

i

Cost-efficient Resource Provisioning for

Large-scale Graph Processing Systems

in Cloud Computing Environments

Safiollah Heidari

Submitted in total fulfillment of the requirements of the degree of

Doctor of Philosophy

May 2018

School of Computing and Information Systems

THE UNIVERSITY OF MELBOURNE

ii

Copyright © 2018 Safiollah Heidari

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author except as
permitted by law.

iii

Cost-efficient Resource Provisioning for Graph Processing Systems
in Cloud Computing Environments

Safiollah Heidari

Principal Supervisor: Prof. Rajkumar Buyya

Abstract

A large amount of data that is being generated on Internet every day is in the form
of graphs. Many services and applications namely as social networks, Internet of
Things (IoT), mobile applications, business applications, etc. in which every data entity
can be considered as a vertex and the relationships between entities shape the edges of
a graph, are in this category. Since 2010, exclusive large-scale graph processing
frameworks are being developed to overcome the inefficiency of traditional processing
solutions such as MapReduce. However, most frameworks are designed to be
employed on high performance computing (HPC) clusters which are only available to
whom can afford such infrastructure.

Cloud computing is a new computing paradigm that offers unprecedented features
such as scalability, elasticity and pay-as-you-go billing model and is accessible to
everyone. Nevertheless, the advantages that cloud computing can bring to the
architecture of large-scale graph processing systems are less studied.

Resource provisioning and management is a critical part of any processing system
in cloud environments. To provide the optimized amount of resources for a particular
operation, several factors such as monetary cost, throughput, scalability, network
performance, etc. can be taken into consideration.

In this thesis, we investigate and propose novel solutions and algorithms for cost-
efficient resource provisioning for large-scale graph processing systems. The outcome
is a series of research works that increase the performance of such processing by
making it aware of the operating environment while decreasing the dollar cost
significantly. We have particularly made the following contributions:

1. We introduced iGiraph, a cost-efficient framework for processing large-scale
graphs on public clouds. iGiraph also provides a new graph algorithm
categorization and processes the graph accordingly.

2. To demonstrate the impact of network on the processing in cloud environment,
we developed two network-aware algorithms that utilize network factors such
as traffic, bandwidth and also the computation power.

3. We developed an auto-scaling technique to take advantage of resource
heterogeneity on clouds.

4. We introduced a large-scale graph processing service for clouds where we
consider the service level agreement (SLA) requirements in the operations. The
service can handle multiple processing requests by its new prioritization and
provisioning approach.

iv

v

Declaration

This is to certify that

1. The thesis comprises only my original work towards the PhD,

2. Due acknowledgement has been made in the text to all other material used,

3. The thesis is less than 100,000 words in length, exclusive of tables, maps,

bibliographies and appendices.

 Safiollah Heidari, 20 May 2018

vi

vii

Preface

This thesis research has been carried out in the Cloud Computing and Distributed

Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The

University of Melbourne. The main contributions of the thesis are discussed in Chapter

2-6 and are based on the following publications:

 Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros and Rajkumar

Buyya, “Scalable Graph Processing Frameworks: A Taxonomy and Open

Challenges”, ACM Computing Surveys, vol. 51, Issue. 3, No. 60, ACM Press,

New York, USA, 2018.

 Safiollah Heidari, Rodrigo N. Calheiros and Rajkumar Buyya, “iGiraph: A Cost-

efficient Framework for Processing Large-scale Graphs on Public Clouds”, in

Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid 2016), Cartagena, Colombia, Pages 301-310, 2016.

 Safiollah Heidari and Rajkummar Buyya, “Cost-efficient and Network-aware

Dynamic Repartitioning-based Algorithms for Scheduling Large-scale Graphs

in Cloud Computing Environments”, Software: Practice and Experience (SPE),

vol. 48, Issue 12, Wiley & Sons, 2018.

 Safiollah heidri and Rajkumar Buyya, “A cost-efficient Auto-scaling Algorithm

for Large-scale graph processing in Cloud Environments with Heterogeneous

Resources”, IEEE Transactions on Software Engineering (TSE), 2018 (Under

review).

 Safiollah Heidari and Rajkumar Buyya, “Quality of service (QoS)-driven

Resource Provisioning for Large-scale Graph Processing in Cloud Computing

Environments: Graph Processing-as-a-Service (GPaaS)”, Future Generation

Computer Systems (FGCS), 2018 (Second Revision: Minor Revision).

viii

Acknowledgements

PhD is an exciting journey by which I obtained many experiences in my academic and
personal life. It would not have happened without endless help from people around
me. First and foremost, I would like to thank my supervisor, Professor Rajkumar
Buyya, who has offered me the opportunity to undertake a PhD, and provided with
insightful guidance, continuous support, and invaluable advice throughout my PhD
journey.

I would like to express my deepest appreciation and gratitude to my co-supervisor,
Dr. Benjamin Rubinstein, whose knowledge and professional advices helped me to
enjoy this journey more. I would like to sincerely thank Dr. Rodrigo N. Calheiros for
being my co-supervisor while working at the University of Melbourne and also my
external supervisor Dr. Yogesh Simmhan for their guidance on my research. Beside my
supervisors, I woild like to thank the chair of my committee, Prof. Rui Zhang for his
kindness and advice to help me progress along my PhD candidature.

I want to take the opportunity to thank all the past and present members of
CLOUDS laboratory at the University of Melbourne: Dr. Mohsen Amini Salehi, Dr.
Amir Vahid Dastjerdi, Dr. Adel Nadjaran Toosi, Dr. Deepak Poola, Dr. Nikolay
Grozev, Dr. Atefeh Khosravi, Dr. Sareh Fotuhi, Dr. Maria Rodriguez, Dr. Chenhao Qu,
Dr. Yaser Mansuri, Dr. Bowen Zhou, Dr. Jungmin Son, Dr. Xunyun Liu, Dr. Sukhpal
Singh Gill, Dr. Hasanul Ferdaus, Diana Barreto, Minxian Xu, Sara Kardani
Moghaddam, Caesar Wu, Muhammad H. Hilman, Redowan Mahmud, Muhammed
Tawfiqul Islam, Shashikant Ilager, TianZhang He, Artur Pilimon and Arash Shaghaghi
for their help and friendships.

I thank the University of Melbourne for the scholarship, research training support
and facilities to let me pursue my PhD degree. My sincere thank goes to the staff at the
School including Rhonda Smithies, Julie Ireland and Madalain Dolic for their support. I
am also grateful to NECTAR Cloud for providing me with appropriate infrastructure
and facilities for my research.

Last but not least, I would like to thank my parents, my sister and my brothers for
their unconditional and loving support and encouragement. I am very fortunate that I
have them in my life and nothing is greater than having an amazing family.

Safiollah Heidari
Melbourne, Australia
May 2018

ix

x

Contents

CONTENTS
1. Introduction .. 1

1.1 Challenges in large-scale graph processing on cloud environments 3

1.1.1 Cost Limitations and Models .. 4

1.1.2 Scalability and Communication Models .. 4

1.1.3 Standard Entry and I/O Issues ... 5

1.1.4 Network Issues and Limitations ... 5

1.1.5 Resource Provisioning .. 5

1.2 Research Problems and Objectives ... 6

1.3 Evaluation Methodology .. 8

1.4 Thesis Contribution ... 9

1.5 Thesis Organization .. 10

2 Taxonomy and Survey of Graph Processing Systems .. 14

2.1 Introduction ... 15

2.2 Background .. 16

2.2.1 Overall Scheme of Graph Processing ... 19

2.2.2 Large Graph-Oriented Applications .. 21

2.2.3 Algorithms in Graph Processing Studies and Experiments 23

2.3 Graph Programming Model .. 26

2.3.1 Graph Processing System Architectures .. 26

2.3.2 Graph Processing Frameworks ... 31

2.3.3 Distributed Coordination ... 38

2.3.4 Computational Models... 43

xi

2.4 Runtime Aspects of Graph Frameworks .. 47

2.4.1 Partitioning .. 47

2.4.2 Communication Models ... 52

2.4.3 Storage View .. 57

2.4.4 Fault Tolerance .. 60

2.4.5 Scheduling .. 62

2.5 Graph Databases .. 64

2.6 System Classification And Gap Analysys .. 67

2.7 Different Viewpoints On Categorization Of Graph Processing Systems 69

2.8 Summary .. 71

3 iGiraph: A Cost-efficient Graph Processing Framework ... 73

3.1 Introduction ... 74

3.2 Background .. 77

3.2.1 Giraph ... 77

3.2.2 Bulk Synchronous Parallel Model .. 79

3.2.3 Internal Vertices and Border Vertices .. 80

3.2.4 Graph Algorithms ... 80

3.2.5 Graph Processing Challenges on Clouds .. 82

3.3 iGiraph .. 83

3.3.1 Motivation .. 83

3.3.2 iGiraph’s Dynamic Re-partitioning Approach ... 84

3.4 iGiraph Implementation ... 87

3.5 Performance Evaluation ... 88

3.5.1 Experimental Setup ... 88

3.5.2 Evaluation and Results ... 89

3.6 Related Work ... 96

3.7 Summary .. 98

4 Network-aware Dynamic Repartitioning for Scheduling Large-scale Graphs 101

4.1 Introduction ... 102

4.2 Related Work ... 105

4.3 Processing Environment Categorization and Graph Applications 108

xii

4.4 Bandwidth-and-Traffic-aware Graph Scheduling Algorithm with Dynamic

Re-partitioning .. 110

4.5 Computation-aware Graph Scheduling Algorithm with Dynamic Re-

partitioning .. 114

4.5.1 Complexity Analysis .. 117

4.6 System Design and Implementation ... 118

4.6.1 Bandwidth Measurement .. 118

4.6.2 Traffic Measurement... 119

4.6.3 CPU Measurement .. 119

4.6.4 Policy Selector .. 119

4.6.5 Network KPI Aggregator ... 119

4.6.6 Re-partitioner ... 120

4.7 Performance Evaluation ... 120

4.7.1 Experimental Setup ... 120

4.7.2 Results ... 121

4.7.3 Discussion .. 127

4.8 Summary .. 128

5 Auto-scaling Algorithm for Graph Processing with Heterogeneous Resources .. 131

5.1 Introduction ... 132

5.2 Graph Applications And Auto-Scaling Architecture 135

5.2.1 Applications ... 135

5.2.2 Proposed Auto-Scaling System Architecture .. 137

5.3 Horizontal Scaling (Step Scaling) .. 139

5.4 Dynamic Characteristic-Based Repartitioning .. 142

5.4.1 Smart VM Monitoring .. 142

5.4.2 Dynamic Repartitioning ... 145

5.5 Performance Evaluation ... 148

5.5.1 Experimental Setup ... 148

5.5.2 Evaluation and Results ... 149

5.6 Related Work ... 157

5.7 Summary .. 160

xiii

6 Graph Processing-as-a-Service ... 162

6.1 Introduction ... 163

6.2 Related Work ... 166

6.3 Overview of the Proposed Solution .. 170

6.3.1 Users ... 171

6.3.2 Repositories .. 172

6.3.3 Priority Queue ... 172

6.3.4 Monitoring Module .. 173

6.3.5 Management Module ... 174

6.3.6 Partitioning Module ... 176

6.3.7 Computation Module ... 177

6.4 Dynamic Scalable Resource Provisioning .. 178

6.5 Performance Evaluation ... 181

6.5.1 Experimental Setup ... 181

6.5.2 Evaluation and Results ... 181

6.6 Sumary .. 186

7 Conclusions and Future Directions ... 189

7.1 Conclusions and Discussion .. 189

7.2 Future Directions ... 193

7.2.1 Incremental Processing Models .. 194

7.2.2 Complex Workflows ... 195

7.2.3 Graph Databases ... 196

7.2.4 Cloud Features and Cost Models.. 197

7.2.5 Network Optimizations ... 199

7.2.6 Graph Compression .. 200

7.2.7 Energy-efficient Resource Allocation ... 201

7.2.8 Other Improvements .. 202

7.3 Final Remarks .. 203

BIBLIOGRAPHY ... 205

xiv

List of Figures

Figure 1-1Graphs are everywhere! ... 2

Figure 1-2 The thesis organization ... 11

Figure 2-1: Graph processing phases. .. 19

Figure 2-2 Graph processing architectures. .. 26

Figure 2-3 Master-workers architecture. ... 26

Figure 2-4 Taxonomy of programming models used by graph processing frameworks

 ... 31

Figure 2-5 Graph element-based approaches for graph processing frameworks 34

Figure 2-6 Distributed coordination ... 38

Figure 2-7 Classification of computational models in graph processing systems 43

Figure 2-8 Partitioning views in graph processing systems ... 49

Figure 2-9 Communication models in graph processing systems 52

Figure 2-10 Shared memory model with ghost (mirror) vertices 56

Figure 2-11 Storage view ... 57

Figure 2-12 Fault-tolerance in graph processing systems ... 60

Figure 2-13 Graph processing scheduling methods .. 63

Figure 2-14 Popularity changes in using databases ... 65

Figure 2-15 Proposed graph processing features’ categorization in this chapter 70

Figure 2-16 Graph processing features’ categorization according to application

characteristics and computing platforms .. 70

Figure 3-1 Giraph’s Architecture .. 77

Figure 3-2 Internal vertices and border vertices ... 79

Figure 3-3The role of high degree border vertices in reducing network traffic 85

xv

Figure 3-4 Worker W2 has sent more messages to W1 than other workers 87

Figure 3-5 System architecture and components ... 87

Figure 3-6 Number of network messages transferred between partitions across

supersteps for the Amazon graph using connected components algorithm 90

Figure 3-7 Number of network messages transferred between partitions across

supersteps for the Pokec graph using connected components algorithm 90

Figure 3-8 Number of machines varying during supesteps while running connected

component algorithms on different datasets on iGiraph .. 90

Figure 3-9 Total time taken to perform connected components algorithm 91

Figure 3-10 Number of network messages transferred between partitions across

supersteps for the Amazon graph using shortest path algorithm 93

Figure 3-11 Number of network messages transferred between partitions across

supersteps for the Pokec graph using shortest path algorithm ... 93

Figure 3-12 Number of network messages transferred between partitions across

supersteps for the YouTube graph using shortest path algorithm 93

Figure 3-13 Number of machines varying during supesteps while running connected

component algorithms on different datasets on iGiraph .. 94

Figure 3-14 Total time taken to perform shortest path algorithm 94

Figure 3-15 The average number of network messages in each experiment 95

Figure 3-16 Total time taken to perform PageRank algorithm ... 95

Figure 4-1 Graph applications and processing environment categorization 108

Figure 4-2 Network bandwidth unevenness in Amazon EC2 small instances with (a) 64

instances and (b) 128 instances [46] .. 112

Figure 4-3 Mapping strategy for 5 partitions and 5 workers. Partitions with higher

priorities are assigned to the machines with higher bandwidth 113

Figure 4-4 Percentage of CPU idle time in a system with 15 workers 116

Figure 4-5 The components that we added to original iGiraph are shown in dotted

rectangles ... 118

Figure 4-6 System architecture .. 120

Figure 4-7 Number of network messages transferred between partitions across

supersteps for Amazon graph using shortest path algorithm ... 122

xvi

Figure 4-8 Number of network messages transferred between partitions across

supersteps for YouTube graph using shortest path algorithm .. 122

Figure 4-9Number of network messages transferred between partitions across

supersteps for Pokec graph using shortest path algorithm .. 123

Figure 4-10 Number of machines varying during supersteps while running shortest

path algorithm on different datasets .. 124

Figure 4-11 Total time taken to perform shortest path algorithm 124

Figure 4-12 The average number of network messages in each superstep 124

Figure 4-13 Total time taken to perform PageRank algorithm ... 124

Figure 4-14 Total time taken to perform shortest path algorithm 125

Figure 4-15 Total time taken to perform PageRank algorithm ... 125

Figure 4-16 Number of machines varying during supesteps while running shortest

path algorithms on different datasets .. 126

Figure 4-17 The average number of network messages in each experiment 126

Figure 5-1 General patterns of the number of messages passing through the network

during a typical processing show convergence by the end of the operation for (a) CC

and (b) SSSP, but (c) PageRank is not converged ... 136

Figure 5-2 Proposed auto-scaling architecture ... 139

Figure 5-3 General horizontal scaling policies .. 140

Figure 5-4Scaling policies for large-scale graph processing using convergent algorithms

(a) basic iGiraph uses the same VM type during the entire processing, (b) iGiraph-

heterogeneity-aware replaces VMs with smaller/less costly types as the processing

progresses .. 141

Figure 5-5 Number of machines during processing shortest path on Amazon 150

Figure 5-6 Number of machines during processing shortest path on YouTube 150

Figure 5-7 Number of machines during processing shortest path on Pokec 151

Figure 5-8 Number of machines during processing shortest path on Twitter for the first

50 supersteps ... 151

Figure 5-9 Total execution time for processing connected components algorithm on

various datasets ... 151

Figure 5-11 Resource modification during processing shortest path on Amazon 153

file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485006
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485006
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485017
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485018
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485020
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485021
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485022
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485023
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485023
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485024
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485024
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485025

xvii

Figure 5-12 Resource modification during processing shortest path on YouTube 153

Figure 5-13 Resource modification during processing shortest path on Pokec 153

Figure 5-14 Number of machines during processing connected components on Amazon

 ... 154

Figure 5-15 Number of machines during processing connected components on

YouTube ... 155

Figure 5-16 Number of machines during processing connected components on Pokec

 ... 155

Figure 5-16 Number of machines during processing connected components on Twitter

 ... 155

Figure 5-17 Total execution time for processing connected components algorithm on

various datasets ... 156

Figure 6-1 The workflow of our proposed solution (GPaaS) ... 170

Figure 6-2 The components that we added to our work in Chapter 5 are shown in

dotted rectangles ... 171

Figure 6-3 Scenario1 ... 183

Figure 6-4 Scenario 2 – Price(#VMs) Comparison .. 184

Figure 6-5 Scenario 2 – If Giraph follows the job order ... 184

Figure 6-6 Scenario 3 .. 185

Figure 6-7 Total execution time per scenario .. 186

Figure 7-1 Future directions .. 193

Figure 7-2 Data processing approaches ... 194

file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485026
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485027
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485028
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485028
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485029
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485029
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485030
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485030
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485031
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485031
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485032
file:///C:/Users/safih/Dropbox/My%20Papers/My%20PhD%20Thesis/10%20FInal-Final%20Version/0%20SafiThesis.docx%23_Toc530485032

xviii

List of Tables

Table 2-1 Graph-like application and environments ... 17

Table 2-2 Graph algorithms categorization ... 23

Table 2-3 Overview of existing graph processing frameworks .. 68

Table 3-1 Evaluation datasets and their priorities.. 88

Table 3-2 Processing cost on different frameworks ... 96

Table 4-1 Comparison of the most related works in the literature 107

Table 4-2 Processing cost for SSSP on different frameworks ... 124

Table 4-3 Processing cost for PageRank on different frameworks 125

Table 4-4 Processing cost for SSSP on different frameworks ... 126

Table 4-5 Processing cost of PageRank on different frameworks 126

Table 5-1 VM characteristics.. 149

Table 5-2 Processing cost for SSSP on different frameworks ... 154

Table 5-3 Processing cost for CC on different frameworks... 156

Table 5-4 Comparison of scheduling and resource provisioning algorithms 157

Table 6-1 Comparison of the most related works in the literature 169

Table 6-2 Input scenarios for evaluation ... 182

Table 6-3 Processing cost for each scenario in different systems 186

xix

1

Chapter 1

1. Introduction

IG Data era is the result of Information and Communication Technology (ICT) fast

development in recent years where several Internet-scale applications and

connected devices have created enormous data explosion. Big Data continues to find

new application areas with representatives of data in a various formats and

characteristics. A big fraction of generated data these days by applications ranging

from social networks to Internet of Things (IoT) to search engines and mobile

computing is in the form of graphs. A graph is made up of a series of nodes (vertices)

that are in some way connected (via edges) and can have different properties.

Everything is connected in today’s world and graphs are everywhere (Fig. 1.1).

Social networks such as Facebook, Twitter and YouTube are significantly generating

large amount of data every day while a majority is stored as graph data. In a typical

social network, everything can be mapped to a graph. Graph of users is shaped by

placing each member as vertices of the graph while the connections between them

form the edges of the graph. Likewise, other graphs can be formed for posted

comments, shared photos, common interests, video recommendation, friendship

recommendation, etc. During each minute at 2017, 3.3 million posts were put on

Facebook, 3.8 million queries were searched on Google search engine, 500 hours of new

B

2

videos were uploaded on YouTube and 448.800 tweets were shared on Twitter1. These

numbers are almost doubled compared to the amount of content was made per minute

in 2014.

IoT is another significant source of exponentially large data generation. IoT includes

billions of sensors and devices around the world that are collecting, measuring,

detecting or enabling various activities and factors. These devices are used for smart

homes, driverless cars, medical equipment, business supply chains, drone delivery

services, mining, retails, etc. It has been predicted that by 2025, IoT will have an

economic impact of $11 trillion per year while users will deploy one trillion IoT

devices2.

There are many other origins of graph data such as astronomy, telecommunication,

mobile computing, machine learning, smart utilities, etc. However, traditional

distributed data processing approaches such as MapReduce do not work efficiently on

graph data because of a number of reasons. First, MapReduce is a two-step

computational model which is not compatible with iterative inherit of graph

algorithms. Second, a lot of disk I/O is required in MapReduce computation because

middle states of the computation cannot be retained in the main memory. Third,

1 https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/
2 https://www.gartner.com/newsroom/id/3598917

Figure 1-1Graphs are everywhere!

Internet

Social
Networks

Internet of
Things

Maps Financial
Transactions

3

MapReduce programs are usually agnostic about the relationships and connected

nature of a graph.

On the other side, graph processing brings intrinsic challenges due to the nature of

graph characteristics. These characteristics include data driven computation

requirements, irregular graph problems, poor locality during computation and high

data access to computation ratio. To overcome these challenges and shortcomings,

specific-designed systems are introduced for processing large-scale graphs. To

overcome these challenges and the issues with traditional processing solutions,

exclusive graph processing frameworks are started to be developed since 2010.

Cloud computing paradigm offers on-demand and scalable distributed storage and

processing services like never before. It has brought new solutions such as elasticity,

distributed computing and pay-as-you-go model by which it overcomes challenges

and restrictions of traditional computing. Cloud computing treats computing as a

utility where users have access to different services they need without knowing where

the service is hosted or how it is being delivered. So, it is profitable for both service

providers and consumers.

Despite all the advantages that cloud computing provides, most existing graph

processing frameworks are developed on high performance computing (HPC) clusters.

Unlike cloud environments, HPC infrastructure cannot be afforded by everyone hence

these solutions are no available widely. There are few research works in the literature

that propose cloud-based graph processing frameworks, but the problem with these

systems is that similar to their HPC counterparts, cloud-based systems also try to

improve the performance through utilizing novel computation or communication

techniques. Other cloud features such as pricing and scalability are neglected in most

research studies. In this thesis, we discuss the challenges and problems in processing

large-scale graphs and provide new solutions to address them.

1.1 Challenges in large-scale graph processing on cloud

environments

4

The trends of utilizing unprecedented computing capabilities that is provided in cloud

environments namely as distributed computing, elasticity and pay-as-you-go pricing

models along with the rising interests towards graph processing applications bring

many challenges and research questions. We discuss the most important challenges

regarding the requirements of new approaches in order to employ the potential of new

provided computing paradigm to improve processing of large-scale graphs.

1.1.1 Cost Limitations and Models

Cost is an important factor in cloud environments. Cloud providers provide different

types of infrastructures and facilities for highly storage or computing intensive

programs which customers should pay to be able to use them. Cloud providers usually

provide three types of clouds: public, private and hybrid. A giant cloud provider such

as Amazon even has three different cost models including: reserve, spot and on-

demand models. However, most current graph processing frameworks have not

considered cost factor in their computations. One reason is that many of the systems in

this area have been developed using high performance computing (HPC) facilities and

cluster computing environments and they have assumed that the resources are

limitless. Even some works that are assuming cloud metrics to explain their techniques

have used clusters to simulate a cloud environment while the communication and cost

limitations are very different on clouds. So, to propose a suitable cost model for a

graph processing system we should consider the following issues: 1) What

computation model is used to process the graphs? This factor is important because the

cloud requirements can be found in the computation model. 2) Which cost model is

more suitable for the computation model? So, we need to map the cost model with the

computation model to choose the best fit option. 3) Is that possible to change the policy

during the computation so that we can reduce the cost as much as possible?

1.1.2 Scalability and Communication Models

Many current graph processing frameworks use message passing interface (MPI) as the

communication platform between different machines. As long as the system works

base on cluster environment or there is no need to apply any scalability during the

5

computation, then MPI works well for disk-based frameworks. But in a cloud

environment, particularly when the number of virtual machines varies during the

computation, MPI is not useful for communication. Moreover, despite introducing

new communication models such as in-memory or pull/push communication by

recent graph processing systems, these models are either suitable for single machine

processing architectures or they are not quite fit into the cloud environment.

1.1.3 Standard Entry and I/O Issues

Another issue in graph processing systems is that they are very costly in terms of I/O

because the number of readings and writings on the disk is very high. When it comes

to cloud infrastructures it would still get worse since the graph needs to be transferred

to the cloud at least once. The right policy should be taken to partition the graph

correctly and distribute the proper number of partitions on virtual machines (VMs) to

reduce the number of inputs and outputs. It also affects the computation algorithm to

decrease the communication part burden. On the other side, although there are some

standard datasets which are used in most of the experiments, each framework change

the structure of the system data entry according to the processing model it proposes.

So, there is no standard form of data structure to be used by graph algorithms.

1.1.4 Network Issues and Limitations

Although all the current research works have measured the execution time and I/O

performance for different graph processing frameworks, only a few of them have

considered network issues. In a network, many factors such as latency, response time,

network bandwidth, number of packages transferring through the network, etc. can

affect the performance of the system, particularly in distributed environments such as

clouds. Most existing solutions do not investigate the effects of network factors.

Instead, they try to improve the performance of the system by proposing new

partitioning algorithms or using new computation models.

1.1.5 Resource Provisioning

In the literature, provisioning resources before starting the processing procedure is

very common. Hence, the graph processing system and its resource provisioning

6

component must be optimized towards configuring the computing nodes prior to the

deployment of the system in order to enhance the performance and resource

utilization. However, this approach cannot guarantee that these frameworks are

successfully achieving the desired cost and performance goals. Nevertheless, cloud

computing offers features such as elasticity and scalability by which required number

of resources can be determined at any stage during the life of an application. The ideal

would be provisioning resources based on the graph application and the dataset that is

being processed to reduce the monetary cost and improve the performance.

1.2 Research Problems and Objectives

This thesis aims to investigate and provide resource management mechanisms in a

distributed graph processing environment while considering cost-efficiency and its

impact on the system performance using various partitioning and scheduling

techniques. To address the challenges that were discussed in the previous section, this

thesis has identified and investigated the following research problems:

 How to utilize the scalability and elasticity of cloud environments to provision

the optimal number of resources for processing large-scale graphs? As

mentioned in the previous section, existing distributed graph processing

frameworks are using a pre-defined and pre-configured number of resources

which they keep up until the end of the operation. The problem with this

method is that the resources are being provisioned in a static manner rather

than dynamically. Therefore, in many situations during the operation, some

machines have no tasks to operate on while they are still occupied and kept

active by the system. This method is costly and will not necessarily provide the

best performance. Instead, a dynamic approach by which resources on the

cloud environment can be provisioned and scheduled according to the

characteristics of the graph algorithms could give better results.

 How to partition the graph efficiently to optimize the performance?

Partitioning plays a very important role in processing large-scale graphs in a

7

distributed environment. In many places in this thesis we discuss that a static

partitioning approach is not as efficient as considering a dynamic repartitioning

method. There are various factors that need to be considered while employing a

partitioning mechanism that affect its usability. For example, in a distributed

environment such as cloud: 1) what is the optimized number of partitions for a

particular application?, 2) how many partitions should be placed on each

machine?, 3) how to minimize the number of cross-edges between machines?,

4) how often should repartitioning happen?, etc.

 How to consider and employ network factors to design an effective partitioning

mechanism in order to reduce the monetary cost and improving the

performance? Without considering network factors such as bandwidth, latency,

topology, etc. in a constantly changing area as clouds, any solution will be

incomplete. These factors significantly affect the operation and its execution

time. However, most existing distributed graph processing solutions are either

completely agnostic about network metrics or they give only a small weight to

them. Thus, a dynamic resource scheduling mechanism that takes critical

network factors as variables in its solution is required to achieve optimized

performance and reduce the cost.

 How to utilize the heterogeneity of cloud resources to define appropriate

provisioning policy at any time during the processing? An important feature

that is provided by cloud environments is the variety of resources that are

accessible on their infrastructure. A typical client can utilize any size of

computing machines, storage, communication bandwidth and other services

according to his available budget, job priorities or even deadlines. This

provides a remarkable capacity for optimizing any types of operations

including graph processing. Although, heterogeneous resources have been

used to manage generic kind of operations in many research works, this

significant opportunity has been neglected in the studies related to large-scale

graph processing. Therefore, combining exclusive graph algorithms’ properties

8

with the appropriate partitioning techniques to utilize heterogeneous resources

in a distributed manner can improve the efficiency of the system.

 How to maintain and monitor the quality of service (QoS) in cloud-based graph

processing systems? Another important issue about using cloud facilities to

operate a particular service or processing on them is to ensure that the service

level agreement (SLA) will be preserved and guaranteed. If large-scale graph

processing is going to be provided as a service to a broader range of users, then

there should be some mechanisms to assure that the service will be delivered

seamlessly and the reaction against any violation of the agreement has been

predicted in advance. Hence, quality of the service needs to be managed and

monitored comprehensively alongside the efforts for ameliorating the

throughput and performance of the system.

1.3 Evaluation Methodology

All the proposed approaches in this thesis were designed and implemented in the form

of real frameworks and evaluated using real-world graph datasets including Amazon

(TWEB), YouTube links and Pokec along with various graph applications such as

PageRank, single source shortest path and connected components. All algorithms and

frameworks were implemented on Australian National Research Cloud Infrastructure

(NECTAR) and compared against real-world benchmarks. Since NECTAR does not

correlate any price to its infrastructure for research use cases, the prices for utilized

virtual machines are put proportionally based on Amazon Web Service (AWS) on-

demand instance prices in Sydney region according to closest VM configurations as an

assumption for our works.

We are following an additive approach for implementing our solutions in this

thesis. This means that we took a popular and widely used distributed graph

processing framework called Apache Giraph as a base for our work while in each

chapter we are plugging-in new features and algorithms to the system to modify and

improve the solution in the previous chapter. However, understanding each chapter is

necessary before moving to the next one. Major metrics such as execution time,

9

monetary cost and number of messages passing through the network along with other

solution-specific metric that are presented in each chapter have used for evaluation and

comparison of different benchmarks.

1.4 Thesis Contribution

To address the research problems mentioned in Section 1.2, this thesis made the

following key contributions:

1. A survey and taxonomy of the state-of-the-art advances and improvements on

large-scale graph processing frameworks

2. A system framework named as iGiraph which enables a cost-efficient graph

processing in cloud environments

 The design of the framework architecture and module interactions

 A new dynamic repartitioning method that utilizes network traffic

pattern to reduce the communication between compute nodes

 Using a new behaviour-based classification for graph algorithms and

operate accordingly

3. Two network-aware dynamic repartitioning-based algorithms for scheduling

large-scale graphs deployed to consider some important network factors in the

processing

 Adding the second dimension (level) to the behaviour-based

classification of graph algorithms to distinguish applications and select

more accurate processing policy

 A novel mapping strategy is designed to facilitate assigning partitions to

the machines based on different features that each partition and

machine has.

 A new bandwidth-and-traffic-aware dynamic re-partitioning algorithm

and a new computation-aware re-partitioning algorithm have been

proposed by which the monetary cost of the operation declines

remarkably

10

4. An auto-scaling algorithm which enables the system to take advantage of the

heterogeneous resources providing in a cloud environment

 A new cost-efficient provisioning of heterogeneous resources for

convergent graph algorithms

 A resource-based auto-scaling algorithm which significantly increases

the capability of supplying the efficient number of required resources

out of the available resource pool on the cloud by scaling horizontally

 A characteristic-based dynamic repartitioning mechanism combined

with a smart process monitoring that allows effective partitioning of the

graph across available VMs according to VM types.

 A new implementation of the operation management on the master

machine

5. Monitoring and maintaining the quality of service (QoS) in a large-scale graph

processing environment

 A prioritization mechanism to identify and distinguish between

different graph workloads and algorithms

 Deploying a service level agreement (SLA) monitoring mechanism to

fulfil the SLA requirements

1.5 Thesis Organization
The structure of the thesis is shown in Figure 1.2, which its chapters are derived from

several research works that conducted or published during my PhD candidature.

 Chapter 2 presents a taxonomy and survey on the state-of-the-art advances and

development on large-scale graph processing frameworks. This chapter is

partially derived from:

- Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros and Rajkumar

Buyya, “Scalable Graph Processing Frameworks: A Taxonomy and Open

Challenges”, ACM Computing Surveys, vol. 51, Issue. 3, No. 60, ACM

Press, New York, USA, 2018.

11

Figure 1-2 The thesis organization

 Chapter 3 proposes a cost-efficient graph processing framework called iGiraph

by which the cost of the operation decreases dramatically. This chapter is

derived from the following publication:

- Safiollah Heidari, Rodrigo N. Calheiros and Rajkumar Buyya, “iGiraph: A

Cost-efficient Framework for Processing Large-scale Graphs on Public

Clouds”, in Proceedings of the 16th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid 2016), Cartagena, Colombia,

Pages 301-310, 2016.

 Chapter 4 proposes two network-aware dynamic scheduling algorithms that

are considering important network factors such as network traffic, bandwidth

Chapter 1

Chapter 2

Chapter 3

Chapter 6

Chapter 7

Chapter 4 Chapter 5

Introduction, Challenges and

Contributions

Taxonomy and Literature

Review

iGiraph: Cost-efficient Graph

Processing Framework

Meeting QoS in Graph

Processing Systems

Conclusions and Future

Directions

Network-aware Dynamic

Repartitioning-based Scheduling

Heterogeneous-aware Auto-scaling

Resource Provisioning

12

and computation utilization for partitioning the graph and distributing the

partitions across the system. This chapter is derived from:

- Safiollah Heidari and Rajkummar Buyya, “Cost-efficient and Network-

aware Dynamic Repartitioning-based Algorithms for Scheduling Large-

scale Graphs in Cloud Computing Environments”, Software: Practice and

Experience (SPE), vol, 48, Issue 12, Wiley & Sons, 2018.

 Chapter 5 proposes an approach to take advantage of heterogeneous resources

that is provided in a cloud environment to minimize the cost of the operation.

This work is derived from:

- Safiollah heidri and Rajkumar Buyya, “A cost-efficient Auto-scaling

Algorithm for Large-scale graph processing in Cloud Environments with

Heterogeneous Resources”, IEEE Transactions on Software Engineering

(TSE), 2018 (Under review).

 Chapter 6 proposes a comprehensive system to monitor and maintain the

quality of service (QoS) in graph processing systems. This work is derived

from:

- Safiollah Heidari and Rajkumar Buyya, “Quality of service (QoS)-driven

Resource Provisioning for Large-scale Graph Processing in Cloud

Computing Environments: Graph Processing-as-a-Service (GPaaS)”, Future

Generation Computer Systems (FGCS), 2018 (Second Review: Minor Rev.).

 Chapter 7 concludes the thesis with a summary of the key findings and a

discussion of future research directions. This chapter is partially derived from:

- Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros and Rajkumar

Buyya, “Scalable Graph Processing Frameworks: A Taxonomy and Open

Challenges”, ACM Computing Surveys, vol. 51, Issue. 3, No. 60, ACM

Press, New York, USA, 2018.

13

14

Chapter 2

2 Taxonomy and Survey of Graph
Processing Systems

The world is becoming a more conjunct place and the number of data sources such as social

networks, online transactions, web search engines and mobile devices is increasing even more

than had been predicted. A large percentage of this growing dataset exists in the form of linked

data, more generally, graphs, and of unprecedented sizes. While today’s data from social

networks contain 100’s of millions of nodes connected by billions of edges, inter-connected data

from globally-distributed sensors that forms the Internet of Things (IoT) can cause this to grow

exponentially larger. Although analyzing these large graphs is critical for the companies and

governments that own them, big data tools designed for text and tuple analysis such as

MapReduce cannot process them efficiently. So, graph distributed processing abstractions and

systems are developed to design iterative graph algorithms and process large graphs with

better performance and scalability. These graph frameworks propose novel methods or extend

previous methods for processing graph data. In this article, we propose a taxonomy of graph

processing systems and map existing systems to this classification. This captures the diversity in

programming and computation models, runtime aspects of partitioning and communication,

both for in-memory and distributed frameworks. Our effort helps to highlight key distinctions

in architectural approaches, and identifies gaps for future research in scalable graph systems.

This chapter is partially derived from:

 Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros and Rajkumar Buyya,

“Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges”,

ACM Computing Surveys, vol. 51, Issue. 3, No. 60, ACM Press, New York, USA,

2018

15

2.1 Introduction

HE growing popularity of technologies such as Internet of Things (IoT), mobile

devices, smart phones and social networks has led towards the emergence of “Big

Data”. Such applications produce not just gigabytes or terabytes of data, but soon

petabytes of data that need to be actively processed. Such large volumes of data

gathered from billions of connected people and devices around the world is causing

unprecedented challenges in terms of how data can be stored, retrieved and managed;

how data security, integrity, availability and sharing can be ensured; how massive

datasets can be mined; and how they can benefit from new computing paradigms such

as cloud computing for data analysis [178][58].

According to the National Research Council of the US National Academies [55],

graph processing is among the seven major computational methods of huge data

analysis. Graph computations are used in business analytics, social network analytics,

image processing, hardware design and deep learning to an increasing extent. Wide-

spread techniques for processing large graphs had, untill recently, been limited to

shared memory [97] [19] and High Performance Computing systems, [116] [93].

Although distributed approaches have been proposed for processing big graphs since

2001 [99], graph processing systems for commodity clusters and Clouds have become

particularly popular after Google introduced its Pregel [148] vertex-centric graph

processing system in 2010. Since then, several distributed graph processing

frameworks with diverse programming models and features have been proposed to

facilitate operations on large graphs. Each of these frameworks has specific

characteristics with its own strengths and weaknesses.

The aim of this chapter is to provide a taxonomy of scalable graph processing

systems and frameworks. It identifies strengths and weaknesses in the field and

proposes future directions. First, it proposes a comprehensive taxonomy of

programming abstractions and runtime features offered by graph processing systems,

and maps the existing systems to this taxonomy. Second, it utilizes a top-down

approach for investigating graph processing frameworks and their components along

with examples to support them. Third, the chapter identifies gaps in existing systems

T

16

which need further investigation, and discuss these open problems and future research

directions in detail. In summary, this survey gives readers an overarching picture

about what graph processing is, what improvements have been gained through recent

frameworks, different programming and runtime techniques that have been used, and

the applications that benefit from them. It emphasizes scalable graph processing

platforms for shared-memory and distributed processing, that fall within the ambit of

Big Data processing platforms. It also contrasts them against graph frameworks for

supercomputing systems, as evidenced through the Graph500 benchmark3. On the

other hand, the existing works such as [153] and [60] only focus on surveying and they

have limited focus on key elements of graph processing.

The rest of the chapter is organized as follows: Section 2.2 includes a definition of

graphs and graph processing systems, contrasts graph processing from other big data

processing methods, outlines the lifecycle of a typical graph processing system, and

gives examples of real graph-based applications and algorithms. Contemporary graph

processing frameworks and architectures are explained in Section 2.3, along with

distributed coordination and computational models. Section 2.4 categorizes existing

frameworks based on partitioning, communication models, in-memory execution, fault

tolerance and scheduling. Graph databases are reviewed in section 2.5. A taxonomy

and discussion on challenges is also presented for each section. A gap analysis and

open challenges, with a perspective on future directions are discussed in Section 2.6

and 2.7 respectively. Finally, we conclude the chapter in Section 2.8.

2.2 Background

A Graph G = (V, E), consists of a set of vertices, V= {v1, v2, … , vn} and a set of edges,

E={e1,e2,…,em} that indicate pairwise relationships, E=V×V. If (vi , vj)E, then vi and

vj are neighbors [199]. The edges may be directed or undirected. So V and E are the

two defining characteristics of a graph which most of graph processing frameworks

implement. Frameworks typically support a single attribute value associated with the

3 Graph 500 benchmark, http://www.graph500.org/

http://www.graph500.org/

17

vertex and edge (e.g., label, weight). In addition, some of the platforms also support a

set of named and/or typed attributes for their vertices and edges as part of their data

model.

Table 2-1 Graph-like application and environments

Application Item (Vertices of the
Graph)

Connection (Edges of the
Graph)

Social network Members Friendships

Computer network Computers Network connectivity

Web content Web Pages Hyperlinks

Transportation Cities Roads

Electrical circuit Devices Wires

Commerce Customers, Goods Purchase transactions

Factory Machines Production lines

Supply chain Providers Distances

Telecommunication Mobile Phones Phone calls

Pairwise relationships between entities play an important role in various types of

computational applications. These relationships that are implied by different

connections (edges) between items (vertices) give rise to domain questions to draw

value from the data, such as: Is it possible to identify transitive relationships between

items by following the connections? How many items are connected to a typical item?

What is the shortest distance between these items? Which groups of items are similar

to each other? How important is an item relative to others? Various graph-like

applications and environments are mentioned in Table 2.1 [199]. As can be seen in

Table 2.1, many applications process data that naturally fits into a graph data model.

Several of these applications from social networks, eCommerce and telecom domains

handle large graph datasets which need to be processed and mined to draw disparate

business intelligence, ranging from the interests of people about products for targeted

advertising, to tracing call logs for cyber-security. Processing large graphs poses some

intrinsic challenges due to the nature of graphs themselves. These characteristics make

graph processing ill-suited to existing data processing approaches, and usually inhibit

efficient parallelism [177]. According to [144], their properties are noted below:

 (1) Data-driven computations: Graph computations are usually entirely data-driven.

Graphs are made up of sets of vertices and edges that dictate the computations

performed by every graph algorithm.

18

(2) Irregular problems: Graph problems are highly irregular due to the non-uniform

edge degree distribution and topological asymmetry rather than being uniformly

predictable problems which can be optimally partitioned for concurrent computation.

(3) Poor locality: The inherent irregular characteristics of graphs leads to poor locality

during computation, which is in conflict with locality-based optimizations supported

by many existing processors, making it difficult to achieve high performance for graph

algorithms.

(4) High data access to computation ratio: A large portion of graph processing is

usually dedicated to data access in graph algorithms. Therefore, waiting for memory or

disk fetches is the most time-consuming phase relative to the actual computation on a

vertex of edge itself.

To streamline the processing of big data, MapReduce, a distributed programming

framework for processing large datasets with parallel algorithms, was introduced by

Google in 2004 [56]. MapReduce has two significant advantages: 1) The programmer

has a simple and familiar interface using Map and Reduce functions, inspired by

functional programming concepts [100], and 2) the application is automatically

parallelized when defined using Map and Reduce methods, without the programmer

needing to know how data will be distributed, grouped and replicated, and how the

tasks are scheduled.

Although MapReduce addresses many deficiencies in traditional parallel and

distributed computing approaches, it has several limitations that make it less efficient

for processing large graphs [51] [2] [82]: 1) MapReduce is limited to a two-phased

computational model that is not naturally suited for graph algorithms that run over

many iterations, 2) In common MapReduce implementations, the input graph and its

state are not retained in main memory across even these two phases, let alone across

iterations, and consequently requires repetitive disk I/O, 3) MapReduce’s tuple-based

approach that is unaware of the linked nature of graph datasets is poorly suited to

design many graph applications, and 4) Graph operations using MapReduce have poor

I/O efficiency - because of frequent checkpoints on completed tasks and data

replication - which is a bottleneck for many graph algorithms [131].

19

Apache Hadoop [12] is a popular open-source implementation of the MapReduce

programming model. Besides flexible batch processing applications that can be built

using Hadoop, it is also the basis for NoSQL querying platforms such as Pig [16] and

Hive [15] to work with large datasets. In addition, various high level languages such as

SCOPE [266], Sphere [86] and Swazal [179] are available for MapReduce-like systems.

Platforms like Apache Spark [255] have extended the programming model of

MapReduce, and offer incremental batch and in-memory computation with better

performance. Further, Hadoop’s distributed file system storage mechanism (HDFS) as

well as a Map-only model of Hadoop is used as the storage and distributed scheduling

mechanism in many graph processing frameworks we discuss.

While a number of systems such as PEGASUS [114] have brought innovative

approaches for processing and mining peta-scale graphs, those systems are based on

the MapReduce model and suffer from the above limitations. As a consequence,

iterative graph processing systems started to emerge in 2010 with Google’s Pregel

[148], a graph processing framework that uses Valiant’s Bulk Synchronous Parallel

(BSP) processing model [231] for its computation. Pregel was the first system that

promoted a “Think Like A Vertex” notion for processing large graphs, similar to

MapReduce that operates on <key,value> pairs to process large data volumes. These

and other contemporary graph processing systems are discussed further in this survey.

2.2.1 Overall Scheme of Graph Processing

In general, a typical graph processing systems execute a graph algorithm over a graph

dataset across different logical phases, as shown in Figure 2.1.

Figure 2-1: Graph processing phases.

 (1) Read/Write input/output datasets: The first step is reading the graph data from a

source dataset which can be either on disk or in memory. In the last phase, the

Reading

Data

Error Handling

Writing

Data
Partitioning ComputationPre-Processing

20

processed data should be written back again, either to disk or memory. Graph

processing systems typically do not have a custom persistence layer optimized for

reading and writing graph datasets, and tend to use the standard file system such as

HDFS. Hence, they can present a bottleneck when reading and writing large graph

datasets. Many studies even ignore read/write time when they measure the execution

time for evaluation. Instead, they try to improve other aspects of the systems like

efficient in-memory data structures for computation.

(2) Pre-processing: In some approaches, the graph data will be partitioned before being

passed to the graph processing system to decrease the overall burden and runtime of

the system. The main advantage of this approach is that the programmer does not need

to worry about the complexity of the partitioning and it is a one-time cost that is paid

up-front. Also, partitioning mechanism and computation mechanism can be two

different modules which work independently and thus can be designed and

implemented separately. The main drawback for this approach is that it works well

only for static partitioning strategies, not dynamic partitioning or repartitioning.

