
 

i 

 

 

 

Cost-efficient Resource Provisioning for 

Large-scale Graph Processing Systems 

in Cloud Computing Environments 

 
Safiollah Heidari 

 

 

 

Submitted in total fulfillment of the requirements of the degree of 

Doctor of Philosophy 

 

May 2018 

 

School of Computing and Information Systems 

THE UNIVERSITY OF MELBOURNE 

 

 

 
 
 
 



 

ii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2018 Safiollah Heidari 
 

All rights reserved. No part of the publication may be reproduced in any form by print, 
photoprint, microfilm or any other means without written permission from the author except as 
permitted by law. 

 
 



 

iii 

 

 

Cost-efficient Resource Provisioning for Graph Processing Systems 
in Cloud Computing Environments 

 
Safiollah Heidari 

Principal Supervisor: Prof. Rajkumar Buyya 

Abstract 

A large amount of data that is being generated on Internet every day is in the form 
of graphs. Many services and applications namely as social networks, Internet of 
Things (IoT), mobile applications, business applications, etc. in which every data entity 
can be considered as a vertex and the relationships between entities shape the edges of 
a graph, are in this category. Since 2010, exclusive large-scale graph processing 
frameworks are being developed to overcome the inefficiency of traditional processing 
solutions such as MapReduce. However, most frameworks are designed to be 
employed on high performance computing (HPC) clusters which are only available to 
whom can afford such infrastructure. 

Cloud computing is a new computing paradigm that offers unprecedented features 
such as scalability, elasticity and pay-as-you-go billing model and is accessible to 
everyone. Nevertheless, the advantages that cloud computing can bring to the 
architecture of large-scale graph processing systems are less studied.  

Resource provisioning and management is a critical part of any processing system 
in cloud environments. To provide the optimized amount of resources for a particular 
operation, several factors such as monetary cost, throughput, scalability, network 
performance, etc. can be taken into consideration. 

In this thesis, we investigate and propose novel solutions and algorithms for cost-
efficient resource provisioning for large-scale graph processing systems. The outcome 
is a series of research works that increase the performance of such processing by 
making it aware of the operating environment while decreasing the dollar cost 
significantly. We have particularly made the following contributions: 

1. We introduced iGiraph, a cost-efficient framework for processing large-scale 
graphs on public clouds. iGiraph also provides a new graph algorithm 
categorization and processes the graph accordingly. 

2. To demonstrate the impact of network on the processing in cloud environment, 
we developed two network-aware algorithms that utilize network factors such 
as traffic, bandwidth and also the computation power. 

3. We developed an auto-scaling technique to take advantage of resource 
heterogeneity on clouds. 

4. We introduced a large-scale graph processing service for clouds where we 
consider the service level agreement (SLA) requirements in the operations. The 
service can handle multiple processing requests by its new prioritization and 
provisioning approach. 
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Chapter 1 

1.            Introduction 
 
 

IG Data era is the result of Information and Communication Technology (ICT) fast 

development in recent years where several Internet-scale applications and 

connected devices have created enormous data explosion. Big Data continues to find 

new application areas with representatives of data in a various formats and 

characteristics. A big fraction of generated data these days by applications ranging 

from social networks to Internet of Things (IoT) to search engines and mobile 

computing is in the form of graphs. A graph is made up of a series of nodes (vertices) 

that are in some way connected (via edges) and can have different properties. 

Everything is connected in today’s world and graphs are everywhere (Fig. 1.1). 

Social networks such as Facebook, Twitter and YouTube are significantly generating 

large amount of data every day while a majority is stored as graph data. In a typical 

social network, everything can be mapped to a graph. Graph of users is shaped by 

placing each member as vertices of the graph while the connections between them 

form the edges of the graph. Likewise, other graphs can be formed for posted 

comments, shared photos, common interests, video recommendation, friendship 

recommendation, etc. During each minute at 2017, 3.3 million posts were put on 

Facebook, 3.8 million queries were searched on Google search engine, 500 hours of new 
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videos were uploaded on YouTube and 448.800 tweets were shared on Twitter1. These 

numbers are almost doubled compared to the amount of content was made per minute 

in 2014. 

IoT is another significant source of exponentially large data generation. IoT includes 

billions of sensors and devices around the world that are collecting, measuring, 

detecting or enabling various activities and factors. These devices are used for smart 

homes, driverless cars, medical equipment, business supply chains, drone delivery 

services, mining, retails, etc. It has been predicted that by 2025, IoT will have an 

economic impact of $11 trillion per year while users will deploy one trillion IoT 

devices2. 

There are many other origins of graph data such as astronomy, telecommunication, 

mobile computing, machine learning, smart utilities, etc. However, traditional 

distributed data processing approaches such as MapReduce do not work efficiently on 

graph data because of a number of reasons. First, MapReduce is a two-step 

computational model which is not compatible with iterative inherit of graph 

algorithms. Second, a lot of disk I/O is required in MapReduce computation because 

middle states of the computation cannot be retained in the main memory. Third, 

                                                           
 

1 https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-seconds/ 
2 https://www.gartner.com/newsroom/id/3598917 
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MapReduce programs are usually agnostic about the relationships and connected 

nature of a graph. 

On the other side, graph processing brings intrinsic challenges due to the nature of 

graph characteristics. These characteristics include data driven computation 

requirements, irregular graph problems, poor locality during computation and high 

data access to computation ratio. To overcome these challenges and shortcomings, 

specific-designed systems are introduced for processing large-scale graphs. To 

overcome these challenges and the issues with traditional processing solutions, 

exclusive graph processing frameworks are started to be developed since 2010. 

Cloud computing paradigm offers on-demand and scalable distributed storage and 

processing services like never before. It has brought new solutions such as elasticity, 

distributed computing and pay-as-you-go model by which it overcomes challenges 

and restrictions of traditional computing. Cloud computing treats computing as a 

utility where users have access to different services they need without knowing where 

the service is hosted or how it is being delivered. So, it is profitable for both service 

providers and consumers. 

Despite all the advantages that cloud computing provides, most existing graph 

processing frameworks are developed on high performance computing (HPC) clusters. 

Unlike cloud environments, HPC infrastructure cannot be afforded by everyone hence 

these solutions are no available widely. There are few research works in the literature 

that propose cloud-based graph processing frameworks, but the problem with these 

systems is that similar to their HPC counterparts, cloud-based systems also try to 

improve the performance through utilizing novel computation or communication 

techniques. Other cloud features such as pricing and scalability are neglected in most 

research studies. In this thesis, we discuss the challenges and problems in processing 

large-scale graphs and provide new solutions to address them. 

1.1 Challenges in large-scale graph processing on cloud 

environments 
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The trends of utilizing unprecedented computing capabilities that is provided in cloud 

environments namely as distributed computing, elasticity and pay-as-you-go pricing 

models along with the rising interests towards graph processing applications bring 

many challenges and research questions. We discuss the most important challenges 

regarding the requirements of new approaches in order to employ the potential of new 

provided computing paradigm to improve processing of large-scale graphs. 

1.1.1 Cost Limitations and Models 

Cost is an important factor in cloud environments. Cloud providers provide different 

types of infrastructures and facilities for highly storage or computing intensive 

programs which customers should pay to be able to use them. Cloud providers usually 

provide three types of clouds: public, private and hybrid. A giant cloud provider such 

as Amazon even has three different cost models including: reserve, spot and on-

demand models. However, most current graph processing frameworks have not 

considered cost factor in their computations. One reason is that many of the systems in 

this area have been developed using high performance computing (HPC) facilities and 

cluster computing environments and they have assumed that the resources are 

limitless. Even some works that are assuming cloud metrics to explain their techniques 

have used clusters to simulate a cloud environment while the communication and cost 

limitations are very different on clouds. So, to propose a suitable cost model for a 

graph processing system we should consider the following issues: 1) What 

computation model is used to process the graphs? This factor is important because the 

cloud requirements can be found in the computation model. 2) Which cost model is 

more suitable for the computation model? So, we need to map the cost model with the 

computation model to choose the best fit option. 3) Is that possible to change the policy 

during the computation so that we can reduce the cost as much as possible? 

 

1.1.2 Scalability and Communication Models 

Many current graph processing frameworks use message passing interface (MPI) as the 

communication platform between different machines. As long as the system works 

base on cluster environment or there is no need to apply any scalability during the 
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computation, then MPI works well for disk-based frameworks. But in a cloud 

environment, particularly when the number of virtual machines varies during the 

computation,  MPI is not useful for communication. Moreover, despite introducing 

new communication models such as in-memory or pull/push communication by 

recent graph processing systems, these models are either suitable for single machine 

processing architectures or they are not quite fit into the cloud environment. 

1.1.3 Standard Entry and I/O Issues 

Another issue in graph processing systems is that they are very costly in terms of I/O 

because the number of readings and writings on the disk is very high. When it comes 

to cloud infrastructures it would still get worse since the graph needs to be transferred 

to the cloud at least once. The right policy should be taken to partition the graph 

correctly and distribute the proper number of partitions on virtual machines (VMs) to 

reduce the number of inputs and outputs. It also affects the computation algorithm to 

decrease the communication part burden. On the other side, although there are some 

standard datasets which are used in most of the experiments, each framework change 

the structure of the system data entry according to the processing model it proposes. 

So, there is no standard form of data structure to be used by graph algorithms. 

1.1.4 Network Issues and Limitations 

Although all the current research works have measured the execution time and I/O 

performance for different graph processing frameworks, only a few of them have 

considered network issues. In a network, many factors such as latency, response time, 

network bandwidth, number of packages transferring through the network, etc. can 

affect the performance of the system, particularly in distributed environments such as 

clouds. Most existing solutions do not investigate the effects of network factors. 

Instead, they try to improve the performance of the system by proposing new 

partitioning algorithms or using new computation models.  

1.1.5 Resource Provisioning 

In the literature, provisioning resources before starting the processing procedure is 

very common. Hence, the graph processing system and its resource provisioning 
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component must be optimized towards configuring the computing nodes prior to the 

deployment of the system in order to enhance the performance and resource 

utilization. However, this approach cannot guarantee that these frameworks are 

successfully achieving the desired cost and performance goals. Nevertheless, cloud 

computing offers features such as elasticity and scalability by which required number 

of resources can be determined at any stage during the life of an application. The ideal 

would be provisioning resources based on the graph application and the dataset that is 

being processed to reduce the monetary cost and improve the performance. 

1.2      Research Problems and Objectives 

This thesis aims to investigate and provide resource management mechanisms in a 

distributed graph processing environment while considering cost-efficiency and its 

impact on the system performance using various partitioning and scheduling 

techniques. To address the challenges that were discussed in the previous section, this 

thesis has identified and investigated the following research problems: 

 How to utilize the scalability and elasticity of cloud environments to provision 

the optimal number of resources for processing large-scale graphs? As 

mentioned in the previous section, existing distributed graph processing 

frameworks are using a pre-defined and pre-configured number of resources 

which they keep up until the end of the operation. The problem with this 

method is that the resources are being provisioned in a static manner rather 

than dynamically. Therefore, in many situations during the operation, some 

machines have no tasks to operate on while they are still occupied and kept 

active by the system. This method is costly and will not necessarily provide the 

best performance. Instead, a dynamic approach by which resources on the 

cloud environment can be provisioned and scheduled according to the 

characteristics of the graph algorithms could give better results. 

 

 How to partition the graph efficiently to optimize the performance? 

Partitioning plays a very important role in processing large-scale graphs in a 
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distributed environment. In many places in this thesis we discuss that a static 

partitioning approach is not as efficient as considering a dynamic repartitioning 

method. There are various factors that need to be considered while employing a 

partitioning mechanism that affect its usability. For example, in a distributed 

environment such as cloud: 1) what is the optimized number of partitions for a 

particular application?, 2) how many partitions should be placed on each 

machine?, 3) how to minimize the number of cross-edges between machines?, 

4) how often should repartitioning happen?, etc. 

 

 How to consider and employ network factors to design an effective partitioning 

mechanism in order to reduce the monetary cost and improving the 

performance? Without considering network factors such as bandwidth, latency, 

topology, etc. in a constantly changing area as clouds, any solution will be 

incomplete. These factors significantly affect the operation and its execution 

time. However, most existing distributed graph processing solutions are either 

completely agnostic about network metrics or they give only a small weight to 

them. Thus, a dynamic resource scheduling mechanism that takes critical 

network factors as variables in its solution is required to achieve optimized 

performance and reduce the cost. 

 

 How to utilize the heterogeneity of cloud resources to define appropriate 

provisioning policy at any time during the processing? An important feature 

that is provided by cloud environments is the variety of resources that are 

accessible on their infrastructure. A typical client can utilize any size of 

computing machines, storage, communication bandwidth and other services 

according to his available budget, job priorities or even deadlines. This 

provides a remarkable capacity for optimizing any types of operations 

including graph processing. Although, heterogeneous resources have been 

used to manage generic kind of operations in many research works, this 

significant opportunity has been neglected in the studies related to large-scale 

graph processing. Therefore, combining exclusive graph algorithms’ properties 
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with the appropriate partitioning techniques to utilize heterogeneous resources 

in a distributed manner can improve the efficiency of the system. 

 

 How to maintain and monitor the quality of service (QoS) in cloud-based graph 

processing systems? Another important issue about using cloud facilities to 

operate a particular service or processing on them is to ensure that the service 

level agreement (SLA) will be preserved and guaranteed. If large-scale graph 

processing is going to be provided as a service to a broader range of users, then 

there should be some mechanisms to assure that the service will be delivered 

seamlessly and the reaction against any violation of the agreement has been 

predicted in advance. Hence, quality of the service needs to be managed and 

monitored comprehensively alongside the efforts for ameliorating the 

throughput and performance of the system. 

1.3      Evaluation Methodology 

All the proposed approaches in this thesis were designed and implemented in the form 

of real frameworks and evaluated using real-world graph datasets including Amazon 

(TWEB), YouTube links and Pokec along with various graph applications such as 

PageRank, single source shortest path and connected components. All algorithms and 

frameworks were implemented on Australian National Research Cloud Infrastructure 

(NECTAR) and compared against real-world benchmarks. Since NECTAR does not 

correlate any price to its infrastructure for research use cases, the prices for utilized 

virtual machines are put proportionally based on Amazon Web Service (AWS) on-

demand instance prices in Sydney region according to closest VM configurations as an 

assumption for our works. 

We are following an additive approach for implementing our solutions in this 

thesis. This means that we took a popular and widely used distributed graph 

processing framework called Apache Giraph as a base for our work while in each 

chapter we are plugging-in new features and algorithms to the system to modify and 

improve the solution in the previous chapter. However, understanding each chapter is 

necessary before moving to the next one. Major metrics such as execution time, 
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monetary cost and number of messages passing through the network along with other 

solution-specific metric that are presented in each chapter have used for evaluation and 

comparison of different benchmarks.  

1.4      Thesis Contribution 

To address the research problems mentioned in Section 1.2, this thesis made the 

following key contributions: 

1. A survey and taxonomy of the state-of-the-art advances and improvements on 

large-scale graph processing frameworks 

2. A system framework named as iGiraph which enables a cost-efficient graph 

processing in cloud environments 

 The design of the framework architecture and module interactions 

 A new dynamic repartitioning method that utilizes network traffic 

pattern to reduce the communication between compute nodes 

 Using a new behaviour-based classification for graph algorithms and 

operate accordingly 

3. Two network-aware dynamic repartitioning-based algorithms for scheduling 

large-scale graphs deployed to consider some important network factors in the 

processing 

 Adding the second dimension (level) to the behaviour-based 

classification of graph algorithms to distinguish applications and select 

more accurate processing policy 

 A novel mapping strategy is designed to facilitate assigning partitions to 

the machines based on different features that each partition and 

machine has. 

 A new bandwidth-and-traffic-aware dynamic re-partitioning algorithm 

and a new computation-aware re-partitioning algorithm have been 

proposed by which the monetary cost of the operation declines 

remarkably  
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4. An auto-scaling algorithm which enables the system to take advantage of the 

heterogeneous resources providing in a cloud environment 

 A new cost-efficient provisioning of heterogeneous resources for 

convergent graph algorithms 

 A resource-based auto-scaling algorithm which significantly increases 

the capability of supplying the efficient number of required resources 

out of the available resource pool on the cloud by scaling  horizontally 

 A characteristic-based dynamic repartitioning mechanism combined 

with a smart process monitoring that allows effective partitioning of the 

graph across available VMs according to VM types. 

 A new implementation of the operation management on the master 

machine 

5. Monitoring and maintaining the quality of service (QoS) in a large-scale graph 

processing environment 

 A prioritization mechanism to identify and distinguish between 

different graph workloads and algorithms 

 Deploying a service level agreement (SLA) monitoring mechanism to 

fulfil the SLA requirements 

1.5      Thesis Organization 
The structure of the thesis is shown in Figure 1.2, which its chapters are derived from 

several research works that conducted or published during my PhD candidature.  

 Chapter 2 presents a taxonomy and survey on the state-of-the-art advances and 

development on large-scale graph processing frameworks. This chapter is 

partially derived from: 

- Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros and Rajkumar 

Buyya, “Scalable Graph Processing Frameworks: A Taxonomy and Open 

Challenges”, ACM Computing Surveys, vol. 51, Issue. 3, No. 60, ACM 

Press, New York, USA, 2018. 
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Figure 1-2 The thesis organization 

 Chapter 3 proposes a cost-efficient graph processing framework called iGiraph 

by which the cost of the operation decreases dramatically. This chapter is 

derived from the following publication: 

- Safiollah Heidari, Rodrigo N. Calheiros and Rajkumar Buyya, “iGiraph: A 

Cost-efficient Framework for Processing Large-scale Graphs on Public 

Clouds”, in Proceedings of the 16th IEEE/ACM International Symposium on 

Cluster, Cloud and Grid Computing (CCGrid 2016), Cartagena, Colombia, 

Pages 301-310, 2016. 

 Chapter 4 proposes two network-aware dynamic scheduling algorithms that 

are considering important network factors such as network traffic, bandwidth 
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and computation utilization for partitioning the graph and distributing the 

partitions across the system. This chapter is derived from: 

- Safiollah Heidari and Rajkummar Buyya, “Cost-efficient and Network-

aware Dynamic Repartitioning-based Algorithms for Scheduling Large-

scale Graphs in Cloud Computing Environments”, Software: Practice and 

Experience (SPE), vol, 48, Issue 12, Wiley & Sons, 2018. 

 Chapter 5 proposes an approach to take advantage of heterogeneous resources 

that is provided in a cloud environment to minimize the cost of the operation. 

This work is derived from: 

- Safiollah heidri and Rajkumar Buyya, “A cost-efficient Auto-scaling 

Algorithm for Large-scale graph processing in Cloud Environments with 

Heterogeneous Resources”, IEEE Transactions on Software Engineering 

(TSE), 2018 (Under review). 

