regression modeling to iteratively refine the feature space.

As their method is general, we select the IForest based implementation which considers

the scores generated by IForest algorithm as the dependent variable of the regression

model. Due to randomness feature of iTree generation, each experiment is repeated for

minimum of 5 times and the averages of results are reported. For CINFO, the number of

repeated experiments is based on their recommended values to have stable results [108].

4.5.2 Experiment Results

ITL with Bagging of the Scores

Table. 4.2 shows the AUC results for the base IForest algorithm as well as both ITL

and CINFO learning methods. The best results are highlighted in bold. As the results

show, ITL process improves the performance of IForest by combining the scores from

various subsets of the feature space. The best AUC results are achieved for AD dataset

for which the results of ITL shows a dramatic improvement (around 22%) compared to
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Figure 4.3: AUC comparison for IForest when applied on input data with all features
and with ITL Reduced set of the features. The results are average AUC over cross-
validation folds.
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Figure 4.4: Run-Time for the Testing of cross validated results on the reduced features.
Logarithmic scale is used on y axis.

the base method. This is a result of the higher ratio of noisy features in this dataset. In

a comparison to CINFO method, same or better performance is observed for 4 of the

5 datasets. The only exception is Secom where ITL shows improvements compared to

the base, but not as much as the CINFO. This could be attributed to the greedy removal

of features in vertical partitioning of ITL as we explained in Section 4.4.1. Since the

results for DOS and Seizure are very high, even with the base IForest (higher than 95%),

we do not expect to see too much improvement. However, ITL still shows comparable

or improved AUC while achieving a reduction of about 8% and 43% in the size of the

feature set. In general, ITL shows improved results as well as a reduction of the features

between 9% to 97% compared to the original set. These results are especially important

when the quality of reduced features is investigated for detection of unseen anomalies.

Therefore, in the following, we further study the effectiveness of the reduced subset of

features produced by ITL in anomaly detection results.

ITL with Reduced Features

To validate the efficacy of reduced subset of features on the detection capability of IFor-

est algorithm, a series of experiments are conducted based on the k-fold cross validation.

The 5-fold validation is used to train IForest model on 4 parts of the data when all fea-

tures are included in comparison to the data with the reduced features from ITL process.

The AUC value of validation part is reported in Figure 4.3. The results are presented for
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Figure 4.5: AUC value distribution for ITL Reduced Features in Training. This plot
shows the sensitivity of ITL process to different numbers of the learning trees.
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different number of trees from 1 to 100. As we can see, reduced features can achieve or

improve AUC value compared to the full set of the features for a range of number of

trees in all datasets. The interesting observation is that the reduction in the number of

trees has less impact on the performance, especially for the reduced set as shown in Fig-

ure 4.3. For example, even with 10 trees the results are very close to the performance of

the algorithm with default parameters (100 trees). This improvement can be attributed

to having less number of features to be explored during random selection of the fea-

tures. In other words, having a subset of the features learned through ITL process, one

can achieve the improved results with less number of trees. The reduction of features

as well as the number of trees can help to reduce the complexity in terms of the mem-

ory and runtime requirements. Figure 4.4 shows the running time taken for a variety of

tree numbers. As we can see, the reduction of number of trees can hugely impact the

testing time. This is highly important for scenarios that the testing should be performed

regularly. These results indicate ITL approach as a potential choice to be employed by

real-time applications where new incoming stream of data requires quick online tests

for identifying possible problems.

During ITL learning phase, the number of iTrees in each ensemble is a parameter

which should be decided for each iteration. In order to have a better understanding of

the sensitivity of ITL to this parameter, we run ITL several times for a range of values

for number of trees. Figure 4.5 shows AUC distribution of each set of the experiments

for all datasets. As the results show, ITL is sensitive to this parameter. However, AUC

values show improvements with increased number of trees and are stable for numbers

larger than 600. Practically, we found that a value between 600 to 900 trees is sufficient

in most cases to have a good trade-off between accuracy and training complexities in

terms of the memory and runtime.

Time Complexity and RunTime Analysis

Algorithm 2 presents the main steps of the ITL process. The main while loop (Line 2)

continues until the termination condition of having zero unseen attributes is met. The

loop typically converges in less than 5 iterations. Lines 3-11 build IForest models and
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Figure 4.6: Total Run-Time of learning phase of ITL. Logarithmic scale is used on y
axis.

AD Secom Seiz U2R DoS

10 1

100

ITL
Base-IF

Figure 4.7: Comparison of modelling times for ITL-produced features with reduced
number of iTrees (yellow) and base IForest algorithm (Purple) with default parameters.
Logarithmic scale is used on y axis.
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filter high-rank instances based on the predefined threshold. Considering the IForest

trees as the base structure for these steps, it takes O(tψlog(ψ)) for constructing where

ψ is the number of selected subsamples and t is the number of constructed trees. If

there are N testing points, it requires O(Ntlogψ) for determining anomalous points and

O(Ktlogψ) for updating frequency profile of the features where K << N (Line 5) is

filtered anomalies (Worst case complexity is order O(tψ(ψ + N))). Therefore, we expect

a linear complexity with regard to data size.

IForest is shown to have a very fast and memory efficient runtime for both modeling

and testing purpose. In order to have a clear understanding of the ITL contribution to

make this process even faster, a series of execution times with respect to the number

of learning trees are presented. Figure 4.6 shows the learning time in ITL, where the

main feature refinements are done by constructing iTrees and creating new subset of

features. The diagram shows the learning time for a variety of tree numbers. As it is

mentioned before, 600 to 900 usually is enough to have a sufficient exploration of fea-

ture space for target datasets. When the learning phase of ITL is completed, the anomaly

detection is done by modelling iTrees with extracted features. To have a better compari-

son of execution times, Figure 4.7 compares modelling time of ITL-learned features with

reduced number of Trees with the base IForest without feature refinements and with

recommended number of trees in the literature. As we can see, ITL process makes a dra-

matic decrease is modeling times by helping to decrease the number of features/trees

which makes the construction of iTrees and training step much faster. It should be high-

lighted that this reduction is achieved by keeping or improving the detection accuracy

as it is shown in Figure 4.3. However, the feature refinement process of ITL as shown

in Figure 4.6 is the cost of achieving these results. But the learning phase is one-time

process which is performed off-line and the final subset is used for subsequent anomaly

detection task which is significantly improved in terms of both modelling and testing

times as shown in Figure 4.7 and 4.4, respectively. Considering the context of one appli-

cation, learning phase can be done with a low frequency and as a background process.

Therefore, systems that require regular updating of their performance models can highly

benefit from time/memory reductions of this process.

In conclusion, ITL shows that by targeting the main contributing features which iso-
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late the instances in iTrees we can reach a refined set of the features that can be used by

less number of trees to create a model with better results.

4.5.3 Strength and Limitations of ITL Approach

IForest algorithm, as described in Section 4.3, is designed to detect anomalous objects

by ensemble of binary trees from input data. ITL tries to take the advantage of this

mechanism to extract information about relevant features that better isolate instances.

Since the core of the ITL is iTree data structures from IForest, the same advantages of

random based sampling and feature selection are equally applicable to ITL. Moreover,

it can be used as a pre-processing step to learn a reduced set of the features for any

other anomaly detection algorithm. ITL is a promising method for real-time applications

as high detection accuracy can be achieved with small memory and time complexity.

Another strength is that ITL is an unsupervised method and does not require a training

data containing the anomaly annotations.

Similarly, ITL inherits same drawbacks as the base algorithm in detecting local clus-

tered anomalies [149]. This can affect the filtering of instances, when the assumption is

made that there are a majority of anomaly instances at the top of the ranking list. Adap-

tive, data-dependent configuration for parameters such as maximum height of Trees or

customized split point selection for node constructions may help to reduce this effect,

but requires more pre-processing and knowledge on statistical characteristics of anoma-

lous data.

4.6 Summary

Advances in monitoring and storage capabilities provide high volume of information on

the performance of application and systems to be used for anomaly and fault analysis.

These require real-time analysis of data to quickly identify problems and take appro-

priate corrective actions. However, high-dimensional data can adversary affect the tra-

ditional measures of anomaly detection such as distance between instances in terms of

the efficacy and time complexity. More recent approaches such as isolation-based tech-
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nique try to directly target the main features of anomalies as being different and rare.

Therefore, in this chapter, we introduced an iterative learning framework (ITL) for the

refinement of features and improvements of anomaly detection process. ITL is designed

based on an idea that isolation-based generated tree structures can give insights on the

importance of the features. Therefore, the learning phase of ITL is based on the knowl-

edge from iTree structures which are binary trees constructed by random selection of the

features from domain problem. The assumption is made that the features on the short

branches of iTree can be used as a reference to identify relevant features to the detection

of anomaly instances. The learning is based on the iterative removal of the noisy and ir-

relevant features in terms of their importance for isolating anomalies to generate a final

subset of the features to be used for anomaly detection. The experiments show that the

anomaly scores from IForest algorithm on generated subsets of the data at each iteration

can be combined to create more informative set of the scores in terms of the detection

capability of anomaly instances. Moreover, the experiments on five benchmark datasets

demonstrate that with the reduced set of the features and choosing a proper number of

trees IForest can achieve better results in terms of the detection accuracy while reducing

the complexity of algorithm.

In the last two chapters, we addressed the problem of anomaly detection for both

heterogeneous web-based time-series and also high dimensional data. However, they

do not demonstrate how this information can be utilized by resource managers to im-

prove the performance of the system in terms of the resource utilization and quality

of the service. To have an efficient resource scaling and performance management, the

manager daemons should be able to utilize anomaly detection procedure pro-actively

to have enough time to decide and react upon performance degradation. As a result,

in the next chapter, we propose a framework for scaling of resources paired with a per-

formance prediction based anomaly detector that allows a combination of vertical and

horizontal scaling depending on the type of the detected anomalous events.



Chapter 5

An Anomaly-based Cause Aware
Auto-Scaling Framework for Clouds

An anomaly detection module helps the cloud system to identify anomalous events in the envi-

ronment. However, to avoid or alleviate the performance degradations, proper scaling actions should

be triggered. This chapter addresses the second and third questions of this thesis as introduced in

Section 1.2 by proposing a 2-level cause aware auto-scaling framework; this framework leverages two

types of resource management solutions, horizontal and vertical, as the corrective actions when the

performance is degraded. We show the effectiveness of vertical scaling strategy as a quick solution

for cases that a VM is exposed to the local anomalies, while horizontal scaling solutions can be used

for system wide anomalies to change the number of VMs in the system.

5.1 Introduction

Elastic resource management of cloud systems offers the providers the ability to dynam-

ically adjust the resources based on the type and number of requests from the users. For

example, existing auto-scalers such as Amazon elastic auto-scaler [4] enable the system

to dynamically add and remove Virtual Machine (VM) instances as a response to the ob-

served performance degradations in the system. Workload fluctuations targeting hosted

applications are one of the main underlying reasons for these performance problems.

This is a highly important observation, especially for the large scale web application

This chapter is derived from:

• Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, ACAS: An Anomaly-based
Cause Aware Auto-Scaling Framework for Clouds, Journal of Parallel and Distributed Computing
(JPDC), Volume 126, Pages: 107-120, ISSN: 0743-7315, Elsevier Press, Amsterdam, The Netherlands,
April 2019.
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systems where the interaction between users and web servers can change frequently, af-

fecting the pattern of workloads and resource requirements. On the other hand, there is

a variety of problems that can happen locally in one VM such as a bug in the applica-

tion code, resource bottlenecks or hardware faults. This type of problems can affect the

local performance of the VM adversely. Distinguishing these faults from system wide

problems can help auto-scalers to make more informed decisions by focusing on the so-

lutions that target directly the root cause of the anomalies. To achieve this goal, we can

divide the data-aware resource management problem into two main subproblems, data

analysis and resource management by auto-scaling, that can be dealt with separately.

First, it should be mentioned that different types of performance problems in the

VMs usually leave distinctive signs in the performance indicators of the machine. There-

fore, continuously monitoring the behaviour of resources by collecting the values of im-

portant attributes provides system administrators a valuable source of the data that can

be analyzed to have timely information about the performance of the system. The so-

lutions proposed in Chapter 3 and Chapter 4 offer the necessary concepts and tools to

analyze these collected data and find interesting patterns of unexpected behaviours or

anomalies encountered by the system.

The second part of the problem focuses on the auto-scaling solutions to be triggered

when a performance problem is identified by analyzing the collected data from the sys-

tem. There is a variety of resource management solutions including horizontal scaling,

elastic VM management, migrations, resource contention management, etc for alleviat-

ing the performance degradations. However, when the scaling actions should be trig-

gered and which type of the action is selected are different challenges which are investi-

gated in this chapter.

With regard to the aforementioned challenges, this chapter focuses on the last two

phases of MAPE loop (Planning and Execution) by proposing an Anomaly and Cause

Aware auto-Scaling (ACAS) framework consisting of three main modules, monitoring,

data analyzer, and resource auto-scaler which exploits two types of the resource adjust-

ment policies, horizontal and vertical scaling. ACAS includes a proactive anomaly de-

tector and a mapper between performance anomaly types and corresponding resource

scaling decisions. In this work, we focus on the local anomalies such as CPU and mem-



5.2 Related work 131

ory bottlenecks as well as system wide load problems that can affect the performance

of the applications. The proposed proactive, unsupervised anomaly detector is able to

predict performance data of the VMs and identify future anomalies of the system. We

have also developed a strategy for deciding when the anomaly detection models need

to be updated to reduce the recurrent model training overheads. The proposed solution

can achieve better scalability by breaking down the problem of performance manage-

ment to two levels of local and global layer. An extensive set of the experiments are

performed targeting both types of local anomalies and global load problems. The exper-

iments show that distinguishing between VM specific anomalies and system wide load

problems help auto-scaler to take advantage of fast vertical scaling policies to increase

bottleneck resources for one VM while the proactive anomaly detection helps to trigger

early system wide horizontal scaling actions to reduce the number of SLA violations.