(3) Partitioning: In this phase, partitioning will be done dynamically within the graph

processing system and not as a separate module. Both partitioning and computation

phases can collaborate to choose the best partitioning method at each step, so, dynamic

partitioning and repartitioning can be implemented in the processing system.

Although programming such a system is more complicated than implementing two

independent modules, it provides more runtime flexibility and can be well suited to

support diverse graph algorithms.

(4) Computation: Different graph processing systems have different computation

approaches. This programming model and runtime is at the heart of the whole

framework and there have been many proposals for efficient computation methods to

decrease the graph application’s runtime. More details about this phase, with a

taxonomy on various computational models, is presented in Section 2.3.4.

(5) Error Handling: This fault-tolerant and failure recovery phase will be applied to the

system either during the computation phase or after the computation phase is

completed. There are various techniques that can be used here, such as check-pointing

or restarting applications. Typically, the time taken for error handling is not considered

21

in experimental results due to the overheads it causes and some frameworks even

avoid considering this capability. However, given the use of large commodity clusters

that are prone to failures and long running big data applications, fault tolerance is

essential for graph processing frameworks used in an operational setting.

2.2.2 Large Graph-Oriented Applications

As noted in Table 2.1, there are many fields and applications that generate and provide

big data in the form of graphs. With improvements in computer hardware and

processing models such as cloud computing and emerging concepts like IoT, an even

greater growth in datasets is expected. Here, we present some typical applications and

environments where large graph data are generated and used.

(1) Social Networks: Social Networks and applications have grown exceedingly

popular during the past decade and are constantly adding features to make effective

use of the data they collect and to grow their customer network. Social networks are an

important source of big graph data, and even big data in general, with large amounts

of data created every day [52]. People are sharing their personal activities with their

friends and the whole world, talking about their beliefs, sharing photos and videos,

and posting their interests and health information [38] [213]. In the year 2014, in each

minute, 2,460,000 content posts are shared on Facebook, 3,472 photos are pinned on

Pinterest, 72 hours of new videos are uploaded to YouTube, 278,000 tweets are shared

on Twitter, 20 million photos are viewed on Flicker. These rates continue to grow, and

form just a part of the whole big data social network landscape [87].

Social networks are native generators and consumers of graph datasets, with an

additional temporal dimension added to them. “Users” form the vertices of a huge

social graph while “friendship” connections between them form the edges of the

graph. Connections can be probabilistic and node’s states change over time. Each node

or edge can contain different values and information about a member’s personal

details, his/her interests, friends, groups and people, his/her followers, the pages that

are visited, locations, business information and so on with many other meta-data about

22

his/her history of activities. All these form a digital trail for every user that needs to be

processed and analyzed by social network providers.

From the users point of view, the network provider needs to suggest relevant pages

or communities for them to follow based on their interests and offer meaningful service

offerings [3] [21]. The providers themselves benefit from leading users through

targeted advertising to paid services. Although popular, social network sites are still in

their infancy as they figure out how to monetize this massive dataset they have access

to and make their business model sustainable. New methods and mechanisms are

emerging in the area of analyzing social network data on distributed systems, clusters

and clouds [133].

(2) Computer Networks and the Internet: Every machine in a computer network,

including clients, servers, routers and switches, is a node of a network graph and

physical or network connections between these machines form the edges of the

network graph. When various networks from all over the world are connected together

to provide different services, it forms the “Internet” which is an extremely large graph

[43]. Computer networks need to be analyzed to discover whether there might be

intruders, resource wasters, low efficiency, dead paths, and also to gain statistical

reports about the states of the network [7]. This is particularly the case as a bulk of the

network traffic moves toward rich content such as streaming video and multi-player

gaming. These types of graphs should be processed in real-time as their state changes,

and need a fast response, say to configure switches to allocate bandwidth to traffic, or

detect malware and denial of service attacks. Network delays lead to customer

dissatisfaction or worse, outages can cripple the functioning of modern society.

(3) Smart Utilities: Many large graph datasets are owned by public utility and service

providers such as city and rail roads, and power and water grids. Take city road

datasets as an example. Logistics companies need to find the shortest path between

cities and streets to decrease their fuel consumption and ensure timely delivery of their

goods, Governments need to plan maintenance and provision emergency services in

case of power disruptions or natural disasters, and people need to find the most

convenient means for travel between different locations [138].

23

Further, with a wider deployment of IoT and city services getting smarter [176], the

ability to monitor and collect real-time information about these physical infrastructure

networks will grow, and graph analytics will be essential for ensuring the smartness of

these utilities. In fact, IoT will be a natural extension and an exponential expansion of

the Internet. Graph applications can be used to drive real-time management of power

grid operations with back-to-grid intermittent renewables like solar and wind,

pumping operations for water networks, signaling of traffic lights based on current

flow patterns, and even scheduling of public transit on-demand.

There are many other examples such as telecommunication [151], web search

engines [173], environmental analysis [55], astronomy [219], mobile computing [224],

machine learning [256] and so on where large graph data is required to be processed

and, as we mentioned before, traditional approaches are not suitable.

2.2.3 Algorithms in Graph Processing Studies and Experiments

Table 2-2 Graph algorithms categorization

Traversal Breadth first search (BFS)
Single source shortest path (SSSP)

Graph Analysis Diameter
Density
Degree distribution

Components Connected Components
Bridges
Triangle Counting

Communities Max-flow min-cut
K-means, Semi Clustering

Centrality
Measures

 PageRank
Degree centrality
Betweenness centrality

Pattern Matching Path/subgraph matching

Graph
Anonymization

 K-degree anonym.
K-neighborhood anonym.

Other Operations Structural equivalence, Similarity, ranking, etc.

We discuss algorithms that are commonly used in most large graph processing studies

and experiments. These algorithms are not essentially graph-designed algorithms in

terms of the level of parallelism but they have been used for experiments in papers. So,

the categorization presented in the table below provides a hint for researchers.

24

However, several works have been done on designing parallel versions of these

algorithms to fit them into the graph processing domain [134] [147]. Table 2.2 shows

the taxonomy of algorithms according to [61], which are used in a number of works.

(1) Graph Traversal Algorithms: These algorithms travel through all the vertices in a

graph according to a specific procedure to check or update the vertices’ values [199].

Amongst the most common algorithms in this type are Breadth-First-Search (BFS) and

Depth-First-Search (DFS) [123]. Both of these algorithms traverse the graph tree to find

a particular node, or visit every node in a specific order. Single Source Shortest Path

(SSSP) is used to find the shortest path between a particular node and any arbitrary

node of the graph that might be based on the minimum cost or weight [190]. Dijkstra’s

algorithm and Bellman-Ford algorithm are popular algorithms in this category [22].

(2) Graph Analysis Algorithms: These algorithms peruse the topology of the graph

to specify graph objects and analyze its complexity. These graph statistics and

topological measures are extensively used in protein interplay analysis and social

network analysis [31] [128].

(3) Components: Connected components algorithms find subgraphs in which a path

exists between any two nodes in the subgraph and none are connected to nodes in

other subgraphs [96]. So, each vertex only belongs to one connected component of the

graph. Weakly connected components work on undirected graphs, while strongly

connected components are relevant to directed graphs. Another component

identification problem is counting triangles.

(4) Communities: A community is a set of vertices in which each vertex in the

community is closer to other vertices of the same community than any other vertices of

the graph. Various topological and attribute measures can be used to define the

closeness and quality of communities, and K-Means clustering and semi-clustering are

popular algorithms in this category [106] [30].

(5) Centrality Measures: The aim of these algorithms is to give an approximate

indication of the importance of a vertex in its community according to how well it is

connected to the network. The most used algorithm of this type is PageRank [173], an

algorithm that is used by Google search engine to rank websites. Betweenness

centrality is another common metric [146].

25

(6) Pattern Matching: These algorithms are used to recognize the presence of input

patterns in the graph, which can be an exact or approximate recognition [216].

(7) Graph Anonymization: These algorithms are used to create a new graph based on

an original graph where the latter emulates specific topological or attribute properties

of the original one. This prevents any possible intruders to re-identify the network

[239].

(8) Other Operations: There are also other algorithms such as random walk

algorithms where we choose a vertex randomly from neighbors of a vertex to start or

continue process from there and try to converge in a probabilistic point [72].

In another categorization used by [91] and [112], algorithms have been categorized

based on the types of graph queries which result in two classes of algorithms (other

types of query classification can be found in [197] [108]):

(1) Global Queries: These queries need to traverse the whole graph. So, algorithms

such as diameter estimation, PageRank, connected components, random walk with

restart (RWR), degree distribution, etc. are in this group.

(2) Targeted Queries: These queries only need to access part of the graph, not all the

graph. [112] has formulated seven types of queries including neighborhood (1-step and

n-step), induced subgraph, egonet (1-step and n-step), k-core and cross-edges.

Although there are many algorithms that can be implemented on a graph

processing system, there are some challenges that these algorithms faced. First,

according to [144], many graph systems have limited memory that can be exclusively

allocated to the processing algorithm, in addition to other processes and threads that

simultaneously use and access the memory. Graph algorithms, in particular those that

operate in a shared-memory system, can exceed available physical memory for large

graphs processed on single machines [159]. Recent graph processing systems address

this by using a distributed computing paradigm. In addition, utilizing external

memory algorithms is another approach to reach out of memory (core) in order to have

access to more space. Second, the level of granularity in an algorithm can influence the

level of parallelism it can exploit, especially those with linear runtime. So, a more fine-

grained level of parallelism results in better scaling of such algorithms [94]. Third,

algorithms should deal with diverse workloads and need to reassign tasks to

26

processors when the visited nodes in a graph algorithm have spatial locality in the

global memory. Finally, graph processing systems and algorithms should deal with the

additional degree of parallelism exposed by submitting multiple concurrent queries

when working on a large graph, or algorithms that operate over dynamic graphs.

However, most of the systems that we review operate one graph algorithm or query

over a single (large) graph.

2.3 Graph Programming Model

We present different dimensions of graph programming and computation models, and

classify and analyze prominent literature on graph frameworks based on these

categories. A comprehensive list of graph processing systems based on this taxonomy

is tabulated in Table 2.3.

2.3.1 Graph Processing System Architectures

Graph processing systems can be categorized into three types of architecture models as

depicted in Figure 2.2.

Figure 2-2 Graph processing architectures.

Figure 2-3 Master-workers

architecture.
2.3.1.1. Distributed Architecture

A distributed system includes several processing units (host) and each host has access

to only its own private memory. Each partition of the graph is typically assigned to one

host to be processed while the hosts interact with each other by explicit or implicit

message passing [214]. Such systems are meant to weakly scale by supporting larger

graphs as more hosts are added to the system. From a cloud computing point of view,

these map to an infrastructure as a service (IaaS) [35] architecture, where the hosts are

Virtual Machines (VMs). Distributed graph processing systems utilize master-slaves

Graph Processing

Architecture

Heterogeneous

Architecture

Single-Machine

Architecture

Distributed

Architecture

27

(workers) architecture, as shown in Figure 2.3, where there is one master that is

responsible for managing the whole system, assigning partitions to workers, managing

fault-tolerance, coordinating the operations of the workers and so on; and there are

multiple workers that are responsible for performing computation on the partitions.

Although the programmer has to adapt their algorithms and applications to suit the

abstractions provided by the distributed graph processing systems, such systems ease

the scaling of the applications on distributed environments, without the challenges of

races and deadlocks that are associated with distributed computing [53]. In contrast,

shared-memory frameworks that have been developed for single machines are easier

to program but are limited by their ability to hold only parts of large graphs in

memory [204].

Google’ Pregel is a distributed vertex-centric framework that uses a master-worker

architecture on multiple hosts of a cluster. GraphLab, developed in Carnegie Mellon

University and later supported by GraphLab Inc., was developed for single machine

processing [142], but evolved into a distributed one [141]. There are other Pregel-like

systems such as GPS [195], Mizan [118] and GoFFish [208], and non-Pregel-like systems

such as Presto [233], Trinity [202], and Surfer [46], which have been developed as

distributed graph processing systems. Even frameworks such as GraphX [81] are built

on top of Spark distributed dataflow system. All of these systems use multi-node

clusters or cloud VMs for their execution environment. However, as yet none of these

exploit the elasticity property of Clouds, and rather treat captive VMs as a commodity

cluster.

Beside the aforementioned graph frameworks, there are several graph processing

libraries developed for high performance computing (HPC) clusters. Boost graph

library (BGL) [205] is a generic graph processing library that provides generic

interfaces to the graph’s structure and common operations, but hides the details of its

implementation. This allows graph algorithms using BGL to have interoperable

implementations on shared-memory and parallel computing platforms. Graph500 is a

graph processing benchmark by which various metrics of supercomputers such as

communication performance, memory size for graph storage and the performance of

random access to memory are measured. It contrasts with Top500 [226] which is

28

designed for compute-intensive applications. Although there have been many other

attempts for providing parallel graph frameworks for high performance computing

including several libraries such as MPI[68], PVM [76], BLAS [129], JUNG [109] and

LEAD [156], none of them provide the required flexibility for a general-purpose graph

processing platform [221].

2.3.1.2. Shared-memory Architecture

Prior to the recent growth in distributed graph processing systems, there have been

several works on processing large scale graphs on a single machine. A single machine

consists of one processing unit (host) which can have one or more CPU cores, and

physical memory that ranges from a few to hundreds of gigabytes that is shared across

all the cores.

In 2012, Microsoft researchers conducted a study [189] on whether using Hadoop on

a cluster for analyzing big data is the right approach for data analytics. They concluded

that for many data processing tasks, a single machine with large memory is more

efficient than using clusters. They also investigated the cost aspect of using a single

machine in big data processing and mentioned that “… for workers that are processing

multi gigabytes rather than terabytes+ scale, a big memory server may well provide

better performance per dollar than a cluster.” [140].

Shared memory frameworks are inherently limited in the amount of memory and

CPU cores present in that single machine [60]. The main challenge is that single hosts

often have limited physical memory whereas processing large, real-world graphs can

require a significant amount of memory to retain them fully in memory for many

graph applications, or keeping and managing a subset of the graph out-of-memory.

Novel techniques to address this limitation have been proposed.

In Strata Startup Showcase 2013, SiSense, which is a business intelligence solutions

provider company, won the audience award with a software system called “Prism”

that can exploit a terabyte of data on a single machine with only 8 GB of RAM [139]. It

relies on disk for storage, transfers data to memory when needed and benefits from

L1/L2/L3 caches of the CPU. It utilizes a column store and an interface which allows

scalability to a hundred terabytes. Among major IT companies, for instance, Twitter

29

uses Cassovary [229], an open-source graph processing system that has been

developed to handle graphs that fit in the memory of a single machine. It has been

claimed that Cassovary is a viable system for “most practical graphs” because of using

a space efficient data structure. WTF (who to follow) [89] is a recommendation

algorithm which is used by Twitter to suggest users with common interests and

connections that is implemented on Cassovary.

GraphChi [127] is a vertex-centric graph processing framework that proposes a

parallel sliding window (PSW) method for leveraging external memory (disk) and is

suited for sparse graphs. PSW needs a small number of sequential disk-block

transmissions, letting it to perform well on both SSD (solid state drive) and HDD (hard

disk drive). Besides, GraphChi can process an ongoing in-flow of graph updates while

performing advanced graph mining algorithms simultaneously, like Kineograph [44].

GraphChi uses space-efficient data structures such as a degree file that is created at the

end of processing to save in-degree or out-degree for each vertex as a flat array. It also

uses dynamic selective scheduling that lets update function and graph amendments to

enlist vertices to be updated. It was extended later as a graph management system

called GraphChi-DB [126] and tried to address some of these challenges.

Many other graph processing systems have been developed based on single

machines. Signal/Collect [215], for example, is a vertex-centric framework made to

improve the semantic web computational performance. In this model signals will be

sent along edges where they will be collected in vertices. The advantage of this model

is that it provides flexibility for synchronous, asynchronous and prioritized execution.

Other systems such as RASP [252], X-stream [192] which provides an edge-centric

framework, FlashGraph [262], Galois [165], TOTEM [77], BPP [162], etc. also make

processing graphs possible on single machines using various computational models

and processing systems.

Graph processing on a single machine would be easier to program and execute than

on distributed systems if the entire graph fits within the local resources on that

machine. This is because of efficient communication, simpler debugging and easier

execution management on a single machine. But this limits their scalability beyond a

certain graph size. New approaches for processing graphs on single machines are

30

targeting flash and SSDs [247] [122] whose speeds are matching main memory and

offer advantages for graph processing [262] [167].

2.3.1.3. Heterogeneous Architecture

In a heterogeneous environment, not every processing unit is equally powerful [88].

This may be a single machine and additional on-board accelerators and specialized

devices, or it can also consist of distributed, non-homogeneous systems. Because of

this, we considered them as a separate group in this taxonomy. For example,

processing systems such as RASP [252] and FlashGraph [262] have tried to optimize

the storage part of the system by using SSD which is much faster and more reliable

than traditional hard drives [75]. Many graph processing systems have proposed

utilizing graphic processing units (GPU) alongside CPU for computation [234]. Medusa

[263], for instance, was developed to make processing graphs using GPUs easier.

Medusa is a programming framework that enables users to write C/C++ APIs to

promote the capabilities of GPUs to execute the APIs in parallel. Its extended version

also can be run on multiple GPUs within a single machine. Gharaibeh et al [77]

developed a system called TOTEM that assigns the low-degree vertices to the GPU and

operates high-degree vertices processing on the CPU. On the other hand, systems like

CuSha [119] compute the entire graph on GPU. Another possibility is to exploit non-

uniform VM sizes on Clouds for a distributed, heterogeneous architecture, which has

been less explored.

Recently some research works have started exploring the use of field-programmable

gate arrays (FPGAs). FPGA is an integrated circuit made of matrix of configurable logic

blocks and their programmable connections that can be configured by the user after

being manufactured. GraphGen [169] is a generic vertex-centric FPGA-based graph

processing framework. It has been designed to get vertex-centric specifications and

create FPGA implementations for targeted platforms. The problem with GraphGen is

that it keeps the entire graph inside the on-board DRAM that limits the scalability of

the system remarkably. FPGP [54] is another framework that enables interval-shared

vertex-centric processing on FPGA. FPGP has also being used to analyze the

performance bottleneck of other processing frameworks on FPGA. Although it has

31

been shown that FPGP does not perform as good as CPU-based single server

frameworks, it shows the mechanism of FPGA-based generic graph processing systems

well. Overall, FPGA is still a new research area in graph processing context compared

to CPU and GPU based systems but it is getting more attention [70].

2.3.2 Graph Processing Frameworks

Figure 2-4 Taxonomy of programming models used by graph processing frameworks

Graph processing frameworks enable graphs to be processed on different

infrastructures such as clusters and clouds. Here, we restrict ourselves to distributed

memory systems that are designed for commodity, rather than High Performance

Computing or Supercomputing clusters. The programming abstraction for each

framework is designed either based on a graph topology element, such as vertices and

edges, or other alternative approaches. Figure 2.4 depicts the taxonomy of graph

processing frameworks according to main characteristics of the graph and other

alternatives. We discuss these further below.

2.3.2.1. Vertex-Centric (Edge-Cut) Frameworks

Vertex-centric programming is the most mature distributed graph processing

abstraction and several frameworks have been implemented using this concept [60]. A

vertex-centric system partitions the graph based on its vertices, and distributes the

vertices across different partitions, either by hashing them without regard to their

connectivity [148] or by trying to reduce the edge cuts across partitions [195]. Edges

Graph Processing

Frameworks

Other Frameworks
Graph Element-

based Frameworks

Path CentricData Centric
Vertex

Centric

Graph

Centric
Edge Centric

Pregel GPS Chaos
X-

Stream

Giraph

++
GoFFish Piccolo PathGraph

Block

Centric

Blogel

E
x

am
p

le
s

C
la

ss
if

ic
at

io
n

32

that connect vertices lying in two different partitions either form remote edges that are

shared by both partitions or owned by the partition with the source vertex.

In the vertex-centric programming abstraction introduced by Google’s Pregel [148],

computation centers around a single vertex – its state and its outgoing edges – and

interactions between vertices are through explicit message passing between them. This

gives a fine-grained degree of vertex-level data parallelism that can be exploited for

concurrent execution. Pregel’s execution follows a bulk synchronous parallel (BSP)

model, where vertex computation and inter-vertex messaging are interleaved, and the

application iteratively progresses along barrier-synchronized supersteps. The Pregel

API allows developers to focus on the vertex-centric graph algorithms while

abstracting away communication and coordination details to the runtime. In Pregel,

the domain of a vertex’s user-defined compute function is restricted to the vertex and

its outgoing edges, while LFGraph [98] considers incoming edges to be restricted.

Figure 2.5.b shows vertex-centric processing approach for a sample graph shown in

Figure 2.5.a.

A vertex-centric model makes programming of graph processing intuitive and easy,

similar to the advantages of Map-Reduce for tuple-centric programming.

Parallelization is done automatically, and race conditions on distributed execution are

avoided. Primitives like combiners and aggregators are available for application-level

message optimizations and global state exchange. The model also allows for graph

mutations, where the structure of the graph can be changed as part of the execution

(useful, for e.g., when iteratively coarsening the graph for partitioning, clustering or

coloring).

However, Pregel have several shortcomings: 1) While the vertex-centric model

exposes parallelism at the level of individual vertices, which can be computed in

negligible time, massive graphs can impose coordination overheads on this degree of

parallelization that may out-weigh the benefits [223], 2) The number of barrier-

synchronized supersteps taken for traversal algorithm can be proportional to the

diameter of the graph with the number of message exchanges required between

partitions also being high, proportional to the number of edges [208], 3) Mapping

shared memory graph algorithms to this model is not trivial and requires new vertex-

33

centric algorithms to be developed [208] and 4) Using a vertex-centric programming

model without regard to the graph partitioning and data layout on disk can lead to

punitive I/O initialization and runtime performance [208]. These shortcomings have

been addressed in some other vertex-centric frameworks such as GoFFish [208] and

GPS [195].

Apache Giraph [11], is a popular open-source implementation of Pregel. Giraph

uses Map-only Hadoop jobs to schedule and coordinate the vertex-centric workers and

uses Hadoop distributed file system (HDFS) for storing and accessing graph datasets.

It is developed in Java and has a large community of developers and users such as

Facebook [105] [194]. Giraph has a faster input loading time compared to Pregel

because of using byte array for graph storage. On the other hand, this method is not

efficient for graph mutations which lead to decentralized edges when removing an

edge. Giraph inherits the benefits and deficiencies of the Pregel vertex-centric

programming model. Its performance and scalability is algorithm and graph

dependent, and works very fast, for e.g., on stationary algorithms like PageRank but

not as fast on traversal algorithms like single source shortest path (SSSP) [190] and

weakly connected components (WCC) [196], particularly for graphs with a large

diameter. However, the ease of use of this framework and the community support has

made it a popular platform over which to develop other Pregel-like systems with

feature enhancements to the vertex-centric concept.

Other distributed platforms like Apache Hama [13] and GraphX also offer a vertex-

centric programming model, with features comparable to Giraph. GraphX, developed

on top of Apache Spark, determines transformation on graphs where every operating

action produces a new graph. This framework uses a programming abstraction called

Resilient Distributed Graph (RDG) interface, which builds upon Spark’s in-memory

storage abstraction – Resilient Distributed Datasets (RDD). The graph in GraphX

includes the directed adjacency structure along with user defined attributes connected

to each node and edge, and both are encoded as RDGs. Using RDG, the

implementation of frameworks such as Pregel and PowerGraph on Spark needs less

efforts.

34

Pregelix [32] is a vertex-centric framework that tries to model Pregel as an iterative

dataflow on top of the Hyracks [28] parallel dataflow engine. Pregelix has been

developed to address three main challenges in distributed Pregel-like systems: 1) Many

Pregel-like systems have limitations to support out-of-core vertex-storage, 2) Existing

Pregel-like systems have specific strategies and implementations for communication,

node storage, message delivery, and so on. Therefore, a user cannot choose between

different implementation strategies based on what is better for a particular algorithm,

dataset or cluster. Pregelix improves physical flexibility and scalability of the

processing system to address this challenge, and finally, 3) Pregelix tries to leverage

current data-parallel platforms to streamline the implementation of Pregel-like

systems.

(a) A sample graph (b) Vertex-centric
(edge-cut) approach

(c) Edge-centric (vertex-
cut) approach

(d) Component-
centric approach

Figure 2-5 Graph element-based approaches for graph processing frameworks

2.3.2.2. Edge-Centric (Vertex-Cut) Frameworks

In edge-centric frameworks, edges are the primary unit of computation and

partitioning, and vertices that are attached to edges lying in different partitions are

replicated and shared between those partitions. It means that each edge of the graph

will be assigned to one partition, but each vertex might exist in more than one

partition. Figure 2.5.c depicts this approach. While edge-based partitioning is more

costly, this model shows better graph processing performance compared to vertex

centric approaches [186]. However, programming an edge-centric system is more

difficult than vertex-centric systems [253]. It is also important to create edge-balanced

partitions in this method to load balance the computation across workers, just as vertex

balancing is important for vertex-centric frameworks. Decreasing the vertex cuts has

been investigated in some research [71] [26] [137].

[37] and [57] have suggested a vertex-cut method for distributed graph placement in

hyper graph partitioning, where the edge-centric problem can be solved by converting

35

each edge into a vertex and vice versa. The motivation for developing vertex-cut

frameworks is that systems such as Pregel and GraphLab [142] are effective for flat

graphs but have shortcomings with graphs that follow a power law edge degree

distribution due to low quality partitioning and vertices with high edge degrees. Real-

world graphs such as social networks are such power-law graphs where a small set of

vertices have high edge degrees that connect to a large part of the graph, e.g. celebrities

in social networks. Partitioning and representing power-law graphs in a distributed

environment is also difficult [135] [1].

X-Stream [192] is a well-known edge-centric system that processes out-of-core and

in-memory graphs using a gather-scatter approach (Section 2.3.4). It bases this

approach on the intuition that storage media such as solid state drives (SSD), main

memory and magnetic disk perform significantly better with a sequential access to data

than random access. The authors have implemented different algorithms on their

system and observe that many of them can work on edge-centric mode. It can even

return results from unsorted edge lists. However, it causes overheads when new edges

are added to the graph. X-Stream is not suitable for very large graphs that do not fit

onto the SSD, it wastes remarkable amount of bandwidth for certain algorithms and

finally, X-Stream is not suitable for graphs and algorithms that require many iterations

[253].

Chaos [191] is another edge-centric framework that is created based on X-Stream’s

streaming model. It introduces a scalable distributed framework that can be scaled

from secondary storage to several hosts on a cluster. Unlike some other graph

processing systems, Chaos does not strive to attain locality and load balance and

claims that network bandwidth in a small cluster surpasses storage bandwidth.

Instead, it is designed to partition the graph for sequential access on storage. So, it

spreads data uniformly at random on the cluster’s machines which are not necessarily

sorted edge-lists. Chaos also utilizes GAS (Gather-Apply-Scatter) computation model

(subsection 2.3.4) by which the edge-centric characteristic of its model is proven by

iterating over edges and getting updated in the gather and scatter stages.

36

2.3.2.3. Component-Centric Frameworks

Component-centric approaches have been recently introduced, where components are

collections of vertices and or edges that are coarser than a single vertex or edge. Tian et

al. from IBM introduced a “Think Like A Graph” instead of “Think Like A Vertex”

[223] abstraction after observing shortcomings in vertex-centric and edge-centric

methods of graph processing. In their partition-centric view, they divide the whole

graph into partitions and assign those partitions to machines for being processed. A

partition, which is a collection of vertices and edges in the graph, forms the unit of

computing. Figure 2.5.d shows this approach. Giraph++, based on Apache Giraph [11],

implements this model and uses this coarse-grained parallelism. In contrast to vertex-

centric model that hides partitioning and component connectivity details from users,

Giraph++ exposes the partition’s structure to the users to allow optimizations. So, the

performance of the system depends on the partitioning strategy that is used and how

effectively users exploit the access to the coarse components in their execution. On the

other hand, communication within a partition is by direct memory access, which is

faster than passing messages between each single vertex in vertex-centric model. This

results in fewer network message passing and lower time of execution per iteration

(superstep), with a reduction in the number of iterations needed for convergence. It

also benefits from local asynchrony in the computation which means that vertices in

the same partition can exchange their state and perform consequent computations to

the extent possible in the same iteration.

Simmhan et al developed GoFFish [208] which has a subgraph-centric computation

model to merge both the scalability and flexibility of vertex-centric programming

approach with the extensibility of shared-memory subgraph computation. A subgraph

(weakly connected component) is the unit of computation. A partition may contain one

or more subgraphs, whereas each subgraph only belongs to one partition of the graph.

Vertices in the same subgraph have a local path between each other, so existent shared

memory graph algorithms can directly be exerted to each subgraph. This gives a

programming and algorithm design advantage over partition-centric frameworks like

Giraph++ that offer no guarantee on connectivity between vertices in a partition, while

retaining the advantages of fewer iterations and shared-memory access of those

37

frameworks. Subgraphs, or vertices that span subgraphs, communicate by passing

messages, similar to a vertex-centric model.

GoFFish consists of two major components: 1) A distributed graph oriented file

system, GoFS, which partitions, stores and provides access to graph datasets in a

cluster across hosts, and 2) A subgraph-centric programming framework, Gopher,

which executes applications designed using the subgraph-centric abstraction using the

Floe [206] dataflow engine on top of GoFS. However, subgraph-centric programming

algorithms are vulnerable to imbalances in the number of subgraphs per iteration as

well as non-uniformity in their sizes. The time complexity per iteration also can be

larger since it often runs the single machine graph algorithm on each subgraph, even as

it often takes much fewer iterations. The benefits are also more pronounced for graphs

with large diameter, where algorithms tend to be several times faster than a vertex-

centric equivalent, rather than small-diameter power-law graphs. GoFFish supports

applications that operate on single property-graphs as well as on time-series graphs

[209].

2.3.2.4. Other Graph Frameworks

In addition to the aforementioned programming abstractions, other alternatives have

been developed as well. Several data-centric models offer a declarative dataflow

interface to users to access and process data without needing to explicitly define

communication mechanisms. For example, MapReduce provides a dataflow

programming model that is popular for processing bulk on-disk data, but not for in-

memory computations across multiple iterations, and applications do not have online

access to the intermediate states. Piccolo [182], was developed in New York University

as a data-centric programming method for writing parallel in-memory applications in

several machines. It uses a key-value interface with a user-defined accumulator

function that automatically combines concurrent updates on the same key. Like many

other data-flow models such as Pig, Hive, Dryad [104] [254], Flume Java [39] and

Swazal, developers in Piccolo operate at a higher level of dataflow programming

abstraction but need to know the framework and system behavior well to leverage its

scalability for different applications. For example, the programmer has to a priori

38

specify the number of partitions while creating a table. Further, these are tuple-

oriented data flow models rather than graph specific ones.

Yuan et al [253] introduces PathGraph which aims to leverage memory and disk

locality on both out-of-core and in-memory graphs using a path-centric approach.

Their path-centric abstraction utilizes a set of tree-based partitions to model the graph

and benefits from a path-centric computation instead of a vertex or edge centric

computation. It means that the graph will be partitioned into paths including two

forward and reverse edge traversal trees for each partition. It applies iterative

computation per traversal tree partition in parallel, and then merges partitions by

examining border vertices. Two functions, gather and scatter (Section 2.3.4), are used to

traverse each tree by a user-defined algorithm. In addition to the computation tier,

PathGraph has a path-centric storage tier to better the local accessibility for the

computation. The storage structure is based on a tree partition and uses vertex-based

indexing for tree-based edge chunks. The system outperforms the vertex-centric

GraphChi [127] and edge-centric X-Stream frameworks.

Frameworks such as Blogel [248] adopt blocks as units of computation. Blogel

introduces the concept of “think like a block” rather than “think like a vertex” and

argues that existing systems do not address three main characteristics of real-world

graph including 1) skewed degree distribution, 2) large diameter, and 3) high density.

Considering these characteristics, the basic idea in Blogel is to put a high degree vertex

with all its neighbors in one block and assign the whole block to one host. It also uses

three computing mode (B, V, VB-mode) depending on the algorithm along with two

different partitioners (graph Voronoi diagram partitioner and 2D partitioner).

2.3.3 Distributed Coordination

Figure 2-6 Distributed coordination

Distributed

Coordination

HybridAsynchronousSynchronous

39

2.3.3.1. Synchronous

When a graph algorithm executes synchronously, it means that concurrent workers

process their share of the work iteratively, over a sequence of globally coordinated and

well-defined iterations. Synchronization may be applied to vertex-centric, edge-centric

and component-centric models, and both on distributed and single machine systems.

For example, Pregel-like systems call their barrier synchronized iterations as superstep,

and workers coordinate their computation and communication phases in each

superstep – everyone completes a superstep before starting the next. Initially, the

master assigns partitions to the workers in the first iteration; the workers update their

set of vertices based on the assigned partitions and wait for a global barrier, which tells

them all workers are ready with their partition [148]. Subsequent supersteps indicate

actual computation based on the application logic. Updated vertices in each partition

send messages to (typically) vertices in neighboring partitions between iterations.

Within an iteration, vertices can only access information about their local vertex’s state

and messages received from the previous iteration. Such a synchronized execution is

possible even in a shared-memory system, across workers (threads, processes) on a

single server.

These regular intervening periods make the system appropriate for algorithms

where sizeable computation and communication can take place within each iteration

since there is an overhead associated with the coordination. The bulk messaging at

iteration boundaries can utilize the bandwidth efficiently if there is heavy

communication between partitions [62] [240]. It is easy to program, debug and deploy

such systems, without concerns of distributed race conditions and deadlocks. Another

advantage of synchronous processing is that the outcome of each superstep is known

immediately and provides real-time response of incremental application progress and

easier error recovery in case at superstep boundaries. Synchronous execution is also

suitable for balanced workloads that are computed symmetrically, with all workers

having adequate work, so that the overhead of the global barrier and idle time for

faster workers waiting for slower workers to synchronize is reduced [240]. These

advantages make synchronous execution very popular such that several graph

processing systems like Pregel, GPS, Kineograph, Mizan, GasCL [41] and Medusa [263]

40

use this model. Some like GoFFish [208] have two levels of such synchronized

supersteps, an outer loop over different graphs in the context of time-series graphs,

and an inner loop as supersteps over a single graph from the outer loop.

Synchronous execution model has some disadvantages as well that should be

considered while designing or choosing a processing system for graphs. First, this

model is not suitable for unbalanced workloads in which computation converges

asymmetrically [218]. Likewise, if the distributed machines are not homogenous, the

performance of the hardware may also cause some partitions to operate slowly. In such

cases, it is possible to have stragglers when all partitions have been computed on

workers except one slower worker which has not finished and hence delays all workers

in the superstep. So, the runtime in this model is completely dependent on the slowest

machine in each iteration [195]. Some of these shortcomings have been identified and

addressed through elastic load balancing of partitions across workers [59]. Another

drawback is that the intermediate processing updates between supersteps, in the form

of messages or state, has to be retained in memory and this causes additional memory

pressure [187]. A third disadvantage is that a synchronous execution model is ill-suited

for applications and algorithms that need coordination between adjacent vertices [60].

For example, in a graph coloring algorithm in which vertices try to choose a different

color from their neighbors, two adjacent vertices might pick conflicting colors

frequently [80] [220] and the algorithm will converge slowly. Lastly, based on the

drawbacks mentioned above, the cost for the systems that use synchronous model of

execution is higher because the throughput must always remain high and running time

would be longer [258].

2.3.3.2. Asynchronous

An asynchronous execution model does not have any global barrier and a subsequent

phase of execution will be started on a worker immediately after its current iteration

finishes its computation [240]. Hence, some of the challenges of load balancing and

long tail computation in the synchronous model are addressed by asynchronous

computation, where workers do not have to wait for the slowest worker to start their

subsequent iteration. This approach is useful when the workload is imbalanced and

41

convergence can occur faster than synchronous approach. Therefore, we can say that

asynchronous model is the preferred model when computation across workers is

heavily skewed and there is little communication that can benefit from bulk operations

[240]. In other words, this model is preferable for CPU-based algorithms while

synchronous model would perform much better on I/O-bound algorithms. Another

advantage for this model is that it can use dynamic scheduling to implement

prioritized computation to execute more units of computation before others, to obtain

better performance [259]. Normally, asynchronous execution provides more flexibility

than synchronous execution by utilizing dynamic workloads which makes it

outperform synchronous methods in many cases; however, the exact comparison

between these two models depends on various properties of the input graph, platforms

that the system has been deployed on, execution stages and applications [240]. Finally,

using asynchronous approach provides a non-blocking process because resources

could be free and become available for the next iteration, whereas in a synchronous

approach, they are blocked until the global barrier declares the end of superstep which

leads to a competition for resources at the beginning of next superstep.

As before, there are disadvantages to this model as well. The key disadvantage is

that programming asynchronous processing systems is more difficult than

synchronous systems. The programmer should deal with irregular communication

intervals, unpredictable response time, complex error handling and more complicated

scheduling issues. For example, for error recovery in such a system, many factors have

to be considered: which machine has faced a fault, in which iteration of a particular

worker the error happened, which resources caused the errors, should new resources

be allocated to the computation or it should only be rearranged, and so on. This also

results in more complex debugging and deployment, and careful programming to

avoid deadlocks. In case of pull-based communication model (Section 2.4.2), which is

usually implemented in an asynchronous manner, many redundant communication

may happen because there are several intertwined reads and writes while adjacent

vertices values do not change [92] [257]. On the other hand, regardless of these

drawbacks, many single machine systems have preferred an asynchronous execution

42

approach since the shared memory makes it easier to asynchronously use the latest

data without waiting for a barrier.

2.3.3.3. Hybrid

There are many systems that use only synchronous execution mode; for example

Pregel, GoldenOrb [36], GBASE [112], Chronos [92] and GraphX [81], while many other

systems utilize asynchronous mode like GiraphX [220], GraphHP [42], Ligra [204],

RASP [252] and GraphChi. But recently a new approach called hybrid execution model

has been implemented in a few systems that tries to take advantages of both

asynchronous and synchronous approaches or incorporate them with new additional

solutions. Such graph processing systems have been developed to improve system

performance by overcoming the shortcomings of existing methods, and use both

synchronous and asynchronous models of coordination to benefit from their relative

strengths.

GRACE [236], for instance, is a single machine framework that combines

synchronous programming with asynchronous execution features. It actually separates

execution policies from application logic. In an asynchronous execution, a processing

sequence of vertices can be intelligently ordered by dynamic scheduling to remarkably

speed up the convergence of computation. GRACE uses the BSP computational model

and message passing communication model as two primary paradigms of synchronous

model. It helps GRACE to improve its automatic scalability by applying prioritized

execution of vertices and receiving messages selectively outside of the last iteration.

Various workloads like topic-sensitive PageRank, social community detection and

image restoration have been used in GRACE and it shows comparable running time to

other asynchronous systems such as GraphLab with even better scalability.

Another hybrid approach distinguishes between local vertices that are within a

partition and remote vertices connecting across partitions. These types of systems

exploit both local asynchronous computation when they still need global barrier for

synchronization of remote vertices values [42]. In the local computation phase,

messages will be passed very fast across local vertices using shared memory. In the

next phase (synchronous phase), remote nodes (boundary nodes) that are connected by

43

edges across the partitions, will be updated by exchanging messages. In fact,

component-centric frameworks such as Giraph++ and GoFFish allow users to exploit

this. Others like Giraph Unchained [90] also allow incremental forward progress

within a future superstep based on partial messages that are received, even before the

previous superstep completes. These straddle synchronous and asynchronous models.

Apart from these methods, a novel approach has been introduced by Xie et al. [240]

in the PowerSwitch system, which sequentially switches between synchronous and

asynchronous execution mode according to a heuristic prediction. This is because some

properties of the processing might change as it progresses. For example, processing

single source shortest path (SSSP) algorithm begins with just a few vertices active,

which means that few messages are passed; this is suitable for an asynchronous model.

But as the process goes further, the number of vertices involved in the computation

will increase which means that the number of messages passing among them increase

as well, and this is suitable for synchronous execution model. PowerSwitch can

effectively predict the proper heuristic for each step and it can switches between the

two modes if required.

2.3.4 Computational Models

Performing computation is at the heart of a graph processing system where data

(vertex or edge) will be processed and updated. Computational models that are used in

existing graph processing systems can be divided into two major groups: 1) two-phase

models, and 2) three-phase models. Figure 2.7 shows the classification of these two

models with examples from each group. Computational model of some systems is a

combination of these methods with other approaches.

Figure 2-7 Classification of computational models in graph processing systems

Computational Models

Two-Phases

Models

Three-Phases

Models

Signal/

Collect

Pin/

Slide

Push/

Pull BSP GAS PSW

44

2.3.4.1. Two-Phase Computational Models

There are usually two functions that are applied on data (vertices or edges) in a two-

phase computation model. Signal-collect approach is the first two-phase programming

model for large scale graph processing on the semantic web within a system with the

same name (signal/collect) [215]. Computation in the vertices are completed by

collecting the signals that are coming from edges and performing some processing on

them using the vertex’s state and then sending (signaling) their adjacent vertices in the

compute graph. Signal/collect has been implemented for working with both

synchronous and asynchronous execution models. In both models, some parameters

should be set to determine when the computation should be stopped: signal_threshold

and collect_threshold parameters in which a minimum level of “importance” will be

set for the execution, and a num_iterations parameter which is the number of iterations

in synchronous mode, and num_ops that is the number of executed operations in

asynchronous mode. All these parameters should be set by the user.

Pin-and-slide was first introduced by TurboGraph [91] for parallel execution of

large datasets on a single machine. A pin-and-slide mechanism consists of a graph

dataset, a buffer pool and two different threads, as explained in Section 2.3.1, callback

threads and execution threads. When the buffer manager is being sent an

asynchronous input/output by a callback thread, it sends the demand to the FlashSSD

via the operating system after when the control of execution goes back to the calling

thread immediately. The main goal in this system is to reach all related adjacency lists

efficiently. To achieve this goal, first, the pages that contain these adjacency lists should

be identified. The most important challenge here is pinning large adjacency pages (LA

pages) which means that a number of smaller adjacency pages must be unpinned first,

then the LA page can be pinned. To overcome this challenge, LA pages will be pinned

when all of related LA pages for a big vicinity list are completely loaded to maximize

the buffer exploiting. When execution threads or callback threads terminated the

processing of a page, this page will be unpinned and an asynchronous input/output

demand will be sent to the FlashSSD by the execution thread. As soon as the

45

processing has been completed, the execution window can be slid by the size of the

pinned pages in the buffer [91].

Nguyen et al [165] have used another two-phase approach called push/pull styles.

The value of an active vertex will be pushed (flowed) from that vertex to its neighbors,

which is more like scatter phase. The pull style occurs when the data from an active

vertex’s neighbors flow into that vertex which is more like a gather phase. In an

algorithm like SSSP, the push-style is applied to the active vertex neighbors by

updating the destination label of the siding nodes of the active vertex by doing a

relaxation with them; and the pull-style function updates the destination label of the

active vertex by doing relaxation with all neighbors of that node. The pull mode also

needs less synchronization because there is just one writer for each active vertex.

KineoGraph [44] is another system that uses this model for computation.

2.3.4.2. Three-Phase Computational Models

Bulk synchronous parallel (BSP) is a parallel programming and also the most

representative model in this category that has been used in several graph processing

systems [148] [195] [232] [118]. To deal with the scalability challenges of parallelizing

tasks across a number of workers, BSP, which utilizes a message passing interface, was

developed. In BSP, as a vertex-centric computational model, each node is able to have

two modes of “active” or “inactive”. The computation comprises a series of supersteps

that come with synchronization hurdle between them. So, in each superstep: 1) The

node that is involving in computation obtains its adjacent nodes updated values from

the last superstep (except the first superstep), 2) Then, the node will be updated based

on the obtained values, and 3) The node forwards its updated value to its neighbors

that will be available for them in the next iteration. In each iteration, a vertex may

choose to vote to halt, in case it does not receive any messages from its neighbors or it

has reached a locally stable state. That means it will not participate in the processing

anymore until it receives new messages that convert its state from inactive to active. So,

in each iteration only active vertices will be computed. If there is no active vertex in the

graph, then the computation is finished.

46

Some research have modified the BSP model and introduced new models. For

example, temporally iterative BSP (TI-BSP) [207] is a computational model for time-

series graphs on a subgraph centric model such as GoFFish. It has used BSP as a

building block to support the design pattern. TI-BSP is a series of BSP loops (nested

supersteps) in which each outer loop, as a timestep, runs on one graph instance in time.

Supersteps using a subgraph programming model form the inner loop that operate

over a single instance. As a result, the design pattern will be decided based on the

order of timesteps execution and the messages between them.

There is another BSP model that stands for “BiShard Parallel” and has been

introduced by the single machine based system, BPP [161], to empower full CPU

parallelism for graph processing. This model has also three phases that include: 1)

Loading a sub-graph of the large graph from disk, 2) Performing compute operation on

the sub-graph and update the values of edges and vertices, and 3) Writing back the

modified values on disk. BiShard Parallel performs under an asynchronous execution

model and needs more disk space compared to one shard mechanism that was used in

GraphChi, because two copies of each edge is managed in this model.

GAS (Gather-Apply-Scatter) is another three-phase computational model that was

introduced by PowerGraph. The data about the adjacent nodes and edges is obtained

and collected using a general summation over all adjacent vertices and edges of a

vertex in the gather phase. The apply operation should be defined by user and must be

both associative and commutative, and can vary from a numeric summation to the

aggregation of data across all adjacent edges and vertices. The results from gather

phase is used to update the central vertices values in the apply phase. Finally, the

recent data of the central vertex is used to renew the values on neighboring edges in

the scatter phase. The critical challenge in this model is that graph parallel abstractions

should be able to perform computations with high fan-in and high fan-out where both

of them are specified by gather/scatter phases. GAS model is used to develop a

runtime system mapping in parallel on GPUs as a graph application called GasCL [41].

This model is like the one that have been used in systems such as Pregel and

GraphLab, but in a different way.

47

GraphChi uses a different computation model called parallel sliding window

(PSW). PSW is an asynchronous computation model that can efficiently process the

graph with changeable edge value from disk, with a few number of non-consecutive

disk access. PSW performs three phases for processing a graph as follow: it loads a

subset of the graph from disk, then, applies update operation on vertices and edges,

and eventually, the new updated values will be written on disk. The number of

“reads” from disk is exactly equal to the number of “writes” to the disk in this model.