 Chapter 6 proposes a comprehensive system to monitor and maintain the 

quality of service (QoS) in graph processing systems. This work is derived 

from: 

- Safiollah Heidari and Rajkumar Buyya, “Quality of service (QoS)-driven 

Resource Provisioning for Large-scale Graph Processing in Cloud 

Computing Environments:  Graph Processing-as-a-Service (GPaaS)”, Future 

Generation Computer Systems (FGCS), 2018 (Second Review: Minor Rev.). 

 Chapter 7 concludes the thesis with a summary of the key findings and a 

discussion of future research directions. This chapter is partially derived from: 

- Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros and Rajkumar 

Buyya, “Scalable Graph Processing Frameworks: A Taxonomy and Open 

Challenges”, ACM Computing Surveys, vol. 51, Issue. 3, No. 60, ACM 

Press, New York, USA, 2018. 
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Chapter 2 

2 Taxonomy and Survey of Graph 
Processing Systems 

 
The world is becoming a more conjunct place and the number of data sources such as social 

networks, online transactions, web search engines and mobile devices is increasing even more 

than had been predicted. A large percentage of this growing dataset exists in the form of linked 

data, more generally, graphs, and of unprecedented sizes. While today’s data from social 

networks contain 100’s of millions of nodes connected by billions of edges, inter-connected data 

from globally-distributed sensors that forms the Internet of Things (IoT) can cause this to grow 

exponentially larger. Although analyzing these large graphs is critical for the companies and 

governments that own them, big data tools designed for text and tuple analysis such as 

MapReduce cannot process them efficiently. So, graph distributed processing abstractions and 

systems are developed to design iterative graph algorithms and process large graphs with 

better performance and scalability. These graph frameworks propose novel methods or extend 

previous methods for processing graph data. In this article, we propose a taxonomy of graph 

processing systems and map existing systems to this classification. This captures the diversity in 

programming and computation models, runtime aspects of partitioning and communication, 

both for in-memory and distributed frameworks. Our effort helps to highlight key distinctions 

in architectural approaches, and identifies gaps for future research in scalable graph systems. 

 

 

 

 

This chapter is partially derived from: 

 Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros and Rajkumar Buyya, 

“Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges”, 

ACM Computing Surveys, vol. 51, Issue. 3, No. 60, ACM Press, New York, USA, 

2018 
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2.1      Introduction 

HE growing popularity of technologies such as Internet of Things (IoT), mobile 

devices, smart phones and social networks has led towards the emergence of “Big 

Data”. Such applications produce not just gigabytes or terabytes of data, but soon 

petabytes of data that need to be actively processed. Such large volumes of data 

gathered from billions of connected people and devices around the world is causing 

unprecedented challenges in terms of how data can be stored, retrieved and managed; 

how data security, integrity, availability and sharing can be ensured; how massive 

datasets can be mined; and how they can benefit from new computing paradigms such 

as cloud computing for data analysis [178][58]. 

According to the National Research Council of the US National Academies [55], 

graph processing is among the seven major computational methods of huge data 

analysis. Graph computations are used in business analytics, social network analytics, 

image processing, hardware design and deep learning to an increasing extent. Wide-

spread techniques for processing large graphs had, untill recently, been limited to 

shared memory [97] [19] and High Performance Computing systems, [116] [93]. 

Although distributed approaches have been proposed for processing big graphs since 

2001 [99], graph processing systems for commodity clusters and Clouds have become 

particularly popular after Google introduced its Pregel [148] vertex-centric graph 

processing system in 2010. Since then, several distributed graph processing 

frameworks with diverse programming models and features have been proposed to 

facilitate operations on large graphs. Each of these frameworks has specific 

characteristics with its own strengths and weaknesses. 

The aim of this chapter is to provide a taxonomy of scalable graph processing 

systems and frameworks. It identifies strengths and weaknesses in the field and 

proposes future directions. First, it proposes a comprehensive taxonomy of 

programming abstractions and runtime features offered by graph processing systems, 

and maps the existing systems to this taxonomy. Second, it utilizes a top-down 

approach for investigating graph processing frameworks and their components along 

with examples to support them. Third, the chapter identifies gaps in existing systems 

T 
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which need further investigation, and discuss these open problems and future research 

directions in detail. In summary, this survey gives readers an overarching picture 

about what graph processing is, what improvements have been gained through recent 

frameworks, different programming and runtime techniques that have been used, and 

the applications that benefit from them. It emphasizes scalable graph processing 

platforms for shared-memory and distributed processing, that fall within the ambit of 

Big Data processing platforms. It also contrasts them against graph frameworks for 

supercomputing systems, as evidenced through the Graph500 benchmark3. On the 

other hand, the existing works such as [153] and [60] only focus on surveying and they 

have limited focus on key elements of graph processing.  

The rest of the chapter is organized as follows: Section 2.2 includes a definition of 

graphs and graph processing systems, contrasts graph processing from other big data 

processing methods, outlines the lifecycle of a typical graph processing system, and 

gives examples of real graph-based applications and algorithms. Contemporary graph 

processing frameworks and architectures are explained in Section 2.3, along with 

distributed coordination and computational models. Section 2.4 categorizes existing 

frameworks based on partitioning, communication models, in-memory execution, fault 

tolerance and scheduling. Graph databases are reviewed in section 2.5. A taxonomy 

and discussion on challenges is also presented for each section. A gap analysis and 

open challenges, with a perspective on future directions are discussed in Section 2.6 

and 2.7 respectively. Finally, we conclude the chapter in Section 2.8. 

2.2      Background 

A Graph G = (V, E), consists of a set of vertices, V= {v1, v2, … , vn} and a set of edges, 

E={e1,e2,…,em} that indicate pairwise relationships, E=V×V. If (vi , vj)E, then vi and 

vj are neighbors [199].  The edges may be directed or undirected. So V and E are the 

two defining characteristics of a graph which most of graph processing frameworks 

implement. Frameworks typically support a single attribute value associated with the 

                                                           
 

3 Graph 500 benchmark, http://www.graph500.org/  

http://www.graph500.org/
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vertex and edge (e.g., label, weight). In addition, some of the platforms also support a 

set of named and/or typed attributes for their vertices and edges as part of their data 

model. 

Table 2-1 Graph-like application and environments 

Application Item (Vertices of the 
Graph) 

Connection (Edges of the 
Graph) 

Social network Members Friendships 

Computer network Computers Network connectivity 

Web content Web Pages Hyperlinks 

Transportation Cities Roads 

Electrical circuit Devices Wires 

Commerce Customers, Goods Purchase transactions 

Factory Machines Production lines 

Supply chain Providers Distances 

Telecommunication Mobile Phones Phone calls 

Pairwise relationships between entities play an important role in various types of 

computational applications. These relationships that are implied by different 

connections (edges) between items (vertices) give rise to domain questions to draw 

value from the data, such as: Is it possible to identify transitive relationships between 

items by following the connections? How many items are connected to a typical item? 

What is the shortest distance between these items? Which groups of items are similar 

to each other? How important is an item relative to others? Various graph-like 

applications and environments are mentioned in Table 2.1 [199]. As can be seen in 

Table 2.1, many applications process data that naturally fits into a graph data model. 

Several of these applications from social networks, eCommerce and telecom domains 

handle large graph datasets which need to be processed and mined to draw disparate 

business intelligence, ranging from the interests of people about products for targeted 

advertising, to tracing call logs for cyber-security. Processing large graphs poses some 

intrinsic challenges due to the nature of graphs themselves. These characteristics make 

graph processing ill-suited to existing data processing approaches, and usually inhibit 

efficient parallelism [177]. According to [144], their properties are noted below:  

 (1) Data-driven computations: Graph computations are usually entirely data-driven. 

Graphs are made up of sets of vertices and edges that dictate the computations 

performed by every graph algorithm.  
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(2) Irregular problems: Graph problems are highly irregular due to the non-uniform 

edge degree distribution and topological asymmetry rather than being uniformly 

predictable problems which can be optimally partitioned for concurrent computation. 

(3) Poor locality: The inherent irregular characteristics of graphs leads to poor locality 

during computation, which is in conflict with locality-based optimizations supported 

by many existing processors, making it difficult to achieve high performance for graph 

algorithms. 

(4) High data access to computation ratio: A large portion of graph processing is 

usually dedicated to data access in graph algorithms. Therefore, waiting for memory or 

disk fetches is the most time-consuming phase relative to the actual computation on a 

vertex of edge itself. 

To streamline the processing of big data, MapReduce, a distributed programming 

framework for processing large datasets with parallel algorithms, was introduced by 

Google in 2004 [56]. MapReduce has two significant advantages: 1) The programmer 

has a simple and familiar interface using Map and Reduce functions, inspired by 

functional programming concepts [100], and 2) the application is automatically 

parallelized when defined using Map and Reduce methods, without the programmer 

needing to know how data will be distributed, grouped and replicated, and how the 

tasks are scheduled.  

Although MapReduce addresses many deficiencies in traditional parallel and 

distributed computing approaches, it has several limitations that make it less efficient 

for processing large graphs [51] [2] [82]: 1) MapReduce is limited to a two-phased 

computational model that is not naturally suited for graph algorithms that run over 

many iterations, 2) In common MapReduce implementations, the input graph and its 

state are not retained in main memory across even these two phases, let alone across 

iterations, and consequently requires repetitive disk I/O, 3) MapReduce’s tuple-based 

approach that is unaware of the linked nature of graph datasets is poorly suited to 

design many graph applications, and 4) Graph operations using MapReduce have poor 

I/O efficiency - because of frequent checkpoints on completed tasks and data 

replication - which is a bottleneck for many graph algorithms [131].  
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Apache Hadoop [12] is a popular open-source implementation of the MapReduce 

programming model. Besides flexible batch processing applications that can be built 

using Hadoop, it is also the basis for NoSQL querying platforms such as Pig [16] and 

Hive [15] to work with large datasets. In addition, various high level languages such as 

SCOPE [266], Sphere [86] and Swazal [179] are available for MapReduce-like systems. 

Platforms like Apache Spark [255] have extended the programming model of 

MapReduce, and offer incremental batch and in-memory computation with better 

performance. Further, Hadoop’s distributed file system storage mechanism (HDFS) as 

well as a Map-only model of Hadoop is used as the storage and distributed scheduling 

mechanism in many graph processing frameworks we discuss.  

While a number of systems such as PEGASUS [114] have brought innovative 

approaches for processing and mining peta-scale graphs, those systems are based on 

the MapReduce model and suffer from the above limitations. As a consequence, 

iterative graph processing systems started to emerge in 2010 with Google’s Pregel 

[148], a graph processing framework that uses Valiant’s Bulk Synchronous Parallel 

(BSP) processing model [231] for its computation. Pregel was the first system that 

promoted a “Think Like A Vertex” notion for processing large graphs, similar to 

MapReduce that operates on <key,value> pairs to process large data volumes. These 

and other contemporary graph processing systems are discussed further in this survey.  

 

2.2.1  Overall Scheme of Graph Processing 

In general, a typical graph processing systems execute a graph algorithm over a graph 

dataset across different logical phases, as shown in Figure 2.1.  

 

Figure 2-1: Graph processing phases. 

 (1) Read/Write input/output datasets: The first step is reading the graph data from a 

source dataset which can be either on disk or in memory. In the last phase, the 
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processed data should be written back again, either to disk or memory. Graph 

processing systems typically do not have a custom persistence layer optimized for 

reading and writing graph datasets, and tend to use the standard file system such as 

HDFS. Hence, they can present a bottleneck when reading and writing large graph 

datasets. Many studies even ignore read/write time when they measure the execution 

time for evaluation. Instead, they try to improve other aspects of the systems like 

efficient in-memory data structures for computation. 

(2) Pre-processing: In some approaches, the graph data will be partitioned before being 

passed to the graph processing system to decrease the overall burden and runtime of 

the system. The main advantage of this approach is that the programmer does not need 

to worry about the complexity of the partitioning and it is a one-time cost that is paid 

up-front. Also, partitioning mechanism and computation mechanism can be two 

different modules which work independently and thus can be designed and 

implemented separately. The main drawback for this approach is that it works well 

only for static partitioning strategies, not dynamic partitioning or repartitioning. 

(3) Partitioning: In this phase, partitioning will be done dynamically within the graph 

processing system and not as a separate module. Both partitioning and computation 

phases can collaborate to choose the best partitioning method at each step, so, dynamic 

partitioning and repartitioning can be implemented in the processing system. 

Although programming such a system is more complicated than implementing two 

independent modules, it provides more runtime flexibility and can be well suited to 

support diverse graph algorithms. 

(4) Computation: Different graph processing systems have different computation 

approaches. This programming model and runtime is at the heart of the whole 

framework and there have been many proposals for efficient computation methods to 

decrease the graph application’s runtime. More details about this phase, with a 

taxonomy on various computational models, is presented in Section 2.3.4. 

(5) Error Handling: This fault-tolerant and failure recovery phase will be applied to the 

system either during the computation phase or after the computation phase is 

completed. There are various techniques that can be used here, such as check-pointing 

or restarting applications. Typically, the time taken for error handling is not considered 
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in experimental results due to the overheads it causes and some frameworks even 

avoid considering this capability. However, given the use of large commodity clusters 

that are prone to failures and long running big data applications, fault tolerance is 

essential for graph processing frameworks used in an operational setting. 

 

2.2.2  Large Graph-Oriented Applications 

As noted in Table 2.1, there are many fields and applications that generate and provide 

big data in the form of graphs. With improvements in computer hardware and 

processing models such as cloud computing and emerging concepts like IoT, an even 

greater growth in datasets is expected. Here, we present some typical applications and 

environments where large graph data are generated and used. 

(1) Social Networks: Social Networks and applications have grown exceedingly 

popular during the past decade and are constantly adding features to make effective 

use of the data they collect and to grow their customer network. Social networks are an 

important source of big graph data, and even big data in general, with large amounts 

of data created every day [52]. People are sharing their personal activities with their 

friends and the whole world, talking about their beliefs, sharing photos and videos, 

and posting their interests and health information [38] [213]. In the year 2014, in each 

minute, 2,460,000 content posts are shared on Facebook, 3,472 photos are pinned on 

Pinterest, 72 hours of new videos are uploaded to YouTube, 278,000 tweets are shared 

on Twitter, 20 million photos are viewed on Flicker. These rates continue to grow, and 

form just a part of the whole big data social network landscape [87].  

Social networks are native generators and consumers of graph datasets, with an 

additional temporal dimension added to them. “Users” form the vertices of a huge 

social graph while “friendship” connections between them form the edges of the 

graph. Connections can be probabilistic and node’s states change over time. Each node 

or edge can contain different values and information about a member’s personal 

details, his/her interests, friends, groups and people, his/her followers, the pages that 

are visited, locations, business information and so on with many other meta-data about 
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his/her history of activities. All these form a digital trail for every user that needs to be 

processed and analyzed by social network providers. 

From the users point of view, the network provider needs to suggest relevant pages 

or communities for them to follow based on their interests and offer meaningful service 

offerings [3] [21]. The providers themselves benefit from leading users through 

targeted advertising to paid services. Although popular, social network sites are still in 

their infancy as they figure out how to monetize this massive dataset they have access 

to and make their business model sustainable. New methods and mechanisms are 

emerging in the area of analyzing social network data on distributed systems, clusters 

and clouds [133].  

(2) Computer Networks and the Internet: Every machine in a computer network, 

including clients, servers, routers and switches, is a node of a network graph and 

physical or network connections between these machines form the edges of the 

network graph. When various networks from all over the world are connected together 

to provide different services, it forms the “Internet” which is an extremely large graph 

[43]. Computer networks need to be analyzed to discover whether there might be 

intruders, resource wasters, low efficiency, dead paths, and also to gain statistical 

reports about the states of the network [7]. This is particularly the case as a bulk of the 

network traffic moves toward rich content such as streaming video and multi-player 

gaming. These types of graphs should be processed in real-time as their state changes, 

and need a fast response, say to configure switches to allocate bandwidth to traffic, or 

detect malware and denial of service attacks. Network delays lead to customer 

dissatisfaction or worse, outages can cripple the functioning of modern society. 

(3) Smart Utilities: Many large graph datasets are owned by public utility and service 

providers such as city and rail roads, and power and water grids. Take city road 

datasets as an example. Logistics companies need to find the shortest path between 

cities and streets to decrease their fuel consumption and ensure timely delivery of their 

goods, Governments need to plan maintenance and provision emergency services in 

case of power disruptions or natural disasters, and people need to find the most 

convenient means for travel between different locations [138].  
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Further, with a wider deployment of IoT and city services getting smarter [176], the 

ability to monitor and collect real-time information about these physical infrastructure 

networks will grow, and graph analytics will be essential for ensuring the smartness of 

these utilities. In fact, IoT will be a natural extension and an exponential expansion of 

the Internet. Graph applications can be used to drive real-time management of power 

grid operations with back-to-grid intermittent renewables like solar and wind, 

pumping operations for water networks, signaling of traffic lights based on current 

flow patterns, and even scheduling of public transit on-demand. 

There are many other examples such as telecommunication [151], web search 

engines [173], environmental analysis [55], astronomy [219], mobile computing [224], 

machine learning [256] and so on where large graph data is required to be processed 

and, as we mentioned before, traditional approaches are not suitable. 

 

2.2.3  Algorithms in Graph Processing Studies and Experiments 

Table 2-2 Graph algorithms categorization 

Traversal  Breadth first search (BFS) 
Single source shortest path (SSSP) 

Graph Analysis  Diameter 
Density 
Degree distribution 

Components  Connected Components 
Bridges 
Triangle Counting 

Communities  Max-flow min-cut 
K-means, Semi Clustering 

Centrality 
Measures 

 PageRank 
Degree centrality 
Betweenness centrality 

Pattern Matching  Path/subgraph matching 

Graph 
Anonymization 

 K-degree anonym. 
K-neighborhood anonym. 

Other Operations  Structural equivalence, Similarity, ranking, etc. 

We discuss algorithms that are commonly used in most large graph processing studies 

and experiments. These algorithms are not essentially graph-designed algorithms in 

terms of the level of parallelism but they have been used for experiments in papers. So, 

the categorization presented in the table below provides a hint for researchers. 
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However, several works have been done on designing parallel versions of these 

algorithms to fit them into the graph processing domain [134] [147]. Table 2.2 shows 

the taxonomy of algorithms according to [61], which are used in a number of works. 

(1) Graph Traversal Algorithms: These algorithms travel through all the vertices in a 

graph according to a specific procedure to check or update the vertices’ values [199]. 

Amongst the most common algorithms in this type are Breadth-First-Search (BFS) and 

Depth-First-Search (DFS) [123]. Both of these algorithms traverse the graph tree to find 

a particular node, or visit every node in a specific order. Single Source Shortest Path 

(SSSP) is used to find the shortest path between a particular node and any arbitrary 

node of the graph that might be based on the minimum cost or weight [190]. Dijkstra’s 

algorithm and Bellman-Ford algorithm are popular algorithms in this category [22].  