The rest of this chapter is organized as follows: Section 5.2 introduces some of the

existing works in the field of data-aware resource management. Section 5.3 presents the

motivation and an overview of the approach. Section 5.4 presents the details of learning

algorithms and explains communication among the modules. Section 5.5 presents the

experiments and the results and finally, the chapter findings are summarized in Section

5.6.

5.2 Related work

The idea of utilizing data learning techniques for the performance analysis in the cloud

has been of great interest to the researchers in recent years. The work presented in [136]

investigates the feasibility of Isolation-Trees based anomaly analysis to detect anoma-

lies in data from IaaS data centers, focusing on the behaviour of the algorithm to the

presence of seasonality/trends in their dataset. ACAS also leverages the same concept

of Isolation-Trees in the anomaly detection part of the problem. However, ACAS is

a complete framework that covers the problems of online learning and model updat-

ing, root cause analysis and resource management modules. [15] proposes a method for

long-term load prediction in Google data centers, considering load as the main factor in-

volved in resource management solutions. Another work presented in [16] considers a
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single attribute, number of required processors at a certain time, for resource utilization

estimation. [18] presents a regression based workload prediction framework to improve

the utilization of the resources while reducing the cost. To achieve this goal, they use

the knowledge from workload prediction to decide the time and amount of resources

to be changed in the system, considering both types of vertical and horizontal scaling.

[17] combines workload prediction and reinforcement learning to find the best configu-

ration for VM resources. The feedbacks from application performance and resource uti-

lizations are used to calculate the reward and update the resource configuration strategy

for better selection of future actions. Compared to our framework, the aforementioned

works address the problem of resource management by focusing on the workloads as

the only influential factor for performance analysis and ignore other sources of perfor-

mance problems in the system. [86] follows a more systematic approach to the problem

of VM management in the cloud by modeling the problem as a feedback-based control

approach. The Proportional-Integral-Derivative (PID) based controller is designed to

manage the number of VMs in the system, aiming at keeping the service quality in ac-

cordance with the agreement levels. [162] designs a reinforcement learning approach to

gradually learn from the environment and decide on the VM level scaling of the system

to alleviate the performance problems occurring due to the load fluctuations in the sys-

tem. Different to our model, these works consider the management of resources only at

VM level by changing the number of VMs in the system.

[20] presents an automatic anomaly identification technique for adaptively detecting

performance anomalies such as Disk and Memory related failures. Proposed method in-

vestigates the idea that a subset of the principal components of metrics can be highly cor-

related to specific failures in the system. BARCA, proposed in [23], is another framework

for online identification of anomalies in distributed applications which divides anomaly

detection process into two steps. First, a one class classifier is employed to distinguish

normal behaviour from unexpected ones. Second, a multi-class classifier is used to sep-

arate different types of anomalies from detected abnormal behaviours. [25] investigates

proactive anomaly detection in data stream processing systems. The proposed solu-

tion includes a phase of predicting resource utilization and then applying an anomaly

identification algorithm on the predicted values. The target anomalies are injected and
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Table 5.1: Related works on cloud performance management

Work Data Analysis Method Resource
Management

Proactive Unsupervised1 Vertical
Scaling

[136] IForest (AD)2 X X X -

[15] Bayes Model (Workload Analysis) X X - X

[86] Control Theory X X - X

[162] Reinforcement Learning X X - X

[23] SVM (AD) X X X -

[25] Markov models, Bayes Classifier (AD) X X X -

[26] Markov models, Bayes Classifier (AD) X X X X

[76] Threshold-Based Rules X X - X

[121] Threshold-Based Rules X X - X

[17] Reinforcement Learning X X - X

[27] Self-Organizing Maps (AD) X X X -

Proposed work
(ACAS)

Isolation-based Trees (AD) X X X X

1 This column is applicable for the works with the focus on anomaly detection
2 Anomaly Detection

the training is done on a labeled dataset of different anomaly occurrences in the past

data. Although these works focus on the same problem of anomaly detection, how this

information can be used for resource management is not investigated. Alternatively,

[26] addresses the performance problem by integrating a 2-dependent Markov model

as the predictor and tree-augmented Bayesian networks (TAN) for anomaly detection.

Based on the knowledge from learning algorithm, they apply some type of the verti-

cal scaling or migration to minimize the performance degradation. [76] focuses on the

cost effectiveness of vertical scaling approaches and proposes a threshold based scaling

strategy to combine different scaling approaches including self-healing, fine-grained re-

source scaling and VM level scaling to meet QoS while reducing cloud providers’ costs.

[121] addresses the problem of shared memory management among multiple VM with

the over-subscription approach and elastic VM technique. A threshold based strategy

on the value of memory related metrics is utilized to trigger the memory adjustment

actions while live migration is used to avoid the SLA violations when the total memory
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demands of the VMs exceed the available memory of the physical machine. In contrast,

our proposed work ACAS focuses on the effectiveness of horizontal and vertical scaling

policies by leveraging the capabilities of unsupervised learning approaches for situa-

tions that system is exposed to the local and load related anomalies. Another study by

[27] investigates unsupervised behaviour learning problem for proactive anomaly de-

tection. The proposed framework leverages Self-Organizing Maps (SOM) to map a high

dimensional input space (performance metrics) to a lower dimensional map without los-

ing the structural information of original instances. In contrast, we show that resource

management process can make use of the knowledge from proactive anomaly detection

and root cause identification to address the specific anomalies occurring in each VM.

Table 5.1 compares the above mentioned works by highlighting the main compo-

nents and characteristics of the proposed solutions for the problem of performance anal-

ysis and management in large distributed systems.

5.3 Preliminary

In this section, we explain the motivation and an overview of our approach.

5.3.1 Motivation and Approach Overview

Virtualization technologies are the core concept in the functionality of cloud models.

The possibility of running many VMs and applications on one physical host brings new

opportunities, as well as adds more complexity to the design of these environments.

Efficient Resource management concept is highly challenging due to the inherent

dynamic nature of cloud environment, where we can host different range of applica-

tions with a variety of demands and workload types. This is especially important for

the large scale web applications, in which the pattern of the incoming requests from the

users can change quickly creating a dynamic environment where the configurations of

resources should frequently be adjusted to satisfy the demanded SLAs. Elastic resource

management, as a solution for this problem, leverages the VM based scaling of the sys-

tem known as horizontal scaling. Public cloud providers offer customized policies of
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horizontal scaling to satisfy the resource demands of the applications based on the load

in the system. Even though the VM based scaling policy is a common approach to man-

age performance problems in the cloud environment, it may not be a proper solution

for a different category of performance problems caused by the faults in one VM. For

example, consider a situation where a memory-intensive process is started in the same

VM hosting a web based application which is consuming all the available memory, ig-

noring the demands of the web application. Therefore, the lack of the free memory can

cause performance degeneration such as longer than usual response times from the web

server. The conventional scaling approaches add new VMs into the system even though

the problem is not caused by the load growth from a higher number of user requests.

Having the same load in the system, newly added instances incur extra costs includ-

ing both resource and license costs as well as higher resource wastage due to added

resources which are not utilized. Considering this scenario, there are other types of the

problem that can create similar effects on the utilization of the resources. For example,

it is shown that the web applications are prone to many of the performance problems

which involves CPU and memory resources [8].

On the other hand, existing auto-scaling solutions such as Amazon elastic auto-scaler

are designed in a way that are more suitable to track the changes at the system level.

They do not consider VM based problems particularly when the changes in one VM

does not have an immediate impact on the average performance of the system. One

solution to address this category of problems is to have a resource management solution

at fine-grained levels of control. Elastic VM architecture enables on-the-fly tuning of VM

resources without turning off the VM which avoids the delays of rebooting the system.

Given the above explanations, we formulate the problem as the selection of proper

resource scaling policy to satisfy the quality of service (QoS) by analyzing the state of

the system to distinguish resource level bottlenecks from system wide load problems.

To be more explicit about the system state, we use the following definition:

System State: State or behaviour of the system at each time is an abstract represen-

tation of operational attributes and performance indicators of the system which can be

recognized in normal or abnormal/anomalous condition. The main indicators of an ab-

normal state are the presence of unexpected patterns or values in the load and resource
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Figure 5.1: A High Level System Model

level measurements of VMs and applications.

The proposed framework addresses the resource management problem at the ser-

vice provider level who has access to the VMs hosting the application to monitor system

and application level metrics. In this work, we target a category of performance anoma-

lies known as resource bottlenecks and particularly two problems insufficient CPU and

memory in one VM. Therefore, by tracking resource level metrics of VMs, one can utilize

vertical scaling functionality to increase the amount of RAM capacity or the number of

CPU cores of one VM to quickly respond to the performance degradations of the system.

When there is a system level degradation, the framework employs horizontal scaling to

add new VMs into the system.

In the next section, the components of ACAS framework for cause aware auto-scaling

in the cloud are explained in more details.



5.4 System Design 137

5.4 System Design

Figure 5.1 depicts an overview of the proposed framework and how the components

work together. The framework is modeled based on a web based application with

the application and database servers hosted on the cloud VMs. These applications are

known for the exposure of many performance degradations caused by the changes in

the workload or CPU and memory related faults. However, the definitions are generic

and can be applied to any distributed application. The components of the application

can be distributed on different VMs, while each VM has its own monitoring component,

data analyzer and local scaler modules installed. The data analyzer box in the Figure

3.2 shows the details of the local analyzer module on each VM. The scaling decisions

are performed at two levels, local and global. The local scaler is responsible for the ver-

tical scaling decisions at one VM, while the global scaler performs horizontal scaling

decision in the system. The global scaler and the load balancer are parts of a separate

master node which plays as the central broker for the whole system. Therefore, the in-

coming requests are distributed among existing VMs (application servers) based on the

load balancer configuration and registered servers at the master.

Each VM monitors the performance of its own resources and collects a variety of at-

tributes such as CPU and memory utilization, and disk I/O rates which can model the

state of the system. During regular intervals, collected data are sent to the local data

analyzer to be processed for the possible signs of performance problems occurring in

the near future. Therefore, at the first step, future values of each metric are predicted.

There is a wide range of algorithms that can be used for the prediction and modeling

of time series data. We have tested two algorithms ARIMA and feed-forward Neural

Networks (NN) for this step and finally selected NN due to the observed stability of

its predictions in the presence of the noise in our dataset. NN is utilized to generate

a separate model for each metric and predicts the future values based on the learned

models from the past observations of the system. Upon receiving the newly predicted

values, the anomaly detection algorithm calculates an anomaly score for each observa-

tion and sends a new alert if the new score exceeds the threshold θ. Before proceeding,

we should remark that anomaly detection module considers every deviation in the val-
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Table 5.2: Description for Notations

Notation Description

K Minimum number of alerts before an anomaly record is created

w prediction window size

lw Number of observations in prediction learning window

tw Number of observations in training window

L Minimum number of violations before the threshold based
approach (baseline) starts an action

r Number of attributes for each observation

LI Log Time for monitoring system to record a new observation

θ Threshold for anomaly score. Values greater than θ will be
considered as anomaly

Xm A record of monitored metrics (attributes) from environment

thi Usage threshold for attribute i

fi An indicator of anomalousness of attribute i

S Anomaly scores

ψ Number of randomly selected samples from input instances as
the input of IForest algorithm

ues of the attributes from the past state of the system as an anomaly which is reflected

in the calculated anomaly scores. However, from the service providers perspective, a

performance anomaly is important when it shows a possible breach of the SLA objec-

tives; otherwise, it can be ignored. Therefore, to be clear about an anomaly event which

is considered by the resource management module for taking the corrective actions we

pursue the following definition in the next sections:

Anomaly Event: A continuous change in the behaviour of the system which is re-

flected as unexpected trends in the values of the monitored attributes of the VM while

at least one of the metrics shows the possibility of breaching the threshold for the maxi-

mum accepted utilization.

The first part of the aforementioned definition is handled by the anomaly detection
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module to detect the attributes that show a transition in their state based on the details

provided in the Section 5.4.1. The second part of the definition confines the performance

anomalies to the anomaly events that are breaching the performance thresholds. This

part is considered by resource management module as described in the Section 5.4.2.

During anomaly detection phase and at the time of observing anomalous behaviour,

the system asks the cause detection module to analyze the state of different observed

metrics and find a possible cause for detected anomalies. The suggested causes of the

problem from this module are used as additional knowledge in the auto-scaler compo-

nents to help them make more informed decisions regarding the scaling policies.

The results from anomaly detection module are sent to the local and global auto-

scaler components. The local scaler is responsible for resource configurations at VM

level also known as vertical scaling policies. In contrast, the global scaler is aware of

the state of the whole system and is responsible for changing the number of VMs in the

system known as horizontal scaling policies. Algorithm 3 shows a summary of the main

steps of ACAS framework at the local and global level. The details of these steps and

the priority of different scaling policies are explained in the following algorithms and

subsection. A list of all the notations used in following sections are listed in Table 5.2.

5.4.1 Anomaly Prediction based on Isolation-Trees Models

Given one VM measurements, the goal is to find if the collected values show a differ-

ent pattern compared to the past behaviour (lines 3-7 Algorithm 3). Therefore, having

a sequence of past observations from one VM, an ensemble of Isolation-Trees is gener-

ated using the IForest algorithm. After the training is done and each VM has the initial

models of its performance, the anomaly detection process starts to analyze the new mea-

surements collected from the VM. Algorithm 4 shows the sequence of required steps for

the process of anomaly prediction in ACAS. This process is called regularly to check the

recent performance of the VM.