The comparison between two-phase and three-phase models shows that two-phase

model is generally used in frameworks with single machine architectures. Since these

systems usually use asynchronous coordination, using the two-phase approach, is

more efficient as they do not need to wait for the synchronization barrier. On the other

hand, three-phase approach is mostly used by distributed frameworks because one or

two phases of the model will be affected after the global barrier. Therefore, hosts on

such distributed systems have to wait for each other. However, very few distributed

frameworks such as GraphLab [141] and Trinity [202] tried to use three-phase

computation mode while utilizing asynchronous coordination.

2.4 Runtime Aspects of Graph Frameworks

2.4.1 Partitioning

Graph partitioning is a method in which graph data is divided into smaller parts with

specific properties [34]. For example, in a k-way partitioning, the graph is partitioned

into K smaller parts of equal size while minimizing the edge cuts between partitions.

This is an NP-complete problem [8]. Graph partitioning is a fundamental research

problem and several reviews have been done on different methods and perspectives of

graph partitioning [34] [20]. In a graph processing system, partitioning is applied on

the large graph in order to assign each smaller partition to a worker to be computed.

The most important challenge in this context is “how do we partition the graph to

achieve better cuts while taking load balancing and simplicity of computation into

consideration?”.

48

Many novel heuristics have been proposed for partitioning large graphs. METIS

[116], for instance, is a popular tool that uses multi-level partitioning. It is able to

perform high quality partitioning that decreases the overall communication (edge cuts)

and reduce imbalances across partitions. However, METIS is computational costly and

high random access needs make it unsuitable for large graphs. ParMETIS is a parallel

MPI-based version of METIS that mitigates some of these performance limitations.

There are distributed partitioning algorithms, some of which have been

implemented on top of graph processing frameworks as well. Spinner [152], for

instance, runs on top of Giraph and utilizes an iterative node migration approach using

Label Propagation Algorithm (LPA) to deal with scalability and changing partitions. It

allows Spinner to scale to billion-vertex graphs by avoiding costly synchronization

among vertices. Blogel implements a Graph Voronoi Diagram (GVD) partitioner using

a vertex-centric computing method by operating as a multi-source breadth-first search

(BFS). It partitions the vertices into blocks using multi-source BFS over linear

workloads.

Some graph processing systems create additional topological constructs on top of

the partitioned graph. In GoFFish, which is a subgraph centric framework, each

partition may have more than one subgraph (weakly connected component), and these

subgraphs by definition cannot have an edge between them. So GoFFish has a post-

processing stage once the graph is partitioned, in which it identifies all subgraphs

within a partition that form the unit of processing during the programming model’s

execution.

In general, two partition creation strategies can help to improve the runtime

performance during distributed graph processing: 1) Creating more partitions than

workers and allocate more than one partition to each worker, and 2) allocating one

partition per worker, yet using multiple workers on each processing host [195]. We

next discuss alternative perspectives towards partitioning to support graph processing

systems, also shown in Figure 2.8.

49

Figure 2-8 Partitioning views in graph processing systems

2.4.1.1. Static Partitioning vs. Dynamic Partitioning

Several graph processing frameworks utilize static partitioning which means that they

consider the graph and the processing environment to stay unchanged [198]. These

systems assume that the I/O bandwidth, latency, processing units and the graph itself

are constant and predictable. So, this method of one-time a priori graph partitioning is

easy to program and load balancing can be easily achieved, if the assumptions hold

and the problem domain does not change [69].

On the other hand, dynamic repartitioning assumes that runtime behavior of an

algorithm, the processing environment and even the graph itself can be variable. They

try to repartition the current state of the graph according to the system and algorithm

behavior at a given point in time, and assign them to the available workers. This

approach has been used for graph databases and a number of graph processing

systems [195] [166]. Dynamic repartitioning can be applied in-flight when, for instance,

workers are waiting for a straggler worker to finish. In this situation, the vertices that

have been assigned to the slowest worker can be repartitioned and reassigned to other

idle workers to be computed faster and also balances the workload to reduce overall

runtime. This does need support for dynamic migration by the graph framework [195].

Another reason to use dynamic repartitioning is when the number of active vertices in

the graph change due to mutations or when the algorithm is non-stationary, causing

vertices to become inactive, and it is suitable for iterative programming models such as

Pregel [244].

According to GPS [195], three major questions should be answered in a dynamic

repartitioning process: 1) Which nodes should be reallocated?, 2) When and how to

transfer the reallocated nodes to their new workers? and 3) How to place the

reallocated nodes? These decisions can impose a heavy cost and affect the overall run-

time. Some researchers have also shown that dynamic repartitioning does not offer

Partitioning Views

Preprocessing

VS.

Streaming

Edge-cut

VS.

Vertex-cut

Static Partitioning

VS.

Dynamic Partitioning

Multi-Level Partitioning

50

significant performance improvements except under particular conditions. For

example, the vertices in a PageRank algorithm are always active which makes dynamic

repartitioning moot due to predictable and stationary load through the entire

application’s lifetime [143]. But, despite these concerns, systems such as GPS, xDGP

[232], Mizan and XPregel [222] have incorporate dynamic repartitioning and migrate

the vertices synchronously across the workers, along with their incoming messages.

2.4.1.2. Edge-cut Partitioning vs. Vertex-cut Partitioning

Vertex-centric (edge-cut) frameworks partition the graph by assigning vertices to

partitions and cutting some edges across partitions, in the process, while minimizing

the number of such crossing edges. This is a common and well-supported partitioning

approach. On the other hand, edge-centric (vertex-cut) frameworks partition the graph

by cutting vertices and assigning edges to each partition. This approach minimizes the

number of crossing vertices which is useful for many real-world graphs that have a

power-law degree distribution to balance edges across the partitions well [80] [1]. As

was shown in Figure 2.10, vertices shared by edges belonging to different partitions

would be cut and replicated across all the partition. One copy of the vertex is

considered as the master and other copies are ghosts or mirrors. When updated, each

ghost vertex sends its locally updated value to the master, and the master vertex

applies updates from all ghost vertices to itself and sends the globally updated value

back to the ghost vertices. We can see that many messages need to be passed across the

network to maintain the cut vertices up to date.

To avoid this, PowerGraph does partitioning based on high-degree vertices of the

graph and many systems have adopted such edge-centric partitioning [120] [186] [241]

[107]. There are also a number of additional optimizations that have been done [186]

[120]. Authors in [71] and [29] have investigated several edge-centric (vertex-cut)

approaches with vertex-centric (edge-cut) approaches and found that in many cases the

former outperforms the latter. The reason is that because the degree distribution is

skewed, balancing the number of vertices in each partition does not guarantee

workload balance; therefore, for natural graphs (that have power-law degree

distribution), vertex-cut partitioning approach can obtain better workload balance.

51

They also conclude that for any edge-cut, a vertex-cut can be constructed directly

which needs strictly less storage and communication.

2.4.1.3. Pre-processing vs. Streaming

As seen in Section 2.2.1, there might be a pre-processing phase before the computation

or the main processing starts. In the pre-processing approach, the large graph which is

present on disk, will be partitioned before entering the system. Single-machine

frameworks such as GraphChi [127], TurboGraph [91], BPP [162] and CuSha [119] use

this method because they do not have enough memory to keep all the processing states

in the single system. So, they partition the graph before starting the processing to help

cope with large graphs. It also limits the partitioning operation, which can be costly, to

a single time. Distributed frameworks like GoFFish do partitioning and subgraph

identification in such a pre-processing phase for the same reason.

In streaming partitioning, the graph is partitioned once or as it is loaded into the

graph processing system. The graph data enters the system sequentially, say a vertex

and its adjacency list at a time, and the vertex is mapped to a partition on the fly. In

this model, the order in which the vertices enter the system is important as each

placement depends on the previous placements [212]. Streaming can also benefit from

a pre-processing model of partitioning, where specific vertex or edge ordering has been

performed. Random partitioning, round-robin and range algorithms are the three most

common algorithms for steaming whereas linear deterministic greedy (LDG) [212] and

FENNEL [228] are two greedy heuristics that improve the performance and quality of

such online partitioning.

2.4.1.4. Multi-level Partitioning

Some graph processing frameworks have proposed multi-level approaches for

partitioning the graph. In this method, there will be more than one strategy for

partitioning that may even be applied to the graph in different times. GridGraph [268]

for example, is a single-server block-based framework that uses a two-level hierarchical

method to partition a given graph. First, it partitions the graph once at pre-processing

phase in which it divides the graph into 1D-partitioned vertex and 2D-partitioned edge

52

chunks respectively. Then at the runtime, it uses a dual sliding windows approach to

partition the graph by streaming the edges and apply updates on vertices which

guarantees the locality and improves I/O.

GraphMap [132] is a distributed framework that also uses a two-level partitioning

mechanism to improve the locality and workload balancing. In the global level,

GraphMap utilizes a hash method to partition the graph and assign the partition blocks

to the workers; and in the local level, it applies range partitioning to each block

partitions of a worker. It has also been designed to use other partitioning techniques

such as METIS and ParMETIS both on-disk and in-memory.

Using multi-level partitioning has two edges. It can worsen the performance of the

system by prolonging the execution time and unnecessary computations, or it can

improve the performance particularly when it is applied as a layered mechanism. For

example, apply one partitioning technique to the entire graph and at the same time

performing another technique on the partitions on workers which can be designed

asynchronously.

2.4.2 Communication Models

Graph processing systems use different approaches to communicate among their

vertices, edges and partitions. In this Section we discuss these methods as shown in

Figure 2.9 and enumerate the advantages and disadvantages of each method.

Figure 2-9 Communication models in graph processing systems

2.4.2.1. Message Passing

Many distributed graph programming models offer explicit or implicit communication

between their entities. In the message passing technique, communication is carried out

by sending messages explicitly from one entity to another in the graph. The entity can

be a vertex, edge or a component in a local or remote partition [148]. Message passing

is performed in many graph processing systems using communication libraries. For

Communication

Models

Push/Pull StyleShared MemoryMessage Passing

53

example, Pregel allows developers to pass messages from a vertex in the graph to

another by calling an API. As part of the BSP execution model, messages sent in one

iteration are received by the destination vertex in the subsequent iteration using bulk

messaging. The receiving vertex updates its state based on incoming messages and

sends its modified state to one or more of its neighbors by sending additional

messages. Each source vertex maintains a list of its adjacent vertex IDs or outgoing

edges IDs. Further, vertices also have queues where incoming messages from its

neighbors and outgoing messages to its neighbors are stored between superstep

boundaries.

A message passing model of communication is used by many graph processing

frameworks and architectures, including vertex-centric, edge-centric and component-

centric frameworks. Programming using synchronous message passing is also intuitive

and the complexity is limited to an API to send a message to a destination entity, which

is a familiar model for many programmers [100]. Although message passing is

common in the frameworks with synchronous model of execution, it can be used in

asynchronous execution models as well. Asynchronous message passing method is

used extensively between vertices in the same partition or subgraph where they do not

need to wait for other vertices to send their message in-bulk. Vertices and subgraphs

can communicate asynchronously while communication between partitions can be

synchronous. However, the asynchronous model of message passing brings more

complexity to the programming paradigm because it requires more resources for

storing and rebroadcasting data in a system where its components do not execute

concurrently [74]. On the other hand, buffer management is an important issue that

should be considered by message passing implementation. Issues like: How many

buffers should each worker have? What should be the size of each buffer? When

should a buffer block a sender? And what if the buffer is full but there are new

messages coming? This model also has overheads because of the number of message

replicas that exists in the network.

The Message Passing Interface (MPI) [68] is a common protocol used in graph

processing systems, and is used by systems such as Pregel, GraphLab, Piccolo and

Mizan. Portability and velocity are two significant advantages of using MPI where

54

creating overhead is its most noticeable disadvantage. Communication can be done by

passing actual messages between servers or by serialization. For Java based systems

like Giraph and Hama, protocols such as Thrift4 and ActiveMQ5 can be used for

message passing. They utilize remote procedure call (RPC) to communicate seamlessly

without the need to change the messages structures. Also protocols such as Avro 6and

Protocol Buffer 7can be used for serialization by which the data will be serialized to be

able to be sent between different platforms.

Systems also propose optimizations on top of these standard messaging libraries to

reduce the communication overhead and minimize the runtime of the algorithm by

reducing the number and size of messages that are passed. For example, GasCL has

considered two different message buffering strategies: first, messages from the same

source are stored together, second, messages for the same destination are stored

together. The second approach is more common and when a message is dispatched

from the origin, it is instantly put down to the right target node. It also uses a reverse

edge index to store the message which utilizes array offset to facilitate message

combining. Giraph++ [223] introduces two types of messages in its hybrid model.

“Internal messages” that are messages sent from a vertex within a partition to another

vertex within the same partition, and “External messages” that are messages sent from

the vertices of one partition to another partition. It provides two incoming message

buffers for each vertex inside a partition as well: inboxin for internal messages and

inboxout for external messages. In GPS [195], instead of sending multiple copies of the

same message to multiple vertices in another partition, the system only sends one

message to the remote partition and then, in the remote partition, the message will be

copied to the vertices that need to receive it. This can dramatically reduce the network

traffic.

4 https://thrift.apache.org/
5 http://activemq.apache.org/
6 https://avro.apache.org/
7 https://github.com/google/protobuf

55

2.4.2.2. Shared Memory

Using shared memory for communication is well suited for frameworks running on a

single server, but can also be used for distributed systems in place of explicit message

passing. In this model, the memory location can be simultaneously accessed by

multiple processing modules, including both read and write to that location. In

contrary to message passing, the shared memory method avoids extra memory

copying and intermediate buffering. As single machine frameworks have limited

memory and CPU resources, this shared-memory model that is often natively

supported by the operating systems is preferred [168]. Locks or semaphores are usually

used in this model to prevent race conditions because concurrent tasks can read and

write to the same memory [141] [45]. To maintain memory consistency, shared memory

machines provide mechanisms for invoking the appropriate job (sequential

consistency) or reordering a collection of jobs to be executed consecutively (relaxed

consistency).

In distributed systems, it is also possible to have a distributed shared memory,

where changes to memory locations are internally transfer using messages between

different machines. From the programmer’s points of view, they only perform memory

accesses and the development is easier as explicit messages need not be passed. The

concept of data “ownership” is lacking as well since anyone can write to that location.

On the other hand, data locality cannot be controlled easily and if many remote

workers access a particular memory location, it puts pressure on the processor and

memory holding that location and can also lead to higher bus traffic and cache misses.

Virtual shared memory can be realized by using ghost vertices or mirrors which are

the copies of distant adjacent vertices [142]. One machine keeps the main vertex and

another machines work on copies of this vertex. Main vertex and ghost copies are

shown in Figure 2.10. By keeping the mirror copies immutable during the computation

with distributed write locking or an accumulator, the consistency is maintained [141]

[182]. Both GraphLab and PowerGraph use this approach for communication. In

particular, this is suitable for edge-centric frameworks because vertices should be cut in

these frameworks and the partitioning is done based on edge-grouping. So, vertices

can be easily cut (Figure 2.10). Trinity [202] is another memory-based graph processing

56

system (Section 2.4.3) that uses ghost vertices for communication. The Trinity

specification language (TSL) maps the data storage and graph model together. The

parallel boost graph library (PBGL), is a parallel graph processing library also uses

ghost nodes but with message passing mechanism [205].

(a) Sample graph (b) Shared memory model

Figure 2-10 Shared memory model with ghost (mirror) vertices

2.4.2.3. Push/Pull Styles

Pull/Push model is used with active messages. Active messages are those that carry

both data and the operator that should be applied on them [92] [257]. This model is

utilizing by [24] direction optimization in breadth-first search (BFS). The reason behind

using this model is that the synchronization and communication in large-scale data is

very expensive due to the poor-locality and irregular patterns of communication in

graphs. To reduce the random communication and memory access on either shared-

memory or distributed implementations, Beamer incorporates the conventional top-

down BFS with a new bottom-up method. In the push style, the information flows (is

pushed) from an active vertex to its adjacent vertices and in the pull style, the

information flows (is pulled) from the neighbors of an active vertex to that active

vertex. This kind of communication is using the push/pull computation model that

was discussed in Section 2.3.4.1. In terms of consistency, the pull style is naturally

consistent because the active vertex would be updated in this phase, but the push style

needs to use locks for every neighbor’s update. Active messages are sent

asynchronously in this model and they will be executed when they are received by the

destination vertex. The sending and receiving messages are even combined in a

framework such as GRE [251] and it does not need to save intermediate states

anymore. This mechanism can help in enhancing efficiency of algorithms such as

PageRank [78]. It has been used by frameworks such as Ligra [204] and Gemini [267]

on shared memory and distributed processing, respectively. A detailed analysis of

push/pull approach has been provided in [27], investigated the impacts of both

57

push/pull mechanisms individually and also together on various graph algorithms

and programming models. They have illustrated that a push/pull (PP) dichotomy

approach can avoid extreme amount of locks in pushing and more memory access in

pulling.

2.4.3 Storage View

Figure 2-11 Storage view

Memory has become less of a problem these days as computing service providers such

as Amazon are starting to provide machines with Terabytes of memory. However, as

described in [203], social networks such as Facebook and Twitter not only have graph

of users but also graph of connections between users, their likes, their locations, their

posts and shares, photos, etc. that are heterogeneous. As a result, to store all these large

graphs and datasets, a single server cannot provide enough space. Hence, many

investigations have been done to process graphs on both single server and distributed

environments such as clouds.

2.4.3.1. Disk-based

According to a storage view of execution models, two common approaches can be

used: 1) disk-based approach, 2) memory-based approach. A disk-based execution

fetches the graph data from physical disks, not just when loading the graph initially

but also actively writes and reads parts of the graph state to/from disk during the

execution. The advantages of using a disk-based approach is that it is cheaper to add

disk capacity rather than memory, some large graphs do not fit in distributed memory

either, and one can persist the partial state of execution in the middle of the processing

to enable recovery from faults [50]. Disk management is also easy, so many graph

processing systems use this approach (Table 2.3).

Storage View

Memory-BasedDisk-Based

58

On the other hand, the computation that is performed by graph algorithms is data-

driven [144], and they need many random data accesses and hard disks are still slow

and inefficient compared to main memory. One of the challenging issues for disk-

based graph processing is how to make disk access more efficient. BPP (BiShard

Parallel Processor) [161], for example, provides a disk-based engine for processing

large graphs on a single server. A novel storage structure called BiShard (BS) has been

introduced which divides the graph into subgraphs containing equal number of edges

and stores the in-edges and out-edges independently. This technique decreases the

number of non-sequential I/O considerably and has two advantages compared to

single shard storage mechanism that is presented by GraphChi. First, by storing in-

edges and out-edges separately, access to each of them becomes independent and the

system does not need to read the whole shard for every subset of vertices. Second, each

edge has two copies in BS (one in each direction) which eliminates race condition

among vertices to access their edges. Furthermore, BPP uses a novel asynchronous

vertex-centric parallel processing model that leverages BS to provide full CPU

parallelism for graph processing.

Other frameworks such as Giraph also support out-of-core execution using disk.

When a graph is too big to fit into main memory (like small clusters) or a certain

algorithm creates very large message sets (many messages or large ones) these

frameworks can spill the excess messages or partitions to disk, later to be incrementally

loaded and computed from disk. In addition, some frameworks such as FlashGraph

[262] and PrefEdge [167] use SSD instead of HDD to make data transmission and

computation faster for out-of-core computation.

2.4.3.2. Memory-based

In the memory-based approach, the graph and its states are exclusively stored in

memory during runtime for storing and processing the big data. For example, Giraph

runs the whole computation in memory and reaches the disk for checkpointing and

I/O; and Blogel keeps all neighbors of a typical high-degree vertex in the same block to

be processed by in-memory algorithms and avoid message passing. The most

important benefit of this approach is that using RAM or cache for processing is much

59

faster than disk-based approach since the CPU can access memory much quicker than

disk [158]. However, memory is much more expensive than spinning disks and this

becomes challenging when we consider larger graphs. So, memory-based systems

must be efficient in retaining only relevant data in memory and in a compact form.

Memory-based models also have less scalability than disk-based models, especially in a

single machine system.

In GoFFish, the framework only loads a subset of properties for a given property

graph from disk into distributed memory based on those attributes that are used by the

algorithm, in addition to the complete topology of the graph that is always loaded

[108]. This limits the memory footprint of the graph application during runtime. Many

memory-based systems also use columnar representation since this offers a compact

representation of data. Zhong and He [264] have indicated that GPU acceleration

cannot reach considerable speedup if the data has to be loaded from disk because of

the I/O costs that are themselves comparable to the total query runtime.

Microsoft’s Trinity [202] is a distributed graph processing engine over a memory

cloud. It is supporting both online query processing which requires low latency

(finding a path between users in a social network), and offline query processing which

requires high throughput (PageRank). Trinity uses TSL (Trinity specification language)

for communication that supports both synchronous and asynchronous modes. It stores

objects as blobs of bytes that is economical, compact, with no serialization and

deserialization burden. As a storage infrastructure, it structures the memory of

numerous hosts to a distributed memory address space which is universally

addressable, for maintaining huge graphs. Trinity has three main components

including: 1) slave that stores graph data and computes on them, 2) client that acts as a

user interface between Trinity and the user that communicates with Trinity proxies

and slaves through the APIs provided by Trinity library, and 3) proxy that is an

optional component for handling messages as a middle tier between clients and slaves.

These components, along with other features like user-defined communication

protocol, graph schema and computation models through TSL, enable Trinity to

process the graph efficiently on memory cloud.

60

2.4.4 Fault Tolerance

Fault tolerance enables a system to continue performing properly even if some of its

components face failures [66]. Since graph processing systems are created from

distributed and commodity components, it is possible that components confront

failures which in turn will affect the execution and correctness of the applications. In

order to improve the reliability and robustness of these systems, several techniques

have been developed to support error handling and fault tolerance of the graph

framework. Figure 2.12 shows the techniques that are used in many graph processing

systems.

(a) Fault-Tolerance Mechanism (b) Fault-Tolerance Techniques

Figure 2-12 Fault-tolerance in graph processing systems

Error handling in a graph processing system, as with other systems, has two main

phases: 1) failure detection in which the system discover the error, and 2) fault

recovery in which the system tries to resolve the problem and resume the operation.

Several researches have been done on various fault-tolerance techniques on parallel

and distributed systems [117] [227] [67]. In [227] for example, two types of components

in an application, called central components and parallel components, are investigated

where both mostly use rollback and replication methods for fault recovery. On the

other hand, some graph processing systems do not support any error handling because

it increases the complexity of the system, and the overheads can strongly affect the

execution time.

Most graph processing systems use checkpointing and rollback mechanisms [64] for

failure recovery, such as Pregel and Pregel-like systems like Giraph. Pregelix [32], for

instance, checkpoints states to HDFS at any superstep boundary that is selected by the

user. The checkpointing applies to vertices and messages at the end of each superstep

and ensures that the user does not need to know anything about the failure. Whenever

a host or disk failure occurs, the unsuccessful machine will be added to a blacklist. For

Fault-Tolerance

Mechanism

PostactiveProactive

Failure RecoveryFailure DetectionFailure RecoveryFailure Detection

Fault-Tolerance

Techniques

Message Logging

(Monitoring)
Rollback MechanismCheckpointing Replication

61

recovery, Pregelix reloads the state of the latest checkpoint to a set of “failure-free”

workers that is periodically updated.

Piccolo [182] uses a global checkpoint-restore method to recover from failures by

providing synchronous and asynchronous checkpointing APIs. Synchronous

checkpoints are suitable for iterative algorithms such as PageRank where the state in

different iterations are decoupled by global barriers and it is adequate to checkpoint

the state every few iterations. But asynchronous checkpoint is used to save the state of

long running algorithms, such as distributed crawler, periodically. Piccolo also utilizes

Chandy-Lamport (CL) distributed snapshot algorithm [40] for checkpointing. Once a

failure is detected in a worker, the master will reset the status of all other machines and

recover the operation from the latest finished universal checkpoint. The interior status

of the master will not be checkpointed in Piccolo.

PowerGraph is another system that uses snapshots of the data-graph for fault-

tolerance. The synchronous engine in PowerGraph creates the snapshot at the end of

each superstep and before the start of the next superstep while the asynchronous

engine suspends the execution of the system to create the snapshot. Many of these

systems provide task rescheduling after the recovery phase. Some systems such as

Pregel, Piccolo and GraphLab benefit from rollback which allows them to continue the

computation from the point that failure happened while in a number of systems, fault

recovery is not completely provided and they need to restart the processing from

scratch [92] [124] [181]. All these mechanisms are post-active fault tolerance approaches

which means they handle the failure after it has happened.

Trinity [202] uses message logging and replication for pro-active fault-tolerance,

where the failure will be considered before scheduling and releasing a job for

execution. Trinity utilizes heartbeat messages to proactively detect failures in

machines. In addition, machines that unsuccessfully try to access the address-space in

other machines also report the inaccessible machine to the master, and await for the

addressing table to be updated before retrying the memory access. Meanwhile, in the

recovery phase, the master reloads the data in the failed machine to another machine,

updates the addressing table and distributes it. Trinity provides checkpointing after

every few iterations for synchronous BSP-based computations and provides “periodic

62

interruption” mechanisms to generate snapshots in asynchronous computations.

Buffered logging approach that is suggested in RAMCloud [171] has been used in

Trinity to recover from failures in online queries while for read-only enquiries it only

restarts the faulty machine and load the data again from the steady disk storage.

GraphX [81] uses lineage-based fault tolerance that assumes its RDDs cannot be

updated but only created afresh. It has a very light overhead compared to the systems

which use checkpointing as well as arbitrary dataset replication. So, it attains fault-

tolerance without explicit checkpoint recovery while the retaining in-memory

performance of Spark.

2.4.5 Scheduling

Scheduling techniques help assign and manage jobs on the system resources [180]. This

is particularly useful in parallel and distributed multitasking systems in which several

computations have to be done on a limited number of resources. In graph processing

systems with large scale graphs having billions of vertices and edges, the vertex or

edge (depending on the programming model) will need to be scheduled for

computation on a processing host. Typically, collections of vertices or edges are

grouped into a coarser unit for scheduling, such as a partition or a subgraph, and it is

the coarse unit that is actually scheduled on a CPU core. Within a processor, there may

be multiple threads that execute individual vertices or edges in partition, leveraging,

say, vertex level parallelism in a vertex-centric model.

According to [60], three different types of scheduling methods have been used for

graph processing in general that is shown in Figure 2.13.

In batch scheduling method, the entire graph would be scheduled for processing

across computing resources. This is more beneficial in bulk iteration model of

computing such as Pregel. There is no priority or precedency in executing the

partitions of the graph and they will be processed in any arbitrary order [47]. This

model has been used widely in dataflow frameworks such as Hadoop, Haloop [33] and

Twister [65]. There is always a preferred situation, like a limited number of iterations

that is used as a condition for finishing the process.

63

Figure 2-13 Graph processing scheduling methods

Scheduling can be done once at the beginning of the application or redone at the

start of each superstep. For e.g. Giraph allows partitions of the graph to be mapped to

workers both at the start of the application and at each superstep, while TOTEM maps

partitions to workers at the start of the application and retains that mapping.

Remapping of partitions to workers as the application is executing also requires the

ability to migrate both the graph and its updated state and messages to different

workers. The mapping of vertices and edges to partitions may also change as a result.

For example, Mizan migrates the vertices from busy workers to the one with fewer

vertices to load the balance, and GPS repartitions the graph to distribute the load

among idle workers during the computation.

Another aspect is on whether the partitions are mapped to a static set of compute

resources or the resources themselves can be elastic over the execution of the

application. For example, [59] looks at mapping partitions to an elastic set of VMs

based on the expected computational complexity of the partition for stationary and

non-stationary graph algorithms.

In contrast, in prioritized scheduling method, jobs will be processed according to a

priority condition that is defined by the user. System such as Maiter [258] shows that

using this method results in quicker convergence for many graph algorithms. For

instance, a defined prioritizing function can schedule jobs based on the number of

vertices in each partition. In GoFFish, the largest subgraphs in a partition are executed

first so that the computing of smaller subgraphs can be interleaved with the message

passing from the large subgraph. Prioritized scheduling can be helpful in processing

imbalanced workloads.

Doekemeijer and Varbanescu [60] believe that incremental scheduling only

processes a subdivision of data like active vertices. This model is used in a number of

graph processing systems, e.g., Stratospher [4] and GraphLab [141], in which the

processing continues until there are active vertices.

Scheduling Methods

Prioritized-basedIncremental-basedBatch-based

64

2.5 Graph Databases

A graph database is one where the data is natively stored as a graph structure that can

be queried upon [9]. The data itself is typically a property graph with not just vertices

and edges but also name-value properties or labels defined on vertices and edges.

Graph query models support different types of traversal queries such as path,

reachability and closure, in addition to filter queries over their properties [108] [197].

Graph databases contrast with relational databases that store graphs – the latter require

multiple joins for traversal of graphs rather than having direct references from a vertex

to its neighbors that allows for faster query processing in graph databases. Graph

databases leverage the topological properties of graphs, including graph theory and

query cost models, in answering the queries. The queries also provide a high-level

declarative interface for processing and accessing the graph compared to a graph

framework that requires users to write a program using their graph programing

abstractions and executes it in batch [234]. Another distinction from the graph

frameworks discussed above is the need for low latency (O(seconds)) execution of

hundreds of queries rather than high throughput analysis of single programs over

large graphs. The aim of this section is not to provide a survey on graph databases, but

to emphasize the increasing popularity of graphs and graph databases which provide a

broader view of graph usages. For a detailed survey on graph databases, we refer the

readers to works that appeared in ACM Computing Survey [9], VLDB Journal [115].

Graph datasets are receiving more attention every day and several companies are

starting to utilize graph databases to perform interactive queries to support their

business needs. Even traditional database provides such as Microsoft has added

extensions to its product by which the graph will be natively stored and queried inside

the database on Azure SQL DB8. According to DB-Engines9, which is an industry

observer, “graph DBMSs are gaining popularity faster than any other database

categories”, that shows remarkable growth in the last few years (Figure 2.14).

8 https://blogs.msdn.microsoft.com/sqlcat/2017/04/21/build-a-recommendation-system-with-the-support-for-graph-data-in-sql-

server-2017-and-azure-sql-db/
9 DB-Engines Ranking Per Database Model Category. (2015, August 5). Retrieved August 15, 2015, from DB-Engines: http://db-

engines.com/en/ranking_categories

65

Figure 2-14 Popularity changes in using databases

Neo4j [164] is a popular graph database designed as an open-source NoSQL

database. It supports ACID (Atomicity, Consistency, Isolation, Durability) properties

by implementing a Property Graph Model efficiently down to the storage level. It is

useful for single server deployments to query over medium sized graphs due to using

memory caching and compact storage for the graph. Its implementation in Java also

makes it widely usable. Besides the single server model, it also provides master-worker

clustering with cache sharding for enterprise deployment. However, according to some

reports, the scalability of the distributed version is not as good as even relational

databases and it has deadlocks problems such as not being able to handle two

concurrent upserts if they touch the same node10.

OrientDB and Titan are two other well-used graph databases [170]. OrientDB can

save 220,000 records per second on ordinary hardware. It supports multi-master

replication and sharing which give it better scalability. It also provides a security

profiling system based on roles and users in the database. Titan [225] is another open-

source distributed transactional graph database that provides linear elasticity and

scalability for growing data, data distribution and replication for fault-tolerance and

performance. It supports ACID and different storage back-ends such as Apache Hbase

[14] and Apache Cassandra [10]. Titan also uses the Gremlin query language11 in which

10 https://news.ycombinator.com/item?id=9699102
11 http://s3.thinkaurelius.com/docs/titan/0.5.4/gremlin.html

66

traversal operators are chained together to form path-oriented expressions to retrieve

data from the graph and modify them.

Twitter has developed its own graph database called FlockDB [230] to store social

graphs such as “who blocks whom” and “who follows whom”. FlockDB is an open-

source fault-tolerant distributed graph database which aims to support online data

migration, add/delete/update operations, complicated set of arithmetic queries,

replication, archive/restore edges and so on. In April 2010, the FlockDB cluster had

stored more than 13 billion connections (edges) and supported a peak traffic of 20K

writes per second with 100K reads per second [84]. But it appears that FlockDB is not

able to traverse graphs deeply as it is designed to only deal with Twitter’s single-depth

following/follower model and is not implementing the full stack of storage services12.

There is also research on distributed graph databases, though this is an emerging

area. Horton+ [197] from Microsoft offers a graph query language that supports path,

closure and joint queries over property graphs. It converts the query into a

Deterministic Finite Automaton (DFA) that is executed over a distributed database

using a vertex-centric BSP model based on Giraph. GoDB [108] is another research

database that leverages GoFFish to offer similar query capabilities over property

graphs, but with support for scalable indexes and using a subgraph-centric model of

execution that offers a much faster performance relative to Titan and Horton+. GBASE

[112] introduces compressed block encoding graph storage method that utilizes

adjacency matrix representation to store homogeneous regions of graphs. It also uses a

grid-based selection strategy for query optimization to provide quicker answers by

minimizing disk accesses. Quegel [249] handles enquiries as “first-class citizens” by

which the user is only required to determine the Pregel-like algorithm for a general

enquiry. Then, it sets up the computing and processing of multiple inbound enquiries

on demand.

There are several other open source and commercial graph databases such as

HyperGraphDb [101], AllegroGraph [5], InfiniteGraph [102], InfoGrid [103], JCoreDB

12 http://stackoverflow.com/questions/2629692/how-does-flockdb-compare-with-neo4j

67

Graph [110], ArangoDB [17], GraphBase [83], MapGraph [150] [73], and Weaver13. All

these projects try to provide modern solutions for storing and retrieving large-scale

graph data and it seems that this area is a very promising field of research and

commercial investments for the future. Jouili and Vansteenberghe [111] have compared

some of these graph databases.

2.6 System Classification And Gap Analysys

Table 2.3 presents the key graph processing systems with their characteristics

according to the proposed taxonomy. The notations in the table for each category are as

follow:

- Programming model: vertex-centric (V), edge-centric (E), component-centric

(C), path-centric (P), data-centric (Da) or block-centric (B).

- Architecture: distributed (D), single machine (S) or heterogeneous (H).

- Computational Model: different names are used by different systems

- Communication Model: message passing (MP), shared memory (SM) or

dataflow (DF)

- Coordination: synchronous (Synch), asynchronous (Asynch) or both timing

approach together

- Storage: disk-based (DB) or memory-based (MB) storage approach.

- N/A means that there is no specific name or method mentioned by the paper

that is describing the system.

13 http://weaver.systems/

68

Table 2-3 Overview of existing graph processing frameworks

Year System Programming
Model

Architecture Computational
Model

Communication
Model

Coordination Storage

2009 PEGASUS [114] N/A D N/A DF Synch DB

2010 Pregel [148] V D BSP MP Synch DB

2010 Signal/Collect [215] V S Signal/Collect MP Both DB

2010 Surfur [46] V D Transfer-combine MP Synch DB

2010 JPregel [183] V D BSP MP Synch DB

2010 GraphLab [142] V S N/A SM Asynch DB

2010 Piccolo [182] Da D Three phases Dataflow Synch DB

2011 GoldenOrb [36] V D BSP SM Synch DB

2011 GBase [112] E D N/A Dataflow Synch DB

2011 HipG [124] V D BSP SM Both DB

2012 Giraph [11] V D BSP MP Synch DB

2012 Distributed GraphLab
[141]

V D GAS SM Both DB

2012 KineoGraph [44] V D Push/Pull MP Synch MB

2012 PowerGraph [80] E D GAS SM Both DB

2012 Sedge [250] V D BSP MP Synch DB

2012 GraphChi [127] V S PSW SM Asynch DB

2013 TOTEM [77] V H BSP Both MP and SM Asynch MB

2013 Mizan [118] V D BSP MP Synch DB

2013 Trinity [202] V D TSL SM Asynch MB

2013 Grace [236] V S Three phases MP Asynch DB

2013 GPS [195] V D BSP MP Synch DB

2013 Giraph++ [223] C D BSP Both MP and SM Both DB

2013 Naiad [160] V D Timely Dataflow SM Both MB

2013 PAGE [201] V D Partition-aware MP Synch DB

2013 Stratospher [4] V D Push/Pull Dataflow Synch DB

2013 TurboGraph [91] V S Pin-and-slide SM Asynch DB

2013 xDGP [232] V D BSP MP Synch DB

2013 X-Stream [192] E S Scatter-gather MP Synch DB

2013 GiraphX [220] V D BSP SM Asynch DB

2013 GraphX [81] E D GAS Dataflow Synch MB

2013 Galois [165] V S ADP SM Asynch DB

2013 GRE [251] V D Scatter-Combine MP Synch DB

2013 Ligra [204] C S Push-pull SM Asynch MB

2013 LFGraph [98] V D N/A SM Synch MB

2013 PowerSwitch [240] V D Hybrid SM Both DB

2013 Presto [233] V D N/A Dataflow Synch DB

2013 Medusa [263] V H EMV MP Synch MB

2014 RASP [252] V S Scatter-gather SM Asynch DB

2014 GoFFish [208] C D Iterative BSP Both MP and SM Synch MB

2014 GasCL [41] V H GAS MP Synch MB

2014 CuSHa [119] V H GAS SM Asynch MB

2014 BPP [162] V S BSP SM Asynch DB

2014 Imitator V D BSP MP Synch DB

2014 GraphHP [42] V D BSP MP Synch DB

2014 PathGraph [253] P S Scatter-gather SM Asynch DB

2014 Seraph [245] V D GES MP Synch DB

2014 GraphGen [169] V H N/A SM Synch MB

2014 Blogel [248] B D N/A MP Synch MB

2015 Pregelix [32] V D Join-operator
based

MP Synch DB

2015 FlashGraph [262] V S BSP Both MP and SM Asynch DB

2015 GraSP [23] V D N/A MP Synch MB

2015 Chaos [191] E D GAS MP Synch DB

2015 GraphMap [132] V D BSP MP Synch DB

2015 GridGraph [294] E S Streaming-Apply SM Asynch DB

2015 GraphQ [237] V S Check/Refine SM Asynch DB

2016 Gunrock [235] Da H BSP SM Synch MB

2016 GraphIn [200] V D I-GAS MP Synch MB

2016 DUALSIM [121] V S N/A SM Asynch DB

2016 iGiraph V D BSP MP Synch DB

2017 GraphMP [217] V S VSW SM Asynch DB

2017 GraphGen [243] V S N/A SM Asynch MB

2017 Mosaic [145] V/E S PRA MP Synch DB

69

Although, many frameworks have been proposed for processing large-scale graphs,

there are still several gaps that need to be addressed, as highlighted by this table.

Among these observations are: 1) Many graph processing systems have been

developed based on vertex-centric programming model because it is the simplest way

of partitioning and processing large-scale graphs. Although edge-centric and

component-centric systems are more difficult to implement, it has been empirically

shown that frameworks such as PowerGraph and GoFFish can scale more efficiently

than vertex-centric ones. So, those types of systems need to be investigated more. 2)

Disk-based approach is the dominant mechanism that is used by most frameworks. It

also includes the frameworks that support out-of-core computation. Disks are cheap

but much slower than memory. On the other hand, memory is faster than disk but it is

more expensive and memory management makes it more complicated to develop a

system based on this approach. 3) Synchronous programming is popular on

distributed systems as they avoid race conditions, but often require message passing

and have longer runtimes due to the coordination. While asynchronous methods work

well on single machine and heterogeneous based frameworks, its effect on distributed

frameworks is less studied.

2.7 Different Viewpoints On Categorization Of Graph Processing

Systems
Graph processing systems can be categorized based on different intuitions. In this

chapter, we have categorized various features as depicted in Figure 2.15. We consider

both graph programming models and runtime aspects as two broad aspects of graph

processing systems while each can contain multiple sets of features to simplify the

understanding of graph processing mechanisms. As part of graph programming

models, we explained various system architectures (Section 2.3.1), current frameworks

and how they look at the processing paradigm (Section2.3.2), possible distributed

coordination that conveys timing (Section 2.3.3) and computational models (Section

2.3.4). On the other side, runtime aspects discuss partitioning as the heart of the system

(Section 2.4.1), different communication models (Section 4.2), storage views (Section

70

2.4.3), fault tolerance (Section 2.4.4) and scheduling (Section 2.4.5). This allows readers

to obtain a clear insight about each part of the system, the relationship among various

components and possible improvements.

Figure 2-15 Proposed graph processing features’ categorization in this chapter

However, there can be different viewpoint on this. One might separate the features

according to application-related and computing-related aspects of the features (Fig.

2.16). In this viewpoint, application characteristics refer to the features that are

designed based on the graph system itself so they might have different implementation

accordingly. For example, programming models, partitioning, computational models

and communication models are specific characteristics of the system. Computing

platform aspects refer to more general features that can vary in different systems but

are not specific characteristic of the system. This view is illustrated in Figure 2.16.

Another viewpoint [153] has classified frameworks based on four major

characteristics and called it “four pillars of think like a vertex frameworks”: 1) timing,

2) communication, 3) execution model, and 4) partitioning. Overall, regardless of

various viewpoints about categorizing graph processing features, there are certain

characteristics in every system that is usually considered to be improved in research

works.

Figure 2-16 Graph processing features’ categorization according to application
characteristics and computing platforms

Graph Programming Models

System

Architectures

Processing

Frameworks

Distributed

Coordination

Computational

Models

Runtime Aspects of Graph Frameworks

Partitioning Communication

Models

Storage View Fault

Tolerance

Scheduling

Graph Processing Systems’ Features Categorization

Application Characteristics

System

Architectures
Programming

Models

Distributed

Coordination

Computational

Models

Computing Platforms

Partitioning Communication

Models

Storage View Fault

Tolerance
Scheduling

Graph Processing Systems’ Features Categorization (Alternative)

71

2.8 Summary

Huge quantities of data are being created, analyzed and used every day in the

contemporary world of Internet communications and connected devices. “Big Data” is

the term used to signify the challenges posed by this massive data influx. A growing

majority of big data is in the form of “Graphs” which is one of the major computational

methods of huge data analysis. Social network applications and web searches, Internet

of Things, knowledge graphs and deep learning, financial transactions, and

neuroscience are some examples of large-scale graphs that need to be analyzed for

various domains. Several works have investigated the creation of effective systems for

processing large-scale graphs in recent years.

In this chapter, we have investigated and categorized existing graph processing

frameworks and systems from different perspectives. First, we explained how different

parts of a graph processing system including read and write from/to disk or memory,

pre-processing, partitioning, communication, computation and error handling work

together to process large-scale graphs. Second, we presented a taxonomy of different

abstractions and approaches that are used in existing graph processing systems within

each of these phases. In addition, we described notable frameworks that have used

these techniques, and analyzed their advantages and disadvantages to support our

discussions. We further summarized the features of graph processing frameworks

developed since 2009 in Table 2.3. It gives a comprehensive overview of current

systems and enables making comparison between them. Finally, future research

directions are discussed which shows that scalable graph processing is still at a nascent

stage and there are many issues that remain unsolved

72

73

Chapter 3

3 iGiraph: A Cost-efficient Graph
Processing Framework

Large-scale graph analytics has gained attention during the past few years. As the world is

going to be more connected by appearance of new technologies and applications such as social

networks, Web portals, mobile devices, Internet of things, etc, a huge amount of data are

created and stored every day in the form of graphs consisting of billions of vertices and edges.

Many graph processing frameworks have been developed to process these large graphs since

Google introduced its graph processing framework called Pregel in 2010. On the other hand,

cloud computing which is a new paradigm of computing that overcomes restrictions of

traditional problems in computing by enabling some novel technological and economical

solutions such as distributed computing, elasticity and pay-as-you-go models has improved

service delivery features. In this chapter, we present iGiraph, a cost-efficient Pregel-like graph

processing framework for processing large-scale graphs on public clouds. iGiraph uses a new

dynamic re-partitioning approach based on messaging pattern to minimize the cost of resource

utilization on public clouds. We also present the experimental results on the performance and

cost effects of our method and compare them with basic Giraph framework. Our results

validate that iGiraph remarkably decreases the cost and improves the performance by scaling

the number of workers dynamically.

This chapter is partially derived from:

 Safiollah Heidari, Rodrigo N. Calheiros and Rajkumar Buyya, “iGiraph: A Cost-

efficient Framework for Processing Large-scale Graphs on Public Clouds”, in

Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid 2016), Cartagena, Colombia, Pages 301-310, 2016

74

3.1 Introduction

S Internet continues to grow, the world is becoming a more connected

environment and the number of data resources is increasing beyond what had

been predicted before [210]. Amongst various data modeling approaches to store huge

data, graphs are widely adopted to model complex relationships among objects. A

graph consists of sets of vertices and edges which demonstrate the pairwise

relationship between different objects. Many applications and technologies such as

social networks, search engines, banking applications, smart phones and mobile

devices, computer networks, the semantic web, etc, are modeling and using data in the

form of graphs [199]. These applications generate massive amounts of data which are

represented by graphs. Facebook [184], for example, has more than one billion users

that are considered as the vertices of a huge graph where the relationships between

them are considered as the edges of the graph. To gain an insight and discover

knowledge from these applications, the graph that represents them should be

processed. However, the scale of these graphs poses challenges to their efficient

processing [177].

In order to process large graph problems, every solution confronts with some

challenges due to the intrinsic properties of graphs. These properties include data-

driven computation, unstructured problems, poor locality and high data access to

computation ratio [144]. Therefore, graph problems are not well matched with existing

processing approaches and usually prevent efficient parallelism. MapReduce [56], for

example, which addresses many shortcomings in previous parallel and distributed

computing approaches, is not an appropriate solution for large graph processing. This

is because first, MapReduce uses a two phased computational model (map and reduce)

which is not well suited for iterative characteristic of graph algorithms. Second, its

tuple-based approach is poorly suited for most of graph applications [2].

Cloud computing is a new paradigm of computing that has changed software,

hardware and datacenters design and implementation. It overcomes restrictions of

traditional problems in computing by enabling some novel technological and

economical solutions like using distributed computing, elasticity and pay-as-you-go

A
T

75

models which make service providers free from previous challenges to deliver services

to their customers [35]. Cloud computing presents computing as a utility that users

access various services based on their requirements without paying attention to how

the services are delivered or where they are hosted. Public cloud computing services,

for instance, offer Platform as a Service (PaaS) or Infrastructure as a Service (IaaS) for

large distributed processing, are becoming more popular among companies who want

to focus on their business instead of being concerned about technical issues. Rapid on-

demand compute resource provisioning brings cost scalability based on utilization. As

an example, Amazon EC2 provides three cost models for its customers based on their

requirements –spot, on-demand and reserved provisioning. Using these commercial

services, the customer may choose to pay more to achieve better performance or

reliability. So, making a proper decision between using the number of resources the

user wants to use and the money that the user wants to pay for the service is an issue

while using public clouds.