(2) Graph Analysis Algorithms: These algorithms peruse the topology of the graph 

to specify graph objects and analyze its complexity. These graph statistics and 

topological measures are extensively used in protein interplay analysis and social 

network analysis [31] [128]. 

(3) Components: Connected components algorithms find subgraphs in which a path 

exists between any two nodes in the subgraph and none are connected to nodes in 

other subgraphs [96]. So, each vertex only belongs to one connected component of the 

graph. Weakly connected components work on undirected graphs, while strongly 

connected components are relevant to directed graphs. Another component 

identification problem is counting triangles. 

(4) Communities: A community is a set of vertices in which each vertex in the 

community is closer to other vertices of the same community than any other vertices of 

the graph. Various topological and attribute measures can be used to define the 

closeness and quality of communities, and K-Means clustering and semi-clustering are 

popular algorithms in this category [106] [30]. 

(5) Centrality Measures: The aim of these algorithms is to give an approximate 

indication of the importance of a vertex in its community according to how well it is 

connected to the network. The most used algorithm of this type is PageRank [173], an 

algorithm that is used by Google search engine to rank websites. Betweenness 

centrality is another common metric [146]. 
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(6) Pattern Matching: These algorithms are used to recognize the presence of input 

patterns in the graph, which can be an exact or approximate recognition [216]. 

(7) Graph Anonymization: These algorithms are used to create a new graph based on 

an original graph where the latter emulates specific topological or attribute properties 

of the original one. This prevents any possible intruders to re-identify the network 

[239]. 

(8) Other Operations: There are also other algorithms such as random walk 

algorithms where we choose a vertex randomly from neighbors of a vertex to start or 

continue process from there and try to converge in a probabilistic point [72]. 

In another categorization used by [91] and [112], algorithms have been categorized 

based on the types of graph queries which result in two classes of algorithms (other 

types of query classification can be found in [197] [108]): 

(1) Global Queries: These queries need to traverse the whole graph. So, algorithms 

such as diameter estimation, PageRank, connected components, random walk with 

restart (RWR), degree distribution, etc. are in this group. 

(2) Targeted Queries: These queries only need to access part of the graph, not all the 

graph. [112] has formulated seven types of queries including neighborhood (1-step and 

n-step), induced subgraph, egonet (1-step and n-step), k-core and cross-edges. 

Although there are many algorithms that can be implemented on a graph 

processing system, there are some challenges that these algorithms faced. First, 

according to [144], many graph systems have limited memory that can be exclusively 

allocated to the processing algorithm, in addition to other processes and threads that 

simultaneously use and access the memory. Graph algorithms, in particular those that 

operate in a shared-memory system, can exceed available physical memory for large 

graphs processed on single machines [159]. Recent graph processing systems address 

this by using a distributed computing paradigm. In addition, utilizing external 

memory algorithms is another approach to reach out of memory (core) in order to have 

access to more space. Second, the level of granularity in an algorithm can influence the 

level of parallelism it can exploit, especially those with linear runtime. So, a more fine-

grained level of parallelism results in better scaling of such algorithms [94]. Third, 

algorithms should deal with diverse workloads and need to reassign tasks to 
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processors when the visited nodes in a graph algorithm have spatial locality in the 

global memory. Finally, graph processing systems and algorithms should deal with the 

additional degree of parallelism exposed by submitting multiple concurrent queries 

when working on a large graph, or algorithms that operate over dynamic graphs. 

However, most of the systems that we review operate one graph algorithm or query 

over a single (large) graph. 

2.3      Graph Programming Model 

We present different dimensions of graph programming and computation models, and 

classify and analyze prominent literature on graph frameworks based on these 

categories. A comprehensive list of graph processing systems based on this taxonomy 

is tabulated in Table 2.3. 

2.3.1 Graph Processing System Architectures 

Graph processing systems can be categorized into three types of architecture models as 

depicted in Figure 2.2. 

 
Figure 2-2 Graph processing architectures. 

 
Figure 2-3 Master-workers 

architecture. 
2.3.1.1. Distributed Architecture 

A distributed system includes several processing units (host) and each host has access 

to only its own private memory. Each partition of the graph is typically assigned to one 

host to be processed while the hosts interact with each other by explicit or implicit 

message passing [214]. Such systems are meant to weakly scale by supporting larger 

graphs as more hosts are added to the system. From a cloud computing point of view, 

these map to an infrastructure as a service (IaaS) [35] architecture, where the hosts are 

Virtual Machines (VMs). Distributed graph processing systems utilize master-slaves 
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(workers) architecture, as shown in Figure 2.3, where there is one master that is 

responsible for managing the whole system, assigning partitions to workers, managing 

fault-tolerance, coordinating the operations of the workers and so on; and there are 

multiple workers that are responsible for performing computation on the partitions. 

Although the programmer has to adapt their algorithms and applications to suit the 

abstractions provided by the distributed graph processing systems, such systems ease 

the scaling of the applications on distributed environments, without the challenges of 

races and deadlocks that are associated with distributed computing [53]. In contrast, 

shared-memory frameworks that have been developed for single machines are easier 

to program but are limited by their ability to hold only parts of large graphs in 

memory [204].  

Google’ Pregel is a distributed vertex-centric framework that uses a master-worker 

architecture on multiple hosts of a cluster. GraphLab, developed in Carnegie Mellon 

University and later supported by GraphLab Inc., was developed for single machine 

processing [142], but evolved into a distributed one [141]. There are other Pregel-like 

systems such as GPS [195], Mizan [118] and GoFFish [208], and non-Pregel-like systems 

such as Presto [233], Trinity [202], and Surfer [46], which have been developed as 

distributed graph processing systems. Even frameworks such as GraphX [81] are built 

on top of Spark distributed dataflow system. All of these systems use multi-node 

clusters or cloud VMs for their execution environment. However, as yet none of these 

exploit the elasticity property of Clouds, and rather treat captive VMs as a commodity 

cluster. 

Beside the aforementioned graph frameworks, there are several graph processing 

libraries developed for high performance computing (HPC) clusters. Boost graph 

library (BGL) [205] is a generic graph processing library that provides generic 

interfaces to the graph’s structure and common operations, but hides the details of its 

implementation. This allows graph algorithms using BGL to have interoperable 

implementations on shared-memory and parallel computing platforms. Graph500 is a 

graph processing benchmark by which various metrics of supercomputers such as 

communication performance, memory size for graph storage and the performance of 

random access to memory are measured. It contrasts with Top500 [226] which is 
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designed for compute-intensive applications. Although there have been many other 

attempts for providing parallel graph frameworks for high performance computing 

including several libraries such as MPI[68], PVM [76], BLAS [129], JUNG [109] and 

LEAD [156], none of them provide the required flexibility for a general-purpose graph 

processing platform [221]. 

 

2.3.1.2. Shared-memory Architecture 

Prior to the recent growth in distributed graph processing systems, there have been 

several works on processing large scale graphs on a single machine. A single machine 

consists of one processing unit (host) which can have one or more CPU cores, and 

physical memory that ranges from a few to hundreds of gigabytes that is shared across 

all the cores. 

In 2012, Microsoft researchers conducted a study [189] on whether using Hadoop on 

a cluster for analyzing big data is the right approach for data analytics. They concluded 

that for many data processing tasks, a single machine with large memory is more 

efficient than using clusters. They also investigated the cost aspect of using a single 

machine in big data processing and mentioned that “… for workers that are processing 

multi gigabytes rather than terabytes+ scale, a big memory server may well provide 

better performance per dollar than a cluster.” [140].  

Shared memory frameworks are inherently limited in the amount of memory and 

CPU cores present in that single machine [60]. The main challenge is that single hosts 

often have limited physical memory whereas processing large, real-world graphs can 

require a significant amount of memory to retain them fully in memory for many 

graph applications, or keeping and managing a subset of the graph out-of-memory. 

Novel techniques to address this limitation have been proposed. 

In Strata Startup Showcase 2013, SiSense, which is a business intelligence solutions 

provider company, won the audience award with a software system called “Prism” 

that can exploit a terabyte of data on a single machine with only 8 GB of RAM [139]. It 

relies on disk for storage, transfers data to memory when needed and benefits from 

L1/L2/L3 caches of the CPU. It utilizes a column store and an interface which allows 

scalability to a hundred terabytes. Among major IT companies, for instance, Twitter 
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uses Cassovary [229], an open-source graph processing system that has been 

developed to handle graphs that fit in the memory of a single machine. It has been 

claimed that Cassovary is a viable system for “most practical graphs” because of using 

a space efficient data structure. WTF (who to follow) [89] is a recommendation 

algorithm which is used by Twitter to suggest users with common interests and 

connections that is implemented on Cassovary. 

GraphChi [127] is a vertex-centric graph processing framework that proposes a 

parallel sliding window (PSW) method for leveraging external memory (disk) and is 

suited for sparse graphs. PSW needs a small number of sequential disk-block 

transmissions, letting it to perform well on both SSD (solid state drive) and HDD (hard 

disk drive). Besides, GraphChi can process an ongoing in-flow of graph updates while 

performing advanced graph mining algorithms simultaneously, like Kineograph [44]. 

GraphChi uses space-efficient data structures such as a degree file that is created at the 

end of processing to save in-degree or out-degree for each vertex as a flat array. It also 

uses dynamic selective scheduling that lets update function and graph amendments to 

enlist vertices to be updated. It was extended later as a graph management system 

called GraphChi-DB [126] and tried to address some of these challenges. 

Many other graph processing systems have been developed based on single 

machines. Signal/Collect [215], for example, is a vertex-centric framework made to 

improve the semantic web computational performance. In this model signals will be 

sent along edges where they will be collected in vertices. The advantage of this model 

is that it provides flexibility for synchronous, asynchronous and prioritized execution. 

Other systems such as RASP [252], X-stream [192] which provides an edge-centric 

framework, FlashGraph [262], Galois [165], TOTEM [77], BPP [162], etc. also make 

processing graphs possible on single machines using various computational models 

and processing systems. 

Graph processing on a single machine would be easier to program and execute than 

on distributed systems if the entire graph fits within the local resources on that 

machine. This is because of efficient communication, simpler debugging and easier 

execution management on a single machine. But this limits their scalability beyond a 

certain graph size. New approaches for processing graphs on single machines are 
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targeting flash and SSDs [247] [122] whose speeds are matching main memory and 

offer advantages for graph processing [262] [167]. 

 

2.3.1.3. Heterogeneous Architecture 

In a heterogeneous environment, not every processing unit is equally powerful [88]. 

This may be a single machine and additional on-board accelerators and specialized 

devices, or it can also consist of distributed, non-homogeneous systems. Because of 

this, we considered them as a separate group in this taxonomy. For example, 

processing systems such as RASP [252] and FlashGraph [262] have tried to optimize 

the storage part of the system by using SSD which is much faster and more reliable 

than traditional hard drives [75]. Many graph processing systems have proposed 

utilizing graphic processing units (GPU) alongside CPU for computation [234]. Medusa 

[263], for instance, was developed to make processing graphs using GPUs easier. 

Medusa is a programming framework that enables users to write C/C++ APIs to 

promote the capabilities of GPUs to execute the APIs in parallel. Its extended version 

also can be run on multiple GPUs within a single machine. Gharaibeh et al [77] 

developed a system called TOTEM that assigns the low-degree vertices to the GPU and 

operates high-degree vertices processing on the CPU. On the other hand, systems like 

CuSha [119] compute the entire graph on GPU. Another possibility is to exploit non-

uniform VM sizes on Clouds for a distributed, heterogeneous architecture, which has 

been less explored. 

Recently some research works have started exploring the use of field-programmable 

gate arrays (FPGAs). FPGA is an integrated circuit made of matrix of configurable logic 

blocks and their programmable connections that can be configured by the user after 

being manufactured. GraphGen [169] is a generic vertex-centric FPGA-based graph 

processing framework. It has been designed to get vertex-centric specifications and 

create FPGA implementations for targeted platforms. The problem with GraphGen is 

that it keeps the entire graph inside the on-board DRAM that limits the scalability of 

the system remarkably. FPGP [54] is another framework that enables interval-shared 

vertex-centric processing on FPGA. FPGP has also being used to analyze the 

performance bottleneck of other processing frameworks on FPGA. Although it has 
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been shown that FPGP does not perform as good as CPU-based single server 

frameworks, it shows the mechanism of FPGA-based generic graph processing systems 

well. Overall, FPGA is still a new research area in graph processing context compared 

to CPU and GPU based systems but it is getting more attention [70]. 

2.3.2 Graph Processing Frameworks 

 

Figure 2-4 Taxonomy of programming models used by graph processing frameworks 

Graph processing frameworks enable graphs to be processed on different 

infrastructures such as clusters and clouds. Here, we restrict ourselves to distributed 

memory systems that are designed for commodity, rather than High Performance 

Computing or Supercomputing clusters. The programming abstraction for each 

framework is designed either based on a graph topology element, such as vertices and 

edges, or other alternative approaches. Figure 2.4 depicts the taxonomy of graph 

processing frameworks according to main characteristics of the graph and other 

alternatives. We discuss these further below. 

 

2.3.2.1. Vertex-Centric (Edge-Cut) Frameworks 

Vertex-centric programming is the most mature distributed graph processing 

abstraction and several frameworks have been implemented using this concept [60]. A 

vertex-centric system partitions the graph based on its vertices, and distributes the 

vertices across different partitions, either by hashing them without regard to their 

connectivity [148] or by trying to reduce the edge cuts across partitions [195]. Edges 
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that connect vertices lying in two different partitions either form remote edges that are 

shared by both partitions or owned by the partition with the source vertex.  

In the vertex-centric programming abstraction introduced by Google’s Pregel [148], 

computation centers around a single vertex – its state and its outgoing edges – and 

interactions between vertices are through explicit message passing between them. This 

gives a fine-grained degree of vertex-level data parallelism that can be exploited for 

concurrent execution. Pregel’s execution follows a bulk synchronous parallel (BSP) 

model, where vertex computation and inter-vertex messaging are interleaved, and the 

application iteratively progresses along barrier-synchronized supersteps. The Pregel 

API allows developers to focus on the vertex-centric graph algorithms while 

abstracting away communication and coordination details to the runtime. In Pregel, 

the domain of a vertex’s user-defined compute function is restricted to the vertex and 

its outgoing edges, while LFGraph [98] considers incoming edges to be restricted. 

Figure 2.5.b shows vertex-centric processing approach for a sample graph shown in 

Figure 2.5.a. 

A vertex-centric model makes programming of graph processing intuitive and easy, 

similar to the advantages of Map-Reduce for tuple-centric programming. 

Parallelization is done automatically, and race conditions on distributed execution are 

avoided. Primitives like combiners and aggregators are available for application-level 

message optimizations and global state exchange. The model also allows for graph 

mutations, where the structure of the graph can be changed as part of the execution 

(useful, for e.g., when iteratively coarsening the graph for partitioning, clustering or 

coloring).   

However, Pregel have several shortcomings: 1) While the vertex-centric model 

exposes parallelism at the level of individual vertices, which can be computed in 

negligible time, massive graphs can impose coordination overheads on this degree of 

parallelization that may out-weigh the benefits [223], 2) The number of barrier-

synchronized supersteps taken for traversal algorithm can be proportional to the 

diameter of the graph with the number of message exchanges required between 

partitions also being high, proportional to the number of edges [208], 3) Mapping 

shared memory graph algorithms to this model is not trivial and requires new vertex-
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centric algorithms to be developed [208] and 4) Using a vertex-centric programming 

model without regard to the graph partitioning and data layout on disk can lead to 

punitive I/O initialization and runtime performance [208]. These shortcomings have 

been addressed in some other vertex-centric frameworks such as GoFFish [208] and 

GPS [195]. 

Apache Giraph [11], is a popular open-source implementation of Pregel. Giraph 

uses Map-only Hadoop jobs to schedule and coordinate the vertex-centric workers and 

uses Hadoop distributed file system (HDFS) for storing and accessing graph datasets. 

It is developed in Java and has a large community of developers and users such as 

Facebook [105] [194]. Giraph has a faster input loading time compared to Pregel 

because of using byte array for graph storage. On the other hand, this method is not 

efficient for graph mutations which lead to decentralized edges when removing an 

edge. Giraph inherits the benefits and deficiencies of the Pregel vertex-centric 

programming model. Its performance and scalability is algorithm and graph 

dependent, and works very fast, for e.g., on stationary algorithms like PageRank but 

not as fast on traversal algorithms like single source shortest path (SSSP) [190] and 

weakly connected components (WCC) [196], particularly for graphs with a large 

diameter. However, the ease of use of this framework and the community support has 

made it a popular platform over which to develop other Pregel-like systems with 

feature enhancements to the vertex-centric concept.  

Other distributed platforms like Apache Hama [13] and GraphX also offer a vertex-

centric programming model, with features comparable to Giraph. GraphX, developed 

on top of Apache Spark, determines transformation on graphs where every operating 

action produces a new graph. This framework uses a programming abstraction called 

Resilient Distributed Graph (RDG) interface, which builds upon Spark’s in-memory 

storage abstraction – Resilient Distributed Datasets (RDD). The graph in GraphX 

includes the directed adjacency structure along with user defined attributes connected 

to each node and edge, and both are encoded as RDGs. Using RDG, the 

implementation of frameworks such as Pregel and PowerGraph on Spark needs less 

efforts. 
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Pregelix [32] is a vertex-centric framework that tries to model Pregel as an iterative 

dataflow on top of the Hyracks [28] parallel dataflow engine. Pregelix has been 

developed to address three main challenges in distributed Pregel-like systems: 1) Many 

Pregel-like systems have limitations to support out-of-core vertex-storage, 2) Existing 

Pregel-like systems have specific strategies and implementations for communication, 

node storage, message delivery, and so on. Therefore, a user cannot choose between 

different implementation strategies based on what is better for a particular algorithm, 

dataset or cluster. Pregelix improves physical flexibility and scalability of the 

processing system to address this challenge, and finally, 3) Pregelix tries to leverage 

current data-parallel platforms to streamline the implementation of Pregel-like 

systems. 

 
     

(a) A sample graph (b) Vertex-centric 
(edge-cut) approach 

(c) Edge-centric (vertex-
cut) approach 

(d) Component-
centric approach 

Figure 2-5 Graph element-based approaches for graph processing frameworks 

2.3.2.2. Edge-Centric (Vertex-Cut) Frameworks 

In edge-centric frameworks, edges are the primary unit of computation and 

partitioning, and vertices that are attached to edges lying in different partitions are 

replicated and shared between those partitions. It means that each edge of the graph 

will be assigned to one partition, but each vertex might exist in more than one 

partition. Figure 2.5.c depicts this approach. While edge-based partitioning is more 

costly, this model shows better graph processing performance compared to vertex 

centric approaches [186]. However, programming an edge-centric system is more 

difficult than vertex-centric systems [253]. It is also important to create edge-balanced 

partitions in this method to load balance the computation across workers, just as vertex 

balancing is important for vertex-centric frameworks. Decreasing the vertex cuts has 

been investigated in some research [71] [26] [137]. 