In order to give the system enough time to trigger auto-scaling actions, we need

to detect anomalies in the future data. Therefore, the first step is to predict the future

values of each metric for the VM (lines 1-2). NN algorithm is exploited as the prediction
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Algorithm 3: Cause Aware Resource Scaling in ACAS
input : V = (VM1, VM2, , ..., VMM): A list of all registered VMs in the system

1 while The system is running and in the beginning of performance-check interval do
2 for VMi ∈ V do

/* This part of the code is executed locally in each VM

*/
3 if VMi has not initialised the IForest models and there are enough data collected

for training then
4 Initialize IForest models for VMi ;
5 end
6 Collect the recent monitored values for different metrics of VMi
7 Call Algorithm 4 on the collected observations to predict future data and

find the possible performance anomalies and suggested causes;
8 call Algorithm 5 to check if VMi requires a new vertical scaling to be done

by local scaler; If scaling is done, VMi goes into a locked state for a
predefined time.

9 end
/* This part of the code is executed in the master node

*/
10 Initialize all indicators in fi to 0;
11 for VMi ∈ V do
12 if VMi is not in a locked state and is moving to critical condition based on the

Algorithm 6 then
13 fi ← 1
14 end
15 end
16 Decide on a new horizontal scaling action based on the information provided

by fi;
17 end
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function ( fp) to forecast the w values of each metric based on the recent measurements

from the system. Predicted values are fed as the inputs to the trained models which

calculate an anomaly score for each predicted record. The anomaly scores show the

degree of abnormality of the observations compared to the data used in training phase

(line 3).

It should be highlighted here that we expect to encounter cases where ACAS may

miss some of the anomalies due to the wrong measurements or wrong predictions re-

sulting from the dynamic nature of the target environment. Therefore, ACAS also con-

siders more reactive mechanisms which try to adjust the scores of anomaly points when

a violation in the system is detected. To make this point clear, let Si be the score for the

prediction Pi. ACAS checks if Si actually reflects the violation observed at time ti and if

it does not (meaning that Si < θ and Pi ≥ thi ), it deliberately increases the score Si to a

higher value so other components of the framework handle situation as a new anomaly

state.

Model Updating

One question to be answered is how the system decides to update the anomaly detector

models. The inherent dynamicity in cloud workloads and the possibility of different

types of failures highlight the importance of updating models so they can show the

most recent state of the system. In this regard, three different states of the system are

distinguished as follows:

• Transition State: The system is recognized as in transition if it meets two main

conditions. First, newly observed values differ from the past training data in the

patterns and/or values. Therefore, we expect to see higher anomaly scores cal-

culated to show the abnormality of recent behaviour compared to the historical

records. Second, the system has not reached a stable state, meaning that a con-

tinuous change of the variables is still observable. The focus of this work is on

the transitions which cause the average values of the attributes to change with the

assumption that the patterns remain unaffected. For example, consider a situa-

tion that an incremental trend is continuously impacting the values of one of the
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Algorithm 4: Anomaly Detection

input : D = (Xm
1 , Xm

2 , ..., Xm
lw), Xm

i ∈ R1×r: A matrix of lw records, each record
including measurements for r features

Parameter: w: Prediction Window
θ: Anomaly Score Threshold

output : (Anomaly Alert, Cause of Anomaly)
1 c← −1
/* Prediction function fp is used to predict future values

of data.Xm corresponds to the Measured data and Xp

presents Predicted data. */

2 (Xp
lw+1, Xp

lw+2, ..., Xp
lw+w) = fp(Xm

1 , Xm
2 , ..., Xm

lw)

3 Si = AnomalyScore(Xp
lw+i), 0 < i ≤ w: Find the anomaly scores with IForest

algorithm. Then, check if these scores should be adjusted based on a reactive
approach if some violation is already happening in the system.

4 anomalyDetected← (Count(S > θ) > Length(S)/2)
5 if anomalyDetected then
6 Initialize all indicators in fi to 0
7 for feature i ∈ D do
8 if system is in changing state on dimension i then
9 fi ← 1

10 end
11 end
12 Decide about updating the models based on the information provided by fi.
13 Identify the cause of abnormality and assign it to c.
14 end
15 return (anomalyDetected, c)



5.4 System Design 143

attributes in the system.

• Changed State: The system has reached the changed state when the new observa-

tions show deviations compared to the recorded data used for the training. How-

ever, the system has reached a stable condition meaning that no significant changes

in the average values of the attributes are detected. In terms of the conditions men-

tioned for the transitions state, a system at changed state satisfies the first condition

only.

• Normal State: The system is at the normal state when none of the above con-

ditions is satisfied, meaning that the average values of the attributes for recent

observations do not show significant changes compared to the training data. As

a result, the calculated anomaly scores do not indicate any abnormal behaviour

demonstrating a stable environment.

The anomaly detection module decides to update the model if it finds the corre-

sponding VM is at the changed state (lines 6-12). The reason is that, at this state, the high

number of anomaly alerts shows the previously trained models are not representing the

current state of the system. Moreover, the system has reached a new stable environment

and new models are required to enable the anomaly detection module to perform in

accordance with the changes. The updating procedure continues until the new models

correctly reflect the new state or another transition in the system starts. It should be

mentioned that ACAS does not consider transition state a proper time for updating the

models as some of the attributes are showing significant changes in their values and new

models quickly become obsolete, resulting in many unnecessary updates.

Cause Identification

The cause detection procedure tries to provide some knowledge about the possible re-

source level root causes of the performance problem to help the scaling modules make a

more informed decision about the proper scaling policies. Therefore, if the output scores

from anomaly detection module show a possible anomaly is occurring in the VM, the

next step is to identify the underlying reason for the problem. The category of changes
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addressed in this work are the ones that impact the average values of the attributes with

an increasing or decreasing trend. Therefore, to find an attribute with a trend in the val-

ues, we follow an approach which fits a regression line on the data and calculates the

slope of the line as a measure of the existing trends in the data.

One point worth noting here is how to distinguish load problems from other local

anomalies. One observation to be followed is that when the performance of the system

is impacted due to the changes in the incoming workload, we expect to see more than

one attribute affected and changes their state. Accordingly, ACAS checks whether most

of the attributes in the system are recognized at the transition state simultaneously and

then flags the anomaly as a load problem.

5.4.2 Resource Management Module

The management of resources in a continuously changing environment requires the in-

tegration of resource configuration policies at different layers of granularity. Depending

on the type of the problem and identified root causes, some policies may work better

at meeting the SLA objectives such as time or cost of the solution. In this work, two

policies horizontal and vertical scaling of the resources are considered. Horizontal poli-

cies address resource configuration strategies which change the number of active VMs

in the system. In contrast, vertical policies are defined at finer grains of control (Elastic

VMs) and adjust the amount of allocated resources based on the new demands of the

VM. Since the scaling happens online and there is no need to reboot the instance, verti-

cal scaling is much faster and does not adds extra costs for a software license or wasted

resources.

Upon receiving an anomaly alert from anomaly prediction module, the framework

should create a new record to flag the beginning of a new anomaly event in the target

VM. However, we need to consider the transient changes in the system that may cause

false alarms. As a result, a new anomaly event is recorded at time t if the current obser-

vation is showing an anomaly alert as well as all the past observations in the window

{t - K, t-K-1, ..., t-1}. In other words, the system ignores the first K alarms for one VM

until there will be at least K+1 consecutive alerts notifying an anomalous behaviour.
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A proper value for K can be selected considering the trade-off between computation

overheads, the stability of the environment and the performance degradation tolerance.

Small values of K may cause the system to perform unnecessary checks of the perfor-

mance or decide on preventive actions for many false alarms, while large values of K

increases the time it takes for the system to start a scaling action in response to the per-

formance problems.

In the proposed framework, some conditions should be met before resource man-

ager decides on a new scaling action for the system. The following subsections and

Algorithm 5 explain these conditions.

Algorithm 5: Vertical Scaling Policy
input : counter: Number of recent alerts for the VM
input : anomalyDetected: True if recent anomaly score exceeds threshold
input : cause: The root cause detected for the current anomaly
Parameter: K: Minimum Number of Alerts to Record an Anomaly

θ: Anomaly Score Threshold
1 if anomalyDetected then
2 counter ← counter + 1
3 else

/* reset the counter when the system is in normal state.

*/
4 counter ← 0
5 end
6 if counter > K then
7 if system is not in cooling period && cause 6= Load then
8 If system is moving toward critical condition based on Algorithm 6, start a

vertical scaling action.
9 end

10 end

5.4.3 Per-VM Vertical Scaling Policies

After receiving a confirmed anomaly event for one VM, the VM starts to check if some

type of the resource adjustment is required. ACAS considers scaling strategy only when

a performance degradation or SLA violation is observed. In this case, we consider the

breach of the resource utilization thresholds as a sign of the violation of SLA objectives.
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Let thi be the threshold for resource i. If the utilization of this resource at time t is more

than thi, system records a violation of SLA starting from time t. Therefore, no corrective

action is triggered if there are enough spare resources to fulfill the requests during next

time intervals. One question to be answered here is that what is the best time interval to

predict the future usages of resources. Since the online resource adjustments in elastic

VMs become effective almost immediately, we take one time interval away from the

recent observation as the prediction interval. Therefore, the framework sends back the

list of all metrics that are predicted to violate their respective thresholds at the next time

interval.

Algorithm 6: Identification of System Criticality

input : D = (Xm
1 , Xm

2 , ..., Xm
lw), Xm

i ∈ R1×r: A matrix of lw records, each record
including measurements for r features

input : cause: Root cause detected for current anomaly
Parameter: LI: Log Interval

1 delay← 0
2 if cause 6= Load then
3 delay← VerticalScalingDelay
4 else
5 delay← HorizontalScalingDelay
6 end
7 windowLength← delay/LI
8 P = (Xp

lw+windowLength) = fp(Xm
1 , Xm

2 , ..., Xm
lw)

9 for feature i ∈ P do
10 if Pi exceeds thi then
11 fi ← 1
12 end
13 end
14 Decide about the criticality of system based on the information provided by fi

Since vertical scaling is a response to local anomalies happening in a VM, the load

problem is ignored at this step and local resource adjustment is triggered if the detected

problem is related to one of the resource level metrics of the VM. Depending on the

metric detected as the root cause of the problem, the system decides about changing the

number of CPU cores or the amount of memory capacity of the VM to prevent perfor-

mance degradations in the application. After starting an auto-scaling process, the VM

will enter in a locked state which means that during this time no other scaling action is
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performed. The reason is that it takes some time for the system to adapt to the changes

of the resources, so the first few anomaly alerts are ignored to give the system enough

time to reach a stable state.

5.4.4 Horizontal Scaling Policies

A horizontal scaling policy is performed if there are no VM in the locked state, meaning

that there has not been any vertical scaling in the recent intervals that can affect the state

of the system. First, the state of all VMs is checked and the number of VMs which are

moving toward critical condition is recorded. One VM is recognized in critical condition

if at least one of the main attributes is predicted to breach the threshold in the near future.

Similar to vertical scaling procedure, we consider a rough estimate of the time it takes

to boot a new VM in the system as prediction interval. In other words, ACAS asks for

enough time to add a new VM before the system enters the anomaly state. If all the

active VMs are found moving toward the violation state, an alert to add a new VM is

issued. Afterwards, the system starts a cooling period when no scaling will take place.

This waiting time is required so the load balancer can detect new VM and start sending

new requests to that.

5.5 Performance Evaluation

The proposed framework incorporates multiple components from resource monitor-

ing, resource configuration and data analysis. The framework is general and should

be applicable to different types of applications and workloads. However, in order to

demonstrate the effectiveness of ACAS, we select web applications which are shown to

be prone to many performance problems involving CPU and memory resources [8]. The

main focus of this work is the performance of the application layer which can be easily

affected by the behaviour of users, buggy codes or other malfunctioning applications.

To validate the framework, we use CloudSim discrete event simulator [163] which is

a framework for modeling and simulation of cloud computing infrastructures. CloudSim

has been used extensively for validation of cloud services and applications that can be
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Table 5.3: Experiment Configurations

Variable Description Value

K Minimum number of alerts before an anomaly record is
created

6

lw Number of observations in learning window 60

tw Number of observations in training window 300

L Minimum number of violations before baseline approach
starts an action

2

LI Monitoring Interval (Log Time) 60

θ Anomaly Score Threshold 0.55

hard to be validated in real implementation as we need a controlled environment where

one could perform analysis of the system with and without data analysis or auto-scaling

methods including elastic VMs. An extension of the CloudSim is leveraged that imple-

ments an analytical performance model of 3-tier applications in the cloud and multi-

cloud environments [164]. CloudSim offers both flexibility as well as the extensively

validated models of reference workloads that helped us to create a near real environ-

ment.

5.5.1 Experimental settings

The experimental environment is simulated as one cloud data center hosting the ap-

plication and database servers. The application servers are modeled with the initial

configuration of one virtual core, 3.75 GB of RAM and Linux operating system. The VM

start-up times are modeled based on the performance study done by [119].

The following experiments are based on an extension of CloudSim which models

the workloads on Rice University Bidding System (RUBiS) benchmarking environment

[165]. RUBIS is a benchmark that implements the core functionality of an auction site

including browsing, bidding and selling modeled based on eBay.com. RUBIS follows a

3-tier web based framework consisting of the client, application and database servers.
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Sessions are the unit of works defined in the RUBIS and represent a sequence of requests

from one customer interacting with the application. The resource usage of each session

is monitored and modeled in the CloudSim based on the work done by [164]. In total,

there are 4 attributes CPU, memory, I/O usages as well as the number of sessions which

are collected during each experiment for data analysis part. For the details of how the

workload is modeled and validation of the extracted models you can refer to the work

[164]. To implement the prediction step, we utilize forecast package implemented in R

which models a feed-forward neural network with lagged inputs for forecasting uni-

variate time series. The final prediction is an average of the results from 20 trained

networks; each network is trained on lag-1 of all input values. Therefore, each network

has one input (with a bias node), one hidden layer with one node (with a bias node) and

one final output node which is analogous to AR model but with a non-linear function.

The averaging on the all networks helps the prediction result to be more robust in the

presence of noise.