Some graph processing frameworks such as Surfer [46] and Pregel.Net [187] were

developed to support processing large graphs on public clouds, but they have

considered some specific issues on these frameworks and do not address the impact of

their solutions on the monetary cost of the system. For example, Surfer has proposed a

graph partitioning method based on network latency and Pregel.Net, which is the .Net-

based implementation of Pregel, has analyzed the impact of BSP graph processing

models on public clouds using Microsoft Azure. On the other hand, there are some

services such as Amazon relational database service (RDS) which is designed for

traditional relational databases14. It is aimed at facilitating the set-up, operation and

scaling a relational database and comes with two reserved and on-demand instance

packages. According to a recent report from DB-Engine15, graph databases are getting

more and more attentions every day and many companies are going to use this kind of

14 Amazon Relational Database Service (RDS) : https://aws.amazon.com/rds/
15 DB-Engines Ranking Per Database Model Category. (2015, August 5). Retrieved August 15, 2015, from DB-Engines: http://db-

engines.com/en/ranking_categories

76

database for their businesses. So, in the near future, public cloud providers will

introduce new graph processing services on their infrastructures.

However, current frameworks for graph processing have limitations that hinder

their adoption in cloud platforms. First, the majority of them have been designed and

tested on cluster environments and not clouds, hence they have not considered

monetary optimization, which is a very important factor for service selection on clouds.

Second, many graph processing frameworks focus on reducing the operation’s

execution time, reducing memory utilization, considering task priorities and so on to

reduce the cost of processing, but considering a static pool of resources with known

size. On the other hand, cloud computing provides high scalability on-demand

resources that can help users to perform their tasks using various services. Therefore, a

graph processing approach with performance guarantees and optimal cost is a must in

a cloud setting.

In this chapter, we propose a graph processing framework called iGiraph. It uses a

cost-efficient dynamic re-partitioning approach that utilizes network traffic message

pattern to reduce the number of virtual machines (workers) during the processing by

migrating partitions and vertices to minimize the cost. The new repartitioning method

also mitigates network traffic results in faster execution. Our work, iGiraph makes the

following key contributions:

 iGiraph repartitions the graph dynamically across workers considering

network traffic pattern to reduce the communication between compute nodes.

 iGiraph uses high degree vertices concept in partition level, with the

convergent level of the algorithms that are running on the system. iGiraph

manages the number of compute nodes using a proper combination of these

methods.

 While cost is a very critical factor in service selection procedure for any user on

a public cloud, iGiraph significantly reduces the cost of processing large-scale

graphs with reasonably close runtimes to Giraph by its new approach.

The rest of the chapter is organized as follow: section 3.2, explains the basic Apache

Giraph framework and its features following by the vertex and algorithm

77

categorization is used for our work. Section 3.3 gives details about iGiraph solutions.

Section 3.4 shows iGiraph’s implementation. Performance evaluation of the system is

discussed in section 3.5 and finally, related works and conclusions and future works

are explained in sections 3.6 and 3.7, respectively.

Figure 3-1 Giraph’s Architecture

3.2 Background

In this section, we first introduce Apache Giraph16 which is the fundamental

framework for our system. Then, we explain Bulk Synchronous Parallel (BSP) [231]

model following by describing a vertex categorization that is effectively used for our

re-partitioning model. Finally, we explain the graph algorithm classification we used in

this chapter which has a great impact on choosing the right strategy to reduce the cost

of the whole system.

3.2.1 Giraph

Apache Giraph is an open-source implementation of proprietary Pregel. It is a

distributed graph processing framework that uses a set of machines (workers) to

process large graph datasets. One of the machines plays the role of master to

16 Apache Giraph: http://giraph.apache.org/

78

coordinate with other slave workers. The master is also responsible for global

synchronization, error handling, assigning partitions to workers and aggregating

aggregator values. Giraph is a Hadoop-based framework that runs workers as map-

only jobs and uses Hadoop data file system (HDFS) for data I/O. It also employs

Apache ZooKeeper17 for checkpointing, coordination and failure recovery scheme.

Giraph added many features beyond the basic Pregel including sharded aggregators,

out-of-core computation, master computation, edge-oriented input and more. Finally,

having a growing community of users and developers worldwide, Giraph has become

a popular graph processing framework that even big companies such as Facebook are

using it to process their huge datasets [48].

Giraph utilizes vertex-centric programming model like Pregel in which each vertex

of the graph is identified by a unique ID. Each vertex also has other information such

as a vertex value, a set of edges with an edge value for each edge, and a set of messages

sent to it. To process a large graph in vertex-centric model, it should be partitioned into

smaller parts by a partitioner where each partition is connected to other partitions by

cross-edges between them. The partitioner also distributes partitions to a set of worker

machines. In Giraph, a partitioner determines which partition a vertex belongs to based

on its ID. Giraph uses a default hash function on the vertex ID to partition a graph

while other customized partitioners also can be used. To improve the load balancing,

the number of partitions is often greater than the number of workers.

Using simple static partitioning methods makes Giraph to run and process various

graph algorithms slower and with more costs than other Pregel-like frameworks such

as GPS [195] or Giraphx [220]. These systems have shown that using more complicated

static partitioning algorithms such as METIS [116], rather than using a simple hash

partitioning method, can remarkably improve the performance. GPS for example, uses

a combination of a static partitioning algorithm to partition the graph and a dynamic

re-partitioning algorithm during the computation to distribute the remaining non-

processed vertices to idle workers to reduce the execution time within a superstep. In

17 Apache Zookeeper: https://zookeeper.apache.org/

79

this chapter, we choose the hash partitioning algorithm to start partitioning the graph

with, but during the computation we replace that with a dynamic traffic-aware re-

partitioning algorithm to reduce the cost of the whole processing operation and

improve the performance of the system.

Figure 3-2 Internal vertices and border vertices

3.2.2 Bulk Synchronous Parallel Model

Bulk Synchronous Parallel (BSP) is a vertex-centric computational model in which

every single vertex of the graph can carry two states of active or inactive. All vertices

are active when the computation starts. The processing consists of a series of iterations,

called supersteps, followed by global synchronization barriers between them. In each

iteration, every vertex that is involved in computation, 1) receives its neighbors

updated values from previous iteration, 2) the vertex then will be updated by received

values, 3) and finally, the vertex sends its updated value to its adjacent vertices that

will be available to them in the next superstep and changes its state to inactive.

The advantage of using BSP model in Giraph is that all the aforementioned

operation is executed by a user-defined Compute() function of the Vertex class. After

all the vertices completed executing Compute() function in a superstep, data will be

aggregated during the synchronization phase and the messages generated by each

vertex will be available to their destinations at the beginning of next superstep. If a

vertex does not receive any messages during a superstep, it can deactivate itself by

calling voteToHalt() function. However, a deactivated vertex can be activated by

80

receiving messages from its neighbors. If there is not any active vertex, the

computation is finished.

3.2.3 Internal Vertices and Border Vertices

A graph G=(V,E) consists of a set of vertices V={v1, v2, …, vn} and a set of edges

E={e1,e2, …, em} where EV×V. In the vertex-centric graph processing approach, the

graph is divided into smaller partitions based on vertex divisions so that P1 UP2 U…UPk

= V are k partitions of V where Pi I Pj= , i j. Therefore, each vertex basically

belongs to only one particular partition [223].

An internal vertex is a vertex that all its adjacent vertices are inside the same

partition as this particular vertex is. So, the messages coming out from an internal

vertex only flow within the partition. On the other side, a border vertex is a vertex that

at least one of its neighbors is placed in another partition. Hence, a border vertex’s

outgoing messages need to be sent to at least one different partition than the partition

this particular vertex belongs to. Passing messages between partitions leads to

increasing network traffic which results in longer execution time, inefficient resource

utilization and higher costs in turn. Internal vertices and border vertices are shown in

Figure 3.2. One of the approaches for avoiding message passing side effects is to

partition the graph in a way that reduces the number of border vertices and cross-

edges between partitions so that the number of messages passing between partitions

will be reduced.

3.2.4 Graph Algorithms

Different research use different classification of algorithms. For example, one may

classify graph algorithms into traversal algorithms, graph aggregation algorithms,

random walk algorithms and so on, while another one classifies them as global queries

and targeted queries [112]. In this chapter we use our own classification which

categorizes graph algorithms based on their behavior in network traffic making and

generating messages during the processing. We classify algorithms into two groups as

follow:

81

 Non-Convergent Algorithms: Non-convergent algorithms are the algorithms

that generate almost the same number of messages during processing. They

complete the processing by passing the same number of messages in the last

superstep as the number of messages they passed during first supersteps. So,

the number of messages are generated using these applications never tends to

become zero. PageRank [173], for instance, is a non-convergent algorithm.

 Convergent Algorithms: In contrast to non-convergent algorithms, the number

of messages are generated using convergent algorithms tend to fall down to

zero by the end of processing operations. Computing shortest paths [190] and

connected components [196] algorithms are among convergent algorithms.

Here, we give a brief explanation of the algorithms we use from each category.

1) PageRank

PageRank is an algorithm which is used to measure the significance of website pages.

PageRank works by measuring the number of links (hyperlinks) to a page to specify an

importance estimation of a website. The more important the page is, the more links it

receives from other pages. PageRank does not rank a website as a whole, but is

assessed by each page exclusively. The PageRank of page Pi does not impress the

PageRank of a typical page P uniformly because of different weights that each page

has. The summation of weighted PageRanks of all pages Pi then is multiplied by an

alleviation factor ‘d’ that usually is set between 0 and 1. PageRank is also a non-

convergent algorithm according to above classification because it produces the same

number of messages in each superstep during a processing operation.

2) Connected Components

A connected component algorithm finds different sub-graphs of a particular graph in

which there is a path between any two vertices and that is not connected to any further

vertices in the super-graph. We use HCC that starts with having all vertices in an initial

active state. Each vertex starts computing by considering its ID as its component ID

and update this component ID when it receives a smaller component ID. The vertex

then propagates the updated value to its adjacent vertices. Connected component is a

82

convergent algorithm because the number of passing messages between vertices tends

to fall down to zero as the states of vertices change to inactive until the end of

computation.

3) Single Source Shortest Paths

The shortest path in graph theory is the problem of discovering a path between two

nodes such that the summation of the weights of its edge components is minimized.

This is a well-known problem in graph theory and there are different approaches and

applications applying various solutions to various problems in this field.

Single source shortest path (SSSP) problem is one derivation of the main shortest

path problem. This problem needs to find a shortest path between a single source node

and all other vertices in the graph. In this algorithm, each vertex initializes its value

(distance) to INF (∞), while the source node put 0 as its distance. INF is larger than any

possible path from the source node in the graph. In the first superstep, only the source

node updates its neighbors; in the next superstep, the updated neighbors will send

messages to their own neighbors and so on. The algorithm completes when there is no

more updates happening and the states of vertices also changed to inactive. So, SSSP is

a convergent algorithm according to the aforementioned definition.

3.2.5 Graph Processing Challenges on Clouds

A large-scale graph processing operation that includes a series of iterations to process a

graph usually causes considerable overheads due to its large memory consumption,

CPU utilization, error handling, etc. Accordingly, various frameworks are proposed to

optimize and improve the performance of graph processing operations. Although

many of these frameworks offer specified scalability improvements on high

performance clusters with fast interconnections, their performance on cloud

environments in which some critical factors such as service cost is determinative, is less

studied. So, there are not many works that considered monetary optimizations.

Besides, many existing frameworks consider memory utilization, runtime reduction,

tasks prioritization and so on by using constant number of resources. So, they are not

utilizing clouds elasticity and scalability that are important characteristics of cloud

83

environments and can have significant impact on monetary costs. Our work is scoped

to reduce the monetary cost of processing large-scale graphs on public clouds by

proposing a Pregel-like framework.

3.3 iGiraph

3.3.1 Motivation

iGiraph utilizes a distributed architecture on top of Hadoop and uses its distributed file

system for data I/O. It is a Pregel-like graph processing system which means it

employs vertex-centric processing solutions to process a graph and follows Pregel-like

systems’ behaviors. The problem with many of existing graph processing systems,

particularly Pregel-like frameworks, is that although they propose methods to run the

processing faster and improve the performance of the system, resource utilization and

monetary cost factors are less studied. Nonetheless, cost is a crucial factor for every

business that wants to use public cloud infrastructure. As cloud providers are using

pay-as-you-go models for the services they are providing, considering the factors that

have impacts on the cost of the services is very important for customers to choose the

right services. There are many factors that influence the whole processing costs in a

cloud environment including:

 Execution time: The longer the operation takes, the more user has to pay.

 Resource costs: Every resource has its own price. So, choosing the right number

of machines with the right size can make huge differences.

 Communication: Sending and receiving data in a cloud environment is not free

hence reducing the cost of communication for each operation is vital.

 Storage: Storing data could also become costly specially, for big data related

services.

One of the most important parts of a graph processing system is the partitioning

method that is used to partition and distribute data across the workers. Choosing

between various static partitioning methods or between static and dynamic

84

partitioning approaches can affect the system performance and cost. iGiraph uses a

dynamic graph re-partitioning method which considers the main cost factors and

improves the processing performance.

3.3.2 iGiraph’s Dynamic Re-partitioning Approach

iGiraph’s repartitioning algorithm uses the concept of high degree vertices in partition

level and merges the partitions to reduce the number of cross-edges between them by

migrating partitions from one worker to another. During this process, some workers

(resources) gradually become empty and can be released to decrease the cost of

resource utilization.

In many real world graphs only a few number of nodes contains a large fraction of

all the edges in the graph [195]. These vertices are known as high degree vertices.

While the number of edges connecting to a vertex states the degree of that vertex, a

high degree vertex has much more connected edges compared to majority of the

vertices in a graph. For example, in a social network, a singer, an actor or celebrities

can have millions of followers in comparison with the average of tens or hundreds of

friends and followers for an ordinary user.

High degree vertices can play an important role in causing network traffic and

delaying the execution time specially when they are placed as border vertices in

partitions or close to border vertices. That is, putting high degree vertices as close as

possible to their neighbors can significantly improve the network and system

performance. Figure 3.3 shows the importance of this issue. In Figure 3.3.a vertex v

from partition P1 is connected to many vertices in P2 results in huge network traffic

while passing messages between two partitions and therefore delays the run-time and

increases the cost. But as is shown in Figure 3.3.b, moving v to P2 can remarkably

reduce the cross-edges between two partitions.

85

Figure 3-3The role of high degree border vertices in reducing network traffic

iGiraph uses high degree vertex concept in partition level not vertex level. It means

that as there are vertices with higher degree than other vertices in the graph, there are

also partitions that send or receive more messages than other partitions in the graph of

system workers. In order to store the information about which partition has sent or

received more messages, iGiraph uses two separate lists. One stores the number of

outgoing messages from each partition and the other, stores the number of incoming

messages to each partition. We also define α, which is a threshold that is an average

value for the number of messages that are transferring between each pairs of partitions.

α is defined as follows:

1 1

1(,)
PN

m j

n

j

i

P

j

N P P

N

 , (3.1)

In the above formula, Nm(Pj,Pj+1) shows the number of messages between partition j

and partition j+1, NP shows the number of partitions that are involved in each

superstep and n is calculated based on the number of partitions to show the number of

pairs in each superstep. This formulation is calculated between each supersteps in

iGiraph. According to this:

 n=
2

P
P

N
N

 If Np is odd

 (3.2)
(1)

2

P
P

N
N

 If Np is even

If the number of messages received by a partition is equal or greater than α, then

that partition is a potential candidate for migration, otherwise the program looks at the

number of outgoing messages at that partition to see if it can host vertices from other

86

partitions or merge with them. Using factor α alone, border vertices can migrate

between partitions.

Although α is a determinative factor to specify which partitions are suitable for

migration and merging, there are other important factors that can influence the final

decision as well. One factor is the number of total messages transferred between all

partitions in a particular superstep compared to the number of total messages

transferred between all partitions in previous superstep. Merging (not migration) only

can occur if this proportion is decreasing. As long as the number of messages is

growing during the processing, no merging will happen.

Another factor that determines whether partitions can merge is the size of partitions

and workers’ capacities. As the processing continues, for convergent algorithm such as

connected components and shortest path, the vertices that complete the computation

change their states to inactive. So, instead of keeping these vertices in the memory until

the end of processing operation, iGiraph deletes them temporarily from memory to

provide room for partition merging. On the other side, if a removed vertex is invoked

during the computation, iGiraph can bring it back to the memory. So, before merging

two partitions, the system checks if the destination worker has enough space or not.

When all above conditions are true, then migrating a partition from one worker to

another worker to merge it with the other partition is possible. This has influences on

the total cost of the service. For example, according to Figure 3.4, partition P1 is a high

degree partition, which means it has the greatest number of incoming messages among

other partitions, and is placed on worker W1. Partition P2 which is placed on worker

W2 has sent the greatest number of messages to P1, P3 is in the second place after P2,

P4 is next and so on. In addition, total number of transferred messages in current

superstep (i+1) is less than transferred messages in previous superstep (i) and the

workers have sufficient memory after removing inactive vertices. At this time, P1 will

merge with P2 until there is free space on W2. Additional vertices will be migrated to

W3 and so on. A load balancer balances the number of vertices in each partition on

remaining workers.

87

Figure 3-4 Worker W2 has sent more messages to W1 than other workers

According to our experiment results, using the proposed re-partitioning algorithm

for convergent applications can reduce the cost of resource utilization while the

execution time is close to Giraph’s experiment results or with only a bit of increasing in

some cases, but still do not affect the whole results.

For non-convergent applications, iGiraph does not merge the partitions. So, the

number of workers will remain the same from beginning of the processing to the end.

Instead, only border vertices from high degree partitions will be migrated to reduce the

cross-edges between partitions. In this case, the total average number of transferred

messages is mitigated which leads to faster execution compared to Giraph.

3.4 iGiraph Implementation

Figure 3-5 System architecture and components

Figure 3.5 shows the iGiraph’s system architecture and components added to basic

Giraph. The components that are surrounded by simple lines are basic Giraph’s that

are used in iGiraph too. The components that are surrounded by dashed lines are the

components which are added to the basic framework. Like Giraph, data is loaded and

stored on HDFS. Then, an initial partitioner function will partition the graph and

88

prepare the partitions for being distributed across workers. In this chapter we use only

a simple hash function as initial partitioner. The hash function partitioning method is

proved that results in worst performance compared to other complicated initial

partitioning methods. Hence, we want to reach a better performance using this

approach to show that our method can work very well even in this case. In the next

step, partitions will be distributed across workers. The policy selector selects the

appropriate computation method based on the type of application. For example, if the

algorithm is convergent it enables partition migration. Code executer is the main

Compute() function that executes the algorithm on each active vertex. After that,

according to the number of messages transferred between partitions during the

superstep, a network measurement component will determine which partitions have

sent or received messages in a descent order. Then the repartitioner chooses vertices or

partitions to migrate or merge according to the policy is selected. This will be done by

the partitions migrant. This process will continue until all the vertices in the graph

change their states to inactive and there is no more vertices to be computed. Finally, the

results will be written back to HDFS.

3.5 Performance Evaluation

3.5.1 Experimental Setup

We chose shortest path and connected components algorithms among convergent

applications and PageRank among non-convergent applications for our experiment.

We also use three real datasets [125] of varying sizes: Amazon, YouTube and Pokec

which is a Slovak social network.

Table 3-1 Evaluation datasets and their priorities [125]

Graph Vertices Edges

Amazon (TWEB) 403,394 3,387,388

YouTube Links 1,138,499 4,942,297

Pokec 1,632,803 30,622,564

Twitter 41,652,230 1,468,365,182

89

We use m1.medium NECTAR VM instances for all partition worker roles. NECTAR

is Australian national cloud infrastructure facilities [163]. Medium instances have 2-

cores with 8GB RAM and 70GB disk including 10GB root disk and 60GB ephemeral

disk. All the instances are in the same zone and use the same security policies. We also

installed NECTAR Ubuntu 14.04 (Trusty) amd64 on each instance. We use Apache

Hadoop version 0.20.203.0 and Apache Giraph version 1.1.0 with its checkpointing

characteristic turned off. All experiments run using 16 instances where one takes the

master role and others are set up as workers.

3.5.2 Evaluation and Results

First, we investigate the impact of our proposed approach on convergent algorithms

and compare the results with basic Giraph. Then, we investigate non-convergent

PageRank algorithm on both frameworks.

1) Evaluation of Convergent Algorithms

Figure 3.6 and 3.7 show the results of comparison experiments between Giraph and

iGiraph on Amazon and Pokec datasets respectively. Considering that the size of every

network message is the same in all experiments, here the computation can converge

faster using iGiraph while the number of messages passing through network is

reduced significantly. In Figure 3.7, after using factor α the number of messages

increased a bit at first superstep, but noticeably decreased after that and still shows

significant network message reduction compared to Giraph.

90

Figure 3-6 Number of network messages transferred between partitions across
supersteps for the Amazon graph using connected components algorithm

Figure 3-7 Number of network messages transferred between partitions across
supersteps for the Pokec graph using connected components algorithm

Figure 3-8 Number of machines varying during supesteps while running
connected component algorithms on different datasets on iGiraph

91

Figure 3-9 Total time taken to perform connected components algorithm

In contrast to Giraph in which the number of workers is kept intact during the

whole operation, iGiraph releases compute nodes as the graph get converged. That is

because by keeping only active vertices for the operation and doing repartitioning

between each supersteps, less computation resources are required to continue the

processing. We observed that by removing inactive vertices after each superstep, we

could merge more partitions to use the capacities of each worker’s memory efficiently.

So, the more partition merge, the more resources can be freed which results in more

money saving. But this claim only can be true when we consider both resource

reduction and execution time together.

 (3.3)

According to the above formulation, total cost of using resources on a cloud

environment is equal to the summation of the price of each resource P(VMi) multiplied

by total time of using that resource Ttotal(VMi). To calculate the final cost for the whole

processing operation beside reducing the number of resources, we need to measure the

system run-time too. Note that although data transfer also has impact on the final cost

calculation, we have not considered that here, but we will take it into consideration for

our future works. Figure 3.9 shows the execution time for processing aforementioned

datasets using connected components algorithm. It shows that in addition to

decreasing the cost of resource utilization, the run time for the operation is also

reduced. Therefore, according to formula 3.3, the total cost of the operation falls down

too.

1

)(final i total i

n

i

Cost P VM T VM

92

Similar to previous evaluations for connected component algorithm, we repeated

experiments using shortest path algorithm for both Giraph and iGiraph. From the

network traffic point of view, the difference between shortest path and connected

component is that the former starts with passing a few number of messages at the

beginning of computation and gradually increases until reach a maximum and then

starts converging, but connected component starts with passing great number of

messages hence it immediately starts the convergence process. Figure 3.10 shows the

results of a comparison experiment between Giraph and iGiraph on Amazon dataset

using connected components algorithm. It takes 37 supersteps for this process to be

completed on Giraph while it converges around superstep 23 using iGiraph. This is

because in contrast to Giraph in which the number of messages starts falling down

from superstep 14, using factor α, this happens to iGiraph after superstep 8. From this

point onwards in iGiraph, three conditions for partition merging are provided and

according to Figure 3.13 it can be seen that the number of active workers are

decreasing. The results for Pokec and YouTube are shown in Figure 3.11 and 3.12,

respectively.

93

Figure 3-10 Number of network messages transferred between partitions across
supersteps for the Amazon graph using shortest path algorithm

Figure 3-11 Number of network messages transferred between partitions across
supersteps for the Pokec graph using shortest path algorithm

Figure 3-12 Number of network messages transferred between partitions across
supersteps for the YouTube graph using shortest path algorithm

94

Figure 3-13 Number of machines varying during supesteps while running
connected component algorithms on different datasets on iGiraph

Figure 3-14 Total time taken to perform shortest path algorithm

The above figure shows that the time taken to complete shortest path algorithm on

16 machines using iGiraph is not significantly different than Giraph. As a result,

considering total execution time and decreasing number of active workers in each

experiment, iGiraph is more cost-effective than Giraph for convergent algorithms on

public clouds.

2) Evaluation of Non-Convergent Algorithms

Processing non-convergent algorithms such as PageRank shows that the number of

messages generated in each superstep is almost the same as other supersteps during

the whole processing. In PageRank for example, vertices always update their neighbors

during the computation hence as long as the number of vertices is the same, the

number of messages is also the same. But it is still possible to reduce the network

messages by using α factor. α determines the partitions that receive more messages

through network than the other partitions (high degree partitions). Then, to balance the

95

messaging pattern, iGiraph selects a number of border vertices from high degree

partitions to relocate based on the aforementioned algorithm in section 3.4. After

relocating the vertices, a load balancer method will balance the number of vertices in

each partition. It can be seen that the average number of network messages falls down

a bit in iGiraph results in faster computation. Figure 3.15 shows the average number of

network messages in both Giraph and iGiraph. The total execution time for each

experiment also can be seen in figure 3.16. According to these figures, although we did

not decrease the number of workers like what was done for convergent algorithms,

total runtime of the system decreased because there are few messages passing through

network compared to Giraph. Table 3-2 is showing the monetary cost of processing for

each algorithm on different frameworks.

Figure 3-15 The average number of network messages in each experiment

Figure 3-16 Total time taken to perform PageRank algorithm

96

Table 3-2 Processing cost on different frameworks

Dataset Giraph (SSSP) iGiraph (SSSP) Giraph (PR) iGiraph (PR)

Amazon $0.0215 $0.0146 $0.0320 $0.0232

YouTube $0.0140 $0.0092 $0.0502 $0.0410

Pokec $0.0235 $0.0170 $0.0816 $0.0725

3.6 Related Work

According to The National Research Council of the National Academies of the United

States [55], graph processing is one of the seven computational giants of massive data

analysis. Google’s Pregel [148] is the first graph processing framework in the literature

that uses a bulk synchronous parallel (BSP) model [231] for graph computation based

on a vertex-centric approach. Public implementations of this framework include

Giraph, GoldenOrb [36], etc. These frameworks are developed based on distributed

architectures in which usually one machine acts as the master and one or several other

machines act as workers. In the master-worker approach, the input graph is split into

partitions and each partition assigns to a worker to process it. Many of graph

processing frameworks use a simple hash function for partitioning the graph.

However, such simple partitioning leads to huge network traffic in a graph processing

task that consequently affects the system performance. To improve the partitioning

efficiency, various approaches are proposed in different frameworks [69] [34] [20].

While most graph processing systems offer some specified improvements on HPC

clusters with fast interconnects, their conduct on virtualized commodity hardware

which is provided by cloud computing paradigm and is accessible to a wider

population of users is less investigated [187].

Frameworks designed to process large-scale graphs based on Pregel are called

Pregel-like frameworks. They are designed based on distributed architecture on high

performance computing systems such as distributed clusters. Although graph

processing systems created to overcome previous large data processing solutions such

as MapReduce, some of distributed frameworks use series of MapReduce jobs

97

iteratively. Giraph and Surfer are examples of these systems. Other features of Pregel-

like frameworks include using bulk synchronous parallel (BSP), message passing

communication method and global synchronization barrier between supersteps.

However, systems such as GraphLab [142] provide asynchronous computations. Since

iGiraph is a Pregel-like system and developed based on Giraph, it contains all of these

specifications with some additional features such as dynamic repartitioning and cost

minimization. There are many non-Pregel graph processing frameworks developed on

distributed architecture. Among these frameworks are Trinity [202] and Presto [233].

GPS is the most similar to our work. It has an optimization called LALP (large

adjacency-list partitioning) by which stores high degree vertices and use the list to send

one message, instead of thousands for instance, to the partitions are containing those

vertices. After the message gets to the destination, it will be replicated thousands times

to the message queues of each vertex in its outgoing neighbors list. Instead of storing

the list of vertices, iGiraph stores two lists of the number of outgoing and incoming

messages from/to each partition that show which partitions are sending or receiving

more messages. These lists are noticeably smaller than GPS’s adjacency lists.

Another difference between our system and GPS is that high degree vertices in GPS

are defined by the programmer, but in iGiraph, the decisions about migrating the

partitions are making based on an automatic formula. In GPS, the programmer

specifies a parameter . If the number of outgoing messages for any vertex is more than

, it will be considered as high degree. Here, selecting the right value for is very

important and can directly affect the system’s performance.

There are previous studies on the performance effects of different partitionings of

graphs on other systems. The main challenge in partitioning a graph is to find how to

partition the data to gain better vertex or edge cuts with considering the simplicity of

computation. Pregel, Giraph and GraphLab partition the graph by cutting the edges

while PowerGraph [80] and X-Stream [192] cut vertices for partitioning. From another

point of view, the majority of graph processing frameworks only use static partitioning

approaches that means they only partition the graph once before the processing starts

or they do it once during the computation. On the other hand, some frameworks such

as GPS use dynamic repartitioning approach that allows them to repartition the graph

98

multiple times during the computation based on some pre-defined features to achieve

better performance.

3.7 Summary

Huge amount of data is created and stored in the form of graphs every day. In this

chapter, we presented iGiraph, a Pregel-like system developed based on Giraph for

processing large-scale graphs on public clouds. iGiraph uses a new repartitioning

method to reduce the number of messages passing through network by decreasing the

number of cross-edges between partitions. It utilizes high degree concept in partition

level for both convergent and non-convergent types of algorithms. iGiraph also

considers processing large graphs as a service on public clouds. Therefore, it reduces

the cost of resource utilization by decreasing the number of workers that are using for

the operation and executes the applications within a period which is reasonably close

to Giraph’s time.

99

100

101

Chapter 4

4 Network-aware Dynamic
Repartitioning for Scheduling

Large-scale Graphs

Large amount of data that is generated by Internet and enterprise applications is stored in

the form of graphs. Graph processing systems are broadly used in enterprises to process such

data. With the rapid growth in mobile and social applications and complicated connections of

Internet websites, massive concurrent operations need to be handled. On the other hand, the

intrinsic structure and the size of real-world graphs make distributed processing of graphs

more challenging. Low balanced communication and computation, low preprocessing

overhead, low memory footprint, and scalability should be offered by distributed graph

analytics frameworks. Moreover, the effects of network factors such as bandwidth and traffic as

well as monetary cost of processing such large-scale graphs and the mutual impact of these

elements have been less studied. To address these issues, we proposed two dynamic re-

partitioning algorithms that consider network factors affecting public cloud environments to

decrease the monetary cost of processing. A new classification of graph algorithms and

processing is also introduced which will be used to choose the best strategy for processing at

any operation. We plugged these algorithms to our extended graph processing system (iGiraph)

This chapter is partially derived from:

 Safiollah Heidariand Rajkummar Buyya, “Cost-efficient and Network-aware Dynamic
Repartitioning-based Algorithms for Scheduling Large-scale Graphs in Cloud
Computing Environments”, Software: Practice and Experience (SPE), vol 48, Issue 12,
pp: 2174-2192, Wiley & Sons, 2018

102

and compared them with those supported in other graph processing systems such as Giraph

and Surfer on Australian National Cloud Infrastructure. We observed that up to 30% faster

execution time, up to 50% network traffic decline and more than 50% cost reduction is achieved

by our algorithms compared to a framework such as popular Giraph.

4.1 Introduction

ODAY many applications in domains such as the Internet, astronomy, social

networks, information retrieval and particle physics are experiencing data flood

and they have already reached peta-scale volume of data. The growth in the volume of

data needs large computing power to turn the original data into worthwhile insights.

Nevertheless, massive amount of data is saved and modeled in the form of graphs.

These graphs provide valuable sources of information for several applications. For

instance, by studying social networks and the way that relationships are shaped

between users, psychologists and sociologists can investigate their assumptions and

hypothesis about people and communities. Analyzing web graphs can make search

engines more accurate and effective [173]. By detecting social circles and their

influential members in social networks, politicians can spread their thoughts in these

communities [256]. Therefore, processing large-scale graphs and unveiling attributes of

those graphs have become critical requirements.

Traditional approaches of processing Big Data such as MapReduce [56] are not

suitable for graph processing because of the intrinsic behavior of graph algorithms. For

example, MapReduce has a two-phase computation model – Map and Reduce, which is

not exactly appropriate for the iterative nature of graph algorithms. It also does not

retain the input graph and its states in main memory across these two phases and is

very inefficient because of requiring repetitive disk I/O.

Many research works on large-scale graph processing frameworks concentrate on

the platforms based on commodity clusters. However, not many studies have been

T

103

done on cloud platforms, particularly public clouds. Cloud computing is a model of

computing that has modified hardware, software and datacenters implementation and

design [35]. It has brought novel technologies and economical solutions such as

elasticity and pay-as-you-go models by which service providers do not need to worry

about previous obstacles of delivering services to their clients. Public cloud services are

getting more popular than other cloud services such as private, hybrid and community

clouds especially among small and medium size businesses. It is because they do not

have sufficient funding to have their own private cloud or it is not efficient for their

business models. So, public cloud is a true response to their needs. Another important

feature of public clouds is the monetary modeling that different service providers offer

to their customers. Amazon, for example, has three cost models: spot, on-demand and

reserved provisioning models for providing resources. Using these commercial

services, the client might select to pay more to get higher performance or better

reliability. So, the challenge with using public clouds is making the right decision

between utilizing the number of resources that the user needs and the amount of

money he/she can pay for the service. In this research we only consider the reserved

model.

Another less studied aspect of graph processing systems is the impact of the

network environment on the performance of the whole system. Some systems such as

Surfer [46] and Pregel.Net [187] are implemented to support graph processing on

public clouds. Although, they consider some network features, none of these systems

have explored the effects of provisioning and processing on monetary cost. For

instance, Surfer proposes a graph partitioning approach based on the network

bandwidth and claims that it could improve the performance. On the other hand, to

the best of our knowledge, all existing graph processing frameworks –except iGiraph -

concentrate on decreasing the processing runtime, memory utilization and so on to

degrade the cost of operation. They only take an unchanged pool of resources with

known size into consideration. It means that all existing systems start and finish their

computation with the same number of resources (machines). So, in many cases, idle

machines have to wait for other busy machines to finish their jobs and all machines be

released together which is a waste of money and time. Even systems such as

104

GraphP[261] and GraphR [211] that are reducing the number of messages passing

between partitions and introducing new memory access techniques respectively, do

not discuss the monetary costs of the processing. These limitations can be overcome by

dynamic management of resources in an elastic manner.

The aim of this chapter is to develop scheduling algorithms that consider

characteristics of application workloads and resources along with network factors to

improve the performance and reduce the monetary cost of the whole computation. We

propose a novel dynamic re-partitioning method that utilizes different factors

including: a) the type of the graph application that is going to be used, b) some intrinsic

features of natural graphs such as high-degree vertices, and c) the network features of

the cloud environment that the system is running on. Our algorithms were plugged in

to our extended version of graph processing framework (iGiraph) and we compared

them with those supported in other graph processing systems such as Giraph and

Surfer on Australian National Cloud Infrastructure. We observed that up to 30% faster

execution time, up to 50% network traffic decline and more than 50% cost reduction is

achieved by our algorithms in comparison with a framework such as popular Giraph.

Our work makes the following contributions:

 A new classification of graph applications and processing is introduced in

this chapter which affects the policy that will be chosen to process the input

graph. We have studied the impacts of combinations of different situations

from this classification together on processing large-scale graphs on public

clouds for the first time and reduced the monetary costs in each situation.

 A novel mapping strategy is designed to facilitate assigning partitions to the

workers based on different features that each partition and worker has.

 A new bandwidth-and-traffic-aware dynamic re-partitioning algorithm and a

new computation-aware re-partitioning algorithm have been proposed in this

chapter. These algorithms remarkably reduce the monetary cost of processing

- which is a vital factor in the procedures of selecting services for any

customer on a public cloud

The rest of the chapter is organized as follows: Section 4.2 explains the related work.

A new classification of graph algorithms is explained in Section 4.3. Section 4.4 and 4.5

105

introduce our new proposed bandwidth-and-traffic-aware and computation-aware

dynamic re-partitioning algorithms of large-scale graphs respectively, with their

implementation on iGiraph. We explain the architecture and details of our system

(iGiraph-network-aware) in Section 4.6 followed by a discussion on the evaluation of

our works in Section 4.7. Finally, Section 4.8 concludes the chapter and proposes future

works.

4.2 Related Work

To overcome the issues on traditional processing approaches, considerable endeavors

are made to process large graphs. Some proposed systems try to process the entire

graph on a single server whereas the main problem of this method is scalability [144].

However, the utmost size of graph to be processed is restricted by the single host’s

memory in which the input graph has to be fully loaded. In addition, this method

cannot use the strength of other hosts in terms of distribution and parallelization, to

reduce the processing time. Another method is to utilize libraries that allow graph

algorithms to be executed in parallel in the shared memory approach [205]. This

method, tries to solve the issue of the previous method. However, it still has problems

with fault-tolerance and scalability [85]. Another way of processing graphs is to adopt

graphic processing units (GPU) to accelerate different graph processing tasks. In

sampling method, the input graph will be divided into several sub-graphs by the

system and then the attribute of the main graph will be estimated based on the

attributes of the smaller sub-graphs. The major issue in this method is that there is a

big distinction between the actual and estimated solutions.

Unlike the aforementioned methods, a distributed method utilizes a commodity of

servers as a generic solution to performance, scalability, and availability issues [53].

This can be specifically utilized for solving large graph problems. Pregel [148], which

was proposed by Google in 2010, is a computational model dedicated for processing

large-scale graphs. The main inspiration for Pregel is the Bulk Synchronous Parallel

(BSP) model [231] which streamlines the implementation of distributed graph

algorithms. A program in Pregel contains sequences of iterations called superstep.

106

Within a superstep, a user-defined function called Compute() is invoked by Pregel for

each vertex that specifies the conduct of the node in the superstep. The Compute()

reads messages that have been sent to the related node during the prior iteration,

applies some processing and dispatches messages to other nodes, that will be collected

at the next superstep. This function can also change the states of vertices and their

outgoing edges. Pregel uses supersteps to accomplish fault tolerance and high

scalability in a cluster of machines. Nevertheless, this might be an impasse for

performance when the amount of communications grows in a graph with vertices in

millions-scale. Many distributed graph processing frameworks have been introduced

after Pregel. Systems such as Giraph [11], Apache Hama [13], ExPregel [193], GPS [195],

GraphLab [142] and iGiraph which have been developed based on Pregel are called

Pregel-like systems. There are also other frameworks that are not developed based on

Pregel.

Pregel-like frameworks are developed based on a distributed architecture in which

one machine will act as the master while other machines will be workers (slaves) and

do the computation. In this approach, the input graph is splitted into partitions and

partitions are assigned to workers by the master to be processed. Therefore,

partitioning a graph is a critical job and since it has a direct influence on the

performance of the system, various methods have been proposed for achieving better

outcomes. A vast majority of graph processing systems propose some determined

improvements on high performance computing clusters with fast interconnects.

However, their behavior on cloud computing that provides virtualized commodity

hardware and is available to a broader crowd of users is less investigated.

Despite introducing various partitioning methods by different frameworks, the

impact of network factors on the system’s performance and the way that they can be

used to optimize or improve the processing is not sufficiently studied. Surfer [46], is

the closest framework to our proposed system. But according to the earlier discussion,

it has many shortcomings and does not cover many aspects of network bandwidth;

particularly its mapping strategy is not quite efficient. Another system that considers

network traffic is Pregel.Net. Pregel.Net [187] is implemented based on Pregel but over

.Net framework. It has used Microsoft Azure to analyze the impact of BSP graph

107

processing model on public clouds. However, it does not investigate if its changes will

affect the monetary cost of the operation.

Table 4-1 Comparison of the most related works in the literature

System Architecture Partitioning

Method

Traffic-

aware

Bandwidth-

aware

Computation-

aware

Resource

Scheduling

Pregel [148] Distributed Static × × × Static

Giraph [11] Distributed Static × × × Static

GPS [195] Distributed Dynamic √ × × Static

GraphX [81] Distributed Static × × × Static

Surfer [46] Distributed Dynamic × √ × Static

iGiraph

(Chapter3)

Distributed Dynamic √ × × Dynamic

Our work -

iGiraph-

network-aware

Distributed Dynamic √ √ √ Dynamic

In another research [172], authors have shown that the network does not have a

significant impact on the processing and the highest impact that any optimization

solution can bring to graph processing system’s performance would be something

between 2%-10%. GraphX [81] and Spark18 were used in that experiment and some

network factors such as the speed of the network was studied in different situations.

However, McSherry [154] showed that this assumption is completely wrong and many

other factors have been missed from the study. He showed that using a dataflow

framework can achieve much better results to 2X-3X compared to GraphX. This study

and ours in this chapter imply that there are still many features that can be taken into

consideration and be mixed with novel solutions to leverage the impact of network to

reach better performance. Table 4.1 demonstrates the features of some of the most

related works in the literature.

In this chapter, we extend iGiraph to support more network factors for its dynamic

re-partitioning approach by providing a novel priority mapping solution to customize

each machine for each partition. According to this solution, we provide a ranking

method for this mapping. To distinguish between basic iGiraph and our proposed

18 http://spark.apache.org/

108

network-aware system in this chapter, we refer to the new system as “iGiraph-

network-aware” for the rest of the chapter.

4.3 Processing Environment Categorization and Graph

Applications

Different works use different categorizations for graph applications. For example,

GBASE [113] and TurboGraph [91], categorize the queries to global queries and

targeted queries. Algorithms such as diameter estimation that need to traverse the

entire graph are identified as global queries while other algorithms such as single

source shortest are put in the targeted queries category. A framework such as

Giraph++ [223] uses three categories including graph traversal, random walk and

graph aggregation for graph algorithms while iGiraph utilizes a one dimension

categorization for all graph applications which divides them into convergent and non-

convergent.

In this work, we extend the iGiraph’s categorization into two-dimensions by adding

an extra layer. Figure 4.1 shows the new categorization for all sorts of processing where

any kind of application can be either computationally-intensive, communicationaly-

intensive or a combination of them.

Figure 4-1 Graph applications and processing environment categorization

 Computationally-intensive processing: This type of processing often has a

large impact on CPU utilization because it spends more time on computing

than communication and the memory side. Sometimes the graph processing

application itself is computationally intensive and sometimes other

applications keep the CPU busy in VMs and the graph application has to find

a way to be processed faster. This situation happens mostly in a public cloud

Non-convergent Application

Convergent Application

Graph processing environment on a

public cloud

Computational-intensive

Environment

Communicational-intensive

Environment

Convergent Application

Non-convergent Application

109

environment.

 Communication-intensive processing: This type of processing usually has a

big impact on network and memory especially when an application needs to

keep the intermediate states of a computation.

In this chapter, we utilize two typical algorithms (convergent and non-convergent)

to show the impacts of each algorithm on both types of processing. Here, we give a

brief description of sample algorithms that we are going to use for our experiments.

1. PageRank: PageRank algorithm was proposed to weigh the importance of web

pages and websites by calculating the number of links connected to them. The

more hyperlinks the page gets from other websites, the more significant the

page is. PageRank assesses every page individually and will not weigh the

whole website as a unit. In this algorithm, the importance of a typical web page

will not be affected by the PageRank of other pages because each page has its

own exclusive approximated weight. According to the categorization we

presented in this section, PageRank is a non-convergent algorithm due to

generating a constant number of messages in each iteration during the

processing.

2. Single source shortest path: The aim of solving the shortest path problem is to

find a route between two nodes in a graph while the sum of the weights of its

edges is minimized. Shortest path is a famous problem in graph theory and

various approaches have been suggested to solve it. Single-source-shortest-path

(SSSP) problem is a special case of the original shortest path problem. SSSP is

about discovering the shortest route between a typical source vertex and all

other nodes in the graph. Before SSSP starts, the values (distance) of all vertices

are set to INF (∞) except the source vertex which is set to 0. Any possible route

from the source vertex in the graph will be shorter than INF. During each

superstep, vertices receive messages from their adjacent nodes, update their

value using the minimum value received from their neighbors and send any

recently found minimum value to all neighbors. In the initial iteration, only the

adjacent vertices of the source node will be updated. In each superstep, the

110

updated nodes will send their new values to their neighbors until the

computation ends. The processing finishes when the status of all nodes in the

graph is changed to inactive and no more updating happens. According to this

definition, SSSP is categorized as a convergent algorithm.

The total cost of processing in a graph system is depending on two major factors

(considering equal size for the messages in the network): 1) the number of machines,

and 2) the time in which a specific type of machine is being used, as shown in Equation

4.1.

 CostTotal=
0 1

(() ())i i

m n

j i

VC TM VM

 (4.1)

In the above equation, C(VMi) is the price of each machine and T(VMi) is the time

within the machine is used. To reduce the total cost of the operation, either less costly

machines must be used, or the total time that each machine is being used should be

reduced. In order to achieve this in a graph processing system, partitioning plays an

important role. For instance, there is no need to keep all the initial machines in the

system for convergent algorithms if there is a way to repartition the graph and place

the remaining of the graph on less number of machines and reschedule the resources.

In this chapter, we show that to provide an effective dynamic repartitioning

mechanism, considering factors such as traffic, bandwidth and computation burden in

the network can help to reduce the monetary cost and improve the performance.

4.4 Bandwidth-and-Traffic-aware Graph Scheduling Algorithm

with Dynamic Re-partitioning

Assume that the average amount of network traffic sent along each cross-partition is

NM(Pi, Pj) , the networks bandwidth between the machines stored Pi and Pj to be Bi,j, and

C(Pi , Pj) to be the number of cross-partition edges from partition Pi to Pj. Because

network bandwidth is a scarce resource in the cloud environment, it is considered as

the major index for network performance. So, the approximate data transfer time

(DTT) from Pi to Pj will be as follows:

111

DTT(i,j) =
 ,

,

(,)i j M i j

i j

P P N P P

B

C

(4.2)

This estimation is adequate for large-scale graph processing in both public and

private cloud environments. Suppose we have stored P graph partitions on P disparate

machines; the overall data transfer time (DTTTotal) in the network caused in all partition

pairs is as follows:

DTTTotal=
1 1

0 0

(,)
P P

i j

DTT i j

(4.3)

Obviously if network bandwidth amongst different machine pairs is constant, the

total network data transfer time will be minimized when the total number of cross-

partition edges is minimized. Nevertheless, the network bandwidth amongst different

machine pairs can change remarkably in the cloud. Cloud providers have noticed such

network bandwidth unevenness. The network bandwidth of every machine pair

amongst 64 and 128 small Amazon EC2 instances is shown in Figure 4.2. On the other

hand, research shows that in public cloud, the network bandwidth between two

instances is provisionally steady. This allows us to perform our mapping calculation

before each superstep.

Because of the network bandwidth unevenness, an important factor for an efficient

graph processing is the mechanism of partitioning the graph and storing its partitions

on the VMs. According to [15], because there might be a large number of partitions and

workers for processing the graph, there is P! possible ways to store partitions on

workers which is a huge solution space. Another issue is finding a solution by which

both graph processing and graph partitioning algorithms can be aware of the

bandwidth variability for networking efficiency.