[37] and [57] have suggested a vertex-cut method for distributed graph placement in 

hyper graph partitioning, where the edge-centric problem can be solved by converting 
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each edge into a vertex and vice versa. The motivation for developing vertex-cut 

frameworks is that systems such as Pregel and GraphLab [142] are effective for flat 

graphs but have shortcomings with graphs that follow a power law edge degree 

distribution due to low quality partitioning and vertices with high edge degrees. Real-

world graphs such as social networks are such power-law graphs where a small set of 

vertices have high edge degrees that connect to a large part of the graph, e.g. celebrities 

in social networks. Partitioning and representing power-law graphs in a distributed 

environment is also difficult [135] [1].  

X-Stream [192] is a well-known edge-centric system that processes out-of-core and 

in-memory graphs using a gather-scatter approach (Section 2.3.4). It bases this 

approach on the intuition that storage media such as solid state drives (SSD), main 

memory and magnetic disk perform significantly better with a sequential access to data 

than random access. The authors have implemented different algorithms on their 

system and observe that many of them can work on edge-centric mode. It can even 

return results from unsorted edge lists. However, it causes overheads when new edges 

are added to the graph. X-Stream is not suitable for very large graphs that do not fit 

onto the SSD, it wastes remarkable amount of bandwidth for certain algorithms and 

finally, X-Stream is not suitable for graphs and algorithms that require many iterations 

[253]. 

Chaos [191] is another edge-centric framework that is created based on X-Stream’s 

streaming model. It introduces a scalable distributed framework that can be scaled 

from secondary storage to several hosts on a cluster. Unlike some other graph 

processing systems, Chaos does not strive to attain locality and load balance and 

claims that network bandwidth in a small cluster surpasses storage bandwidth. 

Instead, it is designed to partition the graph for sequential access on storage. So, it 

spreads data uniformly at random on the cluster’s machines which are not necessarily 

sorted edge-lists. Chaos also utilizes GAS (Gather-Apply-Scatter) computation model 

(subsection 2.3.4) by which the edge-centric characteristic of its model is proven by 

iterating over edges and getting updated in the gather and scatter stages. 
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2.3.2.3. Component-Centric Frameworks 

Component-centric approaches have been recently introduced, where components are 

collections of vertices and or edges that are coarser than a single vertex or edge. Tian et 

al. from IBM introduced a “Think Like A Graph” instead of “Think Like A Vertex” 

[223] abstraction after observing shortcomings in vertex-centric and edge-centric 

methods of graph processing. In their partition-centric view, they divide the whole 

graph into partitions and assign those partitions to machines for being processed. A 

partition, which is a collection of vertices and edges in the graph, forms the unit of 

computing. Figure 2.5.d shows this approach. Giraph++, based on Apache Giraph [11], 

implements this model and uses this coarse-grained parallelism. In contrast to vertex-

centric model that hides partitioning and component connectivity details from users, 

Giraph++ exposes the partition’s structure to the users to allow optimizations. So, the 

performance of the system depends on the partitioning strategy that is used and how 

effectively users exploit the access to the coarse components in their execution. On the 

other hand, communication within a partition is by direct memory access, which is 

faster than passing messages between each single vertex in vertex-centric model. This 

results in fewer network message passing and lower time of execution per iteration 

(superstep), with a reduction in the number of iterations needed for convergence. It 

also benefits from local asynchrony in the computation which means that vertices in 

the same partition can exchange their state and perform consequent computations to 

the extent possible in the same iteration. 

Simmhan et al developed GoFFish [208] which has a subgraph-centric computation 

model to merge both the scalability and flexibility of vertex-centric programming 

approach with the extensibility of shared-memory subgraph computation. A subgraph 

(weakly connected component) is the unit of computation. A partition may contain one 

or more subgraphs, whereas each subgraph only belongs to one partition of the graph. 

Vertices in the same subgraph have a local path between each other, so existent shared 

memory graph algorithms can directly be exerted to each subgraph. This gives a 

programming and algorithm design advantage over partition-centric frameworks like 

Giraph++ that offer no guarantee on connectivity between vertices in a partition, while 

retaining the advantages of fewer iterations and shared-memory access of those 
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frameworks. Subgraphs, or vertices that span subgraphs, communicate by passing 

messages, similar to a vertex-centric model.  

GoFFish consists of two major components: 1) A distributed graph oriented file 

system, GoFS, which partitions, stores and provides access to graph datasets in a 

cluster across hosts, and 2) A subgraph-centric programming framework, Gopher, 

which executes applications designed using the subgraph-centric abstraction using the 

Floe [206] dataflow engine on top of GoFS. However, subgraph-centric programming 

algorithms are vulnerable to imbalances in the number of subgraphs per iteration as 

well as non-uniformity in their sizes. The time complexity per iteration also can be 

larger since it often runs the single machine graph algorithm on each subgraph, even as 

it often takes much fewer iterations. The benefits are also more pronounced for graphs 

with large diameter, where algorithms tend to be several times faster than a vertex-

centric equivalent, rather than small-diameter power-law graphs. GoFFish supports 

applications that operate on single property-graphs as well as on time-series graphs 

[209].  

 

2.3.2.4. Other Graph Frameworks 

In addition to the aforementioned programming abstractions, other alternatives have 

been developed as well. Several data-centric models offer a declarative dataflow 

interface to users to access and process data without needing to explicitly define 

communication mechanisms. For example, MapReduce provides a dataflow 

programming model that is popular for processing bulk on-disk data, but not for in-

memory computations across multiple iterations, and applications do not have online 

access to the intermediate states. Piccolo [182], was developed in New York University 

as a data-centric programming method for writing parallel in-memory applications in 

several machines. It uses a key-value interface with a user-defined accumulator 

function that automatically combines concurrent updates on the same key. Like many 

other data-flow models such as Pig, Hive, Dryad [104] [254], Flume Java [39] and 

Swazal, developers in Piccolo operate at a higher level of dataflow programming 

abstraction but need to know the framework and system behavior well to leverage its 

scalability for different applications. For example, the programmer has to a priori 
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specify the number of partitions while creating a table. Further, these are tuple-

oriented data flow models rather than graph specific ones. 

Yuan et al [253] introduces PathGraph which aims to leverage memory and disk 

locality on both out-of-core and in-memory graphs using a path-centric approach. 

Their path-centric abstraction utilizes a set of tree-based partitions to model the graph 

and benefits from a path-centric computation instead of a vertex or edge centric 

computation. It means that the graph will be partitioned into paths including two 

forward and reverse edge traversal trees for each partition. It applies iterative 

computation per traversal tree partition in parallel, and then merges partitions by 

examining border vertices. Two functions, gather and scatter (Section 2.3.4), are used to 

traverse each tree by a user-defined algorithm. In addition to the computation tier, 

PathGraph has a path-centric storage tier to better the local accessibility for the 

computation. The storage structure is based on a tree partition and uses vertex-based 

indexing for tree-based edge chunks. The system outperforms the vertex-centric 

GraphChi [127] and edge-centric X-Stream frameworks. 

Frameworks such as Blogel [248] adopt blocks as units of computation. Blogel 

introduces the concept of “think like a block” rather than “think like a vertex” and 

argues that existing systems do not address three main characteristics of real-world 

graph including 1) skewed degree distribution, 2) large diameter, and 3) high density. 

Considering these characteristics, the basic idea in Blogel is to put a high degree vertex 

with all its neighbors in one block and assign the whole block to one host. It also uses 

three computing mode (B, V, VB-mode) depending on the algorithm along with two 

different partitioners (graph Voronoi diagram partitioner and 2D partitioner). 

2.3.3 Distributed Coordination 

 
Figure 2-6 Distributed coordination 
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2.3.3.1. Synchronous 

When a graph algorithm executes synchronously, it means that concurrent workers 

process their share of the work iteratively, over a sequence of globally coordinated and 

well-defined iterations. Synchronization may be applied to vertex-centric, edge-centric 

and component-centric models, and both on distributed and single machine systems. 

For example, Pregel-like systems call their barrier synchronized iterations as superstep, 

and workers coordinate their computation and communication phases in each 

superstep – everyone completes a superstep before starting the next. Initially, the 

master assigns partitions to the workers in the first iteration; the workers update their 

set of vertices based on the assigned partitions and wait for a global barrier, which tells 

them all workers are ready with their partition [148]. Subsequent supersteps indicate 

actual computation based on the application logic. Updated vertices in each partition 

send messages to (typically) vertices in neighboring partitions between iterations. 

Within an iteration, vertices can only access information about their local vertex’s state 

and messages received from the previous iteration. Such a synchronized execution is 

possible even in a shared-memory system, across workers (threads, processes) on a 

single server.  

These regular intervening periods make the system appropriate for algorithms 

where sizeable computation and communication can take place within each iteration 

since there is an overhead associated with the coordination. The bulk messaging at 

iteration boundaries can utilize the bandwidth efficiently if there is heavy 

communication between partitions [62] [240]. It is easy to program, debug and deploy 

such systems, without concerns of distributed race conditions and deadlocks. Another 

advantage of synchronous processing is that the outcome of each superstep is known 

immediately and provides real-time response of incremental application progress and 

easier error recovery in case at superstep boundaries. Synchronous execution is also 

suitable for balanced workloads that are computed symmetrically, with all workers 

having adequate work, so that the overhead of the global barrier and idle time for 

faster workers waiting for slower workers to synchronize is reduced [240]. These 

advantages make synchronous execution very popular such that several graph 

processing systems like Pregel, GPS, Kineograph, Mizan, GasCL [41] and Medusa [263] 
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use this model. Some like GoFFish [208] have two levels of such synchronized 

supersteps, an outer loop over different graphs in the context of time-series graphs, 

and an inner loop as supersteps over a single graph from the outer loop.  

Synchronous execution model has some disadvantages as well that should be 

considered while designing or choosing a processing system for graphs. First, this 

model is not suitable for unbalanced workloads in which computation converges 

asymmetrically [218]. Likewise, if the distributed machines are not homogenous, the 

performance of the hardware may also cause some partitions to operate slowly. In such 

cases, it is possible to have stragglers when all partitions have been computed on 

workers except one slower worker which has not finished and hence delays all workers 

in the superstep. So, the runtime in this model is completely dependent on the slowest 

machine in each iteration [195]. Some of these shortcomings have been identified and 

addressed through elastic load balancing of partitions across workers [59]. Another 

drawback is that the intermediate processing updates between supersteps, in the form 

of messages or state, has to be retained in memory and this causes additional memory 

pressure [187]. A third disadvantage is that a synchronous execution model is ill-suited 

for applications and algorithms that need coordination between adjacent vertices [60]. 

For example, in a graph coloring algorithm in which vertices try to choose a different 

color from their neighbors, two adjacent vertices might pick conflicting colors 

frequently [80] [220] and the algorithm will converge slowly. Lastly, based on the 

drawbacks mentioned above, the cost for the systems that use synchronous model of 

execution is higher because the throughput must always remain high and running time 

would be longer [258]. 

 

2.3.3.2. Asynchronous 

An asynchronous execution model does not have any global barrier and a subsequent 

phase of execution will be started on a worker immediately after its current iteration 

finishes its computation [240]. Hence, some of the challenges of load balancing and 

long tail computation in the synchronous model are addressed by asynchronous 

computation, where workers do not have to wait for the slowest worker to start their 

subsequent iteration. This approach is useful when the workload is imbalanced and 
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convergence can occur faster than synchronous approach. Therefore, we can say that 

asynchronous model is the preferred model when computation across workers is 

heavily skewed and there is little communication that can benefit from bulk operations 

[240]. In other words, this model is preferable for CPU-based algorithms while 

synchronous model would perform much better on I/O-bound algorithms. Another 

advantage for this model is that it can use dynamic scheduling to implement 

prioritized computation to execute more units of computation before others, to obtain 

better performance [259]. Normally, asynchronous execution provides more flexibility 

than synchronous execution by utilizing dynamic workloads which makes it 

outperform synchronous methods in many cases; however, the exact comparison 

between these two models depends on various properties of the input graph, platforms 

that the system has been deployed on, execution stages and applications [240]. Finally, 

using asynchronous approach provides a non-blocking process because resources 

could be free and become available for the next iteration, whereas in a synchronous 

approach, they are blocked until the global barrier declares the end of superstep which 

leads to a competition for resources at the beginning of next superstep. 

As before, there are disadvantages to this model as well. The key disadvantage is 

that programming asynchronous processing systems is more difficult than 

synchronous systems. The programmer should deal with irregular communication 

intervals, unpredictable response time, complex error handling and more complicated 

scheduling issues. For example, for error recovery in such a system, many factors have 

to be considered: which machine has faced a fault, in which iteration of a particular 

worker the error happened, which resources caused the errors, should new resources 

be allocated to the computation or it should only be rearranged, and so on. This also 

results in more complex debugging and deployment, and careful programming to 

avoid deadlocks. In case of pull-based communication model (Section 2.4.2), which is 

usually implemented in an asynchronous manner, many redundant communication 

may happen because there are several intertwined reads and writes while adjacent 

vertices values do not change [92] [257]. On the other hand, regardless of these 

drawbacks, many single machine systems have preferred an asynchronous execution 
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approach since the shared memory makes it easier to asynchronously use the latest 

data without waiting for a barrier. 

 

2.3.3.3. Hybrid 

There are many systems that use only synchronous execution mode; for example 

Pregel, GoldenOrb [36], GBASE [112], Chronos [92] and GraphX [81], while many other 

systems utilize asynchronous mode like GiraphX [220], GraphHP [42], Ligra [204], 

RASP [252] and GraphChi. But recently a new approach called hybrid execution model 

has been implemented in a few systems that tries to take advantages of both 

asynchronous and synchronous approaches or incorporate them with new additional 

solutions. Such graph processing systems have been developed to improve system 

performance by overcoming the shortcomings of existing methods, and use both 

synchronous and asynchronous models of coordination to benefit from their relative 

strengths.  

GRACE [236], for instance, is a single machine framework that combines 

synchronous programming with asynchronous execution features. It actually separates 

execution policies from application logic. In an asynchronous execution, a processing 

sequence of vertices can be intelligently ordered by dynamic scheduling to remarkably 

speed up the convergence of computation. GRACE uses the BSP computational model 

and message passing communication model as two primary paradigms of synchronous 

model. It helps GRACE to improve its automatic scalability by applying prioritized 

execution of vertices and receiving messages selectively outside of the last iteration. 

Various workloads like topic-sensitive PageRank, social community detection and 

image restoration have been used in GRACE and it shows comparable running time to 

other asynchronous systems such as GraphLab with even better scalability. 

Another hybrid approach distinguishes between local vertices that are within a 

partition and remote vertices connecting across partitions. These types of systems 

exploit both local asynchronous computation when they still need global barrier for 

synchronization of remote vertices values [42]. In the local computation phase, 

messages will be passed very fast across local vertices using shared memory. In the 

next phase (synchronous phase), remote nodes (boundary nodes) that are connected by 
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edges across the partitions, will be updated by exchanging messages. In fact, 

component-centric frameworks such as Giraph++ and GoFFish allow users to exploit 

this. Others like Giraph Unchained [90] also allow incremental forward progress 

within a future superstep based on partial messages that are received, even before the 

previous superstep completes. These straddle synchronous and asynchronous models. 

Apart from these methods, a novel approach has been introduced by Xie et al. [240] 

in the PowerSwitch system, which sequentially switches between synchronous and 

asynchronous execution mode according to a heuristic prediction. This is because some 

properties of the processing might change as it progresses. For example, processing 

single source shortest path (SSSP) algorithm begins with just a few vertices active, 

which means that few messages are passed; this is suitable for an asynchronous model. 

But as the process goes further, the number of vertices involved in the computation 

will increase which means that the number of messages passing among them increase 

as well, and this is suitable for synchronous execution model. PowerSwitch can 

effectively predict the proper heuristic for each step and it can switches between the 

two modes if required. 

2.3.4 Computational Models 

Performing computation is at the heart of a graph processing system where data 

(vertex or edge) will be processed and updated. Computational models that are used in 

existing graph processing systems can be divided into two major groups: 1) two-phase 

models, and 2) three-phase models. Figure 2.7 shows the classification of these two 

models with examples from each group. Computational model of some systems is a 

combination of these methods with other approaches. 

 
Figure 2-7 Classification of computational models in graph processing systems 
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2.3.4.1. Two-Phase Computational Models 

There are usually two functions that are applied on data (vertices or edges) in a two-

phase computation model. Signal-collect approach is the first two-phase programming 

model for large scale graph processing on the semantic web within a system with the 

same name (signal/collect) [215]. Computation in the vertices are completed by 

collecting the signals that are coming from edges and performing some processing on 

them using the vertex’s state and then sending (signaling) their adjacent vertices in the 

compute graph. Signal/collect has been implemented for working with both 

synchronous and asynchronous execution models. In both models, some parameters 

should be set to determine when the computation should be stopped: signal_threshold 

and collect_threshold parameters in which a minimum level of “importance” will be 

set for the execution, and a num_iterations parameter which is the number of iterations 

in synchronous mode, and num_ops that is the number of executed operations in 

asynchronous mode. All these parameters should be set by the user. 

Pin-and-slide was first introduced by TurboGraph [91] for parallel execution of 

large datasets on a single machine. A pin-and-slide mechanism consists of a graph 

dataset, a buffer pool and two different threads, as explained in Section 2.3.1, callback 

threads and execution threads. When the buffer manager is being sent an 

asynchronous input/output by a callback thread, it sends the demand to the FlashSSD 

via the operating system after when the control of execution goes back to the calling 

thread immediately. The main goal in this system is to reach all related adjacency lists 

efficiently. To achieve this goal, first, the pages that contain these adjacency lists should 

be identified. The most important challenge here is pinning large adjacency pages (LA 

pages) which means that a number of smaller adjacency pages must be unpinned first, 

then the LA page can be pinned. To overcome this challenge, LA pages will be pinned 

when all of related LA pages for a big vicinity list are completely loaded to maximize 

the buffer exploiting. When execution threads or callback threads terminated the 

processing of a page, this page will be unpinned and an asynchronous input/output 

demand will be sent to the FlashSSD by the execution thread. As soon as the 
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processing has been completed, the execution window can be slid by the size of the 

pinned pages in the buffer [91]. 

Nguyen et al  [165] have used another two-phase approach called push/pull styles. 

The value of an active vertex will be pushed (flowed) from that vertex to its neighbors, 

which is more like scatter phase. The pull style occurs when the data from an active 

vertex’s neighbors flow into that vertex which is more like a gather phase. In an 

algorithm like SSSP, the push-style is applied to the active vertex neighbors by 

updating the destination label of the siding nodes of the active vertex by doing a 

relaxation with them; and the pull-style function updates the destination label of the 

active vertex by doing relaxation with all neighbors of that node. The pull mode also 

needs less synchronization because there is just one writer for each active vertex. 

KineoGraph [44] is another system that uses this model for computation. 