In order to demonstrate the functionality of ACAS in resolving local performance

problems with the help of fine grained resource scaling, we have also extended CloudSim

framework to enable the on-the-fly changes of the resource configurations without turn-

ing the VM off. Two main resource types CPU and RAM are considered in this imple-

mentation. However, the codes are general and can easily be extended for other types

of the resources. The amount of changes in each scaling action can be configured to

be a percentage of the original capacity of the resource. For the following experiments,

the capacity of CPU resources increases by one core (100 percent of initial configura-

tion) while the RAM storage is increased by 20% for each scaling action. Moreover, the

anomaly detection models in ACAS are generated using IsolationForest package imple-

mented in R environment. In order to connect the anomaly detection module to the

simulation environment which is developed in JAVA, we utilize Rengine interface which

supports calling R implemented functions from Java environment.

Each experiment has a duration of 18 hours with sessions arrival time modeled as a

Poisson distribution with a frequency that is defined as a function of time [164].

https://www.rdocumentation.org/packages/forecast/versions/8.1/topics/nnetar
https://sourceforge.net/projects/iforest/
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In order to evaluate different aspects of the proposed framework, four cases of ex-

periments have been run. In two cases, the behaviour of ACAS is tested in the presence

of local anomalies in the VMs. In two other cases, the system is exposed to workload

increases and the functionality of the framework is analyzed. Two types of the resource

level bottlenecks, insufficient memory and CPU, are simulated. In both cases, we focus

on the impact of increasing trends on the corresponding attribute. In order to simu-

late memory problems in CloudSim, a predefined percentage of the memory storage

is removed from the available memory at consecutive interval times which creates an

incremental trend in the used memory of the VM. For insufficient CPU, a predefined

percentage of the available CPU capacity is flagged as reserved assuming a different

CPU-intensive application starts running as a background process along with the target

application.

The idea of performance anomaly detection has been widely investigated in the re-

search area. However, most of them follow supervised approaches or are designed for

specific scenarios or focus on data analysis part of the problem without providing the

details of an integrated framework for the purpose of resource management. On the

other hand, many of popular public cloud providers such as Amazon [4] use a thresh-

old based auto-scaling approach for dynamic scaling of their resources. In the threshold

based approaches, system continuously tracks the state of the resources in the system

and an anomaly alert is triggered if the utilization of monitored metrics exceeds a pre-

defined threshold. For example, a new machine is added to the system if the CPU uti-

lization is more than 80 percent for five continuous sampling intervals. Therefore, for the

comparison purpose, we have implemented the same threshold method as our baseline

approach. To have a comparable experiment, the thresholds for the baseline auto-scaler

is the same as the triggering thresholds of ACAS framework. In the all experiments, this

value is equal to 70 percent and is similar for both CPU and memory. A cooling period

of 15 minutes is considered for the baseline simulation. Therefore, no two auto-scalings

are performed in a time interval less than the cooling period. Table 5.3 shows the values

of parameters used in the experiments.
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Figure 5.2: The process of ACAS on a sample workload including the first training
window and one horizontal scaling action. One part of the data that is analyzed with
the same models (no model update occurred during this time) is also annotated.

5.5.2 Experiments and Results

In the first experiment, we investigate the behaviour of ACAS based on a sample work-

load similar to Figure 5.2. The experiment starts by sending requests to a load balancer

which distributes the load among application servers on a round robin basis. In order to

start training the models, we follow the observations from [107] which suggests that 28

generally is enough to consider as the sample size (ψ) for training phase. Considering

this and based on the nature of the dataset and empirical experiments to apply IForest

as an online anomaly detection algorithm, 300 is selected as the training window size

(tw) to be considered for the sampling and training purpose. Therefore, the anomaly

module waits for the first 330 observations to pass and then initializes the first anomaly

detection models by training IForest algorithm with the last 300 records as it is shown

on Figure 5.2. The first 30 records are ignored for the system to stabilize. After the first

initialization, anomaly detection module starts to regularly check the performance of

the system by applying the generated anomaly detection models on the recent collected

observations at the configured time intervals (presented as a while loop in Algorithm 3).

However, depending on the state of the system and based on the definitions discussed

in the Section 5.4.1, models may need to be updated occasionally to represent the new

state of the system. As we can see in Figure 5.2, after the first model initialization, a
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Table 5.4: Number of times that resource utilization exceeds the threshold before the
first auto-scaling action is triggered. NA means no scaling is performed.

Anomaly Type

Algorithm
ACAS Threshold Method

CPU 1 NA( >100)

Memory 10 NA( >100)

System Load 5 8

low rate increase of the incoming load is started which corresponds to a transition state

based on our definitions. Therefore, the first update of the models recorded for this ex-

periment is occurring around 435th observation when the system is identified at the end

of the transition and entering a new normal state. Similarly, other updates occur occa-

sionally during the experiment due to the fluctuations in the utilization data. However,

there are also several gaps that no update has occurred during that times. These gaps

are consistent with our observations of the stability of average utilization data and the

functionality of ACAS which has not detected any transition that requires new model

trainings. For example, there is no update between observations 570 to 640 or there are

only 7 updates between observations 645 to 760. The reduction in the number of updates

helps the system to decrease the overhead of recurrent trainings to create new models.

The same procedure with similar reasoning is applicable for the next load increase, start-

ing around observation 800, that changes the state of the system from normal to transition

and also triggers an auto-scaling action which adds a new VM to the system.

The next experiments are designed to test the presence of the local anomalies in VMs.

The initial configuration is done by adding 3 application and 2 database servers in the

system. Then, one VM is randomly selected as an anomalous VM. For both experiments

of CPU and memory anomaly, we wait for a minimum of 5 hours and then, at a random

time, the injection of the anomaly in the VM is started. Table 5.4 shows the number

of recorded observations that the attribute corresponding to the detected root cause ex-

ceeds the threshold. NA in the table means that there was no auto-scaling action in the

response to the injected fault in the target VM which equals to a 100 percent violation of
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Figure 5.3: Vertical auto-scaling for CPU bottleneck. ACAS avoids high response times
by timely reaction to the predicted performance problem.
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Figure 5.4: Vertical auto-scaling for Memory bottleneck. ACAS avoids failed sessions
by timely reaction to predicted performance problem (ACAS line for the failed sessions
is zero for duration of the experiment).
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the SLA. The exact number of the violations depends on the duration of the correspond-

ing anomaly in the system which may last for hours.

For more clarification of the way these policies are reacting in the presence of local

performance problems, Figure 5.3 and Figure 5.4 present the utilization of the corre-

sponding attribute for each fault and for both ACAS and threshold methods. Regarding

CPU, the ACAS has increased the number of cores by one as soon as it predicts the criti-

cality of the CPU utilization measurements. One violation is observed in this case which

is a result of the fast changes in the attribute values which the prediction function has not

caught. In contrast, the threshold approach is monitoring the average state of the whole

system, missing the local faults occurring at the anomalous VM. It’s worth mentioning

that even having a per-VM monitoring mechanism for the threshold approach can only

help to trigger a horizontal scaling with the condition that the monitored values show

a minimum of L violations before auto-scaler starts triggering an action. The L value

should be chosen reasonably to avoid unnecessary scalings in the presence of temporal

changes in the system. In our simulations, L has a small value equal to 2. However, de-

pending on the application instability, this value can be higher which leads to even more

violations. This situation is a result of the lack of the knowledge about preceding trends

to the anomaly state. ACAS solves this problem by keeping the track of the patterns

in the data and performing the scaling when the conditions of being in a continuous

anomaly state and the violation of the threshold values are met.

The above reasoning is also applicable for memory bottlenecks. One point to men-

tion is that the simulated RUBIS application shows a CPU intensive behaviour. There-

fore, memory usage has fewer fluctuations and shows more clear change points which

can be detected with higher accuracy. Figure 5.4 shows two sequential vertical scalings

of memory which adds 20 percent of the initial capacity each time. The first scaling hap-

pens before any violation is observed which shows the prediction part of ACAS helps

the scaler to perform a proactive action to predict the future anomaly events and start a

corrective action. The results show that the memory usage drops down by 20 percent.

However, the utilization continues to increase which causes the start of the second scal-

ing action. This time, however, a few numbers of violations of the memory usage are

observed. The reason is that for a small duration of time after the first scaling, the sys-



5.5 Performance Evaluation 155

0 200 400 600 800 1000

Time Index

0

2

4

6

8

10
R

e
sp

o
n
se

 T
im

e
 (

se
c)

Threshold Method

ACAS

Figure 5.5: Response time of one application server when the machine is overloaded

tem is recognized in a new changed state which is followed by an update of the models.

Therefore, the initial increases in the memory do not trigger anomaly alerts which cause

the system to start the second action after some delays. In this case, the reactive part

of the approach helps the system to detect the anomaly state when the violations are

observed.

Figure 5.4 also shows the number of failed sessions for both policies. A session is

flagged as failed if the VM does not have enough memory to process its requests. As

the figure shows, in the experiments with the threshold method, the number of failed

sessions has increased as a result of ignoring the local fault in the VM. In contrast, ACAS

has properly adjusted the configurations corresponding to the bottleneck resource which

avoids the unusual increases in the failed sessions.

As demonstrated by aforementioned experiments, the proactive vertical scaling helps

to quickly target the bottleneck resource and reduce the number of violations by adjust-

ing the amount of resources accordingly. This process also helps to reduce the cost as

well as the energy consumptions compared to the conventional way of adding new VM

machines in the system. It is also worth noticing that the local execution of anomaly

detection reduces the complexity of training the anomaly detection models. As it is ex-

plained in Section 5.3 the time and space complexity of IForest algorithm is constant

when the same number of training observations is used for model generation.

The next set of the experiments analyzes the behaviour of the system when the in-
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Figure 5.6: CPU Utilization and Response Time of one application server when the sys-
tem is overloaded. ACAS is able to proactively trigger a horizontal scaling action com-
pared to reactive response of the threshold method which causes more SLA violations.
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put workload of the machines suddenly increases. Two types of the problem have been

considered. The first experiment simulates an environment where one VM is exposed to

an increasing workload while other VMs in the system stay in their normal state. There-

fore, one VM is randomly selected and the number of the requests sent to this VM is

increased. This scenario can happen in different cases such as a result of a misconfig-

ured balancer service which assigns a higher weight to one VM. Figure 5.5 shows the

impact of the load increase on the response time of the target VM for both policies. As

we expect, the threshold approach is not successful at detecting the local performance

problem and many violations of the response time are observed. In contrast, the local

anomaly detection approach utilized by ACAS helps to identify the problem as soon as

the metrics show an increasing trend followed by exceeding the thresholds.

The second experiment for the load problem simulates an overloaded system where

the number of incoming requests to the balancer is increased, resulting in the increase

in the resource usage of every machine at the same time. This scenario is a common

case in the web applications known as flash crowds when sudden surges in the traffic

to a web site causes high delays in the response time making it virtually unreachable

for the users. As Figure 5.6 shows, both policies make similar decisions and add a new

VM after the problem is recognized. However, ACAS approach is able to react to the

problem immediately at the same time that the first breach of the threshold is detected

which causes the system to return back to the normal state after 5 observations of the

violation of CPU and memory metrics. In contrast, the threshold approach does not have

a knowledge of the past behaviour of the system and therefore delays the triggering of

the auto-scaling action for L observations. In our experiments, this value is set equal to

2 which results in about 8 violations before the system goes back to the normal state.

Larger values for L, more SLA violations in the system.

Finally, a set of the plots presenting the relation between anomaly scores and model

updates are shown for a sample experiment in ACAS framework. Figure 5.7 shows the

CPU utilization of one application server. The marked points are the observations rec-

ognized as anomalies, meaning that the corresponding anomaly scores are higher than

0.55. Figure 5.8 presents a combined view of the anomaly detection process for the same

workload, including detected anomaly points along with the anomaly update times.
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Figure 5.7: CPU utilization of one application server when the machine is overloaded.
The marked points are the records detected as anomaly.

Each point at the top line shows that the observation at the corresponding time was de-

tected as an anomaly, while the gaps between these points reflect normal or transition

states of the system. The first 330 points are ignored as they are used during the training

phase and detection process was not activated at that time. Similarly, each point at the

bottom line shows that a model update happened at the time of the corresponding ob-

servation. As we can see, at the times that the system is recognized in the normal state,

no update is occurring, meaning that the models are reflecting the current state of the

system. Another observation from these figures indicates that the updates are delayed

when an anomaly event is started while the system is recognized as being in the tran-

sition state. An example of this condition can be seen between observation 900 to 1100

which is reflected by the gaps among the points at the bottom line.

5.6 Summary

Elastic VMs with the accompanying knowledge from performance data analysis can

bring new opportunities to offer better resource management solutions in the distributed

environment. In this work, we show how fine grained resource configurations can help

to improve the auto-scaling efficiency for a category of local anomalies occurring in one

VM. The proposed ACAS framework utilizes a low overhead anomaly detection solu-

tion based on the Isolation-Trees and combines it with a cause identification procedure
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Figure 5.8: Detected anomaly points and the model update times for the duration of
the experiment. Red points show the observations that detected as an anomaly. Blue
points show the times that a model update occurred in the system.

to enable appropriate auto-scaling techniques taking into consideration the nature of

the anomaly. The experiments show that local vertical scaling actions can efficiently re-

spond to local anomalies in terms of the resource consumption and QoS. In contrast, per-

formance degradations caused by load increase on all VMs can be alleviated by adding

new VMs to the system.

ACAS demonstrates the effectiveness of combining the knowledge of performance

data analysis with resource scaling decision makers. However, decision maker is de-

signed as a rule-based system with if-then-else conditions and actions. As we stated

in Section 1.2, the adaptability of final resource decision maker is critical to be able to

manage a variety of system states with a minimum knowledge from the dynamics of

environment. Therefore, the last chapter of this thesis focuses on improving the adapt-

ability of the system with the help of gradual learning frameworks.