112

(a) (b)

Figure 4-2 Network bandwidth unevenness in Amazon EC2 small instances with (a) 64
instances and (b) 128 instances [46]

To address these issues in a public cloud environment, a new dynamic re-partitioning

method is proposed in this chapter. The idea is to place the partitions with larger

number of high-degree border vertices – which means they have larger number of

cross-partition edges – on workers with higher network bandwidth. This is because

those graph partitions need more network traffic. It also helps the partitions to be

processed faster.

To achieve performance improvement, we implemented a mapping strategy

(illustrated in Figure 4.3) in iGiraph. The processing starts with a random partitioning

approach as we use this method for all our experiments to start with. This is because

random partitioning is shown to have the worst performance among most of the

existing well-managed partitioning approaches. So, we aim to improve this situation as

the cheapest implementing strategy which is not good performance-wise. According to

this strategy, the first iteration (superstep 0) starts with a random partitioning method,

the processing of the iteration completes and the global synchronization barrier occurs.

Before going to the next superstep, we use the information we collected from the first

iteration to plan a new partitioning (re-partitioning) for the next iteration.

B
an

d
w

id
th

 (
M

B
/s

ec
)

B
an

d
w

id
th

 (
M

B
/s

ec
)

113

Figure 4-3 Mapping strategy for 5 partitions and 5 workers. Partitions with higher
priorities are assigned to the machines with higher bandwidth

After the completion of the first superstep, each partition is assigned a factor called

Partition Priority (PP). The partition with PP=0 is the one that receives the larger

number of messages over the network when compared to other partitions. In other

words, this partition contains more high-degree border vertices than other partitions. It

is also a candidate for being merged with other partitions or its vertices being migrated

to other partitions. All other partitions also get their own PP which shows their

importance based on the amount of network traffic they generate. On the other hand,

each worker also will be assigned a factor called Worker Priority (WP). The worker

with WP=0 is the one with the highest bandwidth among all workers (machines). All

other workers also will be given their own WP based on their bandwidth rating in the

network. In case in which two or more partitions have the same priority after

calculation, one of them will get the higher PP randomly. The same logic also applies to

workers. After assigning PPs and WPs to partitions and workers respectively, the

partitions with specific PPs will be assigned to the workers with the same WPs (Figure

4.3). The calculations and assignments are done after each superstep i and before each

superstep i+1.

Algorithm 4.1: Bandwidth-and-traffic-aware dynamic re-partitioning

1:
2:
3:
4:

5:
6:
7:
8:
9:

10:
11:

Partition the graph randomly
Set PP=0 for each partition and WP=0 for each worker
For the rest of the computation do
 Calculate PP for each partition based on the number of messages that each

partition receives
 Calculate WP for each worker using end-to-end mechanism
 If global synchronization happened then
 Merge the partitions or migrate vertices if needed
 Set the priorities based on PP and WP
 Map partitions(based on PP) and workers(based on WP)
 If VoteToHalt() then
 Break

114

Another issue that should be considered is the time when the priority setting should

be done. Due to the possibility of merging or removing the partitions after each

superstep, the priority setting is done after these operations, immediately before the

next iteration starts. Therefore, the partitions that have received migrated vertices will

be given the highest priorities. This is because the reason for vertex migration is to

bring high-degree vertices closer to their neighbors. If there is more than one partition

receiving migrated vertices, the one that has got more migrated vertices will get the

highest priority and so on. Also for the partitions that get merged, the priority of the

final partition (combined partition) will be set as the priority of the partition with

highest priority (its priority from the previous iteration). At the beginning of the

processing (superstep 0), all partitions’ priorities will be set to 0 (highest priority).

In a nutshell, according to Algorithm 1, after each superstep, initial priorities for the

partitions and workers will be calculated based on the measurement of various

network factors (traffic and bandwidth here) that have been completed during the

iteration. Then, if needed, partition merges and vertex migrations might happen based

on the aforementioned mechanism. Eventually, final priorities will be set for partitions

and workers and they will be mapped accordingly.

According to our experiment results (Section 4.7.2), using a mapping strategy that

assigns partitions to workers based on the traffic in the network and the bandwidth

capacity of workers, combined with iGiraph’s re-partitioning method (for both

convergent and non-convergent types of algorithms) gives much better results

compared to previous solutions. These results would be in regard to reducing the

monetary cost of the processing by reducing the cost of resource utilization, reducing

network traffic and accelerating the execution time of the whole process.

4.5 Computation-aware Graph Scheduling Algorithm with

Dynamic Re-partitioning

Although many graph algorithms are communication intensive, computation unit can

still affect the execution of applications. In a public cloud, each VM can host different

applications at the same time. Some applications might be computation-intensive and

115

keep the CPU busy while other applications are not very CPU-dependent but still can

be affected by the former. Computation-intensive algorithms or applications can delay

the computation and execution time of others.

Various approaches can be applied to deal with such situations. For example, each

job can have a different priority by which the host can schedule the computation time

for that. There are many prioritization strategies such as first-in-first-out, first-in-last-

out, assigning priority numbers to tasks, etc. Another approach for when there is no

priority or preference for job execution can be using equal time-slots for computing

jobs in an intertwined way.

Algorithm 4.2: Computation-aware dynamic re-partitioning

1:
2:
3:
4:

5:

6:
7:

8:
9:

10:
11:

Partition the graph randomly
Set PP=0 for each partition and WP=0 for each worker
For the rest of the computation do
 Calculate PP for each partition based on the number of messages that each

partition receives
 Calculate WP for each worker using CPU utilization on each worker and

CPU idle time
 If global synchronization happened then
 Merge the partitions or migrate vertices based on machineType if

needed
 Set the priorities based on PP and WP
 Map partitions(based on PP) and workers(based on WP)
 If VoteToHalt() then
 Break

We propose a similar mapping strategy as we discussed for traffic and bandwidth-

aware re-partitioning, but we consider CPU utilization instead of bandwidth in the

algorithm and re-partition the graph differently. We have implemented this strategy on

iGiraph. As in last section, the computation starts with a random partitioning for

superstep 0. At the end of superstep 0 when the global barrier happens –before

superstep 1- we use the information we have got so far to initiate the re-partitioning.

At this stage, on one side based on the number of messages that has been passed

between workers through the network, we define Partition Priority (PP) again by

which the partitions with high-degree vertices can be recognized. On the other side, a

116

scalable monitoring tool called Ganglia19 is used to monitor the CPU utilization on each

worker. Therefore, the information regarding the computational conditions of all

machines will be written and saved on a separate file on the master machine. The

information include the percentages of CPU idle times at the end of each supestep so

that it can be possible to find which machines are still busy, or how busy they are, and

which one is free and ready to use. The reason for choosing the CPU idle time to use in

the algorithm instead of CPU working time is that the former is more reliable. There

might be situations that a very small task can use most of computation resources for a

short time and increase the utilization percentage remarkably but the reality is that the

CPU will be idle the rest of the time. From this information, a map of available

computation resources can be depicted which will be used for dynamic re-partitioning

during the rest of computation. Figure 4.4 shows the computation map of a system

with 15 workers where some random computation-intensive applications are running

on some machines.

Figure 4-4 Percentage of CPU idle time in a system with 15 workers

According to the aforementioned strategy, there will be four types of machines in

the environment after the first superstep: 1) a machine with both a computation-

intensive application and high-degree vertices of graph dataset on it, 2) a machine with

computation-intensive application running on it but the graph partition that have been

assigned to that does not have high-degree vertices, 3) a machine with a partition

containing high-degree vertices but no computation-intensive application on it, and 4)

19 http://ganglia.sourceforge.net/

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CPU idle time

117

a machine that has neither computation-intensive application running on it nor the

partition that have been assigned to it has any high-degree vertices.

The idea is to move high-degree vertices with their neighbors to the machines that

have higher CPU idle time. This is because more computation is needed to be done on

these vertices in terms of the number of messages they receive. So the algorithm would

be like this: partitions in machine type 1 need to be migrated to or merged with

partitions on machines type 4 or 2 respectively. Partitions on machine type 2 can be

merged with the one on type 3 and 4. Partitions on machine type 3 can be migrated to

type 4 or be merged by partitions on machines type 2. Based on this algorithm, at the

start of the processing, all workers have their types set as 0 which will change after the

first superstep. Then, at the end of each superstep, this algorithm will re-partition the

graph and assign the proper partitions to their best worker. iGiraph-network-aware

also considers the available memory on the destination before moving the vertices.

To summarize, similar to Section 4.4, after each superstep, initial priorities for the

partitions and workers will be calculated based on the measurement of various

network factors which in this case are the traffic and the computation capacity of each

machine. After that, some partitions might get merged and some vertices might get

migrated using the dynamic repartitioning mechanism. Finally, priorities will be set for

partitions and workers and they will be mapped accordingly (Algorithm 2). The

algorithm will be terminated when there is no more active vertices to be processed.

As will be shown in Section 4.7, our experiments prove that under the equal situation,

the computation-aware re-partitioning on iGiraph-network-aware significantly reduces

the execution time of the entire processing compared to Giraph. It is also shown that

this approach can reduce the monetary cost of the processing for both convergent and

non-convergent types of applications.

4.5.1 Complexity Analysis

We analyzed the time complexity of the two proposed algorithms (traffic-and-

bandwidth-aware and computation-aware algorithms) which are very similar in terms

of the structure. Both algorithms are dependent to the number of supersteps (N) which

N varies based on the application and the number of vertices in the graph. Also,

118

prioritizing partitions (P) and worker machines (W) affect the algorithms as they need

to be calculated in each iteration. Therefore, the complexity of these algorithms is

O(N(P+W)). Since both P and W are dependent to the number of machines (m) (one

partition per worker), the complexity also can be written as O(N(log m)).

On the other side, the complexity of partitioning algorithm for Surfer is

O(m2)+O[P+log P (n+log P)] where P is the number of partitions and random

partitioning is used instead of METIS. For Giraph the complexity is O(N(n))

(n=number of nodes). As can be seen, algorithms are dependent to the applications’

complexities as well. According to [27], for instance, the complexity of SSSP and CC

algorithms are O(ne) and O((e+n)log n)) respectively, where n is the number of nodes

and e is the number of edges in the graph. In Surfer, the user should define the number

of partitions for the processing hence the complexity of the algorithm is dependent to

the number of partitions (P).

4.6 System Design and Implementation

Figure 4.5 shows the design of our proposed software system and the components that

we have added to iGiraph. The architecture and placement of different components of

our system is shown in Figure 4.6.

Figure 4-5 The components that we added to original iGiraph are shown in dotted
rectangles

4.6.1 Bandwidth Measurement

Hadoop File System

Master Workers

P
o

lic
y

Se
le

ct
o

r

Bandwidth Measurement

Traffic Measurement

CPU Measurement

Graph Input Partitioner Scheduler

Network KPI Aggregator

Re-partitioner Partition Migrant

119

Bandwidth measurement component is implemented on all machines in the system to

be able to calculate the bandwidth between workers by an end-to-end calculation

mechanism which is used in [265].

4.6.2 Traffic Measurement

To calculate the network traffic between each pair of machines, the traffic measurement

module is implemented and installed on all workers. It basically works based on the

number of messages transferring between machines. Using this information, the

system ranks the most congested paths and uses that for partitioning purposes.

4.6.3 CPU Measurement

As part of a network characteristic, CPU workload shows the amount of computations

occurring on each qmachine and in the whole network. In a public cloud, there may be

different jobs running on each machine at the same time and some of these jobs might

be computation-intensive. By knowing how busy each worker in the network is, we

can avoid overloading occupied workers by assigning more tasks to them. This module

uses the information that it receives from Ganglia- a tool by which we can measure

many specifications of a network- to calculate the CPU idle times per worker.

4.6.4 Policy Selector

Policy selector is a component of iGiraph which we have expanded to cover our

network-aware scheduling algorithms. Using this component, users specify their

workloads and based on that they define what algorithm (bandwidth-aware or

computation-aware) they want to be used to process their workload.

4.6.5 Network KPI Aggregator

The network KPI aggregator is implemented on the master to aggregate the

information from all workers and pass them to the next component for partitioning

decision making. Having this component as an independent module that gathers all

information in one place helps to reduce the burden of workers and make the

execution faster.

120

4.6.6 Re-partitioner

The re-partitioning component partitions the graph again based on the information

that has been gathered from other parts of the system. Since the system utilizes a

synchronous approach for execution, re-partitioning happens after each superstep and

before the next superstep begins. We will show that using these components and the

new re-partitioning strategy, the performance of the system will increase significantly

compared to similar frameworks such as Giraph and Surfer.

Figure 4-6 System architecture

4.7 Performance Evaluation

4.7.1 Experimental Setup

Worker 1

Worker n

Worker 2

N
et

w
o
rk

 K
P

I

A
g

g
re

g
at

o
r

Partition

Migrant

Re-partitioner

Scheduler

Partitioner

Policy

Selector

CPU

Measurement

Traffic

Measurement

Bandwidth

Measurement

CPU

Measurement

Traffic

Measurement

Bandwidth

Measurement

CPU

Measurement

Traffic

Measurement

Bandwidth

Measurement

Master

In
p

u
t

G
ra

p
h

121

We use m1.medium NECTAR VM instances for all partition workers and the master

role. NECTAR [163] is the Australian national cloud infrastructure facilities. Medium

instances have 2-cores with 8GB RAM and 70GB disk including 10GB root disk and

60GB ephemeral disk. All the instances are in the same zone and use the same security

policies. Since NECTAR does not correlate any price to its infrastructure for research

use cases, the prices for VMs are put proportionally based on Amazon Web Service

(AWS) on-demand instance costs in Sydney region according to closest VM

configurations as an assumption for this work. Hence, NECTAR m1.medium price is

put based on AWS m5.large Linux instance which costs $0.12 per hour. However,

because our experiments are in second scale (instead of hour scale), the prices are being

calculated for the entire operation in second scale. So, we charge the machines only

based on the number of seconds they were used and do not charge them for one hour

because they were used only for few seconds. We also installed NECTAR Ubuntu 14.04

(Trusty) amd64 on each instance. We plugged in our algorithms to iGiraph (our

extended version of Giraph system) with its checkpointing characteristic turned off. To

distinguish between the original iGiraph and the current work, we refer to the new

system as “iGiraph-network-aware” in this chapter. We also use Apache Hadoop

version 0.20.203.0. All experiments run using 16 instances where one takes the master

role and others are set up as workers.

We chose shortest path and PageRank for communication-bound convergent and

non-convergent algorithms respectively. Also to show the effectiveness of the

distributed processing on large-scale graphs by using our proposed solution, we utilize

three real datasets of different sizes: Amazon, YouTube and Pokec [125] . Properties of

these datasets are shown in Table 3.1.

4.7.2 Results

To evaluate the proposed algorithm we chose Giraph as a popular graph processing

framework to compare the performance of our system with. We also implemented the

bandwidth-aware graph processing method proposed by Surfer on Giraph to use it as

122

N
u

m
b

e
r

o
f

M
es

sa
ge

s

N
u

m
b

e
r

o
f

M
es

sa
ge

s

Number of Supersteps

Number of Supersteps

another baseline. Although Giraph has been improved since Surfer was developed, the

implemented algorithm still shows Surfer’s behavior on the network. We have also

compared the results with original iGiraph (chapter 3). In addition, the size of

messages in all experiments is the same. Therefore, the communication cost is

independent from message size and is calculated based on the number of messages

that are transferred through the network.

Figure 4-7 Number of network messages transferred between partitions across
supersteps for Amazon graph using shortest path algorithm

Figure 4-8 Number of network messages transferred between partitions across
supersteps for YouTube graph using shortest path algorithm

123

Number of Supersteps
N

u
m

b
e

r
o

f
M

es
sa

ge
s

Figure 4-9Number of network messages transferred between partitions across
supersteps for Pokec graph using shortest path algorithm

The first group of experiments is carried out for communication-intensive scenarios.

Most graph processing applications are classified in this category. As the results show,

iGiraph-network-aware could achieve better performance compared to Giraph,

original iGiraph and Surfer on both convergent and non-convergent applications. Both

Giraph and Surfer start computing with a constant number of machines and finish the

computation with the same number of machines; no matter if the graph is shrinking or

not during the execution. On the other hand for convergent algorithms, as the

processing continues, the number of active vertices decreases. So, iGiraph and iGiraph-

network-aware remove deactivated vertices from the memory which means the graph

is shrinking during the processing. Our experiments (Figures 4.7-7.9) show that the

number of messages in the network is reduced even more significantly compared to

original iGiraph by using dynamic bandwidth-and-traffic-aware re-partitioning and

mapping approach on iGiraph-network-aware. This leads to reducing the number of

active workers during the processing. As a result, when the number of machines

declines, the cost of processing will also drop significantly. The results even show that

the number of workers tends to be reduced faster compared to original iGiraph

(chapter 3) because using the new algorithms in this chapter, the number of messages

in the network is decreasing too. This also affects the total execution time as illustrated

in Figure 4.11.

124

Number of Supersteps

N
u

m
b

er
 o

f
M

ac
h

in
es

Ti
m

e
(m

s)

N
u

m
b

er
 o

f
M

es
sa

ge
s

Ti
m

e
 (

m
s)

Figure 4-10 Number of machines varying
during supersteps while running shortest
path algorithm on different datasets

Figure 4-11 Total time taken to perform
shortest path algorithm

Figure 4-12 The average number of
network messages in each superstep

Figure 4-13 Total time taken to perform
PageRank algorithm

It is also shown that the new mechanism works well on non-convergent algorithms

such as PageRank. According to Figures 4.12 and 4.13, not only the average number of

messages in the network is reduced in iGiraph-network-aware compared to Giraph,

original iGiraph and Surfer, but also the processing has been completed faster using

our bandwidth-and-traffic-aware dynamic repartitioning algorithm. Table 4.2 and 4.3

show the cost comparison for different datasets for shortest path and PageRank

algorithms respectively on each framework. Table 4.2 and Table 4.3 show the dollar

cost of the operations is much less with the proposed techniques in this chapter.

Table 4-2 Processing cost for SSSP on different frameworks

Dataset Giraph Surfer iGiraph iGiraph-network-
aware

Amazon $0.0140 $0.0130 $0.0096 $0.0079

YouTube $0.0125 $0.0120 $0.0082 $0.0067

Pokec $0.0145 $0.0140 $0.0099 $0.0071

125

Ti
m

e
 (

m
s)

Ti
m

e
 (

m
s)

Table 4-3 Processing cost for PageRank on different frameworks

Dataset Giraph Surfer iGiraph iGiraph-network-
aware

Amazon $0.0250 $0.0210 $0.0140 $0.0110

YouTube $0.0430 $0.0370 $0.0380 $0.0295

Pokec $0.0760 $0.0640 $0.0630 $0.0525

The second group of experiments is carried out for computation-intensive scenarios. It

is shown that using computation-aware re-partitioning that considers CPU idle time on

each worker for mapping, the system performs better compared to Giraph. For this

experiment, we have created two 500×500 matrices with random integer numbers and

multiply them to keep the CPU busy on a random number of machines. The results of

multiplication will not be saved because we do not want to decrease the memory of

workers during the experiment. The results of the experiments have only been

compared to original Giraph under the same conditions. It means that, for example we

have done the experiments on both iGiraph-network-aware with computation-aware

dynamic re-partitioning algorithm and Giraph when matrices multiplication is running

on six workers and the same workers every time. The results have not been compared

with Surfer because it does not have such capability to process the graph using

computation information on the network.

Figure 4-14 Total time taken to perform
shortest path algorithm

Figure 4-15 Total time taken to perform
PageRank algorithm

126

Ti
m

e
 (

m
s)

Figure 4-16 Number of machines varying
during supesteps while running shortest
path algorithms on different datasets

Figure 4-17 The average number of
network messages in each experiment

As shown in the Figure 4.16, again the number of machines has noticeably

decreased in iGiraph-network-aware using computation-aware dynamic re-

partitioning approach for a convergent algorithm such as shortest path algorithm. So,

processing the graph on iGiraph-network-aware is much cheaper than doing so on

Giraph (Table 4.4). The same results have been obtained for non-convergent algorithm

PageRank. It shows that our proposed mechanism has reduced the average number of

messages in the network while completing the computation faster. Table 4.4 and Table

4.5 show that the dollar cost of the operations is much less with the proposed

techniques in this chapter.

Table 4-4 Processing cost for SSSP on different frameworks

Dataset Giraph iGiraph-network-
aware

Amazon $0.0115 $0.0055

YouTube $0.0110 $0.0042

Pokec $0.0140 $0.0068

Table 4-5 Processing cost of PageRank on different frameworks

Dataset Giraph iGiraph-network-
aware

Amazon $0.0195 $0.0130

Pokec $0.0600 $0.0545

127

4.7.3 Discussion

We compared our algorithm with Surfer’s algorithm [46], due to its relevance to our

work. Both approaches use mapping strategy to map partitions and worker machines

for computation. They both consider bandwidth as an important factor that affects the

performance of processing which shows the role of network to make the processing

costly. Both methods try to reduce the number of cross-partition edges to reduce the

number of messages transferred between machines so that they can decrease the

communication cost.

Apart from the similarities, there are significant differences between Surfer and our

work. First, Surfer partitions the graph before the processing starts and never

repartitions data during computation. It creates the partition map at the beginning of

the operation along with the workers map, but it only changes the workers map during

the processing. The problem is that after each iteration, a new map is generated for

workers and partitions have to be moved to a different worker every time. It is

specifically very costly when all active and inactive vertices are meant to be transferred

together. This is the reason that iGiraph-network-aware distinguishes between

convergent and non-convergent algorithms and is using a re-partitioning algorithm to

make a new partition map and workers map after each superstep. Second, the Surfer

authors evaluate their approach using METIS and ParMETIS to initiate the partitioning

the graph while iGiraph-network-aware uses a random approach. METIS and

ParMETIS have been shown to give better partitioning results than random

partitioning. So, we believe that this is the reason that Surfer’s approach does not work

well by being initiated with random partitioning. However, initiating iGiraph-

network-aware by either METIS or ParMETIS will still give better results compare to

Surfer because of different strategies that they are using. Third, all experiments on

Surfer have been done on random graph datasets which is generated by a graph

generator and not real-world datasets. Therefore, the impact of high-degree vertices

has not been investigated by Surfer, although it is an important feature of real-world

128

graphs. Fourth, Surfer has not investigated monetary cost of the processing. This is the

unique feature of iGiraph-network-aware as it reduces the number of using machines

as the operation progresses whereas both Surfer and Giraph maintain the same higher

number of machines during the entire operation.

Overall, there are many factors that need to be considered for scheduling resources

in cloud environments [28]. However, factors such as monetary cost and networks

aspects of clouds have not been investigated much in graph processing context. Our

work is one of the first works that combines all those factors to not only improve the

performance but also to minimize the cost of using public clouds.

4.8 Summary

As the amount of data is growing every day, processing and analyzing them in a cost-

efficient way is a challenge. Distributed graph processing frameworks have emerged in

the past few years to facilitate the processing of large-scale graphs that are made and

stored by applications such as social networks and mobile applications. On the other

hand, cloud computing has brought new facilities to streamline large-scale computing

and storage. It has brought different models of computing with new paradigms such as

pay-as-you-go model, scalability and elasticity. In this chapter, a new graph processing

framework was proposed to analyze large-scale graph data. To achieve this, a new

two-dimension classification of graph applications was used for the processing

strategy. A novel dynamic re-partitioning was also introduced which considers

network factors such as bandwidth and network traffic to process the graph by

reducing network, communication and monetary costs. According to our experiments,

this model could significantly outperform other frameworks such as famous Giraph.

129

130

131

Chapter 5

5 Auto-scaling Algorithm for Graph
Processing with Heterogeneous

Resources

Graph processing model is being adopted extensively in various domains such as online

gaming, social media, scientific computing and Internet of Things (IoT). Since general purpose

data processing tools such as MapReduce are shown to be inefficient for iterative graph

processing, many frameworks have been developed in recent years to facilitate analytics and

computing of large-scale graphs. However, regardless of distributed or single machine based

architecture of such frameworks, dynamic scalability is always a major concern. It becomes

even more important when there is a correlation between scalability and monetary cost - similar

to what public clouds provide. The pay-as-you-go model that is used by public cloud providers

enables users to pay only for the number of resources they utilize. Nevertheless, processing

large-scale graphs in such environments has been less studied and most frameworks are

implemented on commodity clusters where they will not be charged for the resources that they

consume. In this chapter, we have developed algorithms to take advantage of resource

This chapter is partially derived from:

 Safiollah Heidari and Rajkumar Buyya, “A cost-efficient Auto-scaling Algorithm for

Large-scale graph processing in Cloud Environments with Heterogeneous

Resources”, IEEE Transactions on Software Engineering (TSE), 2018 (Under review)

132

heterogeneity in cloud environments. Using these algorithms, the system can automatically

adjust the number and types of virtual machines according to the computation requirements for

convergent graph applications to improve the performance and reduce the dollar cost of the

entire operation. Also, a smart profiling mechanism along with a novel dynamic repartitioning

approach helps to distribute graph partitions expeditiously. It is shown that this method

outperforms popular frameworks such as Giraph and decreases more than 50% of the dollar

cost compared to Giraph.

5.1 Introduction

RAPH-LIKE data has grown to a very large-scale and it is becoming massively

critical with the emergence of social networks and Internet of Things (IoT). Many

other areas and applications such as healthcare, search engines, maps, mobile

computing and machine learning are also generating and using large-scale graph data.

Traditional data processing approaches such as MapReduce [56] has been well-

considered for processing large-scale graphs in spite of its initial purpose of operating

on tuple-based databases, due to its comprehensiveness in big data processing.

Nevertheless, MapReduce is not suitable for the inherent iterative characteristic of

graph algorithms. This has led to the development of many specialized graph

processing systems such as Pregel [148], GraphLab [142] and others [192] [241]. These

systems can inherently represent and perform efficiently on iterative graph algorithms

including PageRank [173], shortest path and connected components [96] by developing

optimizations to specialized graph abstractions. As a result, graph processing systems

perform significantly better than multi-purpose data flow systems such as MapReduce

[2]. Recently graph processing application models are also adopted even for stream

data processing applications [25].

While it has been shown that graph processing frameworks offer a good level of

scalability on fast interconnected high-performance computing machines, their

behavior on “virtualized commodity hardware” which is available to a broader range

of users is less studied [187]. Cloud computing brought on-demand and scalable

distributed storage and processing services by which it overcomes challenges and

G

133

restrictions of traditional computing. Meanwhile, public cloud has become more

popular by offering services such as infrastructure-as-a-service (IaaS), platform-as-a-

service (PaaS) and software-as-a-service (SaaS). It provides cost scalability by

facilitating on-demand compute resource provisioning based on its pay-as-you-go

model where resource access is democratized. However, issues such as the overhead for

virtualizing infrastructure on a commodity cluster, performing in controlled situations

and environments, lack of complete control on communication bandwidth and latency

due to imperfect virtual machine (VM) placement affect the advantages of using such

systems. Additionally, performance consistency will be affected by multi-tenancy. On

one side, in some cases, users may value the monetary cost more than reliability or

performance while selecting a public cloud service. On the other side, while many

scientific computing need to utilize more than thousands of cores on a high-

performance cluster, the dollar cost of public cloud resources restricts the number to

tens/hundreds. Therefore, scientific applications that require resources beyond a single

large server and less than a huge cluster of high-performance nodes can fit the elasticity

of public clouds.

Despite the significant impacts of elasticity and cost in cloud environments,

investigating these features for graph processing systems’ performance on such

platforms is still a major gap in the literature. Few graph processing frameworks such

as Pregel.Net [187] and Surfer [46] are developed to be used on public clouds in order

to process large graphs but they are investigating only particular characteristics other

than scalability and monetary cost. For instance, Surfer has offered a latency-based

graph partitioning approach by which partitions will be placed on workers based on

their bandwidth while the .Net-based version of Pregel, Pregel.Net, has evaluated the

influence of Bulk Synchronous Parallel (BSP) model [231] on processing graphs using

Microsoft Azure public cloud.

Cloud providers usually provide a wide range of resources including various types

of virtual machines so customers can choose between resources and find the best

option to fulfill their requirements with different priorities. In fact, the adoption of

heterogeneous computing resources (VMs with different configurations) by cloud users

will permit for promoting the efficiency of resources and hence reducing energy usage

134

and costs. At the moment, none of the existing graph processing frameworks are taking

advantage of this feature.

Scalability is another important feature that can help cloud applications to gain

optimal performance and minimize the cost. iGiraph is a Pregel-like graph processing

framework which is developed based on Apache Giraph [11] and deploys a scalable

processing approach on clouds. iGiraph proposes a dynamic repartitioning method to

decrease the number of VMs during the operation (scalability) by using network

message traffic pattern to merge or move partitions across workers. It also executes

faster by reducing network traffic based on its mapping strategy. Therefore, iGiraph

reduces the cost of processing on public clouds. What distinguishes iGiraph from its

other counterparts such as Giraph is that not only it proposes methods for faster

execution and provides better performance, but also offers approaches for the less

investigated side of such frameworks on public clouds which is the dollar cost of

resource utilization. However, iGiraph works only with homogeneous resources instead

of heterogeneous VMs. Since the cost model for cloud service providers is based on

pay-as-you-go approach, it is very important for customers to choose suitable services

by considering the factors that affect the cost of various services.

Distributed graph processing contains a set of iterations in which graph partitions

will be placed on different machines (workers). The operation continues until the

expected result is achieved or there are no more vertices to be processed. An effective

approach to minimize the cost in such system is to provide the best combination of

resources (appropriate number of resources with the right type) out of the available

resource pool at any iteration. To utilize the aforementioned capacity of public clouds

in providing heterogeneous computing resources in the context of large-scale graph

processing, we have used iGiraph to propose an auto-scaling algorithm for optimizing

the cost of processing on public clouds. Our approach significantly reduces the

financial cost of utilizing cloud resources compared to other popular graph processing

frameworks such as Giraph [11] and ensures faster execution. To the best of our

knowledge, this work is the first implementation of a graph processing framework for

scalable use of heterogeneous resources in a cloud environment. This approach is very

effective when the monetary cost is important for the user.

135

The key contributions of this work are:

 A new cost-efficient provisioning of heterogeneous resources for convergent

graph applications

 A new resource-based auto-scaling algorithm

 A new characteristic-based dynamic repartitioning method combined with a

smart process monitoring that allows efficient partitioning of the graph

across available VMs according to VM types.

 A new implementation of operation management on the master machine.

The rest of this chapter is organized as follows: Section 5.2 describes graph

applications and the proposed auto-scaling method that we use in this chapter. Section

5.3 explains the scaling policy and how we are going to apply it to the heterogeneous

resources in a cloud environment for processing large-scale graphs. Section 5.4 explains

the proposed approaches and algorithms for repartitioning and processing graphs in

such a heterogeneous environment. The implementation and evaluation of the

proposed mechanisms are provided in Section 5.5, while related works are studied in

Section 5.6. Finally, we conclude the chapter and vision our future work in Section 5.7.

5.2 Graph Applications And Auto-Scaling Architecture

In this section, we discuss in details the applications that we used along with our

proposed auto-scaling architecture.

5.2.1 Applications

According to iGiraph (Chapter 3), when it comes to processing, there are two types of

graph algorithms: 1) non-convergent algorithms, and 2) convergent algorithms. During

processing a large-scale graph by a non-convergent algorithm such as PageRank [173],

the number of messages that are being created in every iteration (superstep) is the same

and will not change until the end of the operation (Fig. 5.1 - c). Basically, PageRank

136

calculates the importance of a web page by counting the number of connections (links)

from other pages to it. So, more connections mean higher rank for the page. For a

specific web page P, the value will be measured by receiving the values of all the

neighboring pages during a processing iteration. This generates almost the same

number of messages every time and will continue until all the pages update their

values. The graph never shrinks because vertices are actively sending and receiving

messages. Therefore, a graph processing framework uses a constant number of

machines to process a graph using PageRank for the entire operation.

On the other side, while processing a graph by a convergent algorithm, the number

of messages that are being generated in the network will start decreasing at some point

during the operation until the end of processing (Fig. 5.1 – a,b). This is because as the

more iteration is completing, the more vertices become deactivated (processed) and do

not need to exchange messages with their neighbors anymore. As a result, once in a

while within an operation using convergent algorithms, deactivated vertices (processed

vertices) can be kept outside the memory which means less number (or smaller type) of

resources will be sufficient for the rest of the processing (remaining vertices). This

continues until there are no vertices to be processed or the desirable result has been

achieved. According to this, the processing can be dynamically scalable. Two important

algorithms in this category are single source shortest path [190] and connected

components [96] that have been used in many studies.

Figure 5-1 General patterns of the number of messages passing through the network
during a typical processing show convergence by the end of the operation for (a) CC
and (b) SSSP, but (c) PageRank is not converged

Single source shortest path (SSSP): single source shortest path is derived from

shortest path problem. In a directed graph, the aim of SSSP is to find the shortest path

137

from a given source vertex r to every other vertex v∈ V--{r}. The weight (length) of a

path p=⟨ v0 , v1 ,…, vk ⟩ is the sum of the weights of its constituent edges: w(p) = ∑ w(

vi-1 , vi). At the beginning of the algorithm, the distance (value) for all nodes will be set

to INF (∞) except the source node that will be set to zero (0) (because it has zero

distance from itself). During the first iteration in a graph processing operation, all

neighbors of the source node will be updated by receiving its value and update their

distance values. In the second iteration, the updated neighbors will send their values to

their own adjacent vertices and this will continue until all vertices in the graph update

their value and there is no more active node in the graph. Changing the status of

processed vertices during the operation means, in most cases, we do not need them for

the rest of processing. Therefore, SSSP is a convergent algorithm.

Connected components (CC): Connected components algorithm is for detecting

various sub-graphs in a specific large graph where there is a route between any two

nodes of the sub-graph but it may not be connected to all nodes in the large graph. A

highly connected component algorithm starts by setting all graph nodes’ status to

active. At the start of the computation, each node’s ID will be considered as its initial

component ID. The component ID can be updated if a smaller component ID is sent to

the node. Then, the node will send its new value to its neighbors. In this operation, the

number of messages required to be passed between vertices will reduce as the

processing progresses. It is because the states of vertices change to inactive during the

operation. Similar to SSSP, CC is also a convergent algorithm that can be considered for

our auto-scaling approach.

We have targeted convergent algorithms in this chapter as they are more suitable for

scaling scenarios and will show how they can benefit from the heterogeneity of public

cloud’s resources using our proposed auto-scaling and repartitioning algorithms and

framework.

5.2.2 Proposed Auto-Scaling System Architecture

A user can have access to different types of VMs on a public cloud according to his/her

requirements. If the application is communication-intensive, VMs with larger

memories and more bandwidth can be utilized and if the application is computation-

138

intensive, VMs with more CPU capacity will be more helpful to use. Most distributed

graph processing frameworks rely only on homogenous implementation and try to

reduce the cost by speeding up the computation and decreasing the execution time [80]

[223] [32]. These frameworks consider dedicated clusters in various sizes whereas in

real world it is not possible for all users to provide such infrastructures. Instead, from a

user point of view, it is beneficial to use public clouds for large-scale graph processing

[35]. However, monetary cost is a very important issue in choosing the right service

from a provider. Issues such as what is the best scaling policy (horizontally or

vertically) to reduce the cost?, what is the best partitioning method to take advantage of

more cost-efficient VMs?, how these policies can be applied to a graph processing

framework?, how to improve the system performance on public cloud?, etc. are very

important problems that influence the final performance and cost of the processing. To

enhance the performance of large-scale graph processing on public clouds, first, we

implement an auto-scaling approach within our graph processing framework to utilize

the heterogeneity of resources in this environment.

As shown in Figure 5.2, our proposed auto-scaling system is aware of the states of

available machines at any moment. The system consists of a monitoring module by

which it tracks different states of each machine and the network such as the number of

generated messages, memory utilization, CPU utilization, VM info, etc. There is also a

decision-making module that decides how to apply the right scaling policy based on

the information that has gathered about current situations of VMs, network and the

graph itself. Finally, the partition distributor module distributes the partitions across

the available VMs according to the computing strategy. All these modules are

implemented on the master machine that controls the entire processing and partition

assignments.

At the end of each superstep, the monitoring module collects various information

from all workers about the current state of the system, network and the graph and

passes them to decision making module. Decision-making module compares new

information with information from the previous superstep and investigates different

scenarios to replace VMs in order to reduce the cost. For each calculation, the cost of

iteration i+1 should be equal to or less than the cost of iteration i. If migrating vertices

139

and merged partitions to smaller/less costly VMs decreases the cost of iteration

compared to the previous iteration, then current VMs will be replaced by new ones.

Otherwise, the current configuration will be untouched. This module also determines

the number of VMs that can be replaced and the types of new VMs based on the

information from monitoring module. Eventually, partition distributor module will be

notified of the new configuration and distributes new partitions accordingly.

5.3 Horizontal Scaling (Step Scaling)

Horizontal scaling is simply adding more machines to the existing configuration of

resources. Although scaling happens based on additional needs to new resources,

adding new machines does not necessarily mean adding more powerful machines.

Sometimes a large resource needs to be broken down into smaller types and share the

burden to minimize the cost. When the machines that are added to or removed from a

pool of resources in a particular configuration are from the same type, the scaling is

called homogeneous whereas it is called heterogeneous when machines are from

different types. Scaling also can be upward when new resources (machines) are being

added to the system or downward when some machines are being removed from it.

Figure 5-2 Proposed auto-scaling architecture

140

iGiraph is an extension of Giraph [11] and the only Pregel-like framework that scales

down homogeneously across public clouds while processing convergent algorithms

(Fig. 54 - a). Basic iGiraph does not monitor network factors (except network traffic) or

VM availability. Its decisions are made based only on the number of generated

messages in the network, size of the partitions and memory. The idea is to merge small

partitions from two different machines to make a bigger partition that fits into one

machine, or migrate border vertices of a partition to another partition to reduce

message passing ratio between VMs. Although the number of VMs will be reduced in

this approach, the processing starts and finishes by only using one type of machines

(e.g. large machines) during the entire operation.

(a) iGiraph homogeneous scaling policy

Figure 5-3 General horizontal scaling policies

141

(b) Our proposed heterogeneous scaling policy

Figure 5-4Scaling policies for large-scale graph processing using convergent algorithms
(a) basic iGiraph uses the same VM type during the entire processing, (b) iGiraph-
heterogeneity-aware replaces VMs with smaller/less costly types as the processing
progresses

The alternative to make this method even more efficient is to use a combination of

different VM types. We observed that in many experiments, during final supersteps,

the last VM (which is usually a large or medium size VM) is larger than what is needed

to complete the operation and it means that the user is paying for a big machine to

accomplish a small task.

To address this issue, we propose a heterogeneous scaling in VM level which is

specifically appropriate for processing large-scale graphs using convergent algorithms.

In this method, as the processing continues, the system chooses suitable VM type based

on the required capacity to host and process the rest of the graph, and partitions it

accordingly. The new framework can easily be used as a cost-efficient graph processing

service. Fig. 5.4 compares the original iGiraph homogeneous scaling policy versus our

proposed policy.

iGiraph-heterogeneity-aware, unlike basic iGiraph, measures and monitors more

network factors such as bandwidth and CPU utilization in addition to the network

traffic. Combining this with other information such as memory utilization, VM states,

partitioning changes, vertices migration, available VMs, etc. provides the new

approach with a holistic view of the entire system and the environment that it is

operating in it which in turn is required to estimate and optimize the cost of

142

processing. Since every processing operation consists of several iterations (supersteps),

to reduce the overall cost of the processing, the summation of the costs of iterations

must be decreased. To achieve this, the cost of every iteration should be either equal to

or less than the cost of its previous iteration.

C(Si+1) ≤ C(Si) (5.1)

According to Formula 5.1, new VMs can be added and replaced only if the cost of

new configuration will be less than the cost of the current configuration. C(S) is the cost

of the superstep. This decision will be made by the decision-making module (Section

5.2.2). This approach successfully deals with price heterogeneity of the cloud resources

too as price is one of the variables in the equation. This ensures that not only the

smaller VMs are being used, but the monetary cost is being considered as well.

5.4 Dynamic Characteristic-Based Repartitioning

In this section, we discuss the smart VM monitoring and our proposed characteristic-

based dynamic repartitioning approach.

5.4.1 Smart VM Monitoring

The first step towards a smart partitioning is smart monitoring. A large number of

existing graph processing frameworks do not measure important environmental factors

such as network metrics and VM properties. These factors have huge impacts on the

system’s performance in various manners. For example, monitoring network traffic can

help to lead communication messages to the channels with less traffic to reduce latency,

or monitoring available memory and price of VMs enables to choose the right

machines for hosting partitions in order to increase the performance and reduce the

cost of processing. In addition, the knowledge that is achieved from monitoring these

factors can be utilized in helping to design and develop a more efficient framework.

143

Therefore, to better take advantage of aforementioned metrics, we have designed a

smart monitoring center in the heart of our proposed system, the master machine. The

reason for centralizing this information on the master is that all decisions can be made

in one place which leads to more accurate decision-making process.

There are two types of information that are gathered by our proposed system: 1) The

information that is generated during the processing which is very dynamic and can

change over time (such as network traffic, remaining VM memory, etc.), and 2) The

information that remains unchanged during the entire operation (such as VM price,

VM total memory capacity, etc). At this stage, the information that is listed in the

proposed monitoring system includes the network traffic, VM bandwidth, CPU

utilization, available VM memory and partition sizes. All information will be stored on

the master machine and updated at the end of each superstep after the synchronization

barrier occurrence. Having these, the algorithm is able to choose the best approach to

repartition the graph continuously, scale up by using available heterogeneous resources

on the cloud and distribute the new partitions accordingly. Meanwhile, selecting the

appropriate set of information to be used at each step depends on the strategy that is

defined in the repartitioning algorithm which is usually dependent on the application

itself. For example, if the application is communication-bound, the algorithm aims to

reduce the network traffic by repartitioning the graph in a way that high-degree

vertices will be migrated and placed near their neighbors. This way, a large number of

messages will be passed in-memory and do not need to travel across the network. The

communication will speed up as well by mapping new partitions and VMs based on

their bandwidth. The strategy would change when the application is computation-

bound. These situations have been investigated in Chapter 4. In this chapter, we use

two convergent communication-bound algorithms: single source shortest path and

connected components.

Different mechanisms have been implemented to measure various factors in the

environment. As discussed in Chapter 3, to measure the network traffic, we calculate

the number of messages that are passed between partitions in each iteration. This

measurement also shows us which partitions contain more high-degree border vertices

which will affect our decision-making strategy. Bandwidth and CPU utilization are two

144

factors which were not measured in basic iGiraph. For measuring the bandwidth

between each pair of machines, we use an end-to-end mechanism that is utilized in

[79]. This factor is important because the bandwidth constantly changes in a cloud

environment. Moreover, since we store one partition on each worker, this evaluation

gives us the bandwidth between two partitions in the network which in turn can be

used in the mapping operation. On the other side, we use Ganglia20 monitoring tool to

obtain CPU utilization and other network metrics. To have a more accurate

measurement, the percentages of both CPU utilization and CPU idle time is measured.

CPU idle time is for cases where a small piece of a job consumes a large part of the

computation resources for a very short amount of time while they are free for the rest

of the time (Chapter 4). However, in some cases, one small continuous task will be

running on CPU for a long time. In this situation, the idle time is small while CPU

utilization is also small. So, only if idle time is small and the CPU utilization is big, the

VM will not be considered for migration or replacement. The system will consider a

default threshold of 50% for both CPU utilization and idle time and selects the policy

based on that. Nevertheless, the user can define the threshold for both variables

manually too. We also calculate the available capacity of each machine by considering

the correlation of the sizes of partitions and VMs. Additionally, to avoid making

monitoring a bottleneck for the performance of the system, changeable information will

be stored on workers until the synchronous barrier happens and final values will be

sent to the master only once after every barrier signal.

Besides factors that are being persistently modified during the processing, there are

constant factors such as VM properties, prices and types of machines that will not

change. In fact, they are inherently part of the cloud environment. So, they will be

stored at the beginning of the operation. The system also will know how many

machines are available on the network and how much resources they can provide for

the execution. The resource pool will be considered based on the maximum amount of

resource requirements by users at the beginning of the processing which later will be

20 http://ganglia.sourceforge.net/

145

optimized during the operation. Another important difference between iGiraph-

heterogeneity-aware and basic iGiraph is that the latter is environment-agnostic and

did not use any of this information for a better computation. All these information

alongside the changeable metrics’ information will be stored in a separate file on the

master machine to be used in the partitioning algorithm.

5.4.2 Dynamic Repartitioning

Algorithm 5.1: Characteristic-based Dynamic Re-partitioning

1:
2:
3:
4:
5:

6:
7:
8:

9:

10:
11:

12:
13:
14:

15:
16:
17:
18:
19:
20:
21:

Get the information about available VMs in the network
Partition the graph randomly
Set PP=0 for each partition and WP=0 for each worker
For the rest of the computation do
 Calculate PP for each partition based on the number of messages that each

partition receives
 Calculate WP for each worker using end-to-end mechanism
 If global synchronization happened then
 If Size(Partition P1)<=Size(MemoryOfSmallVM) and
 Size(Partition P2)<=Size(MemoryOfSmallVM) and Size(Partition

P1+Partition P2)<=Size(MemoryOfSmallVM) then
 mergeIntoSmallVM(P1,P2)
 removeCurrentVM(P1,P2)
 If Size(P1+P2)>Size(MemoryOfSmallVM) and
 Size(P1+P2)<=Size(MemoryOfCurrentVM) then
 mergeIntoCurrentVM(P1,P2)
 removeCurrentVM()
 If Size(Partition P1) is very small and there is enough space
 in its adjacent partitions then
 migrateIntoAdjacent(P1)
Merge the partitions or migrate vertices if needed
Set the priorities based on PP and WP
Add/Remove VMs if needed
Map partitions(based on PP) and workers(based on WP)
If VoteToHalt() then
 Break

To enable and improve the usage of heterogeneous resources, we have proposed a

characteristic-based repartitioning method. “Characteristic-based repartitioning” here

means that the system knows the characteristics of the resources and is aware of

specific statistics (such as network metrics) by which new decisions can be made about

146

partitioning the graph again in a dynamic manner. To achieve this, the algorithm

contains two major steps: 1) prioritization step, and 2) mapping step. In the

prioritization step, the algorithm prioritizes partitions and resources based on the

application requirements before distributing partitions across the network. The

mapping step is where the algorithm decides how to utilize the available resources.