 

2.3.4.2. Three-Phase Computational Models 

Bulk synchronous parallel (BSP) is a parallel programming and also the most 

representative model in this category that has been used in several graph processing 

systems [148] [195] [232] [118]. To deal with the scalability challenges of parallelizing 

tasks across a number of workers, BSP, which utilizes a message passing interface, was 

developed. In BSP, as a vertex-centric computational model, each node is able to have 

two modes of “active” or “inactive”. The computation comprises a series of supersteps 

that come with synchronization hurdle between them. So, in each superstep: 1) The 

node that is involving in computation obtains its adjacent nodes updated values from 

the last superstep (except the first superstep), 2) Then, the node will be updated based 

on the obtained values, and 3) The node forwards its updated value to its neighbors 

that will be available for them in the next iteration. In each iteration, a vertex may 

choose to vote to halt, in case it does not receive any messages from its neighbors or it 

has reached a locally stable state. That means it will not participate in the processing 

anymore until it receives new messages that convert its state from inactive to active. So, 

in each iteration only active vertices will be computed. If there is no active vertex in the 

graph, then the computation is finished. 
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Some research have modified the BSP model and introduced new models. For 

example, temporally iterative BSP (TI-BSP) [207] is a computational model for time-

series graphs on a subgraph centric model such as GoFFish. It has used BSP as a 

building block to support the design pattern. TI-BSP is a series of BSP loops (nested 

supersteps) in which each outer loop, as a timestep, runs on one graph instance in time. 

Supersteps using a subgraph programming model form the inner loop that operate 

over a single instance. As a result, the design pattern will be decided based on the 

order of timesteps execution and the messages between them. 

There is another BSP model that stands for “BiShard Parallel” and has been 

introduced by the single machine based system, BPP [161], to empower full CPU 

parallelism for graph processing. This model has also three phases that include: 1) 

Loading a sub-graph of the large graph from disk, 2) Performing compute operation on 

the sub-graph and update the values of edges and vertices, and 3) Writing back the 

modified values on disk. BiShard Parallel performs under an asynchronous execution 

model and needs more disk space compared to one shard mechanism that was used in 

GraphChi, because two copies of each edge is managed in this model. 

GAS (Gather-Apply-Scatter) is another three-phase computational model that was 

introduced by PowerGraph. The data about the adjacent nodes and edges is obtained 

and collected using a general summation over all adjacent vertices and edges of a 

vertex in the gather phase. The apply operation should be defined by user and must be 

both associative and commutative, and can vary from a numeric summation to the 

aggregation of data across all adjacent edges and vertices. The results from gather 

phase is used to update the central vertices values in the apply phase. Finally, the 

recent data of the central vertex is used to renew the values on neighboring edges in 

the scatter phase. The critical challenge in this model is that graph parallel abstractions 

should be able to perform computations with high fan-in and high fan-out where both 

of them are specified by gather/scatter phases. GAS model is used to develop a 

runtime system mapping in parallel on GPUs as a graph application called GasCL [41]. 

This model is like the one that have been used in systems such as Pregel and 

GraphLab, but in a different way. 
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GraphChi uses a different computation model called parallel sliding window 

(PSW). PSW is an asynchronous computation model that can efficiently process the 

graph with changeable edge value from disk, with a few number of non-consecutive 

disk access. PSW performs three phases for processing a graph as follow: it loads a 

subset of the graph from disk, then, applies update operation on vertices and edges, 

and eventually, the new updated values will be written on disk. The number of 

“reads” from disk is exactly equal to the number of “writes” to the disk in this model. 

The comparison between two-phase and three-phase models shows that two-phase 

model is generally used in frameworks with single machine architectures. Since these 

systems usually use asynchronous coordination, using the two-phase approach, is 

more efficient as they do not need to wait for the synchronization barrier. On the other 

hand, three-phase approach is mostly used by distributed frameworks because one or 

two phases of the model will be affected after the global barrier. Therefore, hosts on 

such distributed systems have to wait for each other. However, very few distributed 

frameworks such as GraphLab [141] and Trinity [202] tried to use three-phase 

computation mode while utilizing asynchronous coordination. 

2.4      Runtime Aspects of Graph Frameworks 

2.4.1 Partitioning 

Graph partitioning is a method in which graph data is divided into smaller parts with 

specific properties [34]. For example, in a k-way partitioning, the graph is partitioned 

into K smaller parts of equal size while minimizing the edge cuts between partitions. 

This is an NP-complete problem [8]. Graph partitioning is a fundamental research 

problem and several reviews have been done on different methods and perspectives of 

graph partitioning [34] [20]. In a graph processing system, partitioning is applied on 

the large graph in order to assign each smaller partition to a worker to be computed. 

The most important challenge in this context is “how do we partition the graph to 

achieve better cuts while taking load balancing and simplicity of computation into 

consideration?”. 
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Many novel heuristics have been proposed for partitioning large graphs. METIS 

[116], for instance, is a popular tool that uses multi-level partitioning. It is able to 

perform high quality partitioning that decreases the overall communication (edge cuts) 

and reduce imbalances across partitions. However, METIS is computational costly and 

high random access needs make it unsuitable for large graphs. ParMETIS is a parallel 

MPI-based version of METIS that mitigates some of these performance limitations. 

There are distributed partitioning algorithms, some of which have been 

implemented on top of graph processing frameworks as well. Spinner [152], for 

instance, runs on top of Giraph and utilizes an iterative node migration approach using 

Label Propagation Algorithm (LPA) to deal with scalability and changing partitions. It 

allows Spinner to scale to billion-vertex graphs by avoiding costly synchronization 

among vertices. Blogel implements a Graph Voronoi Diagram (GVD) partitioner using 

a vertex-centric computing method by operating as a multi-source breadth-first search 

(BFS). It partitions the vertices into blocks using multi-source BFS over linear 

workloads.   

Some graph processing systems create additional topological constructs on top of 

the partitioned graph. In GoFFish, which is a subgraph centric framework, each 

partition may have more than one subgraph (weakly connected component), and these 

subgraphs by definition cannot have an edge between them. So GoFFish has a post-

processing stage once the graph is partitioned, in which it identifies all subgraphs 

within a partition that form the unit of processing during the programming model’s 

execution.  

In general, two partition creation strategies can help to improve the runtime 

performance during distributed graph processing: 1) Creating more partitions than 

workers and allocate more than one partition to each worker, and 2) allocating one 

partition per worker, yet using multiple workers on each processing host [195]. We 

next discuss alternative perspectives towards partitioning to support graph processing 

systems, also shown in Figure 2.8. 
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Figure 2-8 Partitioning views in graph processing systems 

 

2.4.1.1. Static Partitioning vs. Dynamic Partitioning 

Several graph processing frameworks utilize static partitioning which means that they 

consider the graph and the processing environment to stay unchanged [198]. These 

systems assume that the I/O bandwidth, latency, processing units and the graph itself 

are constant and predictable. So, this method of one-time a priori graph partitioning is 

easy to program and load balancing can be easily achieved, if the assumptions hold 

and the problem domain does not change [69]. 

On the other hand, dynamic repartitioning assumes that runtime behavior of an 

algorithm, the processing environment and even the graph itself can be variable. They 

try to repartition the current state of the graph according to the system and algorithm 

behavior at a given point in time, and assign them to the available workers. This 

approach has been used for graph databases and a number of graph processing 

systems [195] [166]. Dynamic repartitioning can be applied in-flight when, for instance, 

workers are waiting for a straggler worker to finish. In this situation, the vertices that 

have been assigned to the slowest worker can be repartitioned and reassigned to other 

idle workers to be computed faster and also balances the workload to reduce overall 

runtime. This does need support for dynamic migration by the graph framework [195]. 

Another reason to use dynamic repartitioning is when the number of active vertices in 

the graph change due to mutations or when the algorithm is non-stationary, causing 

vertices to become inactive, and it is suitable for iterative programming models such as 

Pregel [244].  

According to GPS [195], three major questions should be answered in a dynamic 

repartitioning process: 1) Which nodes should be reallocated?, 2) When and how to 

transfer the reallocated nodes to their new workers? and 3) How to place the 

reallocated nodes? These decisions can impose a heavy cost and affect the overall run-

time. Some researchers have also shown that dynamic repartitioning does not offer 
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significant performance improvements except under particular conditions. For 

example, the vertices in a PageRank algorithm are always active which makes dynamic 

repartitioning moot due to predictable and stationary load through the entire 

application’s lifetime [143]. But, despite these concerns, systems such as GPS, xDGP 

[232], Mizan and XPregel [222] have incorporate dynamic repartitioning and migrate 

the vertices synchronously across the workers, along with their incoming messages. 

 

2.4.1.2. Edge-cut Partitioning vs. Vertex-cut Partitioning 

Vertex-centric (edge-cut) frameworks partition the graph by assigning vertices to 

partitions and cutting some edges across partitions, in the process, while minimizing 

the number of such crossing edges. This is a common and well-supported partitioning 

approach. On the other hand, edge-centric (vertex-cut) frameworks partition the graph 

by cutting vertices and assigning edges to each partition. This approach minimizes the 

number of crossing vertices which is useful for many real-world graphs that have a 

power-law degree distribution to balance edges across the partitions well [80] [1]. As 

was shown in Figure 2.10, vertices shared by edges belonging to different partitions 

would be cut and replicated across all the partition. One copy of the vertex is 

considered as the master and other copies are ghosts or mirrors. When updated, each 

ghost vertex sends its locally updated value to the master, and the master vertex 

applies updates from all ghost vertices to itself and sends the globally updated value 

back to the ghost vertices. We can see that many messages need to be passed across the 

network to maintain the cut vertices up to date. 

To avoid this, PowerGraph does partitioning based on high-degree vertices of the 

graph and many systems have adopted such edge-centric partitioning [120] [186] [241] 

[107]. There are also a number of additional optimizations that have been done [186] 

[120]. Authors in [71] and [29] have investigated several edge-centric (vertex-cut) 

approaches with vertex-centric (edge-cut) approaches and found that in many cases the 

former outperforms the latter. The reason is that because the degree distribution is 

skewed, balancing the number of vertices in each partition does not guarantee 

workload balance; therefore, for natural graphs (that have power-law degree 

distribution), vertex-cut partitioning approach can obtain better workload balance. 



 

 

51 

 

They also conclude that for any edge-cut, a vertex-cut can be constructed directly 

which needs strictly less storage and communication. 

 

2.4.1.3. Pre-processing vs. Streaming 

As seen in Section 2.2.1, there might be a pre-processing phase before the computation 

or the main processing starts. In the pre-processing approach, the large graph which is 

present on disk, will be partitioned before entering the system. Single-machine 

frameworks such as GraphChi [127], TurboGraph [91], BPP [162] and CuSha [119] use 

this method because they do not have enough memory to keep all the processing states 

in the single system. So, they partition the graph before starting the processing to help 

cope with large graphs. It also limits the partitioning operation, which can be costly, to 

a single time. Distributed frameworks like GoFFish do partitioning and subgraph 

identification in such a pre-processing phase for the same reason. 

In streaming partitioning, the graph is partitioned once or as it is loaded into the 

graph processing system. The graph data enters the system sequentially, say a vertex 

and its adjacency list at a time, and the vertex is mapped to a partition on the fly. In 

this model, the order in which the vertices enter the system is important as each 

placement depends on the previous placements [212]. Streaming can also benefit from 

a pre-processing model of partitioning, where specific vertex or edge ordering has been 

performed. Random partitioning, round-robin and range algorithms are the three most 

common algorithms for steaming whereas linear deterministic greedy (LDG) [212] and 

FENNEL [228] are two greedy heuristics that improve the performance and quality of 

such online partitioning. 

 

2.4.1.4. Multi-level Partitioning 

Some graph processing frameworks have proposed multi-level approaches for 

partitioning the graph. In this method, there will be more than one strategy for 

partitioning that may even be applied to the graph in different times. GridGraph [268] 

for example, is a single-server block-based framework that uses a two-level hierarchical 

method to partition a given graph. First, it partitions the graph once at pre-processing 

phase in which it divides the graph into 1D-partitioned vertex and 2D-partitioned edge 
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chunks respectively. Then at the runtime, it uses a dual sliding windows approach to 

partition the graph by streaming the edges and apply updates on vertices which 

guarantees the locality and improves I/O. 

GraphMap [132] is a distributed framework that also uses a two-level partitioning 

mechanism to improve the locality and workload balancing. In the global level, 

GraphMap utilizes a hash method to partition the graph and assign the partition blocks 

to the workers; and in the local level, it applies range partitioning to each block 

partitions of a worker. It has also been designed to use other partitioning techniques 

such as METIS and ParMETIS both on-disk and in-memory. 

Using multi-level partitioning has two edges. It can worsen the performance of the 

system by prolonging the execution time and unnecessary computations, or it can 

improve the performance particularly when it is applied as a layered mechanism. For 

example, apply one partitioning technique to the entire graph and at the same time 

performing another technique on the partitions on workers which can be designed 

asynchronously. 

2.4.2  Communication Models 

Graph processing systems use different approaches to communicate among their 

vertices, edges and partitions. In this Section we discuss these methods as shown in 

Figure 2.9 and enumerate the advantages and disadvantages of each method. 

 
Figure 2-9 Communication models in graph processing systems 

 

2.4.2.1. Message Passing 

Many distributed graph programming models offer explicit or implicit communication 

between their entities. In the message passing technique, communication is carried out 

by sending messages explicitly from one entity to another in the graph. The entity can 

be a vertex, edge or a component in a local or remote partition [148]. Message passing 

is performed in many graph processing systems using communication libraries. For 
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example, Pregel allows developers to pass messages from a vertex in the graph to 

another by calling an API. As part of the BSP execution model, messages sent in one 

iteration are received by the destination vertex in the subsequent iteration using bulk 

messaging. The receiving vertex updates its state based on incoming messages and 

sends its modified state to one or more of its neighbors by sending additional 

messages. Each source vertex maintains a list of its adjacent vertex IDs or outgoing 

edges IDs. Further, vertices also have queues where incoming messages from its 

neighbors and outgoing messages to its neighbors are stored between superstep 

boundaries. 

A message passing model of communication is used by many graph processing 

frameworks and architectures, including vertex-centric, edge-centric and component-

centric frameworks. Programming using synchronous message passing is also intuitive 

and the complexity is limited to an API to send a message to a destination entity, which 

is a familiar model for many programmers [100]. Although message passing is 

common in the frameworks with synchronous model of execution, it can be used in 

asynchronous execution models as well. Asynchronous message passing method is 

used extensively between vertices in the same partition or subgraph where they do not 

need to wait for other vertices to send their message in-bulk. Vertices and subgraphs 

can communicate asynchronously while communication between partitions can be 

synchronous. However, the asynchronous model of message passing brings more 

complexity to the programming paradigm because it requires more resources for 

storing and rebroadcasting data in a system where its components do not execute 

concurrently [74]. On the other hand, buffer management is an important issue that 

should be considered by message passing implementation. Issues like: How many 

buffers should each worker have? What should be the size of each buffer? When 

should a buffer block a sender? And what if the buffer is full but there are new 

messages coming? This model also has overheads because of the number of message 

replicas that exists in the network. 

The Message Passing Interface (MPI) [68] is a common protocol used in graph 

processing systems, and is used by systems such as Pregel, GraphLab, Piccolo and 

Mizan. Portability and velocity are two significant advantages of using MPI where 
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creating overhead is its most noticeable disadvantage. Communication can be done by 

passing actual messages between servers or by serialization. For Java based systems 

like Giraph and Hama, protocols such as Thrift4 and ActiveMQ5 can be used for 

message passing. They utilize remote procedure call (RPC) to communicate seamlessly 

without the need to change the messages structures. Also protocols such as Avro 6and 

Protocol Buffer 7can be used for serialization by which the data will be serialized to be 

able to be sent between different platforms. 

Systems also propose optimizations on top of these standard messaging libraries to 

reduce the communication overhead and minimize the runtime of the algorithm by 

reducing the number and size of messages that are passed. For example, GasCL has 

considered two different message buffering strategies: first, messages from the same 

source are stored together, second, messages for the same destination are stored 

together. The second approach is more common and when a message is dispatched 

from the origin, it is instantly put down to the right target node. It also uses a reverse 

edge index to store the message which utilizes array offset to facilitate message 

combining. Giraph++ [223] introduces two types of messages in its hybrid model. 

“Internal messages” that are messages sent from a vertex within a partition to another 

vertex within the same partition, and “External messages” that are messages sent from 

the vertices of one partition to another partition. It provides two incoming message 

buffers for each vertex inside a partition as well: inboxin for internal messages and 

inboxout for external messages. In GPS [195], instead of sending multiple copies of the 

same message to multiple vertices in another partition, the system only sends one 

message to the remote partition and then, in the remote partition, the message will be 

copied to the vertices that need to receive it. This can dramatically reduce the network 

traffic. 

 

 

                                                           
 

4 https://thrift.apache.org/ 
5 http://activemq.apache.org/ 
6 https://avro.apache.org/ 
7 https://github.com/google/protobuf 
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2.4.2.2. Shared Memory 

Using shared memory for communication is well suited for frameworks running on a 

single server, but can also be used for distributed systems in place of explicit message 

passing. In this model, the memory location can be simultaneously accessed by 

multiple processing modules, including both read and write to that location. In 

contrary to message passing, the shared memory method avoids extra memory 

copying and intermediate buffering. As single machine frameworks have limited 

memory and CPU resources, this shared-memory model that is often natively 

supported by the operating systems is preferred [168]. Locks or semaphores are usually 

used in this model to prevent race conditions because concurrent tasks can read and 

write to the same memory [141] [45]. To maintain memory consistency, shared memory 

machines provide mechanisms for invoking the appropriate job (sequential 

consistency) or reordering a collection of jobs to be executed consecutively (relaxed 

consistency).  

In distributed systems, it is also possible to have a distributed shared memory, 

where changes to memory locations are internally transfer using messages between 

different machines. From the programmer’s points of view, they only perform memory 

accesses and the development is easier as explicit messages need not be passed. The 

concept of data “ownership” is lacking as well since anyone can write to that location. 

On the other hand, data locality cannot be controlled easily and if many remote 

workers access a particular memory location, it puts pressure on the processor and 

memory holding that location and can also lead to higher bus traffic and cache misses. 

Virtual shared memory can be realized by using ghost vertices or mirrors which are 

the copies of distant adjacent vertices [142]. One machine keeps the main vertex and 

another machines work on copies of this vertex. Main vertex and ghost copies are 

shown in Figure 2.10. By keeping the mirror copies immutable during the computation 

with distributed write locking or an accumulator, the consistency is maintained [141] 

[182]. Both GraphLab and PowerGraph use this approach for communication. In 

particular, this is suitable for edge-centric frameworks because vertices should be cut in 

these frameworks and the partitioning is done based on edge-grouping. So, vertices 

can be easily cut (Figure 2.10). Trinity [202] is another memory-based graph processing 
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system (Section 2.4.3) that uses ghost vertices for communication. The Trinity 

specification language (TSL) maps the data storage and graph model together. The 

parallel boost graph library (PBGL), is a parallel graph processing library also uses 

ghost nodes but with message passing mechanism [205]. 