Chapter 6

ADRL: A Hybrid Anomaly-aware
Deep Reinforcement Learning-based

Resource Scaling in Clouds

This chapter addresses the second and third research questions of this thesis as explained in Sec-

tion 1.2 and proposes a hybrid Anomaly-aware Deep Reinforcement Learning-based Resource Scaling

(ADRL) for dynamic scaling of resources in cloud. ADRL takes the advantage of anomaly detection

techniques to increase the stability of RL decision maker by triggering actions in response to the iden-

tified anomalous states in the system. Tow levels of global and local decision makers are introduced

to handle the required scaling actions. An extensive set of experiments for different types of anomaly

problems shows that ADRL can significantly improve the quality of service with less number of

actions and increased stability of the system.

6.1 Introduction

The efficacy of resource management solutions can be interpreted from the level of user

happiness; however, a combination of heterogeneity of applications, resource sharing

conflicts, workload patterns and etc. can contribute to the violation of service level

agreements (SLA) and users’ Quality of Service (QoS). Therefore, proper scaling of re-

sources depends on the comprehensive understanding of environmental changes and

dynamic factors which can affect the performance of the system.

This chapter is derived from:

• Sara Kardani Moghaddam, Rajkumar Buyya, Ramamohanarao Kotagiri, ADRL: A Hybrid
Anomaly-aware Deep Reinforcement Learning-based Resource Scaling in Clouds, IEEE Transactions
on Parallel and Distributed Systems (TPDS) (under revision)
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On the other hand, the workloads in cloud are dynamic and uncertain. Therefore,

the prediction of future load is not easy and depends on many factors, some out of the

knowledge of system administrators. Dynamic threshold-based solutions, time-series

based analysis or machine learning based techniques are proposed to address these

problems [18, 26, 80, 105]. However, considering the uncertainty of environment, it is

critical to have a solution with a policy for updating the base assumptions, parameters

and learning models. Therefore, having an updatable decision maker is an essential

part to have an adaptable system with regard to the scaling of resources to ensure QoS

satisfaction in presence of various performance related problems.

We have investigated adaptive learning frameworks such as reinforcement learning

(RL) and how they can fit into our problem. In RL, continuous interaction of agents

with surroundings develops an up-to-date knowledge base by collecting dynamic mea-

surable metrics of the system. The knowledge is formulated as a set of the states that

define an abstract representation of the target system. RL is modeled as a control loop

and the gradual learning happens in a process of trial and error. This feature is espe-

cially important in an uncertain environment, where the prior knowledge is not very

clear. Therefore, at each step, the available knowledge is used to select actions that may

change the environment. Then, the knowledge base is updated with recent feedbacks

from the environment.

While the RL paradigm seems to fit our problem, when the action should be trig-

gered and the type of the selected actions are two main challenges that make the prob-

lem difficult in terms of the complexity and dimensionality of the state/action space.

First of all, the level of resource control granularity considered in the RL can target dif-

ferent types of performance problems. Despite many RL based attempts in the literature,

the possibility of having a range of scaling actions including vertical and horizontal for

different states of the system are not investigated. Second, the majority of RL based solu-

tions do not consider the possibility of reaching a stable state where no action is required

to move toward new states. In fact, the inherent characteristic of RL which learns from

the results of triggered actions in the environment along with the highly dynamic nature

of cloud and constraints on available resources can push the system to constantly change

its state to observe the consequences of combinations of states and actions. While recent
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developments in Deep learning based RL frameworks (DRL) try to utilize the learning

capability of deep networks for modeling the value of state/action pairs, their focus is

more on improving the efficiency of RL in searching larger state/action tables rather

than the evaluation of necessity of taking actions. Particularly, in the context of cloud

computing resource management, the actions are meant to be triggered as a response

to the performance problems in terms of the resource utilization and QoS. This require-

ment highlights the need for more customized solutions that integrate the performance

related knowledge in RL decision making process.

To address the above mentioned challenges, we propose a deep reinforcement learn-

ing resource scaling framework that combines two levels of vertical and horizontal scal-

ing to respond to the identified problems in the cloud. The proposed solution focuses

on improving the adaptability of MAPE loop as discussed in Section 1.2 by designing

an RL-based connection between planning decision maker and environment; ADRL uti-

lizes an anomaly event based controller to detect the persistent performance problems

in the system as a trigger for the decision making module of RL to perform a scaling

action for correcting the problem. The deep learning part helps to increase the quality of

decision making in large state space of the problem while the anomaly detection mod-

ule addresses the timely trigger of scaling decisions. Two levels of scaling are proposed

to address various types of performance problems including local VM-level resource

shortage and system level load problems. Experiments of the proposed system under

various loads demonstrate ADRL ability to improve the performance compared to the

benchmark and state of the art approaches.

The rest of this chapter is organized as follows: Section 6.2 overviews some of the

related work in the literature. Section 6.3 discusses the motivation and assumptions in

our modelings. Section 6.4 overviews the basics of Reinforcement Learning architecture.

Section 6.5 presents a general discussion of the main components followed by the details

of ADRL framework in Section 6.6. Section 6.7 presents the experiments and validation

results. Finally, Section 6.8 summarizes the results and findings.
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Table 6.1: Related works on RL based cloud performance management

Work Base RL Resource
Management

Problem

Dimensionality
Solution

Decision
Level

Anomaly
aware

Scaling
Method

[166] RL(Q-learn) Scaling Fuzzy states Global X H

[111] RL(SARSA,
Q-learn)

Scaling Fuzzy states Global X H

[162] RL(SARSA) Scaling Parallel agents,
Function

approximation

Global X H

[112] RL(least-square
policy iteration

(LSPI))

Migration
Management

Sparse Projection Global X -

[110] RL(Q-learn) Migration
management

- Local
(Host-level)

X -

[167] RL(Model-based
approach)

Scaling Decision-Tree based
Models (Adaptive state

partitioning)

Global X H

[64] RL(SARSA) Scaling Model-based
Environment

Local
(Host-level)

X V

[17] RL(Q-learn) Scaling Parallel agents Local
(Host-level)

X V

[168] RL(Q-learn) Task Scheduling Deep RL , Multi-level
Decision Maker

Global X -

[68] RL(Q-learn) VM to Server
Mapping, Power

Management

Deep RL,
Representation

Learning

Global,
Local

X -

Proposed
work

RL(Q-learn) Scaling Deep RL, Multi-level
Decision Maker

Global,
Local

X H, V

6.2 Related Work

Resource scaling decisions are usually a response to the performance degradations of the

system. However, a variety of factors at different levels of granularity from workload

and application level characteristics to software and hardware functionality can affect

the performance. Therefore, a proper solution should exploit updatable models and

adaptable architectures to create a self-directed learning environment.

The problem of autonomous scaling of resources can be easily mapped to MAPE-

K architecture (Monitor, Analyze, Plan and Execute over a shared, regularly updated

Knowledge base) of the autonomic systems. Following this architecture, [80] proposes
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a cost aware auto-scaling framework with the focus on possible improvements at the

execution level. The planning is done based on the threshold based rules on monitored

metrics to change the number of VMs in the system. While threshold based decision

maker is simple and convenient in terms of interpretation and implementation, the lack

of the flexibility to adapt to the changes in the environment makes that a sub-optimal

solution for these types of the problems. To achieve higher adaptability at decision mak-

ing level, Reinforcement Learning (RL) introduces a self-adaptable framework that can

easily be matched by the phases of MAPE architecture. RL has been used for various

types of resource management in cloud. [166] utilizes Q-learning as part of the planning

phase of the MAPE loop. The decisions are made as a combination of Markov decision

table and Q-table to decide on adding/removing of VMs in the system. A fuzzified ver-

sion of Q-learning and SARSA learning is introduced in [111]. They use the fuzzy rules

on the monitored metrics as a solution to reduce the number of states and as a result

the size of the Q-table. In these works, threshold and rule based techniques are used to

decrease the number of states, while actions are limited to the adding or removing of

VMs in the system.

Megh [112] is another RL-based system which targets the energy and performance ef-

ficiency of resource during live migrations of VMs in the system. The actions are defined

as selecting the destination host of the migrated VMs. They use a projection method to

reduce the state space complexity of their problem to a polynomial dimensional space

with sparse basis. Alternatively, Q-learning is used in [110] to schedule the live migra-

tions of VMs. A combination of waiting and migrating actions are used to decide on the

order of VM movements in th presence of network congestions to ensure having enough

available bandwidth for on-time migrations. In contrast to these works, our work focus

on resource scaling actions that change the configuration of resources as a response to

the performance problems in the system. [167] introduces an adaptive state space parti-

tioning technique to overcome the high dimensional state problem. The environment is

represented as a global state at the beginning. Then, as more data is available, new states

are created which maps the new observed behaviors of the system. This technique is es-

pecially important when the amount of training information is limited and the cost of

collecting new data is high in terms of the time and operational costs. Alternatively, our



166
ADRL: A Hybrid Anomaly-aware Deep Reinforcement Learning-based Resource

Scaling in Clouds

work addresses this problem by having a distributed approach and utilizing Deep Rein-

forcement Learning to handle local state of the VMs. VCONF [64] and VScaler [17] are

two other frameworks that use the RL paradigm for vertical scaling of resources. VScaler

uses parallel learning technique where agents can share their experience from the envi-

ronment to speed-up the convergence. VCONF exploits neural networks (NN) learning

to model the relation of (s, a) pairs with their corresponding rewards. The same paral-

lelization technique as VScaler is also used by RLPAS for managing the number of VMs

in the system[162]. The general idea of model based RL as discussed in VCONF and the

concept of Deep-RL (DRL) enables the system to adaptively learn in complex problems

with high dimensional space and low actions. Introduction of DRL techniques and their

success in playing Atari offers new directions for the problem of dynamic, continuous

time state space of resource management. Accordingly, DRL-cloud [168] is proposed to

minimize the long-term energy cost of the data centers. The problem is formulated as

a two-level task scheduling. The first level assigns tasks to a cluster of servers and the

second phase chooses the exact VM on the selected server. Another work by [68] lever-

ages DRL in a two-level VM allocation and power management framework. The DRL

agent is used at global layer for allocating VMs to hosts while RL and workload analysis

are used in local VMs to manage the power. Our model is inspired by such models, but

focuses on the hybrid scalings as part of the action set as well as anomaly-based trigger-

ing of decision maker for decreasing the amount of oscillation resulted from sequential

actions. Table 6.1 compares some of the RL based works in the literature considering

their resource management actions and techniques for handling high dimensional state

space.

6.3 Motivation and Assumptions

The elasticity feature of cloud environment which allows scaling resources dynamically

based on the performance of the system brings the flexibility to handle dynamic appli-

cations with constantly changing requirements. However, the dynamic adjustment of

resources in accordance with the state of the system requires self-adaptable techniques

that can interact with environment and learn the effect of resource changes in a variety



6.3 Motivation and Assumptions 167

of load and resource configurations. To achieve this goal, the proposed solution should

be able to answer three main questions.

First question is when the decision should be made. Time-based monitoring and de-

cision making [17, 166] is a common approach which helps the system to continuously

adjust the amount of resources according to the load and performance state of the sys-

tem. However, in the context of the cloud resource management, the dynamicity of en-

vironment can push the system to make unnecessary actions in response to the temporal

performance problems. For example, a short spike in load can over-utilize the resources

for a short amount of the time. A proper response to over-utilization is to increase the

amount of resources. While this is a correct action at the time of the observation, the

problem is a temporal spike and the system quickly goes back to the normal load while

the amount of resources is increased which may cause under-utilized state. Second ques-

tion is which types of the scaling should be actioned. Two main types of scaling in the

context of VM resources are vertical and horizontal scaling. While horizontal scaling

can help for general load problems, as we demonstrated in Chapter 5, local problems

can benefit more from vertical scalings in terms of the performance maintenance and

resource utilization. Finally, we should decide how to select an action for each state of

the system. A common solution for this problem is a combination of if-then-else rules

and threshold based methods that describe the system in two main states of over-utilized

and under-utilized and adjust the amount of resources accordingly. However, for highly

dynamic cloud environment, there are many internal and external factors such as CPU

hog and memory leak problems that can affect the performance of the VMs. These types

of the problems require complex rules and analyzing methods to be properly managed.

Considering the constant changes of application requirements as well as the limitation

of physical resources which affect the amount of available resources, self-adaptable so-

lutions show a potential for automating the process of resource management. These

systems can learn from the environment and tune their parameters, update their models

and adjust their decisions based on the most recent feedbacks from the system.

Given the above explanation, we define our problem as dynamic reconfiguration of

resources in cloud in response to the performance problems in the system. This work

also addresses the experiences of end users and considers QoS as a measure for validat-
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Figure 6.1: Main components of general reinforcement learning framework.

ing the violations of user level expectations. Therefore, the solution is targeting service

level providers who have access to the VM resources and VM-level performance metrics.

6.4 Preliminary on Reinforcement Learning Framework

Figure 6.1 shows a general view of the RL framework for a problem which manifests the

target environment. An agent is responsible to continuously monitor the environment

and make observations of the important features. Collected observations are translated

to one of the states si from the set S = (s1, s2, ..., sN). Each state represents an abstract

description of the main features of the system. The final goal of RL is to gradually learn

how to move between states to maximize a long-term objective function in terms of the

total rewards from each action. Each movement is done by selecting an action ai from

the the set A = (a1, a2, ..., aM). At each decision time t, the agent decides to perform

action at based on the obtained knowledge from previous movements and the current

state st. The environment makes the requested changes based on the selected action and

as a result the system may evolve to a new state st+1. The environment also sends back

a scalar feedback (reward rt) as the value of the action and its impact on the state of

the system. These feedbacks are then used to update cumulative value of (st, at) pairs

table which defines the goodness of selection at while in state st. The gradual learning

happens as a result of the many trial and rewards in the form S ∗ A − > R over time to

achieve an optimal policy for the agent.