As mentioned in section 5.4.1, the static information about the available VMs and

their types will be stored on the master. This information includes the price, the

number of cores and memory capacity of each VM along with labeling VMs based on

their size e.g. small, medium and large. The labeling mechanism increases the speed of

algorithm when it is making decisions about where to place the new partitions

(Without a labeling mechanism, the algorithm had to compare VM capacities to find

out which type they are). In this chapter, the system knows how many machines are

available in the network (resource pool) and it will be given by a list of information

before the processing starts. However, to start the processing, the initial number and

the type of VMs will be given by the user. So, at this step, out of the resource pool, only

a specific number of VMs will be used to start the processing with. This can be

considered as a pre-processing operation. Also, in all our experiments in this chapter, at

the start of the processing, the graph will be partitioned randomly (based on vertices

identifiers). It has been shown that other well-managed partitioning methods such as

METIS have better performance compared to the cheap random partitioning (in terms

of time and cost). Therefore, if we are able to improve the system by using random

approach, it will work even better when the processing starts with other well-managed

methods in many cases. The first iteration of processing (superstep 0) ends when the

global synchronization barrier happens. At this point, the VM monitoring module

collects the information (changeable information-Section 5.4.1) before the next

superstep to use them for repartitioning purpose.

After superstep 0, the algorithm starts prioritizing partitions and VMs according to

the changes that occurred in the first iteration. It also investigates any scaling

possibility at the resource level for the next iteration. At this phase, like each partition

will be given a new label value called Partition Priority (PP) based on the number of

messages they have received. The PP for the partition that has received the largest

147

number of messages will be set to 0 (PP=0), the PP for the partition that has received

the second largest number of messages through the network will be set to 1 (PP=1) and

so on. When a partition receives more messages in comparison with other partitions, it

means that it contains more high-degree border vertices. Therefore, since the aim is to

move high-degree vertices closer to their adjacent vertices, this can be considered as a

candidate for partition merge or vertex migration. With a similar mechanism, all

worker machines that were used in the operation will be labeled by a Worker Priority

(WP) label. Because we are using communication-bound application in this chapter

(computation-bound algorithms will be investigated in our future works), the

prioritization of workers is based on their bandwidth (not CPU utilization) and

available memory. So, the WP for the VM with the highest bandwidth will be set to 0

(WP=0), WP for the VM with the second highest bandwidth will be set to 1 (WP=1) and

so on. If two partitions or two workers have the same value for prioritization, one of

them will be given the higher priority randomly. After this phase, because we put one

partition per VM, the partitions and VMs with the same priority number will be

mapped to each other. This calculation is fast as all information is gathered during the

iteration.

As mentioned above, the system selects VMs of the same type from the resource

pool based on the user’s requirement. For example, if partition P1 has higher priority

than partition P2, after merging these two partitions (P3=P1+P2), P3’s priority will be

set to the former priority of P1. Meanwhile, the priorities of the new partitions that are

formed by merging other partitions will be set to the highest priority among existing

partitions. Also in cases a big VM is splitting into smaller VMs or moving its entire

assigned partition to a smaller type of VM, the priority of the new VM will be

calculated the same way as a large VM. The priorities of all partitions and VMs are set

to 0 at the beginning of the operation (before superstep 0 starts).

As mentioned, the system starts with the number of VMs that is determined by the

user. These VMs are part of available VMs in the network (resource pool). The

operation also starts with the VMs of the same type. For example, if the user set the

number of VMs to 16, and choose the type medium, then 16 medium VMs will be

allocated to the processing. Nevertheless, both the number and the type (size) of VMs

148

will change during the execution due to partition merges or vertices’ migrations. The

aim of merging partitions or migrating vertices is to take high-degree vertices closer to

their adjacent vertices. This, results in a significant reduction in cross-edges between

machines which leads to less message transmission throughout the network. When the

total number of messages that are transferred during the superstep i+1 is less than the

total amount of the messages that were transferred during superstep i, there is a

possibility for partition merge. So, as long as the number of messages is increasing,

partitions cannot merge (e.g. SSSP). After each superstep, if the sum of the size of

typical partition P1 and partition P2 is less than the memory capacity of a smaller VM

type, then they will merge and partition (P1+P2) will be moved to the new small VM. If

(P1+P2) is larger than the memory of small VM, but it can be fit into the memory of one

of current VM types, they will merge into one VM and the other VM will be removed.

If some partitions, that are neighbors of a very small partition (a partition that has

occupied a tiny fraction of a VM memory), have enough space to host the vertices of the

small partition without needing to employ a new VM, then all vertices of the small

partition will be distributed among its adjacent partitions. So, there is no need to add a

new machine. Algorithm 1 shows the characteristic-based dynamic repartitioning. In

this algorithm, CurrentVM and SmallVM are two representatives of the current

utilized VM and the smaller VM that partitions and vertices will be migrated or

merged to, respectively. So, for example, if the CurrentVM is “Large” type, then

SmallVM can be a “Medium” type and so on. As a result, this algorithm is working for

any types of VMs.

5.5 Performance Evaluation

5.5.1 Experimental Setup

To evaluate our framework and effectiveness of the proposed algorithms, we utilized

resources from Australian national cloud infrastructure (NECTAR) [163]. We utilize

three different VM types for our experiments based on NECTAR VM standard

categorization: m2.large, m1.medium, and m1.small. Detailed characteristics of utilized

149

VMs are shown in Table 5.1. The reason for using m-type VM is because the algorithms

that we are using are memory-intensive and using m-type machines provides better

performance. Since NECTAR does not correlate any price to its infrastructure for

research use cases, the prices for VMs are put proportionally based on Amazon Web

Service (AWS) on-demand instance costs in Sydney region according to closest VM

configurations as an assumption for this work. According to this, NECTAR m2.large

price is put based on AWS m5.xlarge Linux instance, NECTAR m1.medium price is put

based on AWS m5.large Linux instance and NECTAR m1.small price is put based on

AWS t2.small Linux instance. All VMs have NECTAR Ubuntu 14.04 (Trusty) amd64

installed on them, being placed in the same zone and using the same security policies. .

We observed that regardless of which region the user chooses VMs from, our solution

always reduces the monetary cost by the order of magnitude compared to other

existing frameworks. We use iGiraph with its checkpointing characteristics turned off

along with Apache Hadoop version 0.20.203.0 and modify that to contain

heterogeneous auto-scaling policies and architecture. All experiments are run using 17

machines where one large machine is always the master and workers are a combination

of medium and small instances. We use shortest path and connected components

algorithms as two convergent graph algorithms for our experiments. They are good

representatives of many other algorithms regarding their behavior. We also use three

real-world datasets of different sizes: YouTube, Amazon, and Pokec and Twitter [125] as

shown in Table 3.1.

Table 5-1 VM characteristics

VM Type #Cores RAM Disk

(root/ephemeral)

Price/hour

m2.large 4 12GB 110GB (30/80) $0.24

m1.medium 2 8GB 70GB (10/60) $0.12

m1.small 1 4GB 40GB (10/30) $0.0292

5.5.2 Evaluation and Results

We have compared our system and algorithms with Giraph because it is a popular

open source Pregel-like graph processing framework and is broadly adopted by many

150

companies such as Facebook [49]. We also compared the performance of basic iGiraph

that scales out homogeneously with our proposed heterogeneous extension of iGiraph

(iGiraph-Heterogeneity-aware). The size of the messages in all experiments is equal,

hence the total cost of communication is independent of message size. Instead, the total

number of messages that are transferring through the network is calculated for cost. In

addition, one medium VM is almost equal to two small VMs in terms of capacity and

the power, or we can say each small VM is equal to 0.5 medium VM. We use this when

we are calculating the number of machines that are being used by the system at any

moment. For example, 1.5 means that there is one medium VM (1) and one small VM

(0.5) being used, or 1 can mean either one medium VM or two small VMs (0.5+0.5=1),

etc. All experiments start with medium VMs as their workers.

Figure 5-5 Number of machines during
processing shortest path on Amazon

Figure 5-6 Number of machines during
processing shortest path on YouTube

Supersteps

N
um

be
r o

f M
ac

hi
ne

s

Supersteps

N
um

be
r o

f M
ac

hi
ne

s

151

The first group of experiments is conducted for processing various datasets using

shortest path algorithm. As shown in the above figures, the blue area demonstrates the

number of VMs that are being used by Giraph wich is correlated with the cost of the

operation. So, Giraph is the most costly solution among the three systems because it

Figure 5-7 Number of machines during
processing shortest path on Pokec

Figure 5-8 Number of machines during
processing shortest path on Twitter for
the first 50 supersteps

Figure 5-9 Total execution time for
processing connected components
algorithm on various datasets

Supersteps

N
um

be
r o

f M
ac

hi
ne

s

Supersteps

Nu
m

be
r o

f M
ac

hi
ne

s

Ti
m

e
(s

)

152

uses the same number of machines during the entire operation. Many existing

distributed graph processing frameworks never reduce the number of resources during

the processing. On the other hand, as the operation is being progressed and more

vertices become processed, iGiraph removes unnecessary VMs and distributes the rest

of partitions on the remaining machines. The red area shows that iGiraph is reducing

the number of utilized VMs. This declines the cost significantly on a public cloud

compared to the Giraph. However, basic iGiraph only removes the machines

homogeneously. It means that if the processing is started by medium machines, it will

end by medium machines as well despite the VM reduction. In this case, although

smaller partitions tend to be merged to create a bigger partition that is suitable for the

current using VMs to optimize VM utilization, there are always situations where a tiny

partition cannot be merged or migrated but occupies a big VM and all its capacity. To

address this, iGiraph-Heterogeneity-aware replaces current VMs by smaller one. It has

been shown that iGiraph-Heterogeneity-aware provides more than 20% cost reduction

compared to original iGiraph (the green area). The majority of this cost saving is due to

removing unnecessary VMs from the list of active VMs or replacing them with smaller

types. We consider VMs as a package of resources including computation resources,

storage resources, etc. Hence, removing or downsizing VMs lead to huge cost savings.

All VM types are correlated with particular prices as shown in Table 5.1. Therefore, as it

can be seen in the diagrams (Fig. 5.5, 5.7, 5.9) for both basic iGiraph and iGiraph-

heterogeneity-aware, the cost of each superstep is either equal to or less than the cost of

its previous superstep due to VM elimination or replacement (Section 5.3). However,

iGiraph-heterogeneity-aware achieves better results by taking advantage of resource

heterogeneity. As shown in Figures 5.6, 5.8 and 5.10, iGiraph-Heterogeneity-aware even

completes the processing faster than other two frameworks due to its new partitioning

approach which distributes partitions based on their characteristics and the properties

of available machines. Figures 5.11-5.13 show the number and types of machines in each

iteration. These results that have been generated by putting together the average

outcomes of 45 runs demonstrate the behavior of our proposed solution and how it

removes or replaces VMs during the processing.

153

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9

Medium VM Small VM

As a result, the total cost of the processing is dependent on the number and the time

(duration) that a particular type of VM is being utilized during the operation. This is

shown in Formula 5.2, where C(VMi) is the price of the VM and T(VMi) is the time that

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Medium VM Small VM

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Medium VM Small VM

Figure 5-10 Resource modification during processing shortest
path on Amazon

Figure 5-11 Resource modification during processing
shortest path on YouTube

Figure 5-12 Resource modification during processing
shortest path on Pokec

154

within the VM is used. The equation calculates the cost for all VMs (n) during the

entire processing iterations (m).

Costfinal =
0 1

(() ())i i

m n

j i

VC TM VM

 (5.2)

Although data transfer affects the ultimate cost calculation, we did not consider that

in this equation, but we will take it into consideration for our future works. Table 5.2

shows the cost comparison for different datasets for shortest path algorithm on each

framework

Table 5-2 Processing cost for SSSP on different frameworks

Dataset Giraph PowerGraph LFGraph iGiraph
iGiraph-

heterogeneity-
aware

Amazon $0.0133 $0.0118 $0.0107 $0.0082 $0.0064
YouTube $0.0117 $0.0114 $0.0098 $0.0070 $0.0045
Pokec $0.0149 $0.0143 $0.0121 $0.0095 $0.0056
Twitter $8.84 $7.48 $5.61 $4.92 $3.303

We carried out similar experiments on connected component algorithm using the

same datasets. Final results are showing significant improvements and cost saving

compared to Giraph (Fig. 5.14-5.17). Also, our proposed partitioning method for

iGiraph-Heterogeneity-aware makes it outperform basic iGiraph up to 20%. Table 5.3

shows the cost comparison for different datasets for connected components algorithm

on each framework.

Figure 5-13 Number of machines during
processing connected components on Amazon

Supersteps

N
um

be
r o

f M
ac

hi
ne

s

155

Supersteps

N
um

be
r o

f M
ac

hi
ne

s

Figure 5-14 Number of machines during
processing connected components on
YouTube

Figure 5-15 Number of machines during
processing connected components on Pokec

Supersteps

N
um

be
r o

f M
ac

hi
ne

s

Supersteps

N
um

be
r o

f M
ac

hi
ne

s

Figure 5-16 Number of machines during
processing connected components on Twitter

156

Table 5-3 Processing cost for CC on different frameworks

Dataset Giraph PowerGraph LFGraph iGiraph
iGiraph-

heterogeneity-
aware

Amazon $0.0138 $0.0116 $0.0110 $0.0062 $0.0051
YouTube $0.0128 $0.0109 $0.0087 $0.0065 $0.0053
Pokec $0.0160 $0.0146 $0.0135 $0.0086 $0.0072
Twitter $8.5 $7.99 $5.78 $4.07 $3.43

It should be noted that there is always overheads while migrating or merging

partitions and vertices across the system. However, the overhead is not very large that

can affect the total performance of the system. That is because migrating and merging

usually lead to removing a VM from the list of active resources or replacing that with a

smaller type. Therefore, this trade-off cannot influence the performance significantly.

Table 5.4 demonstrates different characteristics of the three systems and the newly

implemented features.

Figure 5-17 Total execution time for processing
connected components algorithm on various
datasets

Ti
m

e
(s

)

157

Table 5-4 Comparison of scheduling and resource provisioning algorithms

Property Giraph iGiraph iGiraph-
heterogeneity-

aware

Dynamic
repartitioning

× √ √

Traffic-aware × √ √

Bandwidth, CPU,
environment-
aware

× ×
√

Heterogeneity-
aware

× × √

5.6 Related Work

We investigated various factors such as scalability, dynamic partitioning, which are

studied individually by other works. Scalability is a major concern in many systems.

Each work has addressed scalability issue in a different way. Pregel-like frameworks

such as Giraph [11], GPS [195] and GiraphX [220] along with some non-Pregel-like

frameworks such as Trinity [202], Presto [233] and PowerSwitch [240] argue that a

distributed architecture can provide better scalability. The system can access as many

resources as needed to operate and increase the performance. However, these systems

use other optimizations to deliver better performance as well. GPS [195], for instance,

introduced a dynamic repartitioning approach by which the partitions will be

distributed again among faster workers who complete their jobs before other workers

inside each iteration. This keeps all workers busy all the time during the processing

and faster workers do not need to wait until slower workers finish their jobs. This

approach has become possible by utilizing an asynchronous implementation of

partition distribution inside supersteps. Another system like PowerSwitch [240],

improves the performance of the system by effectively predicting the proper heuristic

for each step and switching between synchronous and asynchronous execution states if

required. iGiraph-heterogeneity-aware provides not only scalability over heterogeneous

resources, but also is elastic as it provisions in an autonomic way such that at any given

158

time the current demand and resource consumption matches, according to [95].

Although distributed graph processing frameworks are developed based on

commodity cluster environment properties, the situation is different on cloud

environments, particularly public clouds. There are different pricing models available

on clouds and users have to pay for the resources that they use. The pay-as-you-go

model provided by cloud service providers is defined based on this fact. In such

environment, it is important to reduce the cost of utilizing resources as much as

possible. Many graph frameworks tried to decrease the cost by executing faster to

reduce the total runtime so that they can release the resources quicker to pay less. For

example, Surfer [46] develops a bandwidth-aware repartitioning mechanism by which

partitions are being placed on workers based on their bandwidth. While only few

graph processing frameworks are developed to specifically operate in cloud

environments, iGiraph, which we used in this chapter as one of the benchmarks, is

using a different strategy. Using its novel dynamic repartitioning approach, iGiraph

eliminates unnecessary resources during the processing period while operating on

convergent algorithms which leads to significant cost saving compared to other

frameworks. Although systems such as GPS [195] and Mizan [118] implement dynamic

repartitioning and vertex migration, they do not scale across VMs. It has also been

shown that iGiraph outperforms frameworks such as popular Giraph while operating

on non-convergent algorithms like PageRank. It declines the number of messages that

are passing through the network and executes faster.

In addition to distributed systems, many graph processing frameworks are

developed at the scale of a single machine [91] [165] [204]. Since system memories and

disks have unprecedentedly become large and available on single PCs, these

frameworks implement mechanisms for processing large-scale graphs without the

hassle of distributed computing. Solid state drives (SSD) that provide higher speed

data access compared to hard disk drives (HDD) have made the idea of processing on a

single server even more promising. GraphChi [127] is one of the firsts in this category.

It is a vertex-centric framework that offers a parallel sliding window (PSW) which is an

asynchronous computing method to leverage external memory (disk) and is suitable

for sparse graphs. Using PSW, GraphChi requires transmitting only a small number of

159

disk-blocks sequentially. PSW’s input is a subset of the graph that is being loaded from

the disk. It then updates the values on vertices and edges and finally writes the new

values back on the disk. Systems such as FlashGraph [262] are specifically designed to

perform on SSDs. In FlashGraph, I/O requests will be merged cautiously to improve

the throughput and decrease CPU overhead. Despite various optimizations and

improvements in single-machine-based graph processing frameworks, they are not still

efficient compared to their distributed counterparts in more sophisticated scenarios

such as when there are multiple datasets that need to be processed at the same time.

Finally, dynamic partitioning and network factors are the last two aspects of our

work in this chapter. Many graph processing frameworks partition the graph at the

start of operation and never change it again until the end of processing. Nonetheless,

repartitioning the graph during the operation is becoming more common as the

system/user can change the partitions’ properties at any time to improve the

performance. According to [195], a dynamic repartitioning function should be able to

answer three main questions: 1) Which vertices must be reassigned?, 2) How and when

to move the reassigned vertices to their new machine?, and 3) How to place the

reassigned vertices? A framework like GPS [195] repartitions the graph based on using

high-degree vertices while LogGP [244] does so based on analyzing and reusing “the

historical statistical information” to rectify the partitioning outcomes. Other systems

such as Mizan [118], XPregel [222] and xDGP [232] also have used various approaches

to partition graphs dynamically. Network is another important factor that affects

partitioning and the processing but it is studied less in the context of graph processing.

Frank McSherry21 has investigated the impact of fast networks on graph analytics after

an NSDI paper [172] claimed that the network speed does not make a huge change in

the processing performance. He showed that under some general conditions, a faster

network can improve the operation’s efficiency. Chapter 3 has used network factors

such as bandwidth, traffic, and CPU utilization to partition the graph dynamically. It

has shown that using a suitable combination of factors will make the system to

21http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html

160

outperform frameworks such as Giraph. A detailed comparison of many existing graph

processing frameworks has been discussed in Chapter 2.

5.7 Summary

The amount of data that is being made and stored every day in the form of graph is

dramatically increasing. Social networks popularity, IoT birth, and mobile applications

improvements are among the many reasons for this growth. To address the challenges

in this area, where traditional data processing solutions could not be helpful, graph

processing frameworks have been developed in the past few years. On the other side,

cloud computing provides solutions to facilitate large-scale computing and storage. It

also brings various features such as pay-as-you-go model, elasticity, and scalability to

the computing. However, cloud-based graph processing and how these features can be

utilized to streamline operating on large-scale graphs is less investigated. In this

chapter, a new auto-scaling algorithm is proposed and is plugged into the iGiraph

framework to reduce the monetary cost of graph processing on public clouds. To

achieve this, heterogeneous resources have been considered alongside horizontal

scaling policy. Also, a new characteristic-based dynamic repartitioning approach is

introduced which distributes new partitions on heterogeneous resources. The

experiments show that the new mechanism that is called iGiraph-heterogeneity-aware

reduces the cost of processing significantly and outperforms frameworks such as

original iGiraph and the famous Giraph. To the best of our knowledge, iGiraph-

heterogeneity-aware is the first implementation of a graph processing framework that

horizontally scales up using heterogeneous resources in a cloud environment.

161

162

Chapter 6

6 Graph Processing-as-a-Service

Large-scale graph data is being generated every day through applications and services such

as social networks, Internet of Things (IoT), mobile applications, etc. To overcome challenges

and shortcomings of traditional processing approaches such as MapReduce, several exclusive

graph processing frameworks have been developed since 2010. However, despite broad

accessibility of cloud computing paradigm and its useful features namely as elasticity and pay-

as-you-go pricing model, most frameworks are designed for high performance computing

infrastructure (HPC). There are few graph processing systems that are developed for cloud

environments but similar to their other counterparts, they also try to improve the performance

by implementing new computation or communication techniques. In this chapter, for the first

time, we introduce the large-scale graph processing-as-a-service (GPaaS). The algorithm that

we introduce for this service consider service level agreement (SLA) requirements and quality

of service (QoS) for provisioning appropriate combination of resources in order to minimize the

monetary cost of the operation and also reduces the execution time compared to other graph

processing frameworks such as popular Giraph. We show that our service significantly

improves the performance compared to Giraph or other frameworks such as PowerGraph.

This chapter is partially derived from:

 Safiollah Heidari and Rajkumar Buyya, “Quality of service (QoS)-driven Resource

Provisioning for Large-scale Graph Processing in Cloud Computing Environments:

Graph Processing-as-a-Service (GPaaS)”, Future Generation Computer Systems

(FGCS), 2018 (Second Review: Minor Revision)

163

6.1 Introduction

ODAY data is an asset and being able to collect, analyze, protect and use big data

provides companies with critical advantages. Every second huge amount of data

is being created by various applications such as social networks, Internet of things

(IoT), mobile Apps, bloggers, and even smart web robots that are using artificial

intelligent (AI) to produce news. According to [6], during each minute at 2017, 3.3

million posts were put on Facebook, 3.8 million queries were searched on Google

search engine, 500 hours of new videos were uploaded on YouTube and 448.800 tweets

were shared on Twitter. These numbers are almost doubled compared to the amount of

content was made per minute in 2014. Moreover, a big fraction of generated data is in

the form of graphs. Graph-shape data encompasses a set of vertices that are connected

to each other via a set of edges. In a typical social network website, users are vertices

and friendship relationships between users form the edges of the graph while in an IoT

environment, sensors are considered as vertices and the connections between sensors

shape the edges.

Increasing amount of graph data on one side and proven inefficiency of traditional

processing approaches such as MapReduce for graphs on the other side [2] resulted in

the appearance of exclusive large-scale graph processing frameworks. Pregel [148] was

the first graph processing framework that was introduced by Google in 2010. After

that, extensive efforts have been conducted in the research community to develop new

processing frameworks or optimize previous ones. However, most existing works have

implemented on high performance computing (HPC) environments where the number

of resources are considered to be unlimited. So, users do not have to deal with other

complicated scenarios such as lack of sufficient computing resources, limited storage

space, competitions in order to obtain resources, time limitations, cost limitations, etc.

that are possible on a distributed environments such as clouds. Based on these

assumptions, most current works are concentrating on improving different

components of the system namely as partitioning, computing, communication, and

I/O.

T
L

164

Unlike HPC, a cloud environment has more complications as mentioned.

Nevertheless, HPC is not available for everyone and many small/medium companies

do not have the resources (budget, professionals, etc.) to own and preserve such

infrastructure. Hence, researchers have started investigating cloud-based deployments

recently. Cloud computing is a paradigm of computing that has changed software,

hardware and datacentres design and implementation. It overcomes restrictions of

traditional problems in computing by enabling some novel technological and

economical solutions namely as scalability, elasticity and pay-as-you-go models which

make service providers free from previous challenges to deliver services to their

customers. Cloud computing presents computing as a utility that users access various

services based on their requirements without paying attention to how the service is

delivered or where it is hosted. It brings many advantages for both service providers

and service consumers. For example, providers can virtually locate their services at the

shortest distance to their users and decrease latency of delivering their services, which

was a problem in traditional computing methods [174]. Because of these benefits, cloud

computing has got attracted many attentions in recent years. Among the limitations

that make many current graph processing frameworks not to be suitable for

deployment in a cloud environment are: 1) they are not able to utilize scalability and

elasticity capability of cloud environments, 2) they do not consider monetary cost

(processing cost) as a crucial element in cloud computing, 3) they are not designed to

take advantage of the heterogeneity of cloud resources which can affect the

performance of the system, 4) they cannot work efficiently in a dynamic environment

as clouds where for example network metrics are changing constantly.

To choose an appropriate service in a cloud environment, the client investigates

some factors that can affect his/her processing requirements. Factors such as

processing deadlines, available budget and costs, resource accessibility, etc. are usually

taken into consideration for service selection. From there, both the service provider and

the customer negotiate on a service level agreement (SLA) [175] by which the quality of

service (QoS) will be guaranteed. SLA also determines the conditions of service

violation, whose responsibility is to respond and how they can be avoided. An

165

important step is to constantly monitor and evaluate the quality of service against pre-

defined factors to ensure that the expected level of quality is provided.

Increasing growth in graph data which in turn results in raising processing

demands, and the popularity of cloud computing, led to cloud-based design of graph

processing frameworks in recent years. However, although few graph processing

frameworks such as iGiraph (Chapter 3) are developed specifically to take advantage

of cloud computing features, there is no mechanism to certify the quality of service that

is provided by these systems on cloud. Current frameworks typically receive a large-

scale graph dataset as input and return the output after completing the processing.

Nevertheless, different users have different priorities while using a system and when it

comes to cloud environments, a framework should be able to handle multiple requests.

Therefore, in this chapter we consider large-scale graph processing, as a service on

cloud. We used iGiraph to deploy the architecture of our graph processing service on

it. The new approach provides a service that like any other services on the cloud,

monitors and maintains the quality of service based on the users’ requirements and the

submitted service level agreement (SLA) while the user does not need to know the

details of service implementation to be able to work with it. Our service also makes

sure that at any given time during execution, an optimized amount of resources are

provisioned to minimize the monetary cost of processing. To the best of our

knowledge, this work is the first implementation of a large-scale graph processing

framework in which we go beyond simply processing a graph to considering it as a

service that can be used by multiple customers on the cloud.

The key contributions of this work are:

 A novel service-based architecture for processing large-scale graphs on cloud

to monitor and maintain the quality of service

 A new multi-handling mechanism for multi-graph processing requests

 A built-in dynamic auto-scaling algorithm that enables scale up and down

according to the characteristics of different arriving workloads and agreements

166

 A new dynamic repartitioning approach combined with a new mapping

strategy to improve the resource usability and performance

The system that we have developed in this work can be used in providing many

services such as: 1) finding shortest paths between two or more positions in a

geographical positioning system (GPS) where places are the vertices of a large-scale

graph and roads are the edges of the graph, 2) finding relevant products by a

recommendation algorithm to suggest to customers (products and customers are the

vertices of the graph and relationships are the edges), 3) discovering various patterns

in graphs and extracting knowledge using pattern matching algorithms, and so on.

The rest of the chapter is organized as follow: Section 2 is providing the related

work study by investigating existing research works about large-scale graph

processing frameworks and the opportunities for them on cloud environments. Section

3 explains in detail the architecture and workflow of our proposed solution for

enabling a service-based graph processing. Section 4 describes the novel dynamic

scalable resource provisioning algorithm by which appropriate amount of resources

will be provided for every operation based on their requirements. Section 5 provides

performance evaluation and finally, Section 6 concludes the chapter.

6.2 Related Work

Since 2010, when Google introduced its graph processing framework called Pregel

[148], many research works have been conducted to exclusively improve processing of

graph data structures. Some graph processing systems such as GraphChi [127],

TurboGraph [91], X-Stream [192] and Grace [236] were developed to enable operating

based on single-server architecture to operate in-memory. Although, these systems are

fast and they do not need to be worried about the communication difficulties between

different nodes as their distributed counterparts, they have other restrictions such as

limited amount of memory that make them inefficient for more complicated scenarios

167

when the graph is larger than their capacity. On the other side, distributed graph

processing frameworks such as Mizan [118], PowerGraph [80], GiraphX [220], Trinity

[202], etc. are designed to overcome these issues. However, there are other challenges

in distributed environments such as distributed memory, communication, distributed

processing and so on that make developing such systems more complex. Many of these

challenges have been investigated in various research works and different solutions

have been proposed to address them.

One of the less studied areas for graph processing frameworks is cloud

environments. Although cloud computing is providing interesting features namely as

scalability, elasticity and pay-as-you-go billing model by which large-scale processing

can be accessible for everyone, the majority of research works are conducted on high

performance computing (HPC) clusters where they assume that the number of

resources are unlimited, resources are always available and there is no need to pay to

use the them. The problem is that owning HPC infrastructure to deploy such

computations is very costly and many small and medium companies or individuals

cannot afford it [35]. Another issue is that because HPC-based frameworks do not need

to consider the aforementioned cloud features, they cannot take advantages of their

benefits. Even few graph processing frameworks such as Surfer [46] and Pregel.Net

[187] that are developed to be used on clouds are not investigating scalability or

pricing models. Instead, these systems are trying to reduce the cost of processing by

providing faster execution so that they can release the resources quicker. For example,

Surfer is offering a bandwidth-aware graph partitioning algorithm that places

partitions on VMs according to the VMs’ bandwidth and Prgel.Net is evaluating the

impact of Bulk Synchronous Parallel (BSP) model [231] on graph processing using

Microsoft Azure public clod.

In addition to attempts to improve the performance of processing by ameliorating

the computing operation, a system such as iGiraph (Chapter 3) is also proposing

strategies to take advantage of scalability feature of clouds in order to decrease the

dollar cost. iGiraph is a Pregel-like graph processing framework that is developed

168

based on popular Giraph22. iGiraph is also employing BSP model while it is

implemented on top of Hadoop23 and is using its distributed file system (HDFS). Since

cost is a main element for utilizing cloud infrastructure, iGiraph came up with the idea

of reducing the number of resources dynamically during the processing rather than

using the same amount of resources for the entire operation. It introduced a dynamic

repartitioning algorithm that is being applied to the computation at the end of each

iteration according to the type of application that is being used. iGiraph categorizes

graph applications into two major categories including 1) non-convergent, 2)

convergent. When graph data is being processed by a convergent application, the

vertices that their status has changed to inactive will be eliminated from the memory at

the end of every superstep. Therefore, the rest of the graph with active vertices might

be fitted into less number of VMs and spare VMs can be terminated. For non-

convergent applications in which the status of vertices is always active during the

operation, utilizing high-degree vertices concept assists the computation to be

completed quicker while reducing the communication cost.

Scalability and monetary costs have been investigated separately in few other

research works. For example, Pundir et al. [185] have developed a dynamic

repartitioning technique based on LFGraph framework [98] in which, similar to

iGiraph, they aimed to enable scale out/in by minimizing the network overhead and

migrating vertices between machines. In another work, Li et al. [136] have investigated

monetary cost of large-scale distributed graph processing on Amazon cloud. Graphic

processing units (GPUs) have been also utilized in some works such as [63], where

authors are improving the performance of the system by distributing the computation

among GPUs to boost the computation speed while others such as [246] are evaluating

the performance of single-node frameworks on cloud environments. Table 6.1 shows

the comparison of the most related works.

22 https://giraph.apache.org/
23 https://hadoop.apache.org/

169

Table 6-1 Comparison of the most related works in the literature

System Architecture
Implemented
Environment

Partitioning
Method

Resource-
aware

Scalability
QoS-

aware

Pregel Distributed HPC Static No No No

Giraph Distributed HPC Static No No No

PowerGraph Distributed HPC Static No No No

GPS Distributed HPC Dynamic No No No

Pregel.Net Distributed Cloud Dynamic No No No

Surfer Distributed Cloud Dynamic No No No

iGiraph Distributed Cloud Dynamic Yes Only
Scale-in

No

Our work -
GPaaS

Distributed Cloud Dynamic Yes Scale-
in/out

Yes

Despite the specific development of cloud-based graph processing frameworks, they

have never been considered to provide processing as a service on cloud infrastructure.

This even make the implementation of graph processing systems harder because there

will be new parameters that need to be taken into consideration for delivering an

acceptable service [242]. Parameters namely as response time, throughput, cost, etc. are

usually negotiated in SLA between the customer and cloud provider to ensure the

quality of the provided service. According to Ardagna et al. [18], “Quality of service

(QoS) is the problem of allocating resources to the application to guarantee a service

level along dimensions such as performance, availability and reliability”. QoS in cloud

computing has been investigated well in many research works and various techniques

have been proposed to monitor and maintain the quality of the service in different

platforms [149] [157] [130]. However, in order to addressing QoS challenges in the

context of large-scale graph processing, every solution needs to meet specific

requirements due to the inherent characteristics of highly connected graph data. in this

chapter, we are providing a graph processing as a service framework based on our

latest version of iGiraph that discussed in Chapter 3. This service enables multiple

users to submit their graph processing requests to the system, while the system

considers their preferred QoS parameters and provides the best combination of

resources to meet the pre-defined requirements.

170

6.3 Overview of the Proposed Solution

Figure 6.1 and 6.2 show the workflow and architecture of our proposed solution,

respectively. As can be seen in the picture, the system contains seven different

functionality modules that are depicted by seven different colors. These modules

include: 1) Users, 2) Repositories, 3) Priority queue, 4) Monitoring, 5) Management, 6)

Partitioning, and 7) Computation. Each functionality module comprises a couple of

components and is responsible for accomplishing different function while it has input

from/output to other parts of the system. Our proposed solution: 1) enables multiple

users to apply their jobs at the same time for processing (unlike all other existing

frameworks that only accept one job at a time), 2) enables users to submit their QoS

requirement for each job (none of existing systems can do so), 3) introduces a new

complex workflow to handle intertwined requests, 4) utilizes the heterogeneity of

cloud resources with graph algorithm characteristics to reduce the monetary cost of

processing, 5) considers various important metrics to adjust dynamic repartitioning in

order to meet QoS requirements, 6) can handle multiple scenarios of different job

requirements. Here, we explain each zone and its components in detail.

Figure 6-1 The workflow of our proposed solution (GPaaS)

W
o

rk
lo

ad
 Q

u
eu

e

Workload

QoS
Requirements

Workload

Workload

Priority Analyser
QoS

Requirements
Repository

Policy Selector

Partition
Distributor

Decision
Maker

Resource
Monitoring

Resource
Info

Repository

Network KPI
Aggregator

Dynamic
Scheduler

Dynamic
Re-partitioner

Initial
partitioner

QoS MonitorQoS
Requirements

QoS
Requirements

Computation

171

Figure 6-2 The components that we added to our work in Chapter 5 are shown in
dotted rectangles

6.3.1 Users

Users provide the input to the system. Each user has to enter two objects into the

framework: 1) a large-scale workload or dataset that contains the graph data, and 2) a

list of QoS requirements that are derived from the negotiated SLA between customer

and service provider. In this chapter, we discuss two factors for QoS and develop

algorithms to manage these factors: a) budget and price, b) processing time and

deadline. Cloud computing features enable us to supply sufficient amount of resources

to manage various situations. Cloud providers usually provide a broad range of

resources with various characteristics that can be mixed to deal with more complicated

requirements and scenarios. For example, if a user has low budget to spend, but he has

no deadline for his processing request to be completed, cheaper virtual machines

(VMs) can be assigned to his request. Instead, if a user has strict deadline but no

budget restriction, more powerful VMs can be dedicated to his request for meeting the

deadline properly. In order to provide the user with a prioritization mechanism which

helps him to demonstrate his preferences over each QoS requirement, two priority

statuses have been defined: a) Urgent, b) Normal. Urgent refers to the immediacy of a

request execution which in turn mentions the execution time. Meanwhile, requests

with Normal priority compete over low price. Therefore, the user defines the priority

Hadoop File System

Master Workers

Bandwidth Monitor

Traffic Monitor

Computation Monitor

QoS Monitor

Resource Monitor

Priority Queue

Policy
Selector

Initial
Partitioner

Dynamic
Scheduler

System Info Aggregator
Decision
Maker

Dynamic
Re-partitioner

Partition Distributer

172

of his job by providing his preferred priority status while submitting his request to the

system.

6.3.2 Repositories

There are two main repositories in the system. QoS requirements repository includes a

set of pre-defined quality conditions and constrains namely as execution time,

execution cost, availability, throughput, energy, reliability, etc. In this chapter, we

consider two important QoS factors including execution time and execution cost.

Resource information repository contains the information about all the available

resources in the resource pool. For instance, for a typical VM, information such as

number of cores, memory capacity, usage cost, networks speed, etc. are stored in the

repository. Having this information helps the system to make decision about which

resources and how they can be mixed to meet the quality of service (time and cost)

properly for a specific request.

6.3.3 Priority Queue

This module comprises two components. As mentioned above, each workload will be

submitted with a set of QoS requirements and a priority status. The whole submission

is called a Job in this system. All jobs will be stored in the workload queue where

priority analyser analyses the priority of each job and reorders them to be processed

according to their priority compared to other jobs. Jobs with urgent priority are time

constrained with deadline and usually need to be processed before other jobs. So, the

first step is to prioritize urgent jobs over normal ones. Next step is to find the execution

priority among urgent jobs since there might be more than one urgent job in the queue.

In order to do so, a simple version of Knapsack algorithm is employed by which urgent

jobs will be prioritized based on their required execution time and deadline. Moreover,

jobs with normal priority will be processed based on a first in first out (FIFO) strategy.

The prioritization procedure occurs every time a new job is submitted to the system.

However, this might keep some jobs with normal priority in the queue forever because

urgent jobs are being submitted constantly. To avoid this, we assign each normal job

with a timestamp based on its required execution time (deadline). When the timestamp

173

run out, the job will be considered and treated as an urgent job. This makes sure that

no job will be trapped in the queue forever. Algorithm 1 demonstrates the described

prioritization mechanism.

Algorithm 6.1: Prioritization algorithm
1:
2:
3:

4:
5:

6:
7:
8:
9:

Queue == receiveInput (Job)
For the entire Queue do
 If (getPriority(Job i) == NORMAL) and (getPriority(Job i+1) == URGENT)
then
 swap(Job i, Job i+1)
 If (getPriority(Job i) == URGENT) and (getPriority(Job i+1) == URGENT)
then
 knapsackJob(Job i, Job i+1)
For any suspendedJob(Job i) in the Queue do
 If (priorityTime(Job i) == (Job i).Deadline) then
 setPriority(Job i) = URGENT

6.3.4 Monitoring Module

This module is responsible to constantly monitor the system and measure various

metrics that can be used in each processing based on its requirements. The input to this

module is coming from the computation module where the actual graph processing

operation happens. This is because it is very important to track every changes that

might affect the processing and use the metrics to enhance the operation. Therefore, the

output from monitoring module goes to management module where metrics will be

used in the decision making and dynamic scheduling processes for the next step.

Inputs and outputs of this module will be exchanged after each superstep i and before

superstep i+1. Moreover, this is the only module in our proposed solution that is

partially implemented on worker machines. The reason is that its components need to

gather information from workers during the execution. All other modules are

implemented on the master machine. Monitoring module contains the following

components:

- Resource monitoring: It is very critical to know about the amount of resources

that are available in the resource pool at any moment along with their

characteristics. So, this component is placed in the intersection of resource

information repository and the computation module to be able to provide a

174

holistic view of the resource usage situations. It is aware of the amounts and

properties of all resources in the repository while it is monitoring the changes

that occur to resources that are being used in the operation. The information

that this component gathers from the computation part includes: the CPU

capacity, memory capacity, monetary cost, VM type, etc.

- Network KPI Aggregator: This component monitors network factors such as

network traffic, bandwidth, latency, topology, etc. In this chapter, we are using

two major factors including traffic and bandwidth in our dynamic

repartitioning algorithm. We are using the method that is introduced in

Chapter 4. Network KPI aggregator component gathers information from the

computation module and passes them to the decision making component.

- QoS Monitor: As mentioned before, every job in the system is submitted with a

list of SLA requirements which in this chapter comprises the customer’s

preferred time and dollar cost. Using this information, the system tries to

provision the best combination of resources for each job to maintain the quality

of service. Like other components in this module, QoS monitor components

also receives the input from computation module by watching the mixture of

VMs and the execution time of each superstep. It then passes the information to

decision making component where various provisioning possibilities will be

assessed.

6.3.5 Management Module

Management module is the heart of the system in our proposed architecture. This

module is responsible for scheduling the tasks and provisioning the best combination

of resources in a way that each job can meet its SLA requirements while ensuring the

QoS. It is also responsible to minimize the occurrence of service violation as much as

possible. This module collects information from all other modules in the architecture

directly or indirectly which enables it to have a comprehensive view on what is

happening in the system and the status of other parts. Having such a comprehensive

view is a critical pre-requisite for making optimized decisions. All the outputs from

175

this module also directly affect the partitioning module. Management module includes

three main components as follow:

- Dynamic Scheduler: Since a cloud provider has to provide services for many

users in a cloud computing environment, resources need to be scheduled

efficiently to achieve maximum profit. Dynamic scheduler component first

becomes active as soon as a job is coming out of the queue to schedule the

primary amount of resources for the processing. The number of initial resources

will be determined by the user. However, to better utilize the resources,

dynamic scheduler takes the size of the submitted dataset and QoS

requirements into consideration to select best VM type to start with (Algorithm

2 – Line 1-4). At the beginning of the processing, all VMs will be from the same

type. Later during the processing, dynamic scheduler receives the information

about the changes in the system from another component in the management

module called decision maker. This information will be obtained during the

intervals between supersteps and will be used to dynamically re-schedule the

resources.

Algorithm 6.2: Dynamic Scheduler
1:
2:
3:
4:
5:
6:
7:

InitialVMs = userInitialVMs(UserVMs)
VMMemory = DatasetSize/InitialVMs
VMType = bringVMWithMemory(VMMemory)
startVM(VMType, InitialVM)
For Superstep1 to the end of computation do
 NewInfo = receiveInfo(DesisionMakerVMList)
 matchVMWith(NewInfo)

- Policy Selector: Original iGiraph (Chapter 3) and its extended network-aware

version (Chapter 4) provided a general categorization for various processing

environments on clouds and different graph algorithms. This is shown in

Figure 5.3. Depends on what algorithm is being used for the processing, the

user will choose the proper policy for his application while submitting his job.

Policy selector component selects the appropriate approach for re-partitioning

the graph and informs the system. For example, if the algorithm is convergent

176

and the environment is communicational-intensive, policy selector will pick up

a traffic-and-bandwidth-aware strategy for repartitioning.

- Decision Maker: To help dynamic scheduler with the provisioning of

appropriate resources, decision maker component provides a holistic view of

the system’s state at any given moment. It collects data from monitoring

module which in turn includes three components. According to the collected

data, the system will learn about the available resources and their

characteristics, network situation, possible service violations, etc. by which it

can intelligently make decision about the amount of resources that is needed for

the rest of the operation. Information will be sent to decision maker during the

intervals between supersteps. The output of this component will be sent to

partitioning module and dynamic scheduler.

6.3.6 Partitioning Module

This module is responsible for partitioning the graph into smaller jobs and distributes

them across the allocated machines. Proper partitioning is the key to improve the

performance and speed up the execution in a graph system. Similarly, when graph

processing is being provided as a service, suitable partitioning can help to meet the

quality of service. However, in the literature, several mechanisms have been proposed

for graph partitioning and each tries to increase the efficiency (Chapter 2). The inputs

for this module are all coming from the management module which shows that the

resources have been provisioned for computation and partitioning should consider the

limitations. Partitioning module comprises three components:

- Initial Partitioner: When a user submits a job, it will be waiting in the priority

queue until its priority is higher than other jobs. Then, it will be passed to

dynamic scheduler and policy selector, respectively. At this stage, initial

resources have been allocated to the processing and the large graph needs to be

partitioned and distributed across the machines. Initial partitioning will be

applied to the graph only before the first superstep. The approach for initial

partitioning in this chapter is a simple random partitioning which is a hash

177

function on vertex IDs. However, the user can replace the simple initial

partitioning with more complicated one such as METIS [116] to improve the

performance even more.

- Dynamic Re-partitioner: Unlike initial partitioning that is statistic and happens

only at the start of the processing, dynamic re-partitioning changes the

partitioning of the graph multiple times during the operation. The aim of

dynamic re-partitioning is to match the size and number of partitions with the

allocated resources based on graph modification. The core of our dynamic

repartitioning algorithm in this work is coming from our other work in which

we employed a characteristic-based repartitioning to take advantage of

heterogeneous resources on cloud environments (Chapter 5). This allows us to

achieve better performance with less monetary cost compared to other

frameworks such as popular Giraph.

- Partition Distributor: When partitions are ready, they need to be distributed

across the machines. Entry data to this component might come from the initial

partitioner if it is before the first superstep or they can come from dynamic re-

partitioning component after the first iteration. The output from this

component goes to computation module which means that the computation

function will be executed on all allocated worker nodes.

6.3.7 Computation Module

Computation module is the computation function that will be executed on graph

vertices. This module does not have additional components like other modules. It

receives the partitions from the partitioning module and applies the compute()

function on them. So, this function is being implemented on each worker machine. The

output of this module is metric measurements that will be passed to the monitoring

module. Depending on the graph algorithm, status of vertices might change to inactive

or may remain intact.

178

6.4 Dynamic Scalable Resource Provisioning

To ensure that a service is responding properly to SLA requirements for each request,

it should be able to employ flexibility for resource provisioning and processing. In this

section, we discuss the first multi-handling resource provisioning algorithm for a

graph service. In our framework, “dynamic resource provisioning” belongs to the

management module and receives inputs from various modules. Our experiments

show that using this approach, adequate amount of resources will be assigned to

processing jobs and enables them to meet their pre-defined QoS.

Different jobs with different priorities and requirements will be sent to the graph

processing service and they will be processed based on their priorities one after the

other. However, there are situations in which while a job is being processed in the

system, another job with a strict deadline or higher priority arrives and need to be

processed as soon as possible. In a typical scenario, imagine job A with Normal priority

is being assigned a number of resources and it is being processed in the system.

Suddenly, job B with Urgent priority arrives and makes a request for the service. One

solution for dealing with this situation is to make the later request to wait until the

ongoing processing is finished. In this approach, the urgent request will miss the

deadline whereas a possible SLA violation might happen and the service will not be

efficient at all.