 
 

(a) Sample graph (b) Shared memory model 

Figure 2-10 Shared memory model with ghost (mirror) vertices 

2.4.2.3. Push/Pull Styles 

Pull/Push model is used with active messages. Active messages are those that carry 

both data and the operator that should be applied on them [92] [257]. This model is 

utilizing by [24] direction optimization in breadth-first search (BFS). The reason behind 

using this model is that the synchronization and communication in large-scale data is 

very expensive due to the poor-locality and irregular patterns of communication in 

graphs. To reduce the random communication and memory access on either shared-

memory or distributed implementations, Beamer incorporates the conventional top-

down BFS with a new bottom-up method.   In the push style, the information flows (is 

pushed) from an active vertex to its adjacent vertices and in the pull style, the 

information flows (is pulled) from the neighbors of an active vertex to that active 

vertex. This kind of communication is using the push/pull computation model that 

was discussed in Section 2.3.4.1. In terms of consistency, the pull style is naturally 

consistent because the active vertex would be updated in this phase, but the push style 

needs to use locks for every neighbor’s update. Active messages are sent 

asynchronously in this model and they will be executed when they are received by the 

destination vertex. The sending and receiving messages are even combined in a 

framework such as GRE [251] and it does not need to save intermediate states 

anymore. This mechanism can help in enhancing efficiency of algorithms such as 

PageRank [78]. It has been used by frameworks such as Ligra [204] and Gemini [267] 

on shared memory and distributed processing, respectively. A detailed analysis of 

push/pull approach has been provided in [27], investigated the impacts of both 
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push/pull mechanisms individually and also together on various graph algorithms 

and programming models. They have illustrated that a push/pull (PP) dichotomy 

approach can avoid extreme amount of locks in pushing and more memory access in 

pulling.   

 

2.4.3 Storage View 

 
Figure 2-11 Storage view 

Memory has become less of a problem these days as computing service providers such 

as Amazon are starting to provide machines with Terabytes of memory. However, as 

described in [203], social networks such as Facebook and Twitter not only have graph 

of users but also graph of connections between users, their likes, their locations, their 

posts and shares, photos, etc. that are heterogeneous. As a result, to store all these large 

graphs and datasets, a single server cannot provide enough space. Hence, many 

investigations have been done to process graphs on both single server and distributed 

environments such as clouds. 

 

2.4.3.1. Disk-based 

According to a storage view of execution models, two common approaches can be 

used: 1) disk-based approach, 2) memory-based approach. A disk-based execution 

fetches the graph data from physical disks, not just when loading the graph initially 

but also actively writes and reads parts of the graph state to/from disk during the 

execution. The advantages of using a disk-based approach is that it is cheaper to add 

disk capacity rather than memory, some large graphs do not fit in distributed memory 

either, and one can persist the partial state of execution in the middle of the processing 

to enable recovery from faults [50]. Disk management is also easy, so many graph 

processing systems use this approach (Table 2.3).  

Storage View

Memory-BasedDisk-Based
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On the other hand, the computation that is performed by graph algorithms is data-

driven [144], and they need many random data accesses and hard disks are still slow 

and inefficient compared to main memory. One of the challenging issues for disk-

based graph processing is how to make disk access more efficient. BPP (BiShard 

Parallel Processor) [161], for example, provides a disk-based engine for processing 

large graphs on a single server. A novel storage structure called BiShard (BS) has been 

introduced which divides the graph into subgraphs containing equal number of edges 

and stores the in-edges and out-edges independently. This technique decreases the 

number of non-sequential I/O considerably and has two advantages compared to 

single shard storage mechanism that is presented by GraphChi. First, by storing in-

edges and out-edges separately, access to each of them becomes independent and the 

system does not need to read the whole shard for every subset of vertices. Second, each 

edge has two copies in BS (one in each direction) which eliminates race condition 

among vertices to access their edges. Furthermore, BPP uses a novel asynchronous 

vertex-centric parallel processing model that leverages BS to provide full CPU 

parallelism for graph processing. 

Other frameworks such as Giraph also support out-of-core execution using disk. 

When a graph is too big to fit into main memory (like small clusters) or a certain 

algorithm creates very large message sets (many messages or large ones) these 

frameworks can spill the excess messages or partitions to disk, later to be incrementally 

loaded and computed from disk. In addition, some frameworks such as FlashGraph 

[262] and PrefEdge [167] use SSD instead of HDD to make data transmission and 

computation faster for out-of-core computation. 

 

2.4.3.2. Memory-based 

In the memory-based approach, the graph and its states are exclusively stored in 

memory during runtime for storing and processing the big data. For example, Giraph 

runs the whole computation in memory and reaches the disk for checkpointing and 

I/O; and Blogel keeps all neighbors of a typical high-degree vertex in the same block to 

be processed by in-memory algorithms and avoid message passing. The most 

important benefit of this approach is that using RAM or cache for processing is much 
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faster than disk-based approach since the CPU can access memory much quicker than 

disk [158]. However, memory is much more expensive than spinning disks and this 

becomes challenging when we consider larger graphs. So, memory-based systems 

must be efficient in retaining only relevant data in memory and in a compact form. 

Memory-based models also have less scalability than disk-based models, especially in a 

single machine system. 

In GoFFish, the framework only loads a subset of properties for a given property 

graph from disk into distributed memory based on those attributes that are used by the 

algorithm, in addition to the complete topology of the graph that is always loaded 

[108]. This limits the memory footprint of the graph application during runtime. Many 

memory-based systems also use columnar representation since this offers a compact 

representation of data. Zhong and He [264] have indicated that GPU acceleration 

cannot reach considerable speedup if the data has to be loaded from disk because of 

the I/O costs that are themselves comparable to the total query runtime.  

Microsoft’s Trinity [202] is a distributed graph processing engine over a memory 

cloud. It is supporting both online query processing which requires low latency 

(finding a path between users in a social network), and offline query processing which 

requires high throughput (PageRank). Trinity uses TSL (Trinity specification language) 

for communication that supports both synchronous and asynchronous modes. It stores 

objects as blobs of bytes that is economical, compact, with no serialization and 

deserialization burden. As a storage infrastructure, it structures the memory of 

numerous hosts to a distributed memory address space which is universally 

addressable, for maintaining huge graphs. Trinity has three main components 

including: 1) slave that stores graph data and computes on them, 2) client that acts as a 

user interface between Trinity and the user that communicates with Trinity proxies 

and slaves through the APIs provided by Trinity library, and 3) proxy that is an 

optional component for handling messages as a middle tier between clients and slaves. 

These components, along with other features like user-defined communication 

protocol, graph schema and computation models through TSL, enable Trinity to 

process the graph efficiently on memory cloud. 
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2.4.4 Fault Tolerance 

Fault tolerance enables a system to continue performing properly even if some of its 

components face failures [66]. Since graph processing systems are created from 

distributed and commodity components, it is possible that components confront 

failures which in turn will affect the execution and correctness of the applications. In 

order to improve the reliability and robustness of these systems, several techniques 

have been developed to support error handling and fault tolerance of the graph 

framework. Figure 2.12 shows the techniques that are used in many graph processing 

systems. 

  
(a) Fault-Tolerance Mechanism (b) Fault-Tolerance Techniques 

Figure 2-12 Fault-tolerance in graph processing systems 

Error handling in a graph processing system, as with other systems, has two main 

phases: 1) failure detection in which the system discover the error, and 2) fault 

recovery in which the system tries to resolve the problem and resume the operation. 

Several researches have been done on various fault-tolerance techniques on parallel 

and distributed systems [117] [227] [67]. In [227] for example, two types of components 

in an application, called central components and parallel components, are investigated 

where both mostly use rollback and replication methods for fault recovery. On the 

other hand, some graph processing systems do not support any error handling because 

it increases the complexity of the system, and the overheads can strongly affect the 

execution time. 

Most graph processing systems use checkpointing and rollback mechanisms [64] for 

failure recovery, such as Pregel and Pregel-like systems like Giraph. Pregelix [32], for 

instance, checkpoints states to HDFS at any superstep boundary that is selected by the 

user. The checkpointing applies to vertices and messages at the end of each superstep 

and ensures that the user does not need to know anything about the failure. Whenever 

a host or disk failure occurs, the unsuccessful machine will be added to a blacklist. For 
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recovery, Pregelix reloads the state of the latest checkpoint to a set of “failure-free” 

workers that is periodically updated. 

Piccolo [182] uses a global checkpoint-restore method to recover from failures by 

providing synchronous and asynchronous checkpointing APIs. Synchronous 

checkpoints are suitable for iterative algorithms such as PageRank where the state in 

different iterations are decoupled by global barriers and it is adequate to checkpoint 

the state every few iterations. But asynchronous checkpoint is used to save the state of 

long running algorithms, such as distributed crawler, periodically. Piccolo also utilizes 

Chandy-Lamport (CL) distributed snapshot algorithm [40] for checkpointing. Once a 

failure is detected in a worker, the master will reset the status of all other machines and 

recover the operation from the latest finished universal checkpoint. The interior status 

of the master will not be checkpointed in Piccolo. 

PowerGraph is another system that uses snapshots of the data-graph for fault-

tolerance. The synchronous engine in PowerGraph creates the snapshot at the end of 

each superstep and before the start of the next superstep while the asynchronous 

engine suspends the execution of the system to create the snapshot. Many of these 

systems provide task rescheduling after the recovery phase. Some systems such as 

Pregel, Piccolo and GraphLab benefit from rollback which allows them to continue the 

computation from the point that failure happened while in a number of systems, fault 

recovery is not completely provided and they need to restart the processing from 

scratch [92] [124] [181]. All these mechanisms are post-active fault tolerance approaches 

which means they handle the failure after it has happened. 

Trinity [202]  uses message logging and replication for pro-active fault-tolerance, 

where the failure will be considered before scheduling and releasing a job for 

execution. Trinity utilizes heartbeat messages to proactively detect failures in 

machines. In addition, machines that unsuccessfully try to access the address-space in 

other machines also report the inaccessible machine to the master, and await for the 

addressing table to be updated before retrying the memory access. Meanwhile, in the 

recovery phase, the master reloads the data in the failed machine to another machine, 

updates the addressing table and distributes it. Trinity provides checkpointing after 

every few iterations for synchronous BSP-based computations and provides “periodic 
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interruption” mechanisms to generate snapshots in asynchronous computations. 

Buffered logging approach that is suggested in RAMCloud [171] has been used in 

Trinity to recover from failures in online queries while for read-only enquiries it only 

restarts the faulty machine and load the data again from the steady disk storage. 

GraphX [81] uses lineage-based fault tolerance that assumes its RDDs cannot be 

updated but only created afresh. It has a very light overhead compared to the systems 

which use checkpointing as well as arbitrary dataset replication. So, it attains fault-

tolerance without explicit checkpoint recovery while the retaining in-memory 

performance of Spark. 

 

2.4.5 Scheduling 

Scheduling techniques help assign and manage jobs on the system resources [180]. This 

is particularly useful in parallel and distributed multitasking systems in which several 

computations have to be done on a limited number of resources. In graph processing 

systems with large scale graphs having billions of vertices and edges, the vertex or 

edge (depending on the programming model) will need to be scheduled for 

computation on a processing host. Typically, collections of vertices or edges are 

grouped into a coarser unit for scheduling, such as a partition or a subgraph, and it is 

the coarse unit that is actually scheduled on a CPU core. Within a processor, there may 

be multiple threads that execute individual vertices or edges in partition, leveraging, 

say, vertex level parallelism in a vertex-centric model. 

According to [60], three different types of scheduling methods have been used for 

graph processing in general that is shown in Figure 2.13. 

In batch scheduling method, the entire graph would be scheduled for processing 

across computing resources. This is more beneficial in bulk iteration model of 

computing such as Pregel. There is no priority or precedency in executing the 

partitions of the graph and they will be processed in any arbitrary order [47]. This 

model has been used widely in dataflow frameworks such as Hadoop, Haloop [33] and 

Twister [65]. There is always a preferred situation, like a limited number of iterations 

that is used as a condition for finishing the process. 
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Figure 2-13 Graph processing scheduling methods 

Scheduling can be done once at the beginning of the application or redone at the 

start of each superstep. For e.g. Giraph allows partitions of the graph to be mapped to 

workers both at the start of the application and at each superstep, while TOTEM maps 

partitions to workers at the start of the application and retains that mapping. 

Remapping of partitions to workers as the application is executing also requires the 

ability to migrate both the graph and its updated state and messages to different 

workers. The mapping of vertices and edges to partitions may also change as a result. 

For example, Mizan migrates the vertices from busy workers to the one with fewer 

vertices to load the balance, and GPS repartitions the graph to distribute the load 

among idle workers during the computation. 

Another aspect is on whether the partitions are mapped to a static set of compute 

resources or the resources themselves can be elastic over the execution of the 

application. For example, [59] looks at mapping partitions to an elastic set of VMs 

based on the expected computational complexity of the partition for stationary and 

non-stationary graph algorithms.  

In contrast, in prioritized scheduling method, jobs will be processed according to a 

priority condition that is defined by the user. System such as Maiter [258] shows that 

using this method results in quicker convergence for many graph algorithms. For 

instance, a defined prioritizing function can schedule jobs based on the number of 

vertices in each partition. In GoFFish, the largest subgraphs in a partition are executed 

first so that the computing of smaller subgraphs can be interleaved with the message 

passing from the large subgraph. Prioritized scheduling can be helpful in processing 

imbalanced workloads. 

Doekemeijer and Varbanescu [60] believe that incremental scheduling only 

processes a subdivision of data like active vertices. This model is used in a number of 

graph processing systems, e.g., Stratospher [4] and GraphLab [141], in which the 

processing continues until there are active vertices. 

Scheduling Methods
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2.5       Graph Databases 

A graph database is one where the data is natively stored as a graph structure that can 

be queried upon [9]. The data itself is typically a property graph with not just vertices 

and edges but also name-value properties or labels defined on vertices and edges. 

Graph query models support different types of traversal queries such as path, 

reachability and closure, in addition to filter queries over their properties [108] [197]. 

Graph databases contrast with relational databases that store graphs – the latter require 

multiple joins for traversal of graphs rather than having direct references from a vertex 

to its neighbors that allows for faster query processing in graph databases. Graph 

databases leverage the topological properties of graphs, including graph theory and 

query cost models, in answering the queries. The queries also provide a high-level 

declarative interface for processing and accessing the graph compared to a graph 

framework that requires users to write a program using their graph programing 

abstractions and executes it in batch [234]. Another distinction from the graph 

frameworks discussed above is the need for low latency (O(seconds)) execution of 

hundreds of queries rather than high throughput analysis of single programs over 

large graphs. The aim of this section is not to provide a survey on graph databases, but 

to emphasize the increasing popularity of graphs and graph databases which provide a 

broader view of graph usages. For a detailed survey on graph databases, we refer the 

readers to works that appeared in ACM Computing Survey [9], VLDB Journal [115]. 

Graph datasets are receiving more attention every day and several companies are 

starting to utilize graph databases to perform interactive queries to support their 

business needs. Even traditional database provides such as Microsoft has added 

extensions to its product by which the graph will be natively stored and queried inside 

the database on Azure SQL DB8. According to DB-Engines9, which is an industry 

observer, “graph DBMSs are gaining popularity faster than any other database 

categories”, that shows remarkable growth in the last few years (Figure 2.14).  

                                                           
 

8 https://blogs.msdn.microsoft.com/sqlcat/2017/04/21/build-a-recommendation-system-with-the-support-for-graph-data-in-sql-

server-2017-and-azure-sql-db/ 
9 DB-Engines Ranking Per Database Model Category. (2015, August 5). Retrieved August 15, 2015, from DB-Engines: http://db-

engines.com/en/ranking_categories 



 

 

65 

 

 
Figure 2-14 Popularity changes in using databases 

Neo4j [164] is a popular graph database designed as an open-source NoSQL 

database. It supports ACID (Atomicity, Consistency, Isolation, Durability) properties 

by implementing a Property Graph Model efficiently down to the storage level. It is 

useful for single server deployments to query over medium sized graphs due to using 

memory caching and compact storage for the graph. Its implementation in Java also 

makes it widely usable. Besides the single server model, it also provides master-worker 

clustering with cache sharding for enterprise deployment. However, according to some 

reports, the scalability of the distributed version is not as good as even relational 

databases and it has deadlocks problems such as not being able to handle two 

concurrent upserts if they touch the same node10.  

OrientDB and Titan are two other well-used graph databases [170]. OrientDB can 

save 220,000 records per second on ordinary hardware. It supports multi-master 

replication and sharing which give it better scalability. It also provides a security 

profiling system based on roles and users in the database. Titan [225] is another open-

source distributed transactional graph database that provides linear elasticity and 

scalability for growing data, data distribution and replication for fault-tolerance and 

performance. It supports ACID and different storage back-ends such as Apache Hbase 

[14] and Apache Cassandra [10]. Titan also uses the Gremlin query language11 in which 

                                                           
 

10 https://news.ycombinator.com/item?id=9699102 
11 http://s3.thinkaurelius.com/docs/titan/0.5.4/gremlin.html 
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traversal operators are chained together to form path-oriented expressions to retrieve 

data from the graph and modify them.  

Twitter has developed its own graph database called FlockDB [230] to store social 

graphs such as “who blocks whom” and “who follows whom”. FlockDB is an open-

source fault-tolerant distributed graph database which aims to support online data 

migration, add/delete/update operations, complicated set of arithmetic queries, 

replication, archive/restore edges and so on. In April 2010, the FlockDB cluster had 

stored more than 13 billion connections (edges) and supported a peak traffic of 20K 

writes per second with 100K reads per second [84]. But it appears that FlockDB is not 

able to traverse graphs deeply as it is designed to only deal with Twitter’s single-depth 

following/follower model and is not implementing the full stack of storage services12. 

There is also research on distributed graph databases, though this is an emerging 

area. Horton+ [197] from Microsoft offers a graph query language that supports path, 

closure and joint queries over property graphs. It converts the query into a 

Deterministic Finite Automaton (DFA) that is executed over a distributed database 

using a vertex-centric BSP model based on Giraph. GoDB [108] is another research 

database that leverages GoFFish to offer similar query capabilities over property 

graphs, but with support for scalable indexes and using a subgraph-centric model of 

execution that offers a much faster performance relative to Titan and Horton+. GBASE 

[112] introduces compressed block encoding graph storage method that utilizes 

adjacency matrix representation to store homogeneous regions of graphs. It also uses a 

grid-based selection strategy for query optimization to provide quicker answers by 

minimizing disk accesses. Quegel [249] handles enquiries as “first-class citizens” by 

which the user is only required to determine the Pregel-like algorithm for a general 

enquiry. Then, it sets up the computing and processing of multiple inbound enquiries 

on demand. 