Q-learning is an online, off-policy type of RL for continuous time Semi-Markov De-

cision Problems (SMDP) with the goal to obtain an optimal policy Π to maximize value



6.4 Preliminary on Reinforcement Learning Framework 169

1Load  Balancer

Global Scaler

Servers 
Config 

File

VM Unit Managemnt

Global Data 
Analyzer

VM

Local 
Scaler

Local Data 
Analyzer

VM

Monitoring
Module

VM

Local 
Scaler

RL Agent

Monitoring
Module

Local Data 
Analyzer

Local 
Scaler

Monitoring
Module

RL Agent

Local Data 
Analyzer

G
lobal

Action

Fe
ed

ba
ck

Figure 6.2: General Architecture of ADRL.

QΠ(s, a). QΠ(s, a) is a value function which estimates the accumulative discounted

value of being in state s and performing action a under the policy Π which can be written

as:

QΠ(s, a) = Es′ [r + δQΠ(s
′
, a
′
)|s, a] (6.1)

where E is the expectation and δ ∈ [0, 1] is the discount factor. It means that the value

of performing action a in state s is the total amount of rewards that can be expected to

accumulate by following policy Π from state s. Suppose that at decision epoch t action

at is selected. At the next decision epoch t + 1 and having the reward r(st, at), the Q

function value can be updated as follows:

Q(st, at) = Q(st, at) + α[r(st, at) + δmaxa′Q(st+1, a′)−Q(st, at)] (6.2)

where α ∈ (0, 1] is the learning rate. The greedy selection of action a′ in the above equa-

tion without following the current policy, defines Q-learning as an off-policy approach

as mentioned earlier.
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6.5 System Design

Figure 6.2 depicts a high level view of main components of ADRL and their interactions

with the external user and cloud environment. The users send their requests to the

load balancer component which distributes them among existing active VMs. Figure 6.3

shows the details of 4 main modules in each VM as described in the following:

• Monitoring Module which is responsible for monitoring the measurable features of

the environment. In the context of VM monitoring, these features can be resource

utilization measurements such as CPU and memory.

• Data Analyzer (DA) performs data cleaning and behavior modeling of the VM. The

aim is to create and continuously update an abstract model of VM performance

and detect unexpected violations. The detected anomalies identify occurrence of

performance problems and the need for corrective actions.

• DRL Agent is the main decision maker which is triggered after identifying an exist-

ing anomaly in the system by data analyzer module. It takes the observations from

monitoring module of the system as input. The output of this module is an action

that defines some changes in the configurations of resources. The selected action

is fed to the local scaler or sent back to the global layer for further processing.

• Local Scaler is responsible for performing actions that define some type of the

change in resource configurations of corresponding VM.

Algorithm 7 shows the main steps of ADRL framework. Each VM monitors the perfor-

mance of its resources by collecting resource utilization metrics at regular time intervals.

The collected data are fed into both local DA and RL agent for processing. DA utilizes

feed-forward Neural Networks (NN) to perform a prediction of the future values of each

collected metric. Then, the predicted values are used as input of an anomaly detection

algorithm to decide if the system is behaving abnormal compared to the performance

models from previous observation of VM. If an anomaly event is detected, DRL com-

ponent is triggered to decide on a corrective action based on the observed state of the

system. In this work, the performance anomaly detection is defined in favor of end users
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Figure 6.3: The Interaction among local ADRL components.

and points to the events that can possibly violate the expected Quality of Service (QoS)

objectives. As a result, the anomaly event is defined as continuous and unusual changes

in the values of VM performance metrics such as CPU and memory utilization which can

affect the ability of the machine to process user requests in an acceptable time. Finally, it

should be noted that DRL agent can also be triggered as a result of exceeding maximum

Time Between Actions (TBA). This condition is included for cases when the performance

is in a normal state, but the resources are under-utilized. Although no anomaly is trig-

gered during normal times, but we want to give the decision maker a chance to move

toward states with higher utilization (possibly by removing extra resources).

Upon receiving the selected action from DRL, it is checked that the action is a local

resource scaling request or not. If the answer is yes, the local scaler is called to adjust the

amount of allocated resources based on the requested changes. On the other hand, if the

action is a global scaling request, the results are sent back to the global scaler which is

responsible for controlling the number of VMs. The global scaler can decide on adding

new VMs to reduce the total amount of resource utilization in the system or shutting

down the existing VMs to reduce under-utilized VMs and resource wastage. While the

action is executing, the system enters a Locked state when no new action is performed.

This strategy gives the system enough time to adapt to new configurations and reach a
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stable state. The details of each step and corresponding algorithms are explained with

more details in the following section.

Algorithm 7: ADRL: General Procedure

1 Initialize Q(s, a) table with historical transitions; Initialize anomaly detection
Models;

2 while The system is running and in the beginning of performance-check interval do
/* This part of the code is executed locally in each VM

*/
3 st ← Performance state for vmi at time t based on the monitored data
4 if st shows an anomaly then
5 Increase the counter by 1;
6 end
7 if (counter ≥ L AND vmi is not in Locked state) OR Time(at−1) ≥ TBAmax then
8 Call DRL Agent for a new Action at;
9 Execute at following Algorithm 8;

10 Schedule an update for learning model to be done according to Algorithm
9;

11 end
12 end

6.6 ADRL: A Deep RL based Framework for Dynamic Scaling
of Cloud Resources

In this section, we detail the main components of ADRL framework. As explained in

Section 6.3 and Algorithm 2, ADRL is composed of three main parts to address the iden-

tified challenges in an adaptable resource management solution. We should note that

this is a general architecture and each part can be easily extended to new data analysis

techniques, more advanced resource management solutions such as migrations of VMs

and other mapping techniques to select among state/action pairs. Table 6.2 presents a

list of notations used in this chapter.

6.6.1 Deep Reinforcement Learning (DRL) Agent

The DRL module addresses the mappings of states to actions where a proper scaling

action should be selected for current state of the system. Let us assume we have a pool
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Algorithm 8: ADRL: Execution Phase
input : At: Selected action at time t

1 while The system is running and in the beginning of performance-check interval do
/* This part of the code is executed locally in each VM

*/
2 if At is local then
3 Initialize all indicators in f to 0;
4 for aj ∈ At do
5 if aj is a request of change for resource j then
6 Rnew

j = Rold
j + aj ∗ Runit

j

7 if Rmin
j ≤ Rnew

j ≤ Rmax
j then

8 Apply the change
9 end

10 end
11 end
12 end
13 else

/* This part of the code is executed in the master node

*/
14 Add new VMs or Remove from existing VMs based on the acceptable

utilizations and state of the environemnt.
15 end
16 end

Algorithm 9: ADRL: DRL Agent

/* Select an Action */
1 st ← Performance state at time t based on monitored data
2 Choose an action from set A randomly with ε probability, otherwise select an

action with maximum Q value;
/* Perform scheduled learning */

3 if Learning schedule is triggered then
4 st+1 ← Performance state at time t + 1;
5 Calculate rt based on Equation 6.6;
6 Store stransition (st, at ,rt, st+1 ) in VM profile memory M;
7 Update Q according to Equation 6.4;
8 end
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Table 6.2: Description for Notations

Notation Description

Rj Amount of resource j

Runit
j Unit of change for resource j. For example, one core for CPU

resources

TBAmax Maximum allowed time between actions

V(st) Value of the state st

uj Utilization of resource j.

at Action at time t

rt Response Time

L Minimum number of violations before the system reacts to an
anomalous event

of active VMs V = (v1, v2, ..., vP) as our global environment. Each vmi is described with

a tuple U = (ui1, ui2, ..., uiK) where uij is a scalar value representing the utilization of

resource type j on vmi. For each resource type j, an action aj can be performed. If aj

is greater than zero, it corresponds to increasing resource j by amount aj; If it is zero, it

means the resource is unchanged and negative values correspond to amount of released

resources. Therefore, depending on the total number of types of resources, the final set

of the actions for each VM is defined as Cartesian product of the sub action sets of its

resources as follows:

A =×K
j=1 aj

Accordingly, the purpose of DRL agent is to find a proper configuration of resources

by continuing changes of respective resources and receiving feedback on the outcomes

of the changes. However, the changes of resources on vmi are limited to the minimum

amount of allocated resources for a VM as well as the available resource of host ma-

chine. Suppose a scenario where the environment V = (v1, v2) is handling the daily

load of a web application with normal utilization of resources. The dynamic of web

workload during the day is handled by adding/removing resources for each VM asyn-
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chronously. Then, during a peak period, the load drastically increases which causes un-

expected over-utilization of resources. In this scenario, the system is facing a situation

that adding resources at local level may not be enough. Therefore, we add a special ac-

tion aglobal to the action set A where aglobal corresponds to a request for help from global

layer. Section 6.6.3 discusses these actions in more details.

DRL Agent − > Action Selection: Upon receiving an anomaly alert, DRL agent is

called to choose an action in response to the detected performance problem. Let’s as-

sume that st is the observed state of the performance anomaly. In order to choose an

action from the action set, we need a policy that exploits the available knowledge from

feedbacks of previous decisions (exploitation) and also tests new actions to improve the

knowledge of state/action relations (exploration). We use dynamic version of ε-greedy

policy which is a standard policy for having a trade-off between exploration and ex-

ploitation policies. ε-greedy policy selects a random action with a probability equal to

ε, otherwise it selects an action with Maximum Q value in the table. In order to have a

dynamic policy with a higher exploration at the start, ε is initialized with 1 and as the

number of observed states increases the value of ε decreases until it reaches a minimum

value.

DRL Agent− > Learning-Model Update: When the system applies an action, a waiting

time is required so the effect of changes can be reflected in the environment. At this time,

DRL agent calls for an update based on the newly observed state st+1. The agent first

stores the transition (st, at, rt, st+1) in a profile memory. Then, the reward is calculated

for the pair (st, at) to evaluate the goodness of the selection.

The final purpose of ADRL is to improve the QoS and utilization of services. There-

fore, the reward is formulated according to this goal and is composed of three compo-

nents as follows:

• QoS: The Quality of Service describes the level of satisfaction from user perspec-

tive. We choose response time (RT) as a measure for this metric. RT represents the

waiting time for each request from submission to completion including runtime

and queuing times. Let’s rt be the average response time of requests during time

interval t to t + 1. Then, the reward of rt (Rrt) is calculated based on Equation

6.3 where RTmax and RTmin are maximum and minimum acceptable values. The
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minimum value is considered to cover the cases when the VM moves to an unre-

sponsive state and due to the limitations of resources no request can be accepted

and as a result, RT drops to a near zero value.

Rrt (rt) =


e−(

rt−RTmax
RTmax )2

rt > RTmax,

e−(
RTmin−rt

RTmin )2
rt < RTmin,

1 otherwise

(6.3)

• Resource Utilization: While having an under-utilized environment can give the

users a high QoS in terms of the running time of requests, the wastage of resources

is not acceptable for service owners. The wasted resources increase costs in terms

of the monetary value as well as energy wastage in the environment. Therefore,

we need to consider the resource utilization for each resource j of vmi in the fi-

nal reward value. This value helps the decision maker to move toward decisions

that increase the utilization of resources while considering the satisfaction of user

expectations through QoS value introduced in the previous part. Equation 6.4 de-

fines this value as an average of utilization on all resources where Uj
max defines

maximum acceptable utilization for corresponding resource j and uj ∈ (0, 1].

Rut
(
uj
)
=


∑N

j=1 Uj
max−uj

N + 1 uj ≤ Uj
max,

∑N
j=1 uj−Uj

max

N + 1 otherwise
(6.4)

• State Transitions Value: While running the experiments with ADRL, we noticed

that a sequence of (s, a) transitions can lead the decision maker to be trapped in

a loop between states. This can happen as a result of the simultaneous changes

of resources by the actions that are affecting the value of more than one resource.

This is especially important for applications where changes of one resource have

a dominant effect in terms of the utilization compared to the others. Suppose we

have vmi with two resources CPU and memory in an under-utilized state. Action

a = {−a,+a} is triggered and one unit of CPU is removed while one unit of mem-

ory is added. Since the application is a CPU sensitive one, the utilization of CPU
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significantly increases while memory shows a small change. Although the uti-

lization of memory is still in under-utilized state, this action can result in a good

reward value. Therefore, differentiating among transitions with utilization im-

provements of one resource can be challenging. Although this observation can be

dependent on the units of changes and the characteristics of applications, consid-

ering the dynamicity and heterogeneity of cloud hosted applications this behavior

can be expected. As a solution for this problem, ADRL introduces a state value

function and transition penalty as Equation 6.5 where function V assigns manual

weights to the states. If an action is causing a transition from a higher value state to

lower ones, a penalty value is considered in the final reward function. In contrast,

moving from lower state to higher states affects the reward value positively.

P (st, st+1) =


1 i f V(st) < V(st+1),

−1 i f V(st) > V(st+1),

0 otherwise

(6.5)

Finally, Equation 6.6 shows the final value of r(st, at) pair as the total rewards in terms

of the QoS, utilization and state value changes. Higher values of Rrt and lower values

of Rut increase the final reward.

r(st, at) =
Rrt (rt)

Rut (util)
+ P (st, st+1) (6.6)

Having all the information from transition (st, at, rt, st+1) ready, updating of the Q-

table can be done based on the new information and Equation 6.4. In order to improve

the stability of learning and parameter updating in the presence of anomaly and tem-

poral spikes which introduce abnormal transitions, we leverage experience replay as a

sampling technique during training. This technique uses the profile of the past tran-

sitions to randomly select mini batches of records to be used for training the learning

networks. Random selection of records also helps to overcome the correlation among

sequential experiences as well as improving the efficiency by using each experience in

many of the updates [169].
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6.6.2 Anomaly-aware Decision Making

In the context of cloud resource management, the actions are triggered as a response to

the performance problems in the system. However, the base DRL loop usually works as

a periodic decision maker with iterative selection and updating steps to gradually adapt

to the environment. Proactive event-based decision making is another approach where

the decisions are made as a response to possible predicted performance problems. This

helps the system to reduce the frequency of decision makings which also reduces the

possibility of oscillation among states. In order to achieve this goal, we choose IForest

technique as described in Chapter 3. IForest model is built based on an ensemble of

many iTrees and the anomaly scores are average of path length on all trees. Having

a worst time and space complexity O(Tψ2) and O(Tψ) for training of T iTrees, it is a

promising option for dynamic environments where the models require regular updates

to capture the latest state of the system.