Another solution, which we implemented in this chapter for our service, is to stop

the processing, take the less urgent job out of the system and start processing the more

urgent job. After completion of the urgent job, the previous job will be brought back to

the system to continue its processing from where it was stopped. However, there are

some questions that need to be answered here: 1) what will happen to the resources

that were being used by the former processing?, 2) how the new processing will receive

enough resources to ensure that the requirements will be met?, 3) can we utilize the

already existing resources from the previous operation for the new processing?, and 4)

do we need to restore the same resources for the less urgent job as the ones it was

assigned before being stopped?

179

Algorithm 3 demonstrates our proposed dynamic scalable resource provisioning

mechanism. According to this algorithm, if the priority of the ongoing job in the system

is more than the priority of the arriving job, it continues processing. But, if the priority

of the arriving job is more than the priority of the ongoing job, then system exchanges

the jobs. In this situation, if the applied graph algorithm to the current ongoing job is

convergent type, in which the status of processed vertices will change to inactive and

vertices will be removed from the memory, remaining active vertices in the processing

will be moved back to the queue. If the applied graph algorithm is non-convergent

type which does not change the status of vertices, the whole dataset will be moved

back to the queue. Then, the new urgent job will be taken from the queue to be loaded

for processing. At this phase, instead of terminating the resources from the previous

processing, the dynamic scheduler calculates the capacity of existing resources in terms

of VM types, available memory, available computation power, etc. Meanwhile, it

knows the size of arriving job, its QoS criteria, and the number of resources that is

ordered by the user at the job submission stage. Following situations are considered in

order to provision resources for the new processing job.

1) If the new dataset is small and current resources can handle the SLA

requirements, then there is no need for employing new resources.

2) If the size of the dataset is big, and the type of current resources is appropriate,

then more machines will be employed to reach the resource needs. So, we have

a combination of old and new resources that are assigned to the new operation.

For example, if there are 3 medium VMs left from the previous processing and

system learns that 7 medium VMs are needed for the new operation, it only

needs to employ 4 more medium VMs

(3mediumold+4mediumnew=7mediumrequired).

3) If only parts of the existing resources are usable for the new operation, system

will keep those VMs and removes the inappropriate ones. Afterwards, it

repeats the previous step (step 2). For example, if 4 medium and 2 small VMs

are left from the previous operation and the system learns that the new

operation needs 10 medium VMs to meet the SLA requirements, it terminates 2

180

small VMs and employs 6 new medium VMs ((4mediumold-

2smallold)+6mediumnew=10mediumrequired).

4) If any of the remaining VMs from the previous operation are not suitable for

the needs of the new operation, then all of them will be terminated and new

appropriate resources will be employed for the new operation.

As can be seen in Algorithm 3 and the described scenarios, our algorithm can both

scale up and scale down for provisioning resources. It should be considered that all the

operations in this chapter will be started with the same VM type. So, if the system

learns that for example large VM type is suitable for processing, then all VMs at the

beginning of the processing will be large type whereas if system learns that medium

VM type is better, then all VMs at the start of the processing will be medium type. We

will investigate more complicated scenarios such as starting the operation using a

combination of different VM types (for example combination of large and medium

VMs) in our future works.

Algorithm 6.3: Dynamic scalable resource provisioning

1:

2:
3:

4:
5:

6:
7:

8:
9:

10:
11:
12:
13:

14:
15:

If ((getPriority(CurrentJob)==URGENT) and
(getPriority(ArrivingJob)==NORMAL)) then
 continueWithNoChange()
If ((getPriority(CurrentJob)==NORMAL) and
(getPriority(ArrivingJob)==URGENT)) then
 backToQueue(CurentJob.ActiveVertex)
 If (currentVMMemory(AvailableVMs)==DatasetSize) and
(AvailableVMs<InitialVM) then
 continueWithCurrentConfig()
 If (currentVMMemory(AvailableVMs)<DatasetSize) and
(AvailableVMs<InitialVM) then
 onlyKeepVM(VMType)
 update(AvailableVMs)
 NeededVMs = InitialVM – AvailableVMs
 Start(VMType , NeededVMs)
 executeWithNewConfig()
 If (currentVMMemory(AvailableVMs)>DatasetSize) and
(AvailableVMs>InitialVM) then
 onlyKeepVM(VMType)
 update(AvailableVMs)

181

6.5 Performance Evaluation

6.5.1 Experimental Setup

To evaluate our framework and effectiveness of the proposed algorithms, we utilized

resources from Australian national cloud infrastructure (NECTAR) [163]. We utilize

three different VM types for our experiments based on NECTAR VM standard

categorization: m2.large, m1.medium, and m1.small. Detailed characteristics of utilized

VMs are shown in Table 5.1. The reason for using m-type VM is because the algorithms

that we are using are memory-intensive and using m-type machines provides better

performance. Since NECTAR does not correlate any price to its infrastructure for

research use cases, the prices for VMs are put proportionally based on Amazon Web

Service (AWS) on-demand instance costs in Sydney region according to closest VM

configurations as an assumption for this work. According to this, NECTAR m2.large

price is put based on AWS m5.xlarge Linux instance, NECTAR m1.medium price is put

based on AWS m5.large Linux instance and NECTAR m1.small price is put based on

AWS t2.small Linux instance. All VMs have NECTAR Ubuntu 14.04 (Trusty) amd64

installed on them, being placed in the same zone and using the same security policies.

We use iGiraph (Chapter 3) with its checkpointing characteristics turned off along with

Apache Hadoop version 0.20.203.0 and modify that to contain heterogeneous auto-

scaling policies and architecture. All experiments are run using 17 machines where one

large machine is always the master and workers are a combination of medium and

small instances. We use single source shortest path (SSSP) and PageRank (PR)

algorithms as representatives of convergent and non-convergent graph algorithms

respectively for our experiments. They are good representatives of many other

algorithms regarding their behavior. We also use three real-world datasets of different

sizes: YouTube, Amazon, and Pokec [125] as shown in Table 3.1.

6.5.2 Evaluation and Results

We have compared our systems and algorithms with Giraph because it is a popular

open-source Pregel-like graph processing framework and is broadly adopted by many

companies such as Facebook [49]. To evaluate different scenarios by our service, we

182

have provided various workloads and jobs by combining the datasets from Table 2

with different characteristics. Table 3 demonstrates input jobs and the order of inputs

along with their properties.

Table 6-2 Input scenarios for evaluation

Scenarios Dataset Input
Order

Priority Submission
Time (s)

Deadline
(s)

Number
of Initial

VMs

Algorithm

Scenario 1 YouTube 1 Normal 0 30 16 SSSP

Amazon 2 Normal 5 80 8 PR

Pokec 3 Normal 7 110 16 SSSP

Scenario 2 Amazon 1 Normal 0 50 16 SSSP

YouTube 2 Urgent 6 30 16 SSSP

Pokec 3 Urgent 8 80 8 PR

Amazon 4 Normal 15 110 8 PR

Scenario 3 Pokec 1 Urgent 0 60 8 SSSP

YouTube 2 Urgent 1 30 16 SSSP

Amazon 3 Normal 12 130 16 PR

YouTube 4 Urgent 15 90 16 SSSP

Scenario 1: This is the simplest situation in which all jobs in the queue have the same

priority as “normal”. In this situation, deadline is not very important for the

processing, so all jobs will be executed by a first-in-first-out (FIFO) approach and it is

fine if any deadline was missed. However, as can be seen in Figure 6.3, the cost of

processing in our service is much less than conducting it on a popular framework as

Giraph. The reason is that our service scales up and down to provision the best

combination of resources for the processing while Giraph uses the same amount of

resources for the entire operation. Note that in processing graphs by PageRank

algorithm, the number of VMs for both Giraph and our service is the same because

PageRank is a non-convergent algorithm. We also consider up to 20 supersteps for

PageRank algorithm in all our experiences. In our future research work, we will find

the best combination to reorder the queue in case if deadlines are different so jobs will

be processed to meet their deadline as well.

183

Figure 6-3 Scenario1

Scenario 2: In this situation a combination of “normal” and “urgent” jobs are

arriving to the service for processing. According to Algorithm 1 and Algorithm 3,

when a normal job is getting processed, it should be replaced by the urgent job as soon

as such job is arrived to the system. Nevertheless, the normal job cannot wait in the

queue forever only because urgent jobs are being submitted constantly. To resolve this

situation, when the normal job goes back to the queue to be replaced by an urgent job,

a deadline will be set for it so that its priority will change to urgent when the deadline

arrives. Figure 6.4 shows how this scenario works and Figure 6.5 demonstrates the

scenario in which Giraph follows the job order and depicts what is happening in

reality.

Number of supersteps

N
u

m
b

er
 o

f
M

ac
h

in
es

Amazon - PageRank

YouTube - SSSP Pokec - SSSP

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Giraph GPaaS

184

Figure 6-4 Scenario 2 – Price(#VMs) Comparison

Figure 6-5 Scenario 2 – If Giraph follows the job order

Scenario 3: In this scenario, jobs are different in terms of their deadline. So, when

two jobs with the same urgent priority arrive, the one with closer deadline will be

processed first. Figure 6.6 shows the processing order in this scenario and compares

that with Giraph.

Amazon and YouTube - SSSP

Pokec - PageRank Amazon - PageRank

Number of supersteps

N
u

m
b

er
 o

f
M

ac
h

in
es

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Giraph GPaaS

Number of supersteps

N
u

m
b

er
 o

f
M

ac
h

in
es

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Giraph GPaaS

185

Figure 6-6 Scenario 3

We conducted the same experiments on PowerGraph, an edge-centric distributed

graph processing framework. PoweGraph outperforms Giraph due to its vertex-cut

strategy and implemented optimizations to speed up the execution on natural graphs

with “highly skewed power-law degree distributions”. However, its processing pattern

is the same as Giraph as shown in Figures 6.3 to 6.6 while performing under various

scenarios. The reason is that, like Giraph, PowerGraph does not have any priority

recognition or other mechanisms to distinguish between the priorities of different jobs.

So, it executes jobs based on first-in-first-out (FIFO) approach. Similarly, it does not

distinguish between different graph algorithms’ behaviour (convergent, non-

convergent, etc.), hence it cannot utilize the resources efficiently.

Figure 6.7 demonstrates the execution time in our service against Giraph and

PowerGraph for each scenario. It shows that our proposed service completes faster

than both Giraph and PowerGraph due to its dynamic resource provisioning and

scheduling. GPaaS also eliminates overheads for manual job submissions after each

process completion. It reduces the cost even more because resources will be released

quicker. In Table 6, monetary cost of each scenario in three different systems are being

compared. It shows that using GPaaS, the user has to pay much less (more than 40%

less in some cases) for performing the same job when compared to Giraph and

PowerGraph. Whereas, using PowerGraph can save more money than Giraph due to

its faster execution. The cost here is calculated based on the amount of time that

Number of supersteps

N
u

m
b

er
 o

f
M

ac
h

in
es

YouTube - SSSP

Pokec- SSSP

Amazon – PageRank /YouTube - SSSP Amazon continue PageRank

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Giraph GPaaS

186

various resources have been utilized in each system. In both Giraph and PowerGraph,

the number of provisioned machines remains the same during the entire processing

which is a very expensive approach while there is no need to keep all machines in use

if the behaviour of the algorithm and operation characteristics are considered. The

number and configurations of utilized resources (machines) in GPaaS are being

updated regularly to obtain the efficient combination of VMs in order to minimize the

cost.

Table 6-3 Processing cost for each scenario in different systems

 Giraph PowerGraph GPaaS

Scenario 1 $0.0399 $0.0302 $0.0185

Scenario 2 $0.0532 $0.0483 $0.0342

Scenario 3 $0.0516 $0.0428 $0.0294

Figure 6-7 Total execution time per scenario

6.6 Sumary

Many applications such as social networks, mobile applications, IoT devices and

applications, etc. are generating huge amount of data which a considerable fraction of

it is graph data. It has been proven that traditional processing solutions such as

MapReduce does not work efficiently with graph data due to their inherent properties.

So, many graph processing frameworks are developed to address the challenges of

large-scale graph processing. However, many of these frameworks are designed to

operate on HPC environments rather than clouds. Since HPC infrastructure is not

0

50000

100000

150000

200000

250000

300000

Scenario 1 Scenario 2 Scenario 3

Giraph PowerGraph GPaaS

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (m

s)

187

available to everyone cloud computing is a suitable candidate for implementing the

frameworks on as it can be accessible easier. Cloud computing is offering

unprecedented features such as elasticity and pay-as-you-go billing model that can be

utilized to improve processing operations’ performance even more. Although, few

research works developed graph processing frameworks exclusively to be used on

cloud environments, they have many limitations and cannot guarantee the quality of

services as it is expected in negotiated SLA between cloud provider and clients. In this

chapter, we have proposed the first large-scale graph processing service on cloud.

Unlike graph processing frameworks, our service can handle multiple processing

requests while it considers each request’s priorities and requirements to avoid SLA

violations. Our proposed architecture and algorithms such as dynamic scheduling and

dynamic resource provisioning make it possible to utilize the heterogeneous cloud

resources efficiently in order to respond the requests. Our evaluation results showed

that our service can handle graph processing requests successfully to a high extent. We

showed that GPaaS can minimize the monetary cost more than 40% by utilizing

resources intelligently and executes faster when compared with Giraph and

PowerGraph- two popular distributed graph processing frameworks. This means that

customers can save a lot of money and time while the quality of service is being

maintained. GPaaS can be used for a wide range of applications such as finding

shortest path in GPS systems, recommendation systems, pattern recognition,

knowledge extraction, etc.

188

189

Chapter 7

7 Conclusions and Future Directions

This chapter concludes the presented research works’ contributions about cost-efficient

resource provisioning in distributed graph processing systems in cloud environments. This

clearly shows the additive approach of the thesis in developing its proposed solutions for the

identified problem in the first chapter. Summarizing the findings also results in identifying

promising research directions to be explored In the future.

7.1 Conclusions and Discussion

ARGE-SCALE graph processing has attracted a lot of attention since the

appearance of its new exclusive frameworks in 2010. Although the age of big data

began many years before 2010, traditional processing solutions such as MapReduce

were shown not to be working efficiently on highly connected data structures such as

graphs. This was due to the inherent characteristics of graphs and the infrastructures

L

This chapter is partially derived from:

 Safiollah Heidari Yogesh Simmhan, Rodrigo N. Calheiros and Rajkumar Buyya,

“Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges”,

ACM Computing Surveys, vol. 51, Issue 3, No. 60, ACM Press, New York, USA,

2018

190

where operations were conducting on. Meanwhile, cloud computing and its

comprehensive features for addressing various processing challenges became very

popular. Cloud computing is committed to supply seemingly endless storage space

and computing resources via subscription-based services. This enables the users

(clients) to scale up and down the amount of resources they are willing to utilize while

the pay-as-you-go billing model allows the cloud providers to charge them on a usage

basis similar to other utilities namely as electricity, gas and water. However, despite all

the benefits that cloud computing provides, most distributed graph processing systems

are designed and implemented on high performance computing (HPC) clusters where

the complexity of usage billing, elasticity, etc. of cloud environments are not applied.

Unlike HPC environment where several research works have extensively

investigated graph processing frameworks on, the impact of implementing such

systems in cloud environments and how they can take advantage of various features

there have been less studied. In this thesis, we conducted a comprehensive survey to

find the gaps in the literature and then proposed several algorithms and techniques to

overcome the issues related to cost-efficient resource provisioning and scheduling of

graph processing systems in the cloud. We also implemented all the proposed

solutions within our extended version of Giraph framework and called it iGiraph. To

clarify the challenges in this area, Chapter 1 discusses some research problems and

highlights five major issues which are targeted by this thesis in order to provide cost-

efficient resource scheduling algorithms – scalability, partitioning, network factors,

heterogeneous resources, and quality of service. Then a summary of the thesis

objectives demonstrated what is required to tackle these challenges and how they are

going to be evaluated throughout the thesis. Afterwards, the contributions of the

conducted thesis were presented following the illustration of the thesis organization at

the end of the chapter.

Chapter 2 provided a comprehensive literature review and conducted a taxonomy

to map the existing research works on that. It started by discussing the inefficiency of

traditional data analytic methods such as MapReduce for processing large-scale graphs

and depicted the necessity of exclusive processing approaches by providing several

191

examples in which the system is representing a graph-based environment. It then

explains the overall scheme of a typical graph processing system which is a basic for

the rest of the chapter where each subsection can be mapped into this scheme. Chapter

2 conducted a detailed investigation on various components of graph processing

frameworks and discussed many examples about how these components are being

used in existing frameworks in each section. This chapter also analysed the gap in the

literature and concludes with a tabular review of several important works.

Chapter 3 introduces iGiraph, our extended version of the popular graph processing

framework Giraph, that is a distributed framework designed to operate on cloud

environments by which large-scale graph datasets are processed in a cost-efficient way.

This chapter is also presenting a new classification of graph algorithms that have not

been considered in any graph processing system implementation before. Using this

classification that divides algorithms into convergent and non-convergent, the system

can adjust the number of required resources for the operation. Another critical part of

the system is the dynamic repartitioning mechanism that has utilized the

aforementioned classification with taking advantage of high-degree vertices’

characteristics in real-world graphs and the network traffic to repartition and distribute

nodes across the resources. This resulted in reducing the number of cross-edges in the

network as well as the number of messages passing through that. The monetary cost is

also declined because of the faster execution and using optimal number of machines.

Chapter 4 emphasises on the importance of network factors in a highly distributed

environment as clouds. The graph algorithm classification from Chapter 3 is expanded

in this chapter and a second dimension is added to it. Two network-aware dynamic

repartitioning-based scheduling algorithms were proposed in this chapter too. The

bandwidth-and-traffic-aware algorithm which is suitable for communication-intensive

applications measures the bandwidth and the traffic in the network and distributes the

partitions accordingly. It is shown that the algorithm can effectively reduce the

monetary cost of the operation and since most graph applications fall into this

category, the evaluation results seem promising. The computation-aware algorithm

works well when the processing speed is important for the user/application. Using

192

this algorithm, the system always utilizes the machines with less CPU burden to speed

up the operation. It is also shown that this approach reduces the dollar cost

remarkably.

In Chapter 5, the importance of benefiting from resource heterogeneity in cloud

environments and its impact on large-scale graph processing is investigated. This

chapter introduces a smart monitoring mechanism to enable the system to obtain

information about various metrics during each superstep. Metrics such as network

bandwidth, CPU utilization, network traffic, available machines, prices of machines,

available memory, partition size, etc. are being measured and monitored to be used for

further calculation in our characteristic-based dynamic repartitioning algorithm.

According to the measured metrics, our proposed characteristic-based dynamic

repartitioning algorithm migrate vertices or merges partitions and distributes them

across the provisioned VMs. However, the type and the number of resources in each

iteration might change based on the decisions that is made in decision-making module

to minimize the dollar cost of the processing. Then, the auto-scaling algorithm will

adjust the heterogeneous resources with the actual requirements. This significantly

reduces the cost.

Chapter 6 puts all the developed techniques from previous chapters together and

combines them with its own new mechanisms to provide the large-scale graph

processing as a service in cloud environments. Unlike existing graph processing

frameworks that can only handle one dataset, this chapter proposes a multi-handling

approach in which different users can submit their jobs (that includes the dataset and

SLA requirements) at the same time. Then the prioritization algorithm will place them

in the system based on their priorities. A new dynamic scheduling and resource

provisioning approach has also employed in the framework that comprehensively

watches the changes in the system and makes decisions based on various measured

metrics.

193

Figure 7-1 Future directions

7.2 Future Directions

Although several works have looked into improving graph processing systems, there

are still a number of issues that are open. For example not many graph processing

frameworks use dynamic repartitioning which performs better than simple static

partitioning in many cases. Most the frameworks use checkpointing for error handling,

which can be costly, and other approaches to fault recovery are not well studied. While

many researchers have studied classic graph algorithms such as PageRank and shortest

paths, it is not clear whether these frameworks can still perform as well for more

sophisticated and real-world applications such as machine learning algorithms.

Besides these, there are several other advances to the programming and data model

of large graphs, and the runtime execution of the graph platforms that need to be

examined. These are discussed below.

Future Research Directions

on Graph Processing

Frameworks

Incremental

Processing

Models

Complex

Workflows

Graph

Compression
Network

Optimizations

Cloud Features

and Cost Models

Graph

Databases

Energy-efficient

Resource

Allocation

194

7.2.1 Incremental Processing Models

Regardless of the type of framework or algorithms used for processing big graphs, or

how large the graph is, data can be processed in three different ways as shown in

Figure 7.2.

Figure 7-2 Data processing approaches

According to the problem domain that a framework wants to present solutions for,

each data processing approach shown above can be considered in the framework.

Offline processing (batch processing) is done where a number of analogous tasks are

gathered together to be processed by a computing system all at once instead of

individually. In this method, which is used in many graph processing frameworks, the

whole graph dataset is loaded into the system, processed for an application, and the

results will be return to the user. The original graph is not changed externally, other

than through modifications by the running application, and this leads to predictable

partitioning and scheduling strategies which make their design easy.

In online processing, user can communicate with the system and can make changes

to the graph data stored in the system. Thus, the system will be updated automatically

and re-process the data with new values periodically or based on user-defined events,

which is not necessarily real-time and immediate.

Real-time processing allows the graph to change over time based on incremental

updates that it receives to the graph topology or properties. Processing such dynamic

graphs is more like an event-driven system where sensors may generate a stream of

updates about a vertex or edge that the sensor represents (e.g., road network with

traffic cameras or sensors). Real-time processing requires that the computation should

be done immediately after the changes happen to the data, and the updated results

should be returned with very short delays. Sometimes, the operations may be

performed on the delta events themselves before they are actually applied to the graph

Data Processing

Methods

Real-Time

Processing
Online ProcessingOffline Processing

195

data. Such requirements are increasingly important in competitive businesses such as

social networks, and in IoT domains. There is limited work in the area of real-time

processing of large dynamic graphs. For example, Twitter uses a graph-based content

recommendation engine called GraphJet [203] which is an in-memory framework that

supplements real-time with batch processing by keeping real-time bipartite interplay

graph between tweets and users.

The temporal dimension can also come through the notion of time-series graphs

where different states of a graph are available, and the application has to operate over

both the spatial and temporal dimension. However, this data base be collected a priori

and available offline, and distinct from the changing states of the graph arriving in

real-time. For example, GoFFish operates over time-series graphs for algorithms such

as time-dependent shortest path and tracking meme propagation [208].

7.2.2 Complex Workflows

A workflow is a dependency graph of different tasks that should be done in a specific

order to complete a bigger job. Current graph processing frameworks are based on

very simple workflows, typically singleton workflows with one operation executed in a

data-parallel manner. They pick a dataset and an algorithm and execute the algorithm

on the data. They usually try to solve very simple problems such as finding shortest

path or PageRank problem. But, many real world problems are not as easy as this. For

example, in a social network a typical scenario can be like this: an algorithm finds all

friends and followers of somebody, then finds the common interests between them

using another algorithm, draws a map of his/her communication history, combines all

these information with the information from other people in that city to find the whole

trends and so on. Such a complicated series of processes cannot be modeled seamlessly

based on existing graph processing systems without manually creating multiple jobs

and passing data explicitly between them through the file system. While there is

limited work on Master-Compute model that allows a master task to change the phase

of computation on the workers, this can be used to model only simple sequential

196

operations on a single graph rather than more complex operations that may even span

different graphs. So, new frameworks are needed to allow the users to perform more

complicated operations.

On the other hand, such complex scenarios also require efficient resource

provisioning. That is, proper scheduling is critical to minimize the monetary costs and

execution time on one side, and improve resource utilization and performance of the

system on the other side. Graph tasks in the workflow may have different processing

needs, and may arrive at different intervals, and with different priorities and

profitability metrics. Managing these graph workloads offer novel challenges as well.

Some research issues on this include:

- How to schedule complex graph workflows to gain minimum cost and

maximum resource utilization?

- What factors influence workflow management in graph processing systems

considering graph algorithms characteristics and features of graph datasets?

- How does workflow management in graph processing frameworks–specially

for complex scenarios- affect the energy consumption of resources?

7.2.3 Graph Databases

Relational databases have existed since the 1980s, and have grown mature. While they

deal well with structured data tuples stored in tables, their use for storing and

querying graph datasets is limited. As discussed in Chapter 2, graph database, while

not a novel concept, are still in their early stages when considering large property and

semantic graphs. It is because relationships in a graph database are much stronger than

those hypostatized at runtime in a relational database since they are being treated as

high priority entities [188]. Relational databases are much slower than graph databases

for connected data, hence using graph databases is recommended for highly connected

environment and applications such as social networks, IoT, business transactions, and

Web searching.

Despite the usefulness of graph databases in the aforementioned environments, they

are not as mature as relational databases particularly in terms of tools for data mining

197

purposes on massive graph data on distributed systems. Therefore, future directions

for research include:

- What are the canonical query models for static and dynamic graphs? What is

the equivalent of a relational algebra for graph databases?

- Supporting graph queries in combination with graph kernel algorithms, e.g.,

find all websites hosted in Australia (property) whose PageRank (algorithm

output) is greater than X.

- What are the cost models to be developed for efficient execution of graph

queries on distributed environments?

- Improve the ability to sustain low-latency processing of large numbers of

transactional graph queries on distributed and elastic systems like Cloud.

- How can analysis be performed across data stored in traditional relational

databases and graph databases seamlessly and effectively?

- How do we manage distributed data and indexes in graph databases that have

data constantly changing or streaming in?

7.2.4 Cloud Features and Cost Models

The Cloud computing paradigm has modified hardware, software and datacenters

implementation and design. It offers new economical and technological solutions such

as utilizing distributed computing, pay-as-you-go pricing models and resource

elasticity. Cloud computing offers computing as a utility in which users can have

accesses to different services according to their needs without heed to where the

services are hosted or how they are delivered.

Computing as a service is the infrastructure service most relevant to graph

processing. While the scalability offered by VMs has been used for graph processing,

these are treated as yet another distributed resource by graph processing frameworks

rather than consider their ability to elastically scale, or consider their costs. There is

limited work on this regard. As mentioned in this thesis, iGiraph has started to

consider cost optimization on clouds. It provides various algorithm classifications and

198

utilizes dynamic repartitioning mechanisms by which it reduces the number of VMs

for the graphs that are shrinking during the operation to decline the price. It also

performs better on non-convergent applications compared to other frameworks such as

the popular Giraph.

Dindokar et al. [59] have proposed an approach to model the computational

behavior of non-stationary graph algorithms using a meta-graph model for subgraph-

centric programming model. The meta-graph model is able to offer predictions on the

subgraphs that will be active in different supersteps, and this is used to schedule

subgraphs to VMs in different supersteps, including elastically scaling the VMs in and

out [59]. Their strategies show a pricing reduction by half for large graphs like Orkut

for costly graph algorithms like Betweenness centrality, with minimal increase in the

runtime relative to static over-provisioning of VMs. Elasticity has also be examined in

[167] where it uses two partitioning mechanisms called Contiguous Vertex

Repartitioning (CVR) and Ring-based Vertex Repartitioning (RVR) to 1) scale in/out

without interfering graph computation, 2) decrease the network overhead after scaling,

3) keep the load balanced by reducing stragglers across servers.

Cloud providers have different cost models for their VM resources, typically, on-

demand VMs that you pay for based on the minutes or hours used, and spot VMs that

have dynamic pricing based on demand-supply, and are pre-emptible when the

demand out-strips supply. Spot VMs are much cheaper than on-demand VMs and

their use can also be explored for large graph applications, while addressing the faults

that can occur due to out of bid event when prices spike. While this has been examined

for applications like MapReduce, there is no work in this regard yet for graph

processing.

Service level agreement (SLA) [175] is a contract between a service provider and a

service user to define the service features, the time for delivering the service, the steps

that should be taken in the case of service crashes, service domain, prices, etc. Using

SLAs, both user and provider can ensure that the service is delivered exactly based on

what had been agreed upon and penalties can be applied in case of commitment

violation. Quality of a service (QoS) [18] provides a level of performance, availability

and reliability offered by software, platform and infrastructure that the service is

199

hosted on them. If we consider graph processing as a service then the quality of this

service should be in an acceptable level from both provider and customer points of

views. According to the aforementioned SLA and QoS definitions, and taking graph

processing characteristics into consideration, some research directions can be defined

as follow:

- Which parameters have the most impact on the performance of a graph

processing service and quality of that?

- What factors should be considered for selecting appropriate graph processing

service among other analogous services?

- How SLA-based resource provisioning and scheduling mechanisms for

managing graph processing systems and services can be?

7.2.5 Network Optimizations

The network communication and messaging aspects are less studied in current graph

processing frameworks. The factors such as network latency, network bandwidth,

network traffic and topology can affect the runtime performance of the system. The

problem also becomes more complicated when it comes to the Cloud environments.

Most existing distributed graph frameworks have been developed for integrated

clusters in which resource management and communication is more predictable. But in

a Cloud-based framework, the network performance can be variable and VM

placement not in the control of users. Hence it becomes essential to consider network

factors. Unlike earlier works that considered the role of the network as trivial in graph

processing [172], particularly for the graphs that can fit into the memory of a single

machine, most recent experiments showed that the network plays a major role in the

performance of a graph processing system whether the graph can fit in the memory of

a single machine or it is processed on a distributed system [155]. For example, as we

demonstrated in Chapter2, allocating larger or denser partitions to the machines with

higher bandwidth on one side and reducing the network traffic by decreasing the

number of messages transferred between machines on the other hand can enhance the

200

efficiency of the system. Nevertheless, more research is needed to study other

parameters such as topology, latency, etc. and how they affect the processing.

7.2.6 Graph Compression

According to [204], processing large graphs on share memory can be remarkably

quicker than processing in a distributed memory environment. Although the amount

of data created in the form of graph is growing every day, the capacity of available

memory is also increasing which enables very large graph datasets to be fit into

memory of a single machine. However, improving the space utilization and execution

time of graph algorithms has become crucial. This leads towards compressing graphs

to use the memory efficiently.

Graph compression is a technique that has been investigated in the past in

frameworks such as WebGraph that could store Web-based graphs using graph

compression algorithms such as referentiation, intervalisation, etc. in a limited

memory. By the emergence of graph processing frameworks, some systems started

proposing similar mechanism to process large-scale graphs. Ligra+ [Shun et al 2015],

for example, is a shared memory graph processing system that is developed based on

Ligra to reduce memory usage. Ligra+ combines encoding (compression) and decoding

techniques utilizing byte codes and nibble codes to represent data. Vertices are being

parallelized in encoding where edge list of each vertex will be compressed by coding

the differences between source and target vertices of sequential edges. This framework

uses two separate methods for decoding out-edge and in-edge lists. Compression on

single machines has been implemented on a number of frameworks [145] [194].

Compression techniques have been used for both single machine and multi-

computing frameworks. Some works proposed a compression mechanism to optimize

memory usage on distributed frameworks. Their solution which has been developed

based on Pregel paradigm includes: 1) considering out-edges of each vertex as a row in

the graph neighboring matrix for the compression to efficiently represent the space, 2)

quick mining the graph without decompression, and 3) considering memory limitation

to operate on graph algorithms. GBASE is another distributed framework that utilizes

201

graph compression. To store the graph efficiently, GBASE uses block compression by

creating multiple regions that contain adjacency vertices.

Apart from various compression techniques that have been implemented on graph

processing frameworks, there are some issues that make this topic promising for

further research.

- Although compression helps in reducing memory utilization, encoding and

decoding data are time-consuming and current solutions have made limited

improvement in execution time of the operations.

- Some compression techniques might positively influence particular graph

algorithms but not the others. Is there any mechanisms that can be useful for

different types of graph algorithms? How about switching between different

techniques based on the graph application that is being used?

- How do compression mechanisms affect the bandwidth and other computing

resources in a single server or distributed environment?

7.2.7 Energy-efficient Resource Allocation

Requests for cloud computing resources are increasing constantly since many years

ago as more applications are being migrated to clouds every day. This encourages

cloud providers to raise the capacity of datacenters to appropriately serve the growing

demands of new clients. One of the major issues of increasing the capacity of

datacenters is that more energy is needed to power this big infrastructure. However, a

big fraction of the provided energy is being wasted due to various reasons such as

inefficient resource provisioning, costly communications, I/O inefficiency, ineffective

program architecture, old servers, etc. in the past few years, many works have been

done on replacing green power generated energy such as wind, sun and water to

supply the needed energy for datacenters and reduce carbon emission. Scheduling and

provisioning of resources for various applications on cloud infrastructure in a way that

increases usage of green nodes or optimizes the number of required machines will help

to decrease the negative impacts of energy wastage. More advanced techniques can be

proposed for graph processing systems to achieve this goal.

202

7.2.8 Other Improvements

Since scalable graph processing is still in its infancy, there are many open issues to

improve the performance and features of each component discussed in Chapter 2, and

the overall performance of the system. For example, read and write from/to disk is

costly in these systems and usually acts as a bottleneck. In many researches such as

[262] and [167] SSD (solid state drive) is used as a faster storage device compared to

traditional HDDs (hard disk drive) and cheaper compared to main memory. Further,

efficient storage models for graph datasets on disks also need to be explored. For e.g.,

when processing large graphs, the time to load data from disk to memory can outstrip

the time to perform the analysis. Compact and compressed graph data representation

on disk, loading necessary subsets of the graph on-demand, and support for efficient

storage of property graph are some novel topics to explore. Literature has also

examined processing of large graphs on single machines and tries to keep the whole

graph and computation results in memory. They rely on memory costs dropping and

capacities increasing with new technologies like 3D stacked RAM, when single

machines will become viable even for billion-vertex graphs. So there are several aspects

of storage and memory management that can be explored.

In addition to these, other parts of graph processing system pipeline can be

improved as well. These include:

- What initial partitioning or pre-processing techniques can improve the

performance of the system and speed up the computation process? How can

repartitioning improve the efficiency of the system and if it can speed up the

computation process?

- How can we better model and predict the behavior of different graph

algorithms for graphs with different characteristics, such as power law, small

world, planar, etc.? How are these affected by the different programming

models? Can we use these to determine the ideal graph processing technique or

strategy to be chosen, e.g., synchronous vs. asynchronous algorithms,

computation-bound algorithms vs. memory-bound algorithms, denser datasets

vs. less dense datasets and so on.

203

- Are there any computational mechanisms that use less memory size or can

reduce network traffic by reducing the number of messages between machines?

- What fault-tolerance techniques can be used other than check-pointing to

improve system reliability and performance?

- What resource provisioning and scheduling algorithms can be used to optimize

the processing framework particularly in a competitive environment such as

cloud spot-markets?

7.3 Final Remarks

The introduction and provisioning of new features such as unprecedented level of

scalability, elasticity and pay-as-you-go models by the cloud computing paradigm on

one side and the expanding popularity of large-scale graph processing on the other

side have provided opportunities for both technologies to benefit from each other’s

traits and serve other areas. In this thesis, we used the several characteristics of cloud

computing environments to propose solutions in order to empower distributed

processing of large-scale graphs. We investigated and implemented various techniques

such as different approaches for dynamic repartitioning of the graph during the

processing, network-aware scheduling algorithms, methods for taking advantage of

heterogeneous resources that are provided in the cloud, and monitoring and

maintaining quality of service (QoS) while focusing on minimizing monetary cost as a

major factor for service selection. The proposed solutions in this thesis provide

direction towards a comprehensive graph processing-as-a-service (GPaaS) paradigm

through which analytics in other computing environments such as Internet of Things

(IoT) and Edge/Fog computing can be conducted and managed more effective.

204

205

BIBLIOGRAPHY

[1] A. Abou-Rjeili and G. Karypis, "Multilevel Algorithms for Partitioning Power-

Law Graphs," in Proceedings of IEEE International Parallel & Distributed

Processing Symposium (IPDPS'6), Rhodes Island, Greece, 2006, pp. 124-124.

[2] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman, "Vision Paper: Towards

an Understanding of the Limits of Map-Reduce Computation," in Proceedings of

Cloud Futures 2012 Workshop, Berkeley, California, USA, 2012.

[3] F. Akbari, A. Hooshang Tajfar, and A. Farhoodi Nejad, "Graph-Based Friend

Recommendation in Social Networks Using Artificial Bee Colony," in

Proceedings of IEEE 11th International Conference on Dependable, Autonomic

and Secure Computing (DASC), Chengdu, China, 2013, pp. 464-468.

[4] A.r Alexandrov et al., "The Stratosphere platform for big data analytics," The

VLDB Journal — The International Journal on Very Large Data Bases, vol. 23, no.

6, pp. 939-964, 2014.

[5] (2015) AllegroGraph. [Online]. http://allegrograph.com/

[6] R. Allen. (2017, Feb.) What happens online in 60 seconds? [Online].

https://www.smartinsights.com/internet-marketing-statistics/happens-online-

60-seconds/

[7] P. Ammann, D. Wijesekera, and S. Kaushik, "Scalable, graph-based network

vulnerability analysis," in Proceedings of 9th ACM conference on Computer and

http://allegrograph.com/
https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/
https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/

206

communications security (CCS '02), Washington, DC, USA, 2002, pp. 217-224.

[8] K. Andreev and H. Racke, "Balanced Graph Partitioning," in Proceedings of 16th

annual ACM symposium on Parallelism in algorithms and architectures

(SPAA'04), Barcelona, Spain, 2004, pp. 120-124.

[9] R. Angles and C. Gutierrez, "Survey of Graph Database Models," ACM

Computing Surveys (CSUR), vol. 40, no. 1, pp. 1-39, 2008.

[10] (2015) Apache Cassandra. [Online]. http://cassandra.apache.org/

[11] Apache Giraph. [Online]. http://giraph.apache.org/

[12] Apache Hadoop. [Online]. http://hadoop.apache.org/

[13] Apache Hama. [Online]. https://hama.apache.org/

[14] (2015, July) Apache Hbase. [Online]. http://hbase.apache.org/

[15] Apache Hive TM. [Online]. https://hive.apache.org/

[16] Apache Pig. [Online]. https://pig.apache.org/

[17] (2015) ArangoDB. [Online]. https://www.arangodb.com/

[18] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang, "Quality-of-Service

in Cloud Computing: Modeling Techniques and Their Applications," Journal of

Internet Services and Applications, vol. 5, no. 11, pp. 1-17, 2014.

[19] D. A. Bader and K. Madduri, "SNAP, Small-world Network Analysis and

Partitioning: An open-source parallel graph framework for the exploration of

large-scale networks," in Proceedings of the IEEE International Symposium on

Parallel and Distributed Processing Systems (IPDPS'08), Miami, FL, USA, 2009.

[20] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Graph Partitioning and

Graph Clustering. Atlanta, GA, US: American Mathematical Society, 2013.

[21] H. Bagci and P. Karagoz, "Context-aware location recommendation by using a

random walk-based approach," Knowledge and Information Systems, 2015.

[22] M. J. Bannister and D. Eppstein, "Randomized Speedup of the Bellman-Ford

Algorithm," In Proeedings of the Meeting on Analytic Algorithmics and

Combinatorics (ANALCO'12, Kyoto, Japan, 2012, pp. 41-47.

http://cassandra.apache.org/
http://giraph.apache.org/
http://hadoop.apache.org/
https://hama.apache.org/
http://hbase.apache.org/
https://hive.apache.org/
https://pig.apache.org/
https://www.arangodb.com/

207

[23] C. Battaglino, P. Pienta, and R. Vuduc, "GraSP: Distributed Streaming Graph

Partitioning," in Proceedings of the 1st High Performance Graph Mining

workshop (HPGM '15), Sydney, Australia, 2015.

[24] S. Beamer, K. Asanovic, and D. Patterson, "Direction-Optimizing Breadth-First

Search," in Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis (SC’12), Salt Lake City, Utah,

2012.

[25] L. Belli, S. Cirani, G. Ferrari, L. Melegari, and M. Picone, "A Graph-Based Cloud

Architecture for Big Stream Real-Time Applications in the Internet of Things," in

Proceedings of Advances in Service-Oriented and Cloud Computing (ESOCC

2014), Manchester, UK, 2014.

[26] T. Beseri Sevim, H. Kutucu, and M. Ersen Berberler, "New Mathematical Model

for Finding Minimum Vertex Cut Set," in Proceedings of International

Conference on Problems of Cybernetics and Informatics (PCI'2012), BAKU,

AZERBAIJAN, 2012, pp. 143-144.

[27] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler, "To Push or

To Pull: On Reducing Communication and Synchronization in Graph

Computations," in Proceedings of the 26th International Symposium on High-

Performance Parallel and Distributed Computing (HPDC’17), Washington, DC,

USA, 2017.

[28] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica, "Hyracks: A Flexible

and Extensible Foundation for Data-Intensive Computing," in Proceedings of

IEEE 27th International Conference on Data Engineering (ICDE '11), Hannover,

Germany, 2011, pp. 1151-1162.

[29] F. Bourse, M. Lelarge, and M. Vojnovi, "Balanced Graph Edge Partition," in

Proceedings of 20th ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD '14), New York, NY, US, 2014, pp. 1456-1465.

[30] Y. Boykov and V. Kolmogorov, "An Experimental Comparison of Min-Cut/Max-

Flow Algorithms for Energy Minimization in Vision," IEEE Transaction on

208

Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124-1137, 2004.

[31] T. Britton, M. Deijfen, and A. Martin-Lof, "Generating Simple Random Graphs

with Prescribed Degree Distribution," Journal of Statistical Physics, vol. 124, no.

6, pp. 1377-1397, 2006.

[32] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, "Pregelix: Big(ger) Graph

Analytics on A Dataflow Engine," VLDB Endowment, vol. 8, no. 2, pp. 161-172,

2014.

[33] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, "HaLoop: efficient iterative data

processing on large clusters," The VLDB Endowment, vol. 3, no. 1-2, pp. 285-296,

2010.

[34] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, "Recent Advances

in Graph Partitioning," arXiv preprint, arXiv:1311.3144, 2013.

[35] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as

the 5th utility," Future Generation Computer Systems, vol. 25, no. 6, pp. 599-616,

2009.

[36] L. Cao. (2011) GoldenOrb. [Online]. https://github.com/jzachr/goldenorb

[37] U. Catalyurek and C. Aykanat, "Decomposing Irregularly Sparse Matrices for

Parallel Matrix-Vector Multiplication," in Proceedings of third International

Workshop on Parallel Algorithms for Irregularly Structured Problems

(IRREGULAR '96), Santa Barbara, CA, USA, 1996, pp. 75-86.

[38] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, "I tube, you tube,

everybody tubes: analyzing the world's largest user generated content video

system," in Proceedings of 7th ACM SIGCOMM conference on Internet

measurement (IMC '07), San Diego, CA, 2007, pp. 1-14.

[39] C. Chambers et al., "FlumeJava: Easy, Efficient Data-Parallel Pipelines," in

Proceedings of 31st ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI '10), Toronto, Ontario, Canada, 2010, pp. 363-

375.

https://github.com/jzachr/goldenorb

209

[40] K. Mani Chandy and L. Lamport, "Distributed Snapshots: Determining Global

States of Distributed Systems," ACM Transactions on Computer Systems (TOCS),

vol. 3, no. 1, pp. 63-75, 1985.

[41] S. Che, "GasCL: A Vertex-Centric Graph Model for GPUs," in Proceedings of

IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA,

2014, pp. 1-6.

[42] Q. Chen et al., "GraphHP: A Hybrid Platform for Iterative Graph Processing.,"

arXiv preprint, arXiv:1706.07221, Technical Report 2014.

[43] G. Chen, Z. Fan, and X. Li, "Modelling the Complex Internet Topology,"

Complex Dynamics in Communication Networks, Springer, Berlin, Heidelberg,

pp. 213-234, 2005.

[44] R. Cheng et al., "Kineograph: Taking the Pulse of a Fast-Changing and

Connected World," in Proceedings of 7th ACM european conference on

Computer Systems (EuroSys '12), Bern, Switzerland, 2012, pp. 85-98.

[45] Y. Chen, Y. H Lee, W. E. Wong, and D Guo, "A Race Condition Graph for

Concurrent Program Behavior," in Proceedings of 3rd International Conference

on Intelligent System and Knowledge Engineering (ISKE'08), Xiamen, China,

2008, pp. 662-667.

[46] R. Chen, X. Weng, B. He, and M. Yang, "Large Graph Processing in the Cloud," in

Proceedings of ACM SIGMOD International Conference on Management of data

(SIGMOD '10), Indianapolis, Indiana, USA, 2010, pp. 1123-1126.

[47] R. Chen et al., "Improving Large Graph Processing on Partitioned Graphs in the

Cloud," in Proceedings of third ACM Symposium on Cloud Computing (SoCC

'12), San Jose, CA, 2012.

[48] A. Ching. Scaling Apache Giraph to a Trillion Edges. [Online].

https://www.facebook.com/notes/facebookengineering/scaling-apache-

giraph-to-a-trillionedges/10151617006153920

[49] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, "One

Trillion Edges: Graph Processing at Facebook-Scale," The VLDB Endowment,

https://www.facebook.com/notes/facebookengineering/scaling-apache-giraph-to-a-trillionedges/10151617006153920
https://www.facebook.com/notes/facebookengineering/scaling-apache-giraph-to-a-trillionedges/10151617006153920

210

vol. 8, no. 12, pp. 1804-1815, 2015.

[50] G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic, "Reliable Distributed

Storage," Computer, vol. 42, no. 4, pp. 60-67, 2009.

[51] J. Cohen, "Graph Twiddling in a MapReduce World," Computing in Science and

Engineering, vol. 11, no. 4, pp. 29-41, 2009.

[52] The European Commission, "Social Networks Overview: Current Trends and

Research Challenges," Information Society and Media, Luxembourg, 2010.

[53] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems

Concepts and Design, 5th ed. Boston, Massachusetts, US: Addison-Wesley, 2012.

[54] G. Dai, Y. Chi, Y. Wang, and H. Yang, "FPGP: Graph Processing Framework on

FPGA A Case Study of Breadth-First Search," in Proceedings of the

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

(FPGA’16), Monterey, California, USA, 2016.

[55] Committee on the Analysis of Massive Data, Theoretical Statistics Committee on

Applied, Their ApplicationsApplications Board on Mathematical Sciences, and

Physical Sciences Division on Engineering, and National Research Council,

Frontiers in Massive Data Analysis.: The National Academies Press, 2013.

[56] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large

Clusters:," in Proceedings of Sixth Symposium on Operating Systems Design and

Implementation(OSDI '04), San Francisco, California, USA , 2004.

[57] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek,

"Parallel Hypergraph Partitioning for Scientific Computing," in Proceedings of

20th international conference on Parallel and distributed processing (IPDPS'06),

Rhodes Island, Greece, 2006.

[58] M. D. de Assuncao, R. N. Calheiros, S. Bianchi, M. A.S. Netto, and R. Buyya, "Big

Data computing and clouds: Trends and future directions," Journal of Parallel

and Distributed Systems, vol. 79-80, pp. 3-15, 2015.