There are several other open source and commercial graph databases such as 

HyperGraphDb [101], AllegroGraph [5], InfiniteGraph [102], InfoGrid [103], JCoreDB 

                                                           
 

12 http://stackoverflow.com/questions/2629692/how-does-flockdb-compare-with-neo4j 
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Graph [110], ArangoDB [17], GraphBase [83], MapGraph [150] [73], and Weaver13. All 

these projects try to provide modern solutions for storing and retrieving large-scale 

graph data and it seems that this area is a very promising field of research and 

commercial investments for the future. Jouili and Vansteenberghe [111] have compared 

some of these graph databases. 

2.6       System Classification And Gap Analysys 

Table 2.3 presents the key graph processing systems with their characteristics 

according to the proposed taxonomy. The notations in the table for each category are as 

follow: 

- Programming model: vertex-centric (V), edge-centric (E), component-centric 

(C), path-centric (P), data-centric (Da) or block-centric (B).  

- Architecture: distributed (D), single machine (S) or heterogeneous (H).  

- Computational Model: different names are used by different systems  

- Communication Model: message passing (MP), shared memory (SM) or 

dataflow (DF)  

- Coordination: synchronous (Synch), asynchronous (Asynch) or both timing 

approach together  

- Storage: disk-based (DB) or memory-based (MB) storage approach.  

- N/A means that there is no specific name or method mentioned by the paper 

that is describing the system. 

 

 

 

 

 

                                                           
 

13 http://weaver.systems/ 
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Table 2-3 Overview of existing graph processing frameworks 

Year System Programming 
Model 

Architecture Computational 
Model 

Communication 
Model 

Coordination Storage 

2009 PEGASUS [114] N/A D N/A DF Synch DB 

2010 Pregel [148] V D BSP MP Synch DB 

2010 Signal/Collect [215] V S Signal/Collect MP Both DB 

2010 Surfur [46] V D Transfer-combine MP Synch DB 

2010 JPregel [183] V D BSP MP Synch DB 

2010 GraphLab [142] V S N/A SM Asynch DB 

2010 Piccolo [182] Da D Three phases Dataflow Synch DB 

2011 GoldenOrb [36] V D BSP SM Synch DB 

2011 GBase [112] E D N/A Dataflow Synch DB 

2011 HipG [124] V D BSP SM Both DB 

2012 Giraph [11] V D BSP MP Synch DB 

2012 Distributed GraphLab 
[141] 

V D GAS SM Both DB 

2012 KineoGraph [44] V D Push/Pull MP Synch MB 

2012 PowerGraph [80] E D GAS SM Both DB 

2012 Sedge [250] V D BSP MP Synch DB 

2012 GraphChi [127] V S PSW SM Asynch DB 

2013 TOTEM [77] V H BSP Both MP and SM Asynch MB 

2013 Mizan [118] V D BSP MP Synch DB 

2013 Trinity [202] V D TSL SM Asynch MB 

2013 Grace [236] V S Three phases MP Asynch DB 

2013 GPS [195] V D BSP MP Synch DB 

2013 Giraph++ [223] C D BSP Both MP and SM Both DB 

2013 Naiad [160] V D Timely Dataflow SM Both MB 

2013 PAGE [201] V D Partition-aware MP Synch DB 

2013 Stratospher [4] V D Push/Pull Dataflow Synch DB 

2013 TurboGraph [91] V S Pin-and-slide SM Asynch DB 

2013 xDGP [232] V D BSP MP Synch DB 

2013 X-Stream [192] E S Scatter-gather MP Synch DB 

2013 GiraphX [220] V D BSP SM Asynch DB 

2013 GraphX [81] E D GAS Dataflow Synch MB 

2013 Galois [165] V S ADP SM Asynch DB 

2013 GRE [251] V D Scatter-Combine MP Synch DB 

2013 Ligra [204] C S Push-pull SM Asynch MB 

2013 LFGraph [98] V D N/A SM Synch MB 

2013 PowerSwitch [240] V D Hybrid SM Both DB 

2013 Presto [233] V D N/A Dataflow Synch DB 

2013 Medusa [263] V H EMV MP Synch MB 

2014 RASP [252] V S Scatter-gather SM Asynch DB 

2014 GoFFish [208] C D Iterative BSP Both MP and SM Synch MB 

2014 GasCL [41] V H GAS MP Synch MB 

2014 CuSHa [119] V H GAS SM Asynch MB 

2014 BPP [162] V S BSP SM Asynch DB 

2014 Imitator  V D BSP MP Synch DB 

2014 GraphHP [42] V D BSP MP Synch DB 

2014 PathGraph [253] P S Scatter-gather SM Asynch DB 

2014 Seraph [245] V D GES MP Synch DB 

2014 GraphGen [169] V H N/A SM Synch MB 

2014 Blogel [248] B D N/A MP Synch MB 

2015 Pregelix [32] V D Join-operator 
based 

MP Synch DB 

2015 FlashGraph [262] V S BSP Both MP and SM Asynch DB 

2015 GraSP [23] V D N/A MP Synch MB 

2015 Chaos [191] E D GAS MP Synch DB 

2015 GraphMap [132] V D BSP MP Synch DB 

2015 GridGraph [294] E S Streaming-Apply SM Asynch DB 

2015 GraphQ [237] V S Check/Refine SM Asynch DB 

2016 Gunrock [235] Da H BSP SM Synch MB 

2016 GraphIn [200] V D I-GAS MP Synch MB 

2016 DUALSIM [121] V S N/A SM Asynch DB 

2016 iGiraph V D BSP MP Synch DB 

2017 GraphMP [217] V S VSW SM Asynch DB 

2017 GraphGen [243] V S N/A SM Asynch MB 

2017 Mosaic [145] V/E S PRA MP Synch DB 
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Although, many frameworks have been proposed for processing large-scale graphs, 

there are still several gaps that need to be addressed, as highlighted by this table. 

Among these observations are: 1) Many graph processing systems have been 

developed based on vertex-centric programming model because it is the simplest way 

of partitioning and processing large-scale graphs. Although edge-centric and 

component-centric systems are more difficult to implement, it has been empirically 

shown that frameworks such as PowerGraph and GoFFish can scale more efficiently 

than vertex-centric ones. So, those types of systems need to be investigated more. 2) 

Disk-based approach is the dominant mechanism that is used by most frameworks. It 

also includes the frameworks that support out-of-core computation.  Disks are cheap 

but much slower than memory. On the other hand, memory is faster than disk but it is 

more expensive and memory management makes it more complicated to develop a 

system based on this approach. 3) Synchronous programming is popular on 

distributed systems as they avoid race conditions, but often require message passing 

and have longer runtimes due to the coordination. While asynchronous methods work 

well on single machine and heterogeneous based frameworks, its effect on distributed 

frameworks is less studied. 

2.7 Different Viewpoints On Categorization Of Graph Processing 

Systems 
Graph processing systems can be categorized based on different intuitions. In this 

chapter, we have categorized various features as depicted in Figure 2.15. We consider 

both graph programming models and runtime aspects as two broad aspects of graph 

processing systems while each can contain multiple sets of features to simplify the 

understanding of graph processing mechanisms. As part of graph programming 

models, we explained various system architectures (Section 2.3.1), current frameworks 

and how they look at the processing paradigm (Section2.3.2), possible distributed 

coordination that conveys timing (Section 2.3.3) and computational models (Section 

2.3.4). On the other side, runtime aspects discuss partitioning as the heart of the system 

(Section 2.4.1), different communication models (Section 4.2), storage views (Section 
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2.4.3), fault tolerance (Section 2.4.4) and scheduling (Section 2.4.5).  This allows readers 

to obtain a clear insight about each part of the system, the relationship among various 

components and possible improvements. 

 
Figure 2-15 Proposed graph processing features’ categorization in this chapter 

However, there can be different viewpoint on this. One might separate the features 

according to application-related and computing-related aspects of the features (Fig. 

2.16). In this viewpoint, application characteristics refer to the features that are 

designed based on the graph system itself so they might have different implementation 

accordingly. For example, programming models, partitioning, computational models 

and communication models are specific characteristics of the system. Computing 

platform aspects refer to more general features that can vary in different systems but 

are not specific characteristic of the system. This view is illustrated in Figure 2.16. 

Another viewpoint [153] has classified frameworks based on four major 

characteristics and called it “four pillars of think like a vertex frameworks”: 1) timing, 

2) communication, 3) execution model, and 4) partitioning. Overall, regardless of 

various viewpoints about categorizing graph processing features, there are certain 

characteristics in every system that is usually considered to be improved in research 

works. 

 
 
Figure 2-16 Graph processing features’ categorization according to application 
characteristics and computing platforms 
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2.8       Summary 

Huge quantities of data are being created, analyzed and used every day in the 

contemporary world of Internet communications and connected devices. “Big Data” is 

the term used to signify the challenges posed by this massive data influx. A growing 

majority of big data is in the form of “Graphs” which is one of the major computational 

methods of huge data analysis. Social network applications and web searches, Internet 

of Things, knowledge graphs and deep learning, financial transactions, and 

neuroscience are some examples of large-scale graphs that need to be analyzed for 

various domains. Several works have investigated the creation of effective systems for 

processing large-scale graphs in recent years. 

In this chapter, we have investigated and categorized existing graph processing 

frameworks and systems from different perspectives. First, we explained how different 

parts of a graph processing system including read and write from/to disk or memory, 

pre-processing, partitioning, communication, computation and error handling work 

together to process large-scale graphs. Second, we presented a taxonomy of different 

abstractions and approaches that are used in existing graph processing systems within 

each of these phases. In addition, we described notable frameworks that have used 

these techniques, and analyzed their advantages and disadvantages to support our 

discussions. We further summarized the features of graph processing frameworks 

developed since 2009 in Table 2.3. It gives a comprehensive overview of current 

systems and enables making comparison between them. Finally, future research 

directions are discussed which shows that scalable graph processing is still at a nascent 

stage and there are many issues that remain unsolved 
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Chapter 3 

3 iGiraph: A Cost-efficient Graph 
Processing Framework  

 
Large-scale graph analytics has gained attention during the past few years. As the world is 

going to be more connected by appearance of new technologies and applications such as social 

networks, Web portals, mobile devices, Internet of things, etc, a huge amount of data are 

created and stored every day in the form of graphs consisting of billions of vertices and edges. 

Many graph processing frameworks have been developed to process these large graphs since 

Google introduced its graph processing framework called Pregel in 2010. On the other hand, 

cloud computing which is a new paradigm of computing that overcomes restrictions of 

traditional problems in computing by enabling some novel technological and economical 

solutions such as distributed computing, elasticity and pay-as-you-go models has improved 

service delivery features. In this chapter, we present iGiraph, a cost-efficient Pregel-like graph 

processing framework for processing large-scale graphs on public clouds. iGiraph uses a new 

dynamic re-partitioning approach based on messaging pattern to minimize the cost of resource 

utilization on public clouds. We also present the experimental results on the performance and 

cost effects of our method and compare them with basic Giraph framework. Our results 

validate that iGiraph remarkably decreases the cost and improves the performance by scaling 

the number of workers dynamically. 

 

 

 

 

 

 

This chapter is partially derived from: 

 Safiollah Heidari, Rodrigo N. Calheiros and Rajkumar Buyya, “iGiraph: A Cost-

efficient Framework for Processing Large-scale Graphs on Public Clouds”, in 

Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud 

and Grid Computing (CCGrid 2016), Cartagena, Colombia, Pages 301-310, 2016 
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3.1      Introduction 

S Internet continues to grow, the world is becoming a more connected 

environment and the number of data resources is increasing beyond what had 

been predicted before [210]. Amongst various data modeling approaches to store huge 

data, graphs are widely adopted to model complex relationships among objects. A 

graph consists of sets of vertices and edges which demonstrate the pairwise 

relationship between different objects. Many applications and technologies such as 

social networks, search engines, banking applications, smart phones and mobile 

devices, computer networks, the semantic web, etc, are modeling and using data in the 

form of graphs [199]. These applications generate massive amounts of data which are 

represented by graphs. Facebook [184], for example, has more than one billion users 

that are considered as the vertices of a huge graph where the relationships between 

them are considered as the edges of the graph. To gain an insight and discover 

knowledge from these applications, the graph that represents them should be 

processed. However, the scale of these graphs poses challenges to their efficient 

processing [177].  

In order to process large graph problems, every solution confronts with some 

challenges due to the intrinsic properties of graphs. These properties include data-

driven computation, unstructured problems, poor locality and high data access to 

computation ratio [144]. Therefore, graph problems are not well matched with existing 

processing approaches and usually prevent efficient parallelism. MapReduce [56], for 

example, which addresses many shortcomings in previous parallel and distributed 

computing approaches, is not an appropriate solution for large graph processing. This 

is because first, MapReduce uses a two phased computational model (map and reduce) 

which is not well suited for iterative characteristic of graph algorithms. Second, its 

tuple-based approach is poorly suited for most of graph applications [2].  

Cloud computing is a new paradigm of computing that has changed software, 

hardware and datacenters design and implementation. It overcomes restrictions of 

traditional problems in computing by enabling some novel technological and 

economical solutions like using distributed computing, elasticity and pay-as-you-go 

A
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models which make service providers free from previous challenges to deliver services 

to their customers [35]. Cloud computing presents computing as a utility that users 

access various services based on their requirements without paying attention to how 

the services are delivered or where they are hosted. Public cloud computing services, 

for instance, offer Platform as a Service (PaaS) or Infrastructure as a Service (IaaS) for 

large distributed processing, are becoming more popular among companies who want 

to focus on their business instead of being concerned about technical issues. Rapid on-

demand compute resource provisioning brings cost scalability based on utilization. As 

an example, Amazon EC2 provides three cost models for its customers based on their 

requirements –spot, on-demand and reserved provisioning. Using these commercial 

services, the customer may choose to pay more to achieve better performance or 

reliability. So, making a proper decision between using the number of resources the 

user wants to use and the money that the user wants to pay for the service is an issue 

while using public clouds. 

Some graph processing frameworks such as Surfer [46] and Pregel.Net [187] were 

developed to support processing large graphs on public clouds, but they have 

considered some specific issues on these frameworks and do not address the impact of 

their solutions on the monetary cost of the system. For example, Surfer has proposed a 

graph partitioning method based on network latency and Pregel.Net, which is the .Net-

based implementation of Pregel, has analyzed the impact of BSP graph processing 

models on public clouds using Microsoft Azure. On the other hand, there are some 

services such as Amazon relational database service (RDS) which is designed for 

traditional relational databases14. It is aimed at facilitating the set-up, operation and 

scaling a relational database and comes with two reserved and on-demand instance 

packages. According to a recent report from DB-Engine15, graph databases are getting 

more and more attentions every day and many companies are going to use this kind of 

                                                           
 

14 Amazon Relational Database Service (RDS) : https://aws.amazon.com/rds/ 
15 DB-Engines Ranking Per Database Model Category. (2015, August 5). Retrieved August 15, 2015, from DB-Engines: http://db-

engines.com/en/ranking_categories 
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database for their businesses. So, in the near future, public cloud providers will 

introduce new graph processing services on their infrastructures. 

However, current frameworks for graph processing have limitations that hinder 

their adoption in cloud platforms. First, the majority of them have been designed and 

tested on cluster environments and not clouds, hence they have not considered 

monetary optimization, which is a very important factor for service selection on clouds. 

Second, many graph processing frameworks focus on reducing the operation’s 

execution time, reducing memory utilization, considering task priorities and so on to 

reduce the cost of processing, but considering a static pool of resources with known 

size. On the other hand, cloud computing provides high scalability on-demand 

resources that can help users to perform their tasks using various services. Therefore, a 

graph processing approach with performance guarantees and optimal cost is a must in 

a cloud setting. 

In this chapter, we propose a graph processing framework called iGiraph. It uses a 

cost-efficient dynamic re-partitioning approach that utilizes network traffic message 

pattern to reduce the number of virtual machines (workers) during the processing by 

migrating partitions and vertices to minimize the cost. The new repartitioning method 

also mitigates network traffic results in faster execution. Our work, iGiraph makes the 

following key contributions: 

 

 iGiraph repartitions the graph dynamically across workers considering 

network traffic pattern to reduce the communication between compute nodes. 

 iGiraph uses high degree vertices concept in partition level, with the 

convergent level of the algorithms that are running on the system. iGiraph 

manages the number of compute nodes using a proper combination of these 

methods. 

 While cost is a very critical factor in service selection procedure for any user on 

a public cloud, iGiraph significantly reduces the cost of processing large-scale 

graphs with reasonably close runtimes to Giraph by its new approach.  

The rest of the chapter is organized as follow: section 3.2, explains the basic Apache 

Giraph framework and its features following by the vertex and algorithm 
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categorization is used for our work. Section 3.3 gives details about iGiraph solutions. 

Section 3.4 shows iGiraph’s implementation. Performance evaluation of the system is 

discussed in section 3.5 and finally, related works and conclusions and future works 

are explained in sections 3.6 and 3.7, respectively. 

 

 

Figure 3-1 Giraph’s Architecture 

3.2      Background 

In this section, we first introduce Apache Giraph16 which is the fundamental 

framework for our system. Then, we explain Bulk Synchronous Parallel (BSP) [231] 

model following by describing a vertex categorization that is effectively used for our 

re-partitioning model. Finally, we explain the graph algorithm classification we used in 

this chapter which has a great impact on choosing the right strategy to reduce the cost 

of the whole system. 

 

3.2.1 Giraph 

Apache Giraph is an open-source implementation of proprietary Pregel. It is a 

distributed graph processing framework that uses a set of machines (workers) to 

process large graph datasets. One of the machines plays the role of master to 

                                                           
 

16 Apache Giraph: http://giraph.apache.org/ 
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coordinate with other slave workers. The master is also responsible for global 

synchronization, error handling, assigning partitions to workers and aggregating 

aggregator values. Giraph is a Hadoop-based framework that runs workers as map-

only jobs and uses Hadoop data file system (HDFS) for data I/O. It also employs 

Apache ZooKeeper17 for checkpointing, coordination and failure recovery scheme. 

Giraph added many features beyond the basic Pregel including sharded aggregators, 

out-of-core computation, master computation, edge-oriented input and more. Finally, 

having a growing community of users and developers worldwide, Giraph has become 

a popular graph processing framework that even big companies such as Facebook are 

using it to process their huge datasets [48]. 

Giraph utilizes vertex-centric programming model like Pregel in which each vertex 

of the graph is identified by a unique ID. Each vertex also has other information such 

as a vertex value, a set of edges with an edge value for each edge, and a set of messages 

sent to it. To process a large graph in vertex-centric model, it should be partitioned into 

smaller parts by a partitioner where each partition is connected to other partitions by 

cross-edges between them. The partitioner also distributes partitions to a set of worker 

machines. In Giraph, a partitioner determines which partition a vertex belongs to based 

on its ID. Giraph uses a default hash function on the vertex ID to partition a graph 

while other customized partitioners also can be used. To improve the load balancing, 

the number of partitions is often greater than the number of workers. 