One point worth mentioning here is that the triggering of an anomaly state can be

a result of a change between states in terms of the values of monitored metrics from

workloads and VMs. Three problems arise as a result of this transition to be addressed.

First, the transitions among states can be a result of temporal spikes which can be

expected in highly dynamic environments. To address this problem, one anomaly alert

is not taken as a serious anomaly event. In fact, DRL agent is triggered for making a de-

cision when a continuous anomaly event is identified by receiving at least L consecutive

alerts (Algorithm 2, Lines 4-7). Therefore, the system ignores the first few alerts to avoid

unnecessary reactions to transient changes. The value of L can be decided based on a

combination of factors such as system logging interval, application characteristics and

the degree of fault tolerance.

Second, if the transitions are real, the trained anomaly detection models may not

reflect the new states and therefore there will be many false anomaly alerts. To solve

this problem, we use the same idea introduced in Chapter 5 for deciding the proper

time for updating of the models. In our case, an update will happen when the transition

is completed and therefore the new observations are representing new behavior of the

system.

Finally, it should be noted that while the frequency of decision making is reduced
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by replacing the periodical triggering with anomaly triggers, we should still consider

that not all decision epochs require a change in the states. If the performance is in a

good state in terms of the reward values, no-change actions may give a better chance of

reaching an optimal condition. Action aj equal to zero as discussed in section 6.6.1 helps

the system to experience the no-change effect on the performance of VMs.

6.6.3 Two-level Scaling

As we explained in Section 6.6.1, two levels of scaling are considered in this work. The

first level is defined for each resource of VMs. Three types of the action as defined

by aj are applied based on the units of change for each resource. Let us assume one

CPU core as the unit of the change for this resource. Therefore, +a action increases the

number of cores by a while−a action removes a cores from the VM. Similarly, the unit of

changes for memory can be set as 256MB and therefore each action changes the amount

of allocated memory with multiples of this unit. In our work, one unit is selected for

each change. Moreover, an action is valid if the requested changes are not violating the

available resource of host machine or minimum acceptable amount of the allocatable

resource to each VM.

The second level of scaling is at global level which is responsible for managing the

units of VMs and can change the number of VMs according to the state of the system.

Therefore, global scaler should have access to the utilization of all VMs. ADRL designs

global layer as a threshold based horizontal scaling algorithm. In an under-utilized en-

vironment, the global scaler identifies the VMs which have lower utilization of an ac-

ceptable minimum threshold and shut-down or deactivate these machines. Similarly,

when the scaler finds environment in an over-utilized state, new VMs are added to help

reduce the load on existing machines.

6.7 Performance Evaluation

In this section, the performance of the proposed framework is evaluated using CloudSim

discrete event simulator [163]. An extension of CloudSim is used that includes analytical
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performance models of a web application benchmark [164] and an anomaly injection

module. The simulator helps us to create a controlled environment for performance

anomaly testing and corresponding validations for different types of problems.

6.7.1 Experimental Settings

We model the environment as a data center with two types of application and database

server VMs. The configuration of VM templates for application server is one virtual

core, 256 MB of Ram and Linux operating system and the maximum limit for resources

are 5 cores and 3072 MB, respectively. The workloads are based on the web-based user

requests on Rice University Bidding System (RUBiS) benchmarking environment which

models an auction site following ebay.com model. Each session of the web workloads

is modeled based on the monitored resource usages of real requests on RUBIS [164]. To

generate the performance models of system, four attributes CPU, memory, disk utiliza-

tion and number of sessions are collected. VM start-up times are also modeled based on

the study done in [119].

The anomaly detection module is initialized by generating iTrees models for each

individual VM. Unless otherwise specified, the value of parameters in IForest config-

urations and model updating schedules are according to the recommended settings as

explained in Chapter 5. The value of L is set equal to 6 based on the logging intervals

and the characteristics of the application.

In order to initialize Q-table of DRL agent, we run CloudSim for 48 hours and record

the transitions and corresponding rewards in a file. These records are then used in a

batch learning process to initialize the Q values [169]. For Deep Q-learning we use a

constant learning rate α = 0.05 value and a discount factor γ = 0.9. The number of lay-

ers is 20 and the size of mini-batches for profile memory is 50 based on our experimental

evaluations. ε is decreased from 1 to 0.1 which gives higher exploration capability in the

initial iterations of learning with ε-greedy policy.

In order to assign weights to states for penalizing process, we follow a simple idea

based on the static partitioning of the state space. Therefore, for each resource, the uti-

lization is divided to 5 partitions and the incoming state values are mapped to the cor-
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responding partition. Partitions with higher utilization get higher weights. DRL agent

is implemented in Python environment with TensorFlow and a wrapper is created to

connect Java-based CloudSim simulator to python codes.

Each experiment has a duration of about 24 to 48 hours. The normal workload is

based on RUBiS benchmark and the sessions are generated based on Poisson distribu-

tion with a time-based frequency as explained in [164]. Two types of CPU and memory

anomalies are generated in CloudSim to create an increasing trend effect in the con-

sumption of CPU and memory without significant changes in the normal load of the

system. These anomalies start after the model initializations and at random times dur-

ing execution. To create the increasing load effect, after 10 hours of normal load, the

number of sessions start to increase in two phases by adding 5 and 20 sessions at each

time unit, respectively.

6.7.2 Experiments and Results

In order to evaluate the performance of ADRL, two static methods and one DRL based

method are considered. In Under-Utilized method, the VMs are configured so that the

total amount of allocated resources is more than the demanded ones. Therefore, with

an under-utilized method, the user can experience the best QoS. In Over-Utilized case,

the VMs are set up based on the minimum VM template configurations as described

in Section 6.7.1 such that during the run of the experiment and by starting anomaly

events the utilization of resources exceeds the acceptable level and some violations are

allowed. In both cases, no scaling is done through the experiments, therefore generating

a sample of the best and worst results to evaluate the general functionality of ADRL.

We also implement a non-anomaly aware RL based algorithm similar to works such as

[64]. To have a fair comparison, we extend their RL implementation with Deep Learning

Decision maker and hybrid of vertical and horizontal scaling actions and name it as DRL

to study the effect of anomaly based decision making of ADRL.

Figure 6.4 presents the results of all methods on a workload with CPU hog problem.

The first diagram shows the CPU utilization corresponding to each scenario. As we can

see, under-utilized environment shows the lowest CPU utilization while over-utilized
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(a) CPU Utilization
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(b) Response Time
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(c) SLA violations for CPU anomaly

Figure 6.4: CPU Utilization, Response Time (Log) and violations number for CPU
shortage dataset. ADRL is able to pro-actively trigger vertical scaling actions in re-
sponse to anomaly events (utilization more than %80). It also shows higher stability
in comparison to DRL with multiple changes of state between anomalous and normal
states
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(a) Memory Utilization
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(b) Response Time. Vertical upward spikes show
the violations of SLA in terms of response time.
ADRL can eefectively decrease the number of viola-
tions by desciding to add more resources and keep
the system in stable state while time-based descion
making by DRL is returning back the system to an
anomolous state by constant moves among states.
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(c) Total percentage of violations. As the graph
shows, with the start of anomaly and violations
of SLA, ADRL adds extra resources which avoids
further increases in the failed sessions.

Figure 6.5: Memory Utilization, Response Time and cumulative violations in the pres-
ence of memory shortage dataset. ADRL is able to pro-actively trigger vertical scaling
actions in the response to anomaly alerts which decreases RT violations and rejected
sessions.
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one has the highest utilization. While CPU consumption is increasing, both DRL and

ADRL try different types of actions. These actions are not always the optimal choices

which is expectable as the system is observing new states that may have a few history

records of their transitions before. However, as the system starts to violate the QoS

around t = 800, both algorithms try to reduce the utilization by adding new cores to

the VM. At this point, ADRL observes a transition in the utilization values, updates the

anomaly detection model and enters a stable state. The stability of process can be seen

around observation t = 900 and onward where no anomaly is triggered and therefore no

action is performed to change the states. In contrast, DRL continues time-based decision

making which may return the system back to the violation state. Although choosing

aj = 0 action can help the system to keep the current state, but some actions which are

resulted from random selections or due to the temporal spikes of the performance can

cause wrong changes of configurations and extra violations. These violations are also

shown in the last graph of Figure 6.4. This diagram shows the cumulative percentage of

violations during each time interval. As the picture shows, ADRL can reduce the incre-

mental results of QoS violations in the presence of anomalous behavior by performing

vertical scalings and keeping the system in normal state. In contrast, DRl can not show

stable results in terms of violation reductions as it contentiously returns the system back

to abnormal state. As already mentioned, these behavior is due to not recognizing the

continuity of anomaly state and trying to make new changes to maximize rewards with

regard to resource utilization.

Figure 6.5 shows the utilization and RT diagrams for memory shortage problem in

the system. To generate the anomaly state, after t = 600, a steady increase of the mem-

ory utilization is started and the results of each scenario for memory utilization and RT

are presented. The diagrams for under-utilized scenario do not show any significant

change as there is still plenty of free memory available. In contrast, over-utilized ex-

ecution gets affected immediately as the utilization exceeds corresponding thresholds

which are reflected in the second diagram where RT shows sudden increases. These un-

expected increases which are shown as vertical upward lines in the graph happen when

the VM does not have enough memory and therefore becomes unresponsive while re-

jecting many of the new incoming requests. However, with the start of memory anomaly
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Figure 6.6: A combination of vertical and horizontal scaling actions in overloaded sys-
tem. Two scaling actions done by ADRL and DRL methods are shown as an example

and increase in RT violations, ADRL decided to add extra resources which avoid fur-

ther violations as well as decrease the number of failed sessions. DRL, in contrast,

achieves an initial decrease of RT violations by adding more resources; however, the

time based triggering of decisions and sudden spikes of utilization while moving be-

tween states cause wrong actions which release some of the resources. The sequence of

these add/removal of resources causes several violation spikes and returning the system

back to the anomaly state. This is again due to the ignoring of the stability of system in

terms of being in an identified continuous anomalous state and particularly is expected

when the system is experiencing higher explorations. For example, this can happen

when the system is observing rarely seen states such as memory utilization higher than

%30 in a CPU-intensive application. ADRL, however, correctly identifies anomaly states

and after two wrong configurations, around 800 ≤ t ≤ 900 brings the system back to

a steady performance. The last diagram of Figure 6.5 demonstrates the results of cu-

mulative number of violations which highlights the ability of ADRL to reduce the total

number of violations after detecting the anomalous behavior with regard to the memory

utilizations.

In order to show the response of the system to high load problems and triggering of

horizontal scaling actions, we run CloudSim with a workload that increases the load to

saturate resources. Figure 6.6 shows the corresponding CPU utilization of this load and
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Figure 6.7: Total number of decisions (scaling actions) for both methods DRL and
ADRL for each dataset. ADRL is able to decrease the number of decisions with an
event-based decision making process.

the changes made in the system for static and dynamic scenarios.

As we expect, the under-utilized run shows the lowest utilization, while the over-

utilized configuration soon reaches the saturation point of resources. Both DRL and

ADRL trigger a mix of vertical and horizontal scalings during their run. The horizontal

scaling decisions that add new VMs for DRL and ADRL are shown with red and green

marks on the diagram, respectively. However, the sequence of decisions made by DRL

during the transitions of system from abnormal to normal state weakness the expected

effects of added VM in the system. The reason is due to the decisions that remove some

cores from existing VMs which can temporally reflect increases of the utilization. How-

ever, the increase is happening during the transition of system when the load is still

increasing which as a result causes the violations of performance. In contrast, ADRL

correctly identifies the continuous anomaly events and the number of decisions in the

presence of temporal spikes is less and more accurate.

Figure 6.7 shows the number of decisions corresponding to the scaling actions for

both methods ADRL and DRL. As we have mentioned before, DRl includes a periodic

decision maker while ADRL triggers scaling actions in the response of detected anoma-

lies. As a result, ADRL can significantly decrease the number of scaling actions. This

reduction is important in cloud environment as every scaling is changing the patterns of
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Figure 6.8: A comparison of CPU utilization with two versions of ADRL. ADRL WP
performs penalizing process as part of the reward calculation while ADRL NP ignores
this step.

the performance in the system and therefore affecting the accuracy and updating inter-

val of prediction models.

Finally, to validate the effect of penalty values of the reward function (Equation 6.6)

in guiding the decision maker to higher value states, we run two versions of ADRL

with penalties included (ADRL WP) and without that (ADRL NP). The results of this

experiment are shown in Figure 6.8. As we can see, ADRL NP selects more action types

that increase resource allocations and moves the system to the states with lower utiliza-

tion which as described in Section 6.6.1 have lower value in accordance with the reward

function. For example, there are a series of decisions to add resources around t = 300 or

between t = 600 to t = 900 which reduces the utilization. However, by each reduction,

the utilization part of the reward function reflects the negative effect of these movements

which helps the system to recover (as it is shown around t = 1000) after a few steps.

However, ADRL punishes the decisions that move the system to low utilization states

while encouraging toward decisions that remove resources when the utilizations have

not reached their maximum thresholds. Therefore, the general behavior of the system

under ADRL management is more toward high utilization states with higher values as

long as the SLAs are respected. This helps the system to quickly learn about the actions

which configure resources to achieve higher reward values.
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6.8 Summary

In this chapter, ADRL is proposed as a two-level adaptable resource scaling framework.

ADRL models the problem of resource scaling as a Deep Reinforcement Learning (DRL)

framework with the capability of observing the performance of surroundings and tak-

ing actions as a response to the problems. ADRL identifies performance problems by

using an anomaly detection model and the actions are combinations of horizontal and

vertical scaling changes. The anomaly detection model helps to identify continuous per-

formance problems. DRL agent is triggered based on the detected event and tries to find

proper scaling actions which maximize a reward function defined in terms of the QoS

and resource utilization.