[59] R. Dindokar and Y. Simmhan, "Elastic Partition Placement for Non-stationary

Graph Algorithms," in Proceedings of the 16th IEEE/ACM International

211

Symposium on Cluster, Cloud and Grid Computing (CCGrid'16), Cartagena,

Colombia, 2016.

[60] N. Doekemeijer and A. Lucia Varbanescu, "A Survey of Parallel Graph

Processing Frameworks," Delft, The Netherlands, Technical report 2014.

[61] D. Dominguez-Sal, N. Martinez-Bazan, V. Muntes-Mulero, P. Baleta, and J. Lluis

Larriba-Pey, "A Discussion on the Design of Graph Database Benchmarks," in

Proceedings of the Second TPC Technology Conference (TPCTC'10), Singapore,

Springer, 2010.

[62] D. Ediger and D. A. Bader, "Investigating Graph Algorithms in the BSP Model on

the Cray XMT," in Proceedings of 27th IEEE International Parallel and

Distributed Processing Symposium (IPDPS'13), Boston, Massachusetts, USA,

2013, pp. 1638-1645.

[63] T. Egan, W. Tong, W. Shen, J. Peng, Z. Niu, "Efficient Graph Mining on

Heterogeneous Platforms in the Cloud," in Proceedings of the Lecture Notes of

the Institute for Computer Sciences, Cham, Switzerland, 2017, pp. 12-21.

[64] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, "A survey of fault tolerance

mechanisms and checkpoint/restart implementations for high performance

computing systems," The Journal of Supercomputing, vol. 65, no. 3, pp. 1302-

1326, 2013.

[65] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, and S. Bae, "Twister: a runtime for

iterative MapReduce," in Proceedings of 19th ACM International Symposium on

High Performance Distributed Computing (HPDC '10), Chicago, IL, USA, 2010,

pp. 810-818.

[66] D Elena, Fault-Tolerant Design. New York, NY, US: Springer-Verlag, 2013.

[67] E. N. Elnozahy, L. Alvist, Y. Wang, and D. B. Johnson, "A survey of rollback-

recovery protocols in message-passing systems," ACM Computing Surveys

(CSUR), vol. 34, no. 3, pp. 375-408, 2002.

[68] H. El-Rewini and M. Abd-El-Barr, "Message Passing Interface (MPI)," Advanced

Computer Architecture and Parallel Processing, pp. 205-234, 2005.

212

[69] U. Elsner, Static and Dynamic Graph Partitioning. A Comparative Study of

Existing Algorithms. Berlin, Germany: Logos Verlag Berlin, 2002.

[70] N. Engelhardt and H. K. So, "Vertex-centric Graph Processing on FPGA," in

Proceedings of the IEEE 24th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM 2016), Washington DC,

USA, 2016.

[71] U. Feige, M. Hajiaghayi, and J. R. Lee, "Improved Approximation Algorithms for

Minimum Weight Vertex Separators," SIAM Journal on Computing, vol. 38, no.

2, pp. 629-657, 2008.

[72] F. Fouss, A. Pirotte, J. M. Renders, and M. Saerens, "Random-Walk Computation

of Similarities between Nodes of a Graph with Application to Collaborative

Recommendation," IEEE Transactions on Knowledge and Data Engineering, vol.

19, no. 3, pp. 355-369, 2007.

[73] Z. Fu, M. Personick, and B. Thompson, "MapGraph: A High Level API for Fast

Development of High Performance Graph Analytics on GPUs," in Proceedings of

Workshop on GRAph Data management Experiences and Systems (GRADES'14),

Snowbird, Utah, USA, 2014, pp. 1-6.

[74] N. H. Gehani, "Message passing in Concurrent C: Synchronous versus

asynchronous," Software: Practice and Experience, vol. 20, no. 6, pp. 571-592,

1990.

[75] F. Geier, "The Differences Between SSD and HDD Technology Regarding

Forensic Investigations," Småland, Sweden, Thesis 2015.

[76] A. Geist et al., PVM: A Parallel Virtual Machine. Cambridge, MA, USA: MIT

Press, 1994.

[77] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu , "On Graphs,

GPUs, and Blind Dating: A Workload to Processor Matchmaking Quest," in

Proceedings of IEEE 27th International Symposium on Parallel and Distributed

Processing (IPDPS '13), Boston, Massachusetts USA, 2013, pp. 851-862.

[78] A. Gharaibeh et al., "Efficient Large-Scale Graph Processing on Hybrid CPU and

213

GPU Systems," The Journal of Supercomputing, vol. 71, no. 4, pp. 1563-1586,

2013.

[79] Y. Gong, B. He, and J. Zhong, "Network Performance Aware MPI Collective

Communication Operations in the Cloud," IEEE Transactions on Parallel and

Distributed Systems (TPDS), vol. 26, no. 11, pp. 3079-3089, 2015.

[80] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, "PowerGraph:

Distributed Graph-Parallel Computation on Natural Graphs," in Proceedings of

10th USENIX conference on Operating Systems Design and Implementation

(OSDI'12), Hollywood, CA, 2012, pp. 17-30.

[81] J. E. Gonzalez et al., "GraphX: Graph Processing in a Distributed Dataflow

Framework," in Proceedings of the 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI'14), Broomfield, CO, 2014.

[82] M. Grabowski, J. Hidders, and J. Sroka, "Representing MapReduce Optimisations

in the Nested Relational Calculus," in Proceedings of 29th British National

Conference on Databases, Oxford, United Kingdom, 2013.

[83] (2015) GraphBase. [Online]. http://graphbase.net/

[84] Chloe Green. (2013, August) Information Age. [Online].

http://www.information-age.com/technology/information-

management/123457275/an-introduction-to-graph-databases

[85] D. Gregor and A. Lumsdaine, "The Parallel BGL: A Generic Library for

Distributed Graph Computations," in Proceedings of Parallel Object-Oriented

Scientific Computing (POOSC), Glasgow, UK, 2005.

[86] Y. Gu, L. Lu, R. Grossman , and A. Yoo, "Processing Massive Sized Graphs Using

Sector/Sphere," in Proceedings of 2010 IEEE Workshop on Many-Task

Computing on Grids and Supercomputers (MTAGS), New Orleans, LA, 2010, pp.

1-10.

[87] S. Gunelius. (2014, July) ACI. [Online]. http://aci.info/2014/07/12/the-data-

explosion-in-2014-minute-by-minute-infographic/

[88] Y. Guo, A. L. Varbanescu, A. Iosup, and D. Epema, "An Empirical Performance

http://graphbase.net/
http://www.information-age.com/technology/information-management/123457275/an-introduction-to-graph-databases
http://www.information-age.com/technology/information-management/123457275/an-introduction-to-graph-databases
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/

214

Evaluation of GPU-Enabled Graph-Processing Systems," in Proceedings of 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid'15), Shenzhen, China, 2015, pp. 423-432.

[89] P. Gupta et al., "WTF: The Who to Follow Service at Twitter," in Proceedings of

22nd international conference on World Wide Web (WWW '13), Rio de Jaeiro,

Brazil, 2013, pp. 505-514.

[90] M. Han and K. Daudjee, "Giraph Unchained: Barrierless Asynchronous Parallel

Execution in Pregel-like Graph Processing Systems," The VLDB Endowment, vol.

8, no. 9, pp. 950-961, 2015.

[91] W. S. Han et al., "TurboGraph: a fast parallel graph engine handling billion-scale

graphs in a single PC," in Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD'13), Chicago,

Illinois, USA, 2013, pp. 77-85.

[92] W. Han et al., "Chronos: a graph engine for temporal graph analysis," in

Proceedings of the 9th European Conference on Computer Systems (EuroSys

'14), Amsterdam, Netherland, 2014.

[93] Harshvardhan, A. Fidel, N. M. Amato , and L. Rauchwerger, "The STAPL

Parallel Graph Library," in Proceedings of the 25th International Workshop on

Languages and Compilers for Parallel Computing (LCPC'12), Tokyo, Japan, 2013.

[94] B. Hendrickson and J. W. Berry, "Graph Analysis with High-Performance

Computing," Computing in Science and Engineering, vol. 10, no. 2, pp. 14-19,

2008.

[95] N. R. Herbst, S. Kounev, and R. Reussner, "Elasticity in Cloud Computing: What

It Is, and What It Is Not," in the Proceeding of the 10th International Conference

on Autonomic Computing (ICAC'13), San Jose, CA, 2013.

[96] D. S. Hirschberg , A. K. Chandra , and D. V. Sarwate , "Computing connected

components on parallel computers," Communications of the ACM, vol. 22, no. 8,

pp. 461-464, 1979.

[97] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, "Green-Marl: A DSL for Easy and

215

Efficient Graph Analysis," in Proceedings of the 17th International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS '12), London, UK, 2012.

[98] I. Hoque and I. Gupta, "LFGraph: Simple and Fast Distributed Graph Analytics,"

in Proceedings of the First ACM SIGOPS Conference on Timely Results in

Operating Systems (TRIOS '13), Farmington, Pennsylvania, USA, 2013.

[99] B. A. Huberman, The Laws of the Web: Patterns in the Ecology of Information.:

MIT Press Cambridge, 2001.

[100] P. Hudak, ""Conception, evolution, and application of functional programming

languages," ACM Computing Surveys, vol. 21, no. 3, pp. 359-411, 1989.

[101] (2015) HyperGraphDb. [Online]. http://www.hypergraphdb.org/index

[102] (2015) InfiniteGraph. [Online].

http://www.objectivity.com/products/infinitegraph/

[103] (2015) InfoGrid. [Online]. http://infogrid.org/trac/

[104] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, "Dryad: Distributed Data-

Parallel Programs from Sequential Building Blocks," in Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems, Lisboa,

Portugal, 2007, pp. 59-72.

[105] Joab Jackson. (2013, Aug.) PCWorld. [Online].

http://www.pcworld.com/article/2046680/facebooks-graph-search-puts-

apache-giraph-on-the-map.html

[106] A. K. Jain, Data Clustering: 50 Years Beyond K-Means. Berlin, Heidelberg,

Germany: Springer, 2008.

[107] N. Jain , G. Liao , and T. L. Willke , "GraphBuilder: Scalable Graph ETL

Framework," in Proceedings of the First International Workshop on Graph Data

Management Experiences and Systems (GRADES '13), New York, NY, US, 2013.

[108] N. Jamadagni and Y. Simmhan, "GoDB: From Batch Processing to Distributed

Querying over Property Graphs," in Proceedings of the 16th IEEE/ACM

http://www.hypergraphdb.org/index
http://www.objectivity.com/products/infinitegraph/
http://infogrid.org/trac/
http://www.pcworld.com/article/2046680/facebooks-graph-search-puts-apache-giraph-on-the-map.html
http://www.pcworld.com/article/2046680/facebooks-graph-search-puts-apache-giraph-on-the-map.html

216

International Symposium on Cluster, Cloud and Grid Computing (CCGrid'16),

Cartagena, Colombia, 2016.

[109] Java Universal Network/Graph Framework. [Online].

http://jung.sourceforge.net/

[110] (2015) JCoreDB. [Online]. https://sites.google.com/site/jcoredb/

[111] S. Jouili and V. Vansteenberghe, "An Empirical Comparison of Graph

Databases," in Proceedings of the International Conference on Social Computing

(SocialCom'13), Alexandria, VA, 2013, pp. 708 - 715.

[112] U. Kang, H. Tong, J. Sun, C. Y. Lin, and C. Faloutsos, "GBASE: A Scalable and

General Graph Management System," in Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining (KDD '11),

San Diego, California, 2011, pp. 1091-1099.

[113] U. Kang, H. Tong, J. Sun, C. Y. Lin, and C. Faloutsos, "GBASE: an efficient

analysis platform for large graphs," The VLDB Journal, vol. 21, no. 5, pp. 637-650,

2012.

[114] U. Kang, C. E. Tsourakakis, and C. Faloutsos, "PEGASUS: A Peta-Scale Graph

Mining System - Implementation and Observations," in Proceedings of the 2009

Ninth IEEE International Conference on Data Mining (ICDM '09), Miami, FL ,

2009, pp. 229-238.

[115] Z. Kaoudi and I. Manolescu, "RDF in the Cloud: A Survey," The VLDB Journal,

vol. 24, no. 1, pp. 67-91, 2015.

[116] G. Karypis and V. Kumar, "Multilevel Graph Partitioning Schemes," in

Proceedings of the International Conference on Parallel Processing(ICPP’95),

Raleigh, NC, USA, 1995, pp. 113–122.

[117] S. Deepthi K. et al., "A Survey on Fault Management Techniques in Distributed

Computing," in Proceedings of the International Conference on Frontiers of

Intelligent Computing: Theory and Applications (FICTA). Berlin,Germany:

Springer Berlin Heidelberg, 2013, vol. 199, pp. 593-602.

[118] Z. Khayyat et al., "Mizan: A System for Dynamic Load Balancing in Large-scale

http://jung.sourceforge.net/
https://sites.google.com/site/jcoredb/

217

Graph Processing," in Proceedings of the 8th ACM European Conference on

Computer Systems (EuroSys '13), Prague, Czech Republic, 2013, pp. 169-182.

[119] F. Khorasani, K. Vora, R. Gupta , and L. N. Bhuyan, "CuSha: vertex-centric graph

processing on GPUs," in Proceedings of the 23rd international symposium on

High-performance parallel and distributed computing (HPDC '14), Vancouver,

BC, Canada, 2014, pp. 239-252.

[120] M. Kim and K. Selçuk Candan, "SBV-Cut: Vertex-Cut Based Graph Partitioning

Using Structural Balance Vertices," Data & Knowledge Engineering, vol. 72, pp.

285-303, 2012.

[121] H. Kim et al., "DUALSIM: Parallel Subgraph Enumeration in a Massive Graph on

a Single Machine," in Proceedings of the 2016 International Conference on

Management of Data (SIGMOD’16), Francisco, California, USA, 2016.

[122] S. Koo, S. J. Kwon, S. Kim, and T. Chung , "Dual RAID technique for ensuring

high reliability and performance in SSD," in Proceedings of the IEEE/ACIS 14th

International Conference on Computer and Information Science (ICIS), Las

Vegas, NV, USA, 2015, pp. 399 - 404.

[123] D. C. Kozen, "Depth-First and Breadth-First Search," in The Design and Analysis

of Algorithms. New York, NY. US: Springer New York, 1992, pp. 19-24.

[124] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal, "HipG: Parallel Processing of

Large-Scale Graphs," ACM SIGOPS Operating Systems Review, vol. 45, no. 2, pp.

3-13, 2011.

[125] J. Kunegis, "KONECT - The Koblenz Network Collection," in Proceedings of

International.Web Observatory Workshop, 2013.

[126] A. Kyrola and C. Guestrin, "GraphChi-DB: Simple Design for a Scalable Graph

Database System - on Just a PC," arXiv preprint, arXiv:1403.0701, 2014.

[127] A. Kyrola, G. Blelloch, and C. Guestrin, "GraphChi: Large-Scale Graph

Computation on Just a PC," in Proceedings of the 10th USENIX conference on

Operating Systems Design and Implementation (OSDI'12), Hallywood, USA,

2012, pp. 31-46.

218

[128] H. K. Lau, "Error Detection in Swarm Robotics: A Focus on Adaptivity to

Dynamic Environments," York, UK, PhD Thesis 2012.

[129] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, "Basic Linear Algebra

Subprograms for Fortran," ACM Transactions on Mathematical Software

(TOMS), vol. 5, no. 3, pp. 308-323, 1979.

[130] J. Y. Lee, J. W. Lee, D. W. Cheun, and S. D. Kim, "A Quality Model for Evaluating

Software-as-a-Service in Cloud Computing," in Proceedings of the 7th ACIS

International Conference on Software Engineering Research, Management and

Applications, Haikou, China, 2009, pp. 261-266.

[131] K. Lee, Y. Lee, H. Choi, Y. D. Chung, and B. Moon, "Parallel Data Processing

with MapReduce: A Survey," ACM SIGMOD Record, vol. 40, no. 4, pp. 11-20,

2011.

[132] K. Lee et al., "Scaling Iterative Graph Computations with GraphMap," in

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis(SC’15), Austin, Texas, USA, 2015.

[133] T. Leimbach et al., "Potential and Impacts of Cloud Computing Services and

Social Network Websites," European Parliamentary Research Service, Brussels,

2014.

[134] C. E. Leiserson and T. B. Schardl, "A Work-Efficient Parallel Breadth-First Search

Algorithm (or How to Cope with the Non-determinism of Reducers)," in

Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA’10), Thira, Greece, 2010.

[135] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, "Community

Structure in Large Networks: Natural Cluster Sizes and the Absence of Large

Well-Defined Clusters," Pittsburgh, PA, 2008.

[136] Z. Li, T. N. Hung, S. Lu, and R. S. Mong Goh, "Performance and Monetary Cost

of Large-Scale Distributed Graph Processing on Amazon Cloud," in Proceedings

of the International Conference on Cloud Computing Research and Innovations

(ICCCRI'16), Singapore, Singapore, 2016, pp. 9-16.

219

[137] X. Liu, L. Xiao, A. Kreling, and Y. Liu, "Optimizing Overlay Topology by

Reducing Cut Vertices," in Proceedings of the International workshop on

Network and operating systems support for digital audio and video (NOSSDAV

'06), Newport, Rhode Island, 2006.

[138] C. Lochert, M. Mauve, H. Füßler, and H. Hartenstein, "Geographic routing in city

scenarios," ACM SIGMOBILE- Mobile Computing and Communications Review,

vol. 9, no. 1, pp. 69-72, 2005.

[139] B. Lorica, "One year later: some single server systems that can tackle Big Data," in

Proceedings of the Big Data Now. Sebastopol, CA: O'reilly Media Inc., 2014, pp.

29-30.

[140] B. Lorica. (2013, April) O'Reilly Radar. [Online].

http://radar.oreilly.com/2013/04/single-server-systems-can-tackle-big-

data.html

[141] Y. Low et al., "Distributed GraphLab: A Framework for Machine Learning and

Data Mining in the Cloud," VLDB Endowment, vol. 5, no. 8, pp. 716-727, 2012.

[142] Y. Low et al., "GraphLab: A New Framework For Parallel Machine Learning," in

Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI

2010), Catalina Island, USA, 2010.

[143] Y. Lu, J. Cheng, D. Yan, and H. Wu, "Large-Scale Distributed Graph Computing

Systems: An Experimental Evaluation," The VLDB Endowment, vol. 8, no. 3, pp.

281-292, 2014.

[144] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, "Challenges in Parallel

Graph Processing," Parallel Processing Letters, vol. 17, no. 1, pp. 5-20, 2007.

[145] S. Maass et al., "Mosaic: Processing a Trillion-Edge Graph on a Single Machine,"

in Proceedings of the 12th European Conference on Computer Systems

(EuroSys'17), Belgrade, Serbia, 2017, pp. 527-543.

[146] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarría- Miranda, "A

Faster Parallel Algorithm and Efficient Multithreaded Implementations for

Evaluating Betweenness Centrality on Massive Datasets," in Proceedings of the

http://radar.oreilly.com/2013/04/single-server-systems-can-tackle-big-data.html
http://radar.oreilly.com/2013/04/single-server-systems-can-tackle-big-data.html

220

IEEE International Symposium on Parallel & Distributed Processing (IPDPS’09),

Rome, Italy, 2009.

[147] S. Maleki et al., "DSMR: A Parallel Algorithm for Single-Source Shortest Path

Problem," in Proceedings of the 2016 International Conference on

Supercomputing (ICS’16), Istanbul, Turkey, 2016.

[148] G. Malewicz et al., "Pregel: A System for Large-Scale Graph Processing," in

Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, 2010, pp. 135-145.

[149] P. Manuel, "A Trust Model of Cloud Computing Based on Quality of Service,"

Annals of Operations Research, vol. 233, no. 1, pp. 281-292, 2013.

[150] (2015) MapGraph. [Online]. http://mapgraph.io/

[151] A. Marburger and B. Westfechtel, "Graph-Based Structural Analysis for

Telecommunication Systems," in Proceedings of the Graph Transformations and

Model-Driven Engineering.: Springer Berlin Heidelberg, 2010, pp. 363-392.

[152] C. Martella, D. Logothetis, A. Loukas, and G. Siganos, "Spinner: Scalable Graph

Partitioning in the Cloud," in Proceedings of the IEEE 33rd International

Conference on Data Engineering (ICDE’17), San Diego, CA, USA, 2015.

[153] R. R. McCune, T. Weninger, and G. Madey, "Thinking Like a Vertex: A Survey of

Vertex-Centric Frameworks for Large-Scale Distributed Graph Processing," ACM

Computing Surveys (CSUR), vol. 48, no. 2, pp. 1-39, 2015.

[154] F. McSherry. The impact of fast networks on graph analytics, part 1. [Online].

https://github.com/frankmcsherry/blog/blob/master/posts/2015-07-08.md

[155] F. McSherry and M. Schwarzkopf. (2015, July) The Impact of Fast Networks on

Graph Analytics. [Online].

http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/

08/pagerank.html#fn0

[156] K. Mehlhorn and S. Näher, "The LEDA Platform of Combinatorial and Geometric

Computing," Communications of the ACM, vol. 33, no. 1, pp. 96-102, 1995.

http://mapgraph.io/
https://github.com/frankmcsherry/blog/blob/master/posts/2015-07-08.md
http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html#fn0
http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html#fn0

221

[157] J. Mei, A. Ouyang, and K. Li, "A Profit Maximization Scheme with Guaranteed

Quality of Service in Cloud Computing," IEEE Transactions on Computers, vol.

64, no. 11, pp. 3064 - 3078, 2015.

[158] S. Mittal and J. S. Vetter, "A Survey of Software Techniques for Using Non-

Volatile Memories for Storage and Main Memory Systems," IEEE Transactions

on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1-14, 2015.

[159] R. C. Murphy and P. M. Kogge, "On The Memory Access Patterns of

Supercomputer Applications: Benchmark Selection and Its Implications," IEEE

Transactions on Computers, vol. 56, no. 7, pp. 937-945, 2007.

[160] D. G. Murray et al., "Naiad: A Timely Dataflow System," in Proceedings of the

24th ACM Symposium on Operating Systems Principles (SOSP '13), Farmington,

Pennsylvania, USA, 2013.

[161] K. Najeebullah, K. U. Khan, W. Nawaz , and Y. Lee, "BiShard Parallel Processor:

A Disk-Based Processing Engine for Billion-Scale Graphs," International Journal

of Multimedia and Ubiquitous Engineering, vol. 9, no. 2, pp. 199-212, 2014.

[162] K. Najeebullah, K. U. Khan, Muhammad Waqas Nawaz, and Young-Koo Lee,

"BPP: Large Graph Storage for Efficient Disk Based," arXiv preprint,

arXiv:1401.2327, 2014.

[163] NECTAR Cloud. [Online]. http://nectar.org.au/research-cloud/

[164] (2015, August) Neo4j. [Online]. http://neo4j.com/

[165] D. Nguyen, A. Lenharth, and K.Pingali, "A Lightweight Infrastructure for Graph

Analytics," in Proceedings of the 24th ACM Symposium on Operating Systems

Principles (SOSP '13), Farmington, Pennsylvania, USA, 2013, pp. 456-471.

[166] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, "Hermes: Dynamic Partitioning

for Distributed Social Network Graph Databases," Waterloo, Ontario, Canada,

Technical Report 2015.

[167] K. Nilakant, V. Dalibard, A. Roy, and E. Yoneki, "PrefEdge: SSD Prefetcher for

Large-Scale Graph Traversal," in Proceedings of the International Conference on

Systems and Storage (SYSTOR'14), Haifa, Israel, 2014, pp. 1-12.

http://nectar.org.au/research-cloud/
http://neo4j.com/

222

[168] B. Nitzberg and V. Lo, "Distributed shared memory: A survey of issues and

algorithms," Computer, vol. 24, no. 8, pp. 52-60, 1991.

[169] E. Nurvitadhi et al., "GraphGen: An FPGA Framework for Vertex-Centric Graph

Computation," in Proceedings of the IEEE 22nd International Symposium on

Field-Programmable Custom Computing Machines (FCCM '14), Boston,

Massachusetts, 2014, pp. 25-28.

[170] (2015) OrientDB. [Online]. http://orientdb.com/orientdb-vs-neo4j/

[171] J. Ousterhout et al., "The Case for RAMClouds: Scalable High-Performance

Storage Entirely in DRAM," ACM SIGOPS Operating Systems Review, vol. 43,

no. 4, pp. 92-105, 2010.

[172] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun, "Making Sense

of Performance in Data Analytics Frameworks," in Proceedings of the 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

’15), Oakland, CA, USA, 2015, pp. 293-307.

[173] L. Page, S. Brin, R. Motwani, and T. Winograd, "The PageRank Citation Ranking:

Bringing Order to the Web," Stanford Info Lab, 1998.

[174] G. Pallis, "Cloud Computing: The New Frontier of Internet Computing," IEEE

Internet Computing, vol. 14, no. 5, pp. 70-73, 2010.

[175] P. Patel, A. Ranabahu, and A. Sheth, "Service Level Agreement in Cloud

Computing," Write State University, Dayton, OH, USA, 2009.

[176] A. Paul , "Graph based M2M optimization in an IoT environment," in

Proceedings of the 2013 Research in Adaptive and Convergent Systems(RACS

'13), Montreal, Canada, 2013, pp. 45-46.

[177] F. Pellegrini , "Current challenges in parallel graph partitioning," Comptes

Rendus Mécanique, vol. 339, no. 2-3, pp. 90-95, 2011.

[178] C. Pettey. (2011, June) Gartner. [Online].

http://www.gartner.com/newsroom/id/1731916

[179] R. Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan, "Interpreting the

http://orientdb.com/orientdb-vs-neo4j/
http://www.gartner.com/newsroom/id/1731916

223

Data: Parallel Analysis with Sawzall," Scientific Programming - Dynamic Grids

and Worldwide Computing, vol. 13, no. 4, pp. 277-298, 2005.

[180] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 4th ed. Springer-

Verlag New York: New York, US, 2012.

[181] S. J. Plimpton and K. D. Devine, "MapReduce in MPI for Large-scale Graph

Algorithms.," Parallel Computing, vol. 37, no. 9, pp. 610-632, 2011.

[182] R. Power and J. Li, "Piccolo: Building Fast, Distributed Programs with

Partitioned Tables," in Proceedings of the 9th USENIX conference on Operating

systems design and implementation (OSDI'10), Vancouver, Canada, 2010.

[183] K. Prakasam and M. Chandrasekhar. (2010) JPregel. [Online].

http://kowshik.github.io/JPregel/

[184] M. Prigg. Facebook hits one billion users in a single day: Mark Zuckerberg

reveals one in seven people on earth used the social network on Monday.

[Online]. http://www.dailymail.co.uk/sciencetech/article-3213456/Facebook-s-

billion-user-day-Mark-Zuckerberg-reveals-one-seven-people-EARTH-used-

social-network-Monday.html

[185] M. Pundir, M. Kumar, L. M. Leslie, I. Gupta, and R. H. Campbell, "Supporting

On-demand Elasticity in Distributed Graph Processing," in Proceedings of the

2016 IEEE International Conference on Cloud Engineering (IC2E'16), Berlin,

Germany, 2016, pp. 12-21.

[186] F. Rahimian, A.H. Payberah, S. Girdzijauskas, and S. Haridi, "Distributed Vertex-

Cut Partitioning," in Proceedings of the Distributed Applications and

Interoperable Systems. Berlin, Germany: Springer Berlin Heidelberg, 2014, pp.

186-200.

[187] M. Redekopp, Y. Simmhan, and V. K. Prasan, "Optimizations and Analysis of

BSP Graph Processing Models on Public Clouds," in Proceedings of the IEEE

27th International Symposium on Parallel & Distributed Processing (IPDPS'13),

Boston, MA, 2013, pp. 203-214.

[188] I. Robinson, J. Webber, and E. Eifrem, Graph Databases, 2nd ed. Sebastopol, CA:

http://kowshik.github.io/JPregel/
http://www.dailymail.co.uk/sciencetech/article-3213456/Facebook-s-billion-user-day-Mark-Zuckerberg-reveals-one-seven-people-EARTH-used-social-network-Monday.html
http://www.dailymail.co.uk/sciencetech/article-3213456/Facebook-s-billion-user-day-Mark-Zuckerberg-reveals-one-seven-people-EARTH-used-social-network-Monday.html
http://www.dailymail.co.uk/sciencetech/article-3213456/Facebook-s-billion-user-day-Mark-Zuckerberg-reveals-one-seven-people-EARTH-used-social-network-Monday.html

224

O'Reilly, 2015.

[189] A. Rowstron, D. Narayanan, A. Donnelly, G. O'Shea, and A. Douglas, "Nobody

ever got fired for using Hadoop on a cluster," in Proceedings of the 1st

International Workshop on Hot Topics in Cloud Data Processing (HotCDP 2012),

Bern, Switzerland, 2012.

[190] P. Roy, "A new memetic algorithm with GA crossover technique to solve Single

Source Shortest Path (SSSP) problem," in Proceedings of the 2014 Annual IEEE

India Conference (INDICON), Pune, India, 2014.

[191] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, "Chaos: Scale-out

Graph Processing from Secondary Storage," in Proceedings of the 25th

Symposium on Operating Systems Principles (SOSP'15), Monterey, California,

USA, 2015, pp. 410-424.

[192] A. Roy, I. Mihailovic, and W. Zwaenepoel, "X-Stream: Edge-centric Graph

Processing using Streaming Partitions," in Proceedings of the 24th ACM

Symposium on Operating Systems Principles (SOSP '13), Farmington, USA, 2013,

pp. 472-488.

[193] M. Sagharichian, H. Naderi, and M. Haghjoo, "ExPregel: a new computational

model for large-scale graph processing," Concurrency and Computation Practice

and Experience, vol. 27, no. 17, pp. 4954–4969, 2015.

[194] S. Salihoglu, J. Shin, V. Khanna, B. Q. Truong, and J. Widom, "Graft: A

Debugging Tool For Apache Giraph," in Proceedings of the ACM SIGMOD

International Conference on Management of Data (SIGMOD '15), Melbourne,

VIC, Australia, 2015, pp. 1403-1408.

[195] S. Salihoglu and J. Widom, "GPS: A Graph Processing System," in Proceedings of

the 25th International Conference on Scientific and Statistical Database

Management (SSDBM), Baltimore, Maryland, 2013.

[196] S. Salihoglu and J. Widom, "Optimizing Graph Algorithms on Pregel-like

Systems," VLDB Endowment, vol. 7, no. 7, pp. 577-588, 2014.

[197] M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel, "Horton+: a distributed system

225

for processing declarative reachability queries over partitioned graphs," The

VLDB Endowment, vol. 14, no. 5, pp. 1918-1929, 2013.

[198] K. Schloegel, G. Karypis, and V. Kumar, "Graph Partitioning for High

Performance Scientific Simulations," in CRPC Parallel Computing Handbook.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2001, pp. 491-541.

[199] R. Sedgewick and K. Wayne, Algorithms (4th Edition). Upper Saddle River, NJ:

Addison-Wesley Professional, 2011.

[200] D. Sengupta et al., "GraphIn: An Online High Performance Incremental Graph

Processing Framework," in Proceedings of the 22nd International Conference on

Euro-Par 2016: Parallel Processing, Grenoble, France, 2016.

[201] Y. Shao, B. Cui, L. Ma, and J. Yao, "PAGE: A Partition Aware Engine for Parallel

Graph Computation," in Proceedings of the 22nd ACM International Conference

on Information and Knowledge Management (CIKM '13), Burlingame, CA, USA,

2013.

[202] B. Shao, H. Wang, and Y. Li, "Trinity: A Distributed Graph Engine on a Memory

Cloud," in Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD '13), New York, USA, 2013, pp. 505-516.

[203] A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. Lin, "GraphJet: Real-Time

Content Recommendations at Twitter," The VLDB Endowment, vol. 9, no. 13, pp.

1281-1292, 2016.

[204] J. Shun and G. E. Blelloch, "Ligra: A Lightweight Graph Processing Framework

for Shared Memory," in Proceedings of the ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP '13), Shenzhen, China,

2013, pp. 135-146.

[205] J. Siek, L. Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and

Reference Manual. Upper Saddle River, NJ, USA: Addison-Wesley, 2002.

[206] Y. Simmhan and A. Kumbhare, "Floe: A dynamic, continuous dataflow

framework for elastic clouds," arXiv preprint, arXiv:1406.5977, 2013.

[207] Y. Simmhan, N. Choudhury, C. Wickramaarachchi, and A. Kumbhare,

226

"Distributed Programming over Time-Series Graphs," in Proceedings of the IEEE

International Symposium on Parallel and Distributed Systems (IPDPS'15),

Hyderabad, India, 2015.

[208] Y. Simmhan et al., "GoFFish: A Sub-Graph Centric Framework forLarge-Scale

Graph Analytics," in Proceedings of the Euro-Par 2014 Parallel Processing, Porto,

Portugal, 2014, pp. 451-462.

[209] Y. Simmhan et al., "Scalable analytics over distributed time-series graphs using

goffish," arXiv preprint arXiv:1406.5975, 2014.

[210] C. Snijders, U. Matzat, and U. D. Reips, "Big Data: Big gaps of knowledge in the

field of Internet," International Journal of Internet, vol. 7, no. 1, pp. 1-5, 2012.

[211] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, "GraphR: Accelerating Graph

Processing Using ReRAM," in Proceedings of the IEEE International Symposium

on High Performance Computer Architecture (HPCA'18), Vienna, Austria, 2018.

[212] I. Stanton and G. Kliot, "Streaming Graph Partitioning for Large Distributed

Graphs," in Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD '12), Beijing, China, 2012, pp. 1222-

1230.

[213] M. A. Stelzner, "2015 Social Media Marketing Industry Report," 2015, [Online].

https://www.socialmediaexaminer.com/social-media-marketing-industry-

report-2015/

[214] P. Strandmark and F. Kahl, "Parallel and distributed graph cuts by dual

decomposition," Computer Vision and Image Understanding, vol. 115, no. 12,

pp. 1721-1732, 2011.

[215] P. Stutz, A. Bernstein, and W. Cohen, "Signal/Collect: Graph Algorithms for the

(Semantic) Web," in Proceedings of the 9th international semantic web

conference on The semantic web (ISWC'10), Shanghai, China, 2010, pp. 764-780.

[216] Z. Sun, H. Wang, H. Wang, B. Shao, and L. Jianzhong, "Efficient Subgraph

Matching on Billion Node Graphs," The VLDB Endowment, vol. 5, no. 9, pp. 788-

799, 2012.

227

[217] P. Sun, Y. Wen, T. Nguyen Binh Doung, and X. Xiao, "GraphMP: An Efficient

Semi-External-Memory Big Graph Processing System on a Single Machine,"

arXiv preprint, arXiv:1707.02557, 2017.

[218] S. Suri and S. Vassilvitskii, "Triangles and the Curse of the Last Reducer," in

Proceedings of the 20th international conference on World wide web (WWW

'11), Hyderabad, India, 2011, pp. 607-614.

[219] A. S. Szalay, "Extreme Data-Intensive Scientific Computing," Computing in

Science and Engineering, vol. 13, no. 6, pp. 34-41, 2011.

[220] S. Tasci and M. Demirbas, "Giraphx: Parallel Yet Serializable Large-Scale Graph

Processing," in Proceedings of the 19th international conference on Parallel

Processing (Euro-Par'13), Aachen, Germany, 2013, pp. 458-469.

[221] D. Gregor, A. Lumsdaine, "The Parallel BGL: A Generic Library for Distributed

Graph Computations," in Proceedings of the Parallel Object-Oriented Scientific

Computing (POOSC'05), Glasgow, UK, 2005.

[222] N. T. Bao and T. Suzumura, "Towards Highly Scalable Pregel-Based Graph

Processing Platform With x10," in Proceedings of the 22nd International

Conference on World Wide Web (WWW '13 Companion), Rio de Janeiro, Brazil,

2013, pp. 501-508.

[223] Y. Tian, A. Balmin, S. A. Corsten, . Tatikond, and J. McPherson, "From "Think

Like a Vertex" to "Think Like a Graph"," The Proceedings of the VLDB

Endowment, vol. 7, no. 3, pp. 193-204, 2013.

[224] J. Tian, J. Hahner, C. Becker, I. Stepanov, and K. Rothermel, "Graph-based

mobility model for mobile ad hoc network simulation," in Proceedings of the

35th Annual Simulation Symposium, San Diego, California, 2002, pp. 337-344.

[225] (2015) TITAN Distributed Graph Database. [Online].

http://thinkaurelius.github.io/titan/

[226] Top500. [Online]. https://www.top500.org/

[227] M. Treaster, "A Survey of Fault-Tolerance and Fault-Recovery Techniques in

Parallel Systems," ACM Computing Research Repository (CoRR), pp. 1-11, 2005.

http://thinkaurelius.github.io/titan/
https://www.top500.org/

228

[228] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, "FENNEL:

Streaming Graph Partitioning for Massive Scale Graphs," in Proceedings of the

7th ACM international conference on Web search and data mining (WSDM '14),

New York, NY, US, 2014, pp. 333-342.

[229] Twitter. (2012, March) Twitter Blog. [Online].

https://blog.twitter.com/2012/cassovary-big-graph-processing-library

[230] Twitter. (2012, April) Twitter/FlockDB. [Online].

https://github.com/twitter/flockdb#readme

[231] L. G. Valiant, "A bridging model for parallel computation," Communications of

the ACM, vol. 33, no. 8, pp. 103-111, 1990.

[232] L3 M. Vaquero, F3 Cuadrado, D3 Logothetis, and C3 Martella, "xDGP: A

Dynamic Graph Processing System with Adaptive Partitioning," in Proceedings

of the 4th annual Symposium on Cloud Computing (SOCC '13), Santa Clara, CA,

2013.

[233] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung , and R. S. Schreiber, "Presto:

Distributed Machine Learning and Graph Processing with Sparse Matrices," in

Proceedings of the 8th ACM European Conference on Computer Systems

(EuroSys '13), Prague, Czech Republic, 2013, pp. 197-210.

[234] C. Vicknair et al., "A Comparison of a Graph Database and a Relational

Database," in Proceedings of the 48th Annual Southeast Regional

Conference(ACM SE '10), Oxford, Mississippi, 2010.

[235] Y. Wang et al., "Gunrock: A High-Performance Graph Processing Library on the

GPU," in Proceedings of the 20th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP’15), San Francisco, CA, USA, 2016.

[236] G. Wang, W. Xie, A. Demers, and J. Gehrke, "Asynchronous LargeScale Graph

Processing Made Easy," in Proceedings of the 6th biennial Conference on

Innovative Data Systems Research (CIDR;13), Asilomar, USA, 2013.

[237] K. Wang and G. Xu, "GraphQ: Graph Query Processing with Abstraction

Refinement – Scalable and Programmable Analytics over Very Large Graphs on

https://blog.twitter.com/2012/cassovary-big-graph-processing-library
https://github.com/twitter/flockdb#readme

229

a Single PC," in Proceedings of the 2015 USENIX Annual Technical Conference

(ATC’15), Santa Clara, CA, USA, 2015.

[238] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan, "Replication-based Fault-

tolerance for Large-scale Graph Processing," in Proceedings of the 44th Annual

IEEE/IFIP International Conference on Dependabale Systems and Networks

(DSN'14), Atlanta, GA, USA, 2014.

[239] X. Wu, X. Ying, K. Liu, and L. Chen, "A Survey of Algorithms For Privacy-

Preservation of Graphs and Social Networks," in Proceedings of the Advanced in

Database Systems. Boston, MA, USA: Springer, 2010, pp. 421-453.

[240] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, "SYNC or ASYNC: Time to Fuse

for Distributed Graph-parallel Computation," in Proceedings of the 20th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP '15), San Francisco, CA, 2015, pp. 194-204.

[241] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, "GraphX: a resilient

distributed graph system on Spark," in Proceedings of the First International

Workshop on Graph Data Management Experiences and Systems (GRADES '13),

New York, NY, USA, 2013.

[242] K. Xiong and H. Perros, "Service Performance and Analysis in Cloud

Computing," in Proceedings of the World Conference on Services, Los Angeles,

CA, USA, 2009, pp. 1-8.

[243] K. Xirogiannopoulos, V. Srinivas, and A. Deshpande, "GraphGen: Adaptive

Graph Processing using Relational Databases," in Proceedings of the 5th

International Workshop on Graph Data Management Experiences and Systems

(GRADES'17), Chicago, IL, USA, 2017.

[244] N. Xu, L. Chen, and B. Cui, "LogGP: A Log-based Dynamic Graph Partitioning

Method," The VLDB Endowment, vol. 7, no. 14, pp. 1917-1928, 2014.

[245] J. Xue, Z. Yang, Z. Qu, S. Hou, and Y. Dai, "Seraph: an Efficient, Low-cost System

for Concurrent Graph Processing," in Proceedings of the 23rd International

Symposium on High-performance Parallel and Distributed Computing (HPDC

230

'14), Vancouver, Canada, 2014.

[246] C. Xu et al., "Evaluation and Trade-offs of Graph Processing for Cloud Services,"

in Proceedings of the 24th International Conference on Web Services (ICWS'17),

Honolulu, HI, USA, 2017, pp. 420-427.

[247] Y. Yamato, "Use case study of HDD-SSD hybrid storage, distributed storage and

HDD storage on OpenStack," in Proceedings of the 19th International Database

Engineering & Applications Symposium (IDEAS '15), Yokohoma, Japan, 2015,

pp. 228-229.

[248] D. Yan, J. Cheng, Y. Lu, and W. Ng, "A Block-Centric Framework for Distributed

Computation on Real-World Graphs," The VLDB Endowment, vol. 9, no. 7, pp.

1981-1992, 2014.

[249] D. Yan et al., "Quegel: A General-Purpose Query-Centric Framework for

Querying Big Graphs," The VLDB Endowment, vol. 9, no. 7, pp. 564-575, 2016.

[250] S. Yang, X. Yan, B. Zong, and A. Khan, "Towards Effective Partition Management

for Large Graphs," in Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD '12), Scottsdale, Arizona, USA,

2012.

[251] J. Yan, G. Tan, and N. Sun, "GRE: A Graph Runtime Engine for Large-Scale

Distributed Graph-Parallel Applications.," CoRR abs/1310.5603, 2013.

[252] E. Yoneki, K. Nilakant, V. Dalibard , and A. Roy , "PrefEdge: SSD Prefetcher for

Large-Scale Graph Traversal," in Proceedings of the International Conference on

Systems and Storage (SYSTOR 2014), Haifa, Israel, 2014.

[253] P. Yuan et al., "Fast Iterative Graph Computation: A Path Centric Approach," in

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC '14), New Orleans, LA, 2014, pp. 401-412.

[254] Y. Yu et al., "DryadLINQ: A System for General-Purpose Distributed Data-

Parallel Computing Using a High-Level Language," in Proceedings of the 8th

USENIX conference on Operating systems design and implementation (OSDI'08),

San Diego, CA, 2008, pp. 1-14.

231

[255] M. Zaharia et al., "Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for In-Memory Cluster Computing," in Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation (NSDI'12), San

Jose, CA, 2012.

[256] Z. Zha, T. Mei, J. Wang, Z. Wang, and X. S. Hua, "Graph-based semi-supervised

learning with multiple labels," Journal of Visual Communication and Image

Representation, vol. 20, no. 2, pp. 97-103, 2009.

[257] Y. Zhang, Q. Gao, L. Gao, and C. Wang, "Accelerate large-scale iterative

computation through asynchronous accumulative updates," in Proceedings of

the 3rd workshop on Scientific Cloud Computing Date (ScienceCloud '12), Delft,

the Netherlands, 2012, pp. 13-22.

[258] Y. Zhang, Q. Gao, L. Gao, and C. Wang, "Maiter: An Asynchronous Graph

Processing Framework for Delta-Based Accumulative Iterative Computation,"

IEEE Transaction on Parallel and Distributed Systems, vol. 25, no. 8, pp. 2091-

2100, 2014.

[259] Y. Zhang, Q. Gao, L. Gao, and C. Wang, "PrIter: A Distributed Framework for

Prioritized Iterative Computations," IEEE Transactions on Parallel and

Distributed Systems, vol. 24, no. 9, pp. 1884-1893, 2012.

[260] T. Zhang, J. Zhang, W. Shu, M. Wu, and X. Liang, "Efficient graph computation

on hybrid CPU and GPU systems," The Journal of Supercomputing, vol. 71, no. 4,

pp. 1563-1586, 2015.

[261] M. Zhang, Y. Zhuo, C. Wang, M. Gao, and Y. Wu, "GraphP: Reducing

Communication for PIM-based Graph Processing with Efficient Data Partition,"

in Proceedings of the IEEE International Symposium on High Performance

Computer Architecture (HPCA'18), Vienna, Austria, 2018.

[262] D. Zheng et al., "FlashGraph: processing billion-node graphs on an array of

commodity SSDs," in Proceedings of the 13th USENIX Conference on File and

Storage Technologies (FAST'15), Santa Clara, CA, 2015, pp. 45-58.

[263] J. Zhong and B. He, "Medusa: Simplified Graph Processing on GPUs," IEEE

232

Transactions on Parallel and Distributed Systems (TPDS), vol. 25, no. 6, pp. 1543

- 1552, 2013.

[264] J. Zhong and B. He, "Towards GPU-Accelerated Large-Scale Graph Processing in

the Cloud," in Proceedings of the 5th International Conference on Cloud

Computing Technology and Science (CloudCom'13), Bristol, UK, 2013, pp. 9-16.

[265] J. Zhong, B. He, and Y. Gong, "Network Performance Aware MPI Collective

Communication Operations in the Cloud," IEEE Transactions on Parallel &

Distributed Systems, vol. 26, no. 11, pp. 3079-3089, 2015.

[266] J. Zhou et al., "SCOPE: parallel databases meet MapReduce," The VLDB Journal

— The International Journal on Very Large Data Bases, vol. 21, no. 5, pp. 611-636,

2012.

[267] X. Zhu, W. Chen, W. Zhang, and X. Ma, "Gemini: A Computation-Centric

Distributed Graph Processing System," in Proceedings of the 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI ’16),

Savannah, GA, USA, 2016.

[268] X. Zhu, W. Han, and W. Chen, "GridGraph: large-scale graph processing on a

single machine using 2-level hierarchical partitioning," in Proceedings of the 2015

USENIX Conference on Usenix Annual Technical Conference (ATC '15), Santa

Clara, CA, USA, 2015.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Heidari, Safiollah

Title:

Cost-efficient resource provisioning for large-scale graph processing systems in cloud

computing environments

Date:

2018

Persistent Link:

http://hdl.handle.net/11343/219677

File Description:

Complete thesis

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