We also proposed a penalizing mechanism to guide the DRL decision maker toward

the actions that move the system to higher value states. Through an extensive set of ex-

periments, we show that ADRL framework can achieve better results in terms of iden-

tifying and correcting the performance problems with a smaller number of decisions.

Moreover, it is shown that different types of performance anomalies can be addressed

by scaling decisions at various levels of granularity.



Chapter 7

Conclusions and Future Directions

This chapter concludes the thesis and discusses a summary of works and key contributions in this

research work. Then, it discusses some of the identified challenges and future works for performance-

aware resource management in cloud.

7.1 Conclusions

The virtualization and elasticity feature of cloud resources has brought up many oppor-

tunities for on-demand sharing of distributed resources. The resource manager controls

the amount of resources in the system with regard to the amount of workload and ex-

pected QoS for individual applications. The violations of QoS and SLA agreements can

cause cloud providers monetary costs and their reputations. However, the highly dy-

namic environment of cloud, comprising of dynamic workloads, distributed resources

with possible hardware-level faults, software-level bugs or resource sharing conflicts

can make the performance of the system highly unstable and unpredictable. This high-

lights the need for advanced resource management solutions which are aware of the

performance of the system and can interact with environment to identify the problems

at different levels of granularity.

On the other hand, the advances in monitoring and data analysis techniques provide

a valuable source of processable information to track the performance of the system and

applications with the aim of finding the preliminary signs of problems to act upon in

terms of adjusting the configurations of allocated resources. This thesis investigated

the joint performance analysis and resource management frameworks where the former

part tries to detect the possible performance problems while the latter leverages this

189
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knowledge for improving their resource allocation decision making.

Chapter 1 presented the background and main research questions and contributions

with regard to adaptive performance-aware resource management in this thesis. Then,

Chapter 2 discussed these terms in more details and proposed a taxonomy for categoriz-

ing the existing literature in the area of performance dependent resource management.

This chapter surveys related works in each category and compares their main contribu-

tions with regard to the applied data analysis approach or resource management tech-

niques. The survey of current literature also assisted to understand the current gaps and

open research questions which some of them were investigated in this thesis.

Chapter 3 presented an anomaly detection process based on time-series pre-processing

techniques and isolation-tree (iTree) data structures. To show the effectiveness of the ap-

proach in terms of the correctness and precision, several web-based workload datasets

were generated by deploying a benchmark in a private cloud environment. The de-

ployed system included main components of a web-application including web and database

servers. Various types of the anomalies such as CPU and memory bottlenecks were in-

jected and the final datasets were collected by monitoring the performance of the com-

ponents during the running of the system. These datasets were time-series of the uti-

lizations and workload attributes which jointly create an abstract representation of the

performance of the system. Efficacy of the solution was validated by two metrics AUC

and PRAUC for different datasets in the presence of the performance problems.

Chapter 4 targeted the isolation-based anomaly detection problem for high-dimensional

data by leveraging the knowledge from iTree data structure to filter irrelevant and noisy

features. This process makes the isolation-based anomaly detection much faster in terms

of the modeling and testing times. The process is performed by targeting the features

that isolate anomaly instances in short branches of iTree. According to the definition

of anomalies as being rare and different, these features are supposed to have higher

contribution in detecting anomalous records. The process, then, is validated on several

benchmark datasets to show that the reduced features can improve the detection results

while significantly reducing the training times by reducing the number of features and

iTrees.

Upon the development of anomaly detection module, a joint performance anomaly
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analysis and resource scaling decision maker is proposed in Chapter 5. The main pur-

pose of this chapter is to show how the proactive identification of problems can help

the decision maker to select proper scaling action type for alleviating the performance

degradations. The proposed framework (ACAS) has been implemented in the extension

of CloudSim which is a discrete event-based simulator for cloud based systems. The

anomaly detection module acts as the trigger of decision maker which is called upon

receiving an alert of possible problems in the system. Two levels of the problem, local

for VM specific resource related problems and global for system related load problems

are investigated. A simple cause inference module identifies the source of the problem.

Then, local problems are resolved by vertical solutions while global load problems are

responded by horizontal level scaling solutions. Moreover, a new model updating al-

gorithm is proposed to identify the times that the anomaly detection models require

new training with recently observed data. ACAS has been shown to effectively respond

to CPU and memory problem with proper vertical resource changes in comparison to

conventional solutions that target this type of problem with the same horizontal level

solutions and adding/removing VMs which is more time-consuming. Load problems

also take the advantage of ACAS proactive decision making which gives the resource

manager enough time to add new VMs before the degradations in performance violates

the expected QoS.

While ACAS shows the advantage of using performance anomaly information in

improving the quality of resource decision maker, the mapping between performance

problem and action type is pre-decided with a series of threshold based if/else rules.

However, considering the limitation of available resources and dynamicity of state of

the system in terms of the various utilization metrics and corresponding performance

problems, an adaptive solution that can interact with and learn from the environment is

preferred. Therefore, in Chapter 6, we extended our anomaly triggered resource scaling

framework with a Reinforcement Learning (RL) architecture. Both scaling types are

encoded as action set of RL while the state space is comprised of utilization of resources.

To overcome the dimensionality problem of state space, two strategies are considered.

First, the distributed implementation of the framework which allows each VM monitors

its own sate and as a result training/updating of performance anomaly detection and
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RL models can be done locally. Second, deep neural nets are used to approximate the

relation between state/action space and expected reward from the environment. The

joint of these strategies makes the final framework scalable and effective in handling

local and global anomaly problems. Moreover, the proposed solution can achieve high

adaptivity as it is shown in handling various types of local and global performance

problems.

7.2 Future Directions

The research in this thesis contributes to some of the challenges in joint anomaly aware

computing resource management in the cloud. However, there are still other aspects on

both sides of the performance data analysis and resource management to be investigated

more comprehensively. This section gives some insights into these challenges for future

work in this area.

7.2.1 Supporting Resource-limited Computing Units

With the advancements in Internet of Things (IOT) devices and their interconnection

with cloud hosted recourses, the definition of units of computing is extending from VM

and containers to smaller, resource constrained devices such as wearable and smart ap-

pliances. Although these devices are usually connected to another layers of computing

such as edge and cloud resources, they may still require a level of processing functional-

ity for in-site analysis of information. Therefore, a new category of customized solutions

is required for both parts of performance analysis and resource management. With re-

gard to data analysis part, limitations of resources restrict the applicability of complex

analysis and require fast, memory-efficient solutions. A solution might be having a hi-

erarchy of analysis where the preliminary processing is done in the device and further

in-depth analysis is requested to be done by more powerful connected computing lay-

ers. Similarly, the resource management decisions are impacted by the limitation of

resources where an efficient load balancing and offloading among connected devices

and cloud hosted computing resources should be done. Finally, depending on the type
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of the application and their requirements, a reformulation of QoS parameters and SLA

definitions may also be required. For example, a health-related application on a resource

limited device creates a need for high precision data analysis algorithms with low false

alarms to have more efficient utilization of available resources.

7.2.2 Energy Efficiency

The flexibility of selecting among abundant resources on an on-demand basis and virtual

view of infinity of resources comes with the cost of thousands of servers running and

consuming an enormous amount of electricity. The cost associated with this energy

consumption encourages resource providers to find more efficient solutions in terms of

the energy usage while taking into account the expected performance of their services

into account.

The joint management of performance and energy requires a deeper understanding

of the workload patterns and more advanced fault tolerance strategies. In the context of

cloud resource management, having a history of application resource usage, profiling of

performance on various configurations and understanding of performance degradations

from resource contentions are part of the knowledge to be learned for better decision

making. Moreover, the availability of new sources of clean energy such as wind and

solar introduces new opportunities and challenges for offering more efficient resource

utilization solutions.

7.2.3 Adaptable Learning in Cloud

We have already proposed gradual autonomous learning frameworks such as RL as a

solution for having more adaptable resource management. This area is rapidly growing

with many promising techniques for improving learning efficiency. Deep Q-learning

(DQN) networks are an example of these techniques. However, there are other strate-

gies to further improve the training convergence and adaptability for possible scenarios.

For example, in the context of resource management, we introduced state weighting and

no-change action to customize the learning for the states with higher values. Another

version of DQN [170], Dueling DQN, targets this problem by splitting the state value
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from action values. Therefore, a state can have its own value without consideration of

applied action. In theory, this should help to recognize the states which are valuable (or

not), no matter what type of the action is selected.

Moreover, considering the potential of DRL frameworks to process high volume of

data, it will be interesting to investigate the effect of integrating anomaly related infor-

mation, such as anomaly scores for a variety of metrics to the definition of the state.

Considering the direct relation between the degree of anomalousness of a metric and

corresponding vertical scaling solutions, this information may further improve the qual-

ity of the decision making process.

7.2.4 Cause-aware Performance Data Analysis

Performance degradations can happen as a result of low-level hardware faults to high-

level user based malicious attacks and etc. Current literature, as discussed in Chap-

ter 2, conventionally investigates these problems separately by targeting various sys-

tem/application attributes at different levels of granularity. However, the interdepen-

dency of components causes the propagation of problems which results in many cor-

related problems at different layers of computing environment. For example, a mali-

cious network attack triggers scaling of resources by simulating a high load performance

problem in an over-utilized system. However, in this context, new resources increases

the cost as well as energy consumption for fake users that should not contribute to the

performance evaluations of the system. Having an integrated approach is required so

the performance analyzer can track down the source of the problem and make a decision

according to the identified cause. In this case, a pre-knowledge of component dependen-

cies at application level as well as access to different levels of information from network

packet data to operating system calls and resource-level utilizations is a challenge to be

investigated more. One way to achieve this is an agent based approach where the inter-

action among agents disseminates information about unique problems at different levels

of granularity. While this strategy offers greater levels of scalability, the communication

protocol, synchronization and consistency of information or the speed of information

spreading are among added overheads to be considered for a highly distributed solu-
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tion.

7.2.5 Customized VM Configurations

Public cloud providers such as Google cloud [5] offer a possibility to request for VMs

with custom hardware settings. Considering the heterogeneity of cloud based applica-

tions with different levels of CPU and memory requirements, the knowledge from per-

formance analysis techniques can help to better identify the exact VM templates which

can satisfy resource requirements of application while considering the cost of resources

and energy consumption. Traditional horizontal solutions usually consider a homoge-

neous VM environment to further simplify the target problem. However, this approach

might not be well suited to heterogeneous environments where the choice of VM tem-

plate can directly impact the performance and future resource requirements, particu-

larly in terms of the energy and cost metrics. Therefore, initial VM configuration can be

considered as another variable to have more adaptable resource management solutions

which suit heterogeneous types of applications.

7.2.6 Application-aware Scaling Strategies

Considering the level of heterogeneity in cloud systems, a wide variety of applications

and data can be hosted and stored on the VMs. However, not all applications have

horizontal scaling capability, meaning that the duplicates of the service are not possi-

ble. The lack of support for scalability comes from a variety of reasons such as vendor

locked-in, architectural limitations such as database syncing problems, sticky sessions

for web applications and etc. Moreover, legal and security related issues also can limit

the horizontal scaling options when there are strict requirements on the placement and

migration of data and applications. Therefore, having a detailed knowledge of the ap-

plication characteristics might be necessary as another level of information to improve

the applicability of scaling decisions in these systems. The knowledge can be added as

new constraints for decision maker to adapt their actions to these requirements. This

can affect the decisions on the location of new VMs, the maximum number of service

duplicates and as a result the highest load that can be handled, VM migrations and
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consolidations. For example, for a database without the syncing capability, vertical so-

lutions may be the only option for the scalability of application.

7.2.7 Performance-aware Advanced Reservation

With the advances in big data analysis techniques and availability of large volumes of

data with higher quality in terms of the details and accuracy, precise resource utilization

prediction and analysis are possible. Particularly, long-term predictions can be done by

analyzing the regular patterns, seasonality and trends of data in long-run. This analysis

gives service administrators better understanding of future usages and an insight on

time-dependent performance bottlenecks and degradations.

On the other hand, admission and reservation based resource management mecha-

nism has been used extensively in literature to ensure the QoS requirements of specific

applications. An efficient reservation mechanism helps to pro-actively plan for resource

reconfigurations based on the expected variations in the workload, application-specific

updates which changes pattern of usage, peak times and etc. The effectiveness of de-

signed plans highly depends on the amount of historical data available, the quality of

predictions and the probability of sudden unexpected anomalous events. Sudden per-

formance degradations may not be captured by prediction techniques and still require

reactive mechanisms to be corrected. However, a variety of anomaly detection mecha-

nism and deep learning solutions helps to get the highest level of knowledge on short

and long term events for planning the predictable part of the performance profiles. For

example, a short-term prediction of an anomalous memory leak event can help the sys-

tem to pro-actively reserve extra memory on the hosted machines to be added to the VM

when the QoS gets close to the threshold values. Combining these techniques help to

further improve the reliability of the system in terms of avoiding and handling perfor-

mance degradations.

7.2.8 Considering Specific Workload Requirements

While the proposed approaches in this work are general and can be customized to a va-

riety of requirements, there are cases where these methodologies need some extension
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to be properly functional. For example, to manage streaming workloads with hard real-

time requirements, we need extra information on the constraints to create trade-off be-

tween the efficiency of the proposed solutions and meeting the constraints. We may need

to combine a variety of approaches such as reserved resources, more sensitive anomaly

detection thresholds or using the voting mechanism and multiple anomaly detectors.

As another example, workloads with pattern based anomalous behavior may not be ef-

ficiently managed with the proposed anomaly detection approach as the main assump-

tion in our methodology is that anomalies happen as a result of unexpected changes in

the point values. Therefore, to efficiently process and detect anomalies for these types of

workloads, we need to take extra steps to define the patterns of normal data and detect

anomalous clusters of data.
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