Using simple static partitioning methods makes Giraph to run and process various 

graph algorithms slower and with more costs than other Pregel-like frameworks such 

as GPS [195] or Giraphx [220]. These systems have shown that using more complicated 

static partitioning algorithms such as METIS [116], rather than using a simple hash 

partitioning  method, can remarkably improve the performance. GPS for example, uses 

a combination of a static partitioning algorithm to partition the graph and a dynamic 

re-partitioning algorithm during the computation to distribute the remaining non-

processed vertices to idle workers to reduce the execution time within a superstep. In 

                                                           
 

17 Apache Zookeeper: https://zookeeper.apache.org/ 
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this chapter, we choose the hash partitioning algorithm to start partitioning the graph 

with, but during the computation we replace that with a dynamic traffic-aware re-

partitioning algorithm to reduce the cost of the whole processing operation and 

improve the performance of the system. 

 

 

Figure 3-2 Internal vertices and border vertices 

 

3.2.2 Bulk Synchronous Parallel Model 

Bulk Synchronous Parallel (BSP) is a vertex-centric computational model in which 

every single vertex of the graph can carry two states of active or inactive. All vertices 

are active when the computation starts. The processing consists of a series of iterations, 

called supersteps, followed by global synchronization barriers between them. In each 

iteration, every vertex that is involved in computation, 1) receives its neighbors 

updated values from previous iteration, 2) the vertex then will be updated by received 

values, 3) and finally, the vertex sends its updated value to its adjacent vertices that 

will be available to them in the next superstep and changes its state to inactive. 

The advantage of using BSP model in Giraph is that all the aforementioned 

operation is executed by a user-defined Compute() function of the Vertex class. After 

all the vertices completed executing Compute() function in a superstep, data will be 

aggregated during the synchronization phase and the messages generated by each 

vertex will be available to their destinations at the beginning of next superstep. If a 

vertex does not receive any messages during a superstep, it can deactivate itself by 

calling voteToHalt() function. However, a deactivated vertex can be activated by 
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receiving messages from its neighbors. If there is not any active vertex, the 

computation is finished. 

3.2.3 Internal Vertices and Border Vertices 

A graph G=(V,E) consists of a set of vertices V={v1, v2, …, vn} and a set of edges 

E={e1,e2, …, em} where EV×V. In the vertex-centric graph processing approach, the 

graph is divided into smaller partitions based on vertex divisions so that P1 UP2 U…UPk 

= V are k partitions of V where Pi I Pj= ,  i j. Therefore, each vertex basically 

belongs to only one particular partition [223].  

An internal vertex is a vertex that all its adjacent vertices are inside the same 

partition as this particular vertex is. So, the messages coming out from an internal 

vertex only flow within the partition. On the other side, a border vertex is a vertex that 

at least one of its neighbors is placed in another partition. Hence, a border vertex’s 

outgoing messages need to be sent to at least one different partition than the partition 

this particular vertex belongs to. Passing messages between partitions leads to 

increasing network traffic which results in longer execution time, inefficient resource 

utilization and higher costs in turn. Internal vertices and border vertices are shown in 

Figure 3.2. One of the approaches for avoiding message passing side effects is to 

partition the graph in a way that reduces the number of border vertices and cross-

edges between partitions so that the number of messages passing between partitions 

will be reduced. 

3.2.4 Graph Algorithms 

Different research use different classification of algorithms. For example, one may 

classify graph algorithms into traversal algorithms, graph aggregation algorithms, 

random walk algorithms and so on, while another one classifies them as global queries 

and targeted queries [112]. In this chapter we use our own classification which 

categorizes graph algorithms based on their behavior in network traffic making and 

generating messages during the processing. We classify algorithms into two groups as 

follow: 



 

 

81 

 

 Non-Convergent Algorithms: Non-convergent algorithms are the algorithms 

that generate almost the same number of messages during processing. They 

complete the processing by passing the same number of messages in the last 

superstep as the number of messages they passed during first supersteps. So, 

the number of messages are generated using these applications never tends to 

become zero. PageRank [173], for instance, is a non-convergent algorithm. 

 Convergent Algorithms: In contrast to non-convergent algorithms, the number 

of messages are generated using convergent algorithms tend to fall down to 

zero by the end of processing operations. Computing shortest paths [190] and 

connected components [196] algorithms are among convergent algorithms. 

Here, we give a brief explanation of the algorithms we use from each category. 

1) PageRank 

PageRank is an algorithm which is used to measure the significance of website pages. 

PageRank works by measuring the number of links (hyperlinks) to a page to specify an 

importance estimation of a website. The more important the page is, the more links it 

receives from other pages. PageRank does not rank a website as a whole, but is 

assessed by each page exclusively. The PageRank of page Pi does not impress the 

PageRank of a typical page P uniformly because of different weights that each page 

has. The summation of weighted PageRanks of all pages Pi then is multiplied by an 

alleviation factor ‘d’ that usually is set between 0 and 1. PageRank is also a non-

convergent algorithm according to above classification because it produces the same 

number of messages in each superstep during a processing operation. 

2) Connected Components 

A connected component algorithm finds different sub-graphs of a particular graph in 

which there is a path between any two vertices and that is not connected to any further 

vertices in the super-graph. We use HCC that starts with having all vertices in an initial 

active state. Each vertex starts computing by considering its ID as its component ID 

and update this component ID when it receives a smaller component ID. The vertex 

then propagates the updated value to its adjacent vertices. Connected component is a 
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convergent algorithm because the number of passing messages between vertices tends 

to fall down to zero as the states of vertices change to inactive until the end of 

computation. 

3) Single Source Shortest Paths 

The shortest path in graph theory is the problem of discovering a path between two 

nodes such that the summation of the weights of its edge components is minimized. 

This is a well-known problem in graph theory and there are different approaches and 

applications applying various solutions to various problems in this field. 

Single source shortest path (SSSP) problem is one derivation of the main shortest 

path problem. This problem needs to find a shortest path between a single source node 

and all other vertices in the graph. In this algorithm, each vertex initializes its value 

(distance) to INF (∞), while the source node put 0 as its distance. INF is larger than any 

possible path from the source node in the graph. In the first superstep, only the source 

node updates its neighbors; in the next superstep, the updated neighbors will send 

messages to their own neighbors and so on. The algorithm completes when there is no 

more updates happening and the states of vertices also changed to inactive. So, SSSP is 

a convergent algorithm according to the aforementioned definition. 

 

3.2.5 Graph Processing Challenges on Clouds 

A large-scale graph processing operation that includes a series of iterations to process a 

graph usually causes considerable overheads due to its large memory consumption, 

CPU utilization, error handling, etc. Accordingly, various frameworks are proposed to 

optimize and improve the performance of graph processing operations. Although 

many of these frameworks offer specified scalability improvements on high 

performance clusters with fast interconnections, their performance on cloud 

environments in which some critical factors such as service cost is determinative, is less 

studied. So, there are not many works that considered monetary optimizations. 

Besides, many existing frameworks consider memory utilization, runtime reduction, 

tasks prioritization and so on by using constant number of resources. So, they are not 

utilizing clouds elasticity and scalability that are important characteristics of cloud 
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environments and can have significant impact on monetary costs. Our work is scoped 

to reduce the monetary cost of processing large-scale graphs on public clouds by 

proposing a Pregel-like framework.  

3.3      iGiraph 

3.3.1 Motivation 

iGiraph utilizes a distributed architecture on top of Hadoop and uses its distributed file 

system for data I/O. It is a Pregel-like graph processing system which means it 

employs vertex-centric processing solutions to process a graph and follows Pregel-like 

systems’ behaviors. The problem with many of existing graph processing systems, 

particularly Pregel-like frameworks, is that although they propose methods to run the 

processing faster and improve the performance of the system, resource utilization and 

monetary cost factors are less studied. Nonetheless, cost is a crucial factor for every 

business that wants to use public cloud infrastructure. As cloud providers are using 

pay-as-you-go models for the services they are providing, considering the factors that 

have impacts on the cost of the services is very important for customers to choose the 

right services. There are many factors that influence the whole processing costs in a 

cloud environment including: 

 Execution time: The longer the operation takes, the more user has to pay.  

 Resource costs: Every resource has its own price. So, choosing the right number 

of machines with the right size can make huge differences. 

 Communication: Sending and receiving data in a cloud environment is not free 

hence reducing the cost of communication for each operation is vital. 

 Storage: Storing data could also become costly specially, for big data related 

services. 

One of the most important parts of a graph processing system is the partitioning 

method that is used to partition and distribute data across the workers. Choosing 

between various static partitioning methods or between static and dynamic 
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partitioning approaches can affect the system performance and cost. iGiraph uses a 

dynamic graph re-partitioning method which considers the main cost factors and 

improves the processing performance. 

3.3.2    iGiraph’s Dynamic Re-partitioning Approach 

iGiraph’s repartitioning algorithm uses the concept of high degree vertices in partition 

level and merges the partitions to reduce the number of cross-edges between them by 

migrating partitions from one worker to another. During this process, some workers 

(resources) gradually become empty and can be released to decrease the cost of 

resource utilization. 

In many real world graphs only a few number of nodes contains a large fraction of 

all the edges in the graph [195]. These vertices are known as high degree vertices. 

While the number of edges connecting to a vertex states the degree of that vertex, a 

high degree vertex has much more connected edges compared to majority of the 

vertices in a graph. For example, in a social network, a singer, an actor or celebrities 

can have millions of followers in comparison with the average of tens or hundreds of 

friends and followers for an ordinary user. 

High degree vertices can play an important role in causing network traffic and 

delaying the execution time specially when they are placed as border vertices in 

partitions or close to border vertices. That is, putting high degree vertices as close as 

possible to their neighbors can significantly improve the network and system 

performance. Figure 3.3 shows the importance of this issue. In Figure 3.3.a vertex v 

from partition P1 is connected to many vertices in P2 results in huge network traffic 

while passing messages between two partitions and therefore delays the run-time and 

increases the cost. But as is shown in Figure 3.3.b, moving v to P2 can remarkably 

reduce the cross-edges between two partitions. 
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Figure 3-3The role of high degree border vertices in reducing network traffic 

iGiraph uses high degree vertex concept in partition level not vertex level. It means 

that as there are vertices with higher degree than other vertices in the graph, there are 

also partitions that send or receive more messages than other partitions in the graph of 

system workers. In order to store the information about which partition has sent or 

received more messages, iGiraph uses two separate lists. One stores the number of 

outgoing messages from each partition and the other, stores the number of incoming 

messages to each partition. We also define α, which is a threshold that is an average 

value for the number of messages that are transferring between each pairs of partitions. 

α is defined as follows: 
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 ,                                                        (3.1) 

In the above formula, Nm(Pj,Pj+1) shows the number of messages between partition j 

and partition j+1, NP shows the number of partitions that are involved in each 

superstep and n is calculated based on the number of partitions to show the number of 

pairs in each superstep. This formulation is calculated between each supersteps in 

iGiraph. According to this:  
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  If Np is even 

If the number of messages received by a partition is equal or greater than α, then 

that partition is a potential candidate for migration, otherwise the program looks at the 

number of outgoing messages at that partition to see if it can host vertices from other 
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partitions or merge with them. Using factor α alone, border vertices can migrate 

between partitions. 

Although α is a determinative factor to specify which partitions are suitable for 

migration and merging, there are other important factors that can influence the final 

decision as well. One factor is the number of total messages transferred between all 

partitions in a particular superstep compared to the number of total messages 

transferred between all partitions in previous superstep. Merging (not migration) only 

can occur if this proportion is decreasing. As long as the number of messages is 

growing during the processing, no merging will happen. 

Another factor that determines whether partitions can merge is the size of partitions 

and workers’ capacities. As the processing continues, for convergent algorithm such as 

connected components and shortest path, the vertices that complete the computation 

change their states to inactive. So, instead of keeping these vertices in the memory until 

the end of processing operation, iGiraph deletes them temporarily from memory to 

provide room for partition merging. On the other side, if a removed vertex is invoked 

during the computation, iGiraph can bring it back to the memory. So, before merging 

two partitions, the system checks if the destination worker has enough space or not. 

When all above conditions are true, then migrating a partition from one worker to 

another worker to merge it with the other partition is possible. This has influences on 

the total cost of the service. For example, according to Figure 3.4, partition P1 is a high 

degree partition, which means it has the greatest number of incoming messages among 

other partitions, and is placed on worker W1. Partition P2 which is placed on worker 

W2 has sent the greatest number of messages to P1, P3 is in the second place after P2, 

P4 is next and so on. In addition, total number of transferred messages in current 

superstep (i+1) is less than transferred messages in previous superstep (i) and the 

workers have sufficient memory after removing inactive vertices. At this time, P1 will 

merge with P2 until there is free space on W2. Additional vertices will be migrated to 

W3 and so on. A load balancer balances the number of vertices in each partition on 

remaining workers. 
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Figure 3-4 Worker W2 has sent more messages to W1 than other workers 

According to our experiment results, using the proposed re-partitioning algorithm 

for convergent applications can reduce the cost of resource utilization while the 

execution time is close to Giraph’s experiment results or with only a bit of increasing in 

some cases, but still do not affect the whole results. 

For non-convergent applications, iGiraph does not merge the partitions. So, the 

number of workers will remain the same from beginning of the processing to the end. 

Instead, only border vertices from high degree partitions will be migrated to reduce the 

cross-edges between partitions. In this case, the total average number of transferred 

messages is mitigated which leads to faster execution compared to Giraph. 

3.4      iGiraph Implementation 

 

 

Figure 3-5 System architecture and components 

Figure 3.5 shows the iGiraph’s system architecture and components added to basic 

Giraph. The components that are surrounded by simple lines are basic Giraph’s that 

are used in iGiraph too. The components that are surrounded by dashed lines are the 

components which are added to the basic framework. Like Giraph, data is loaded and 

stored on HDFS. Then, an initial partitioner function will partition the graph and 
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prepare the partitions for being distributed across workers. In this chapter we use only 

a simple hash function as initial partitioner. The hash function partitioning method is 

proved that results in worst performance compared to other complicated initial 

partitioning methods. Hence, we want to reach a better performance using this 

approach to show that our method can work very well even in this case. In the next 

step, partitions will be distributed across workers. The policy selector selects the 

appropriate computation method based on the type of application. For example, if the 

algorithm is convergent it enables partition migration. Code executer is the main 

Compute() function that executes the algorithm on each active vertex. After that, 

according to the number of messages transferred between partitions during the 

superstep, a network measurement component will determine which partitions have 

sent or received messages in a descent order. Then the repartitioner chooses vertices or 

partitions to migrate or merge according to the policy is selected. This will be done by 

the partitions migrant. This process will continue until all the vertices in the graph 

change their states to inactive and there is no more vertices to be computed. Finally, the 

results will be written back to HDFS. 

3.5      Performance Evaluation 

3.5.1 Experimental Setup 

We chose shortest path and connected components algorithms among convergent 

applications and PageRank among non-convergent applications for our experiment. 

We also use three real datasets [125] of varying sizes: Amazon, YouTube and Pokec 

which is a Slovak social network.   

Table 3-1 Evaluation datasets and their priorities [125] 

Graph Vertices Edges 

Amazon (TWEB) 403,394 3,387,388 

YouTube Links 1,138,499 4,942,297 

Pokec 1,632,803 30,622,564 

Twitter 41,652,230 1,468,365,182 
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We use m1.medium NECTAR VM instances for all partition worker roles. NECTAR 

is Australian national cloud infrastructure facilities [163]. Medium instances have 2-

cores with 8GB RAM and 70GB disk including 10GB root disk and 60GB ephemeral 

disk. All the instances are in the same zone and use the same security policies. We also 

installed NECTAR Ubuntu 14.04 (Trusty) amd64 on each instance. We use Apache 

Hadoop version 0.20.203.0 and Apache Giraph version 1.1.0 with its checkpointing 

characteristic turned off. All experiments run using 16 instances where one takes the 

master role and others are set up as workers. 

 

 

 

3.5.2 Evaluation and Results 

First, we investigate the impact of our proposed approach on convergent algorithms 

and compare the results with basic Giraph. Then, we investigate non-convergent 

PageRank algorithm on both frameworks. 

1) Evaluation of Convergent Algorithms 

Figure 3.6 and 3.7 show the results of comparison experiments between Giraph and 

iGiraph on Amazon and Pokec datasets respectively. Considering that the size of every 

network message is the same in all experiments, here the computation can converge 

faster using iGiraph while the number of messages passing through network is 

reduced significantly. In Figure 3.7, after using factor α the number of messages 

increased a bit at first superstep, but noticeably decreased after that and still shows 

significant network message reduction compared to Giraph. 
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Figure 3-6 Number of network messages transferred between partitions across 
supersteps for the Amazon graph using connected components algorithm 

 

 

Figure 3-7 Number of network messages transferred between partitions across 
supersteps for the Pokec graph using connected components algorithm 

 

Figure 3-8 Number of machines varying during supesteps while running 
connected component algorithms on different datasets on iGiraph 
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Figure 3-9 Total time taken to perform connected components algorithm 

In contrast to Giraph in which the number of workers is kept intact during the 

whole operation, iGiraph releases compute nodes as the graph get converged. That is 

because by keeping only active vertices for the operation and doing repartitioning 

between each supersteps, less computation resources are required to continue the 

processing. We observed that by removing inactive vertices after each superstep, we 

could merge more partitions to use the capacities of each worker’s memory efficiently. 

So, the more partition merge, the more resources can be freed which results in more 

money saving. But this claim only can be true when we consider both resource 

reduction and execution time together. 

 

                                                                               (3.3) 

 

According to the above formulation, total cost of using resources on a cloud 

environment is equal to the summation of the price of each resource P(VMi) multiplied 

by total time of using that resource Ttotal(VMi). To calculate the final cost for the whole 

processing operation beside reducing the number of resources, we need to measure the 

system run-time too. Note that although data transfer also has impact on the final cost 

calculation, we have not considered that here, but we will take it into consideration for 

our future works. Figure 3.9 shows the execution time for processing aforementioned 

datasets using connected components algorithm. It shows that in addition to 

decreasing the cost of resource utilization, the run time for the operation is also 

reduced. Therefore, according to formula 3.3, the total cost of the operation falls down 

too.  
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Similar to previous evaluations for connected component algorithm, we repeated 

experiments using shortest path algorithm for both Giraph and iGiraph. From the 

network traffic point of view, the difference between shortest path and connected 

component is that the former starts with passing a few number of messages at the 

beginning of computation and gradually increases until reach a maximum and then 

starts converging, but connected component starts with passing great number of 

messages hence it immediately starts the convergence process. Figure 3.10 shows the 

results of a comparison experiment between Giraph and iGiraph on Amazon dataset 

using connected components algorithm. It takes 37 supersteps for this process to be 

completed on Giraph while it converges around superstep 23 using iGiraph. This is 

because in contrast to Giraph in which the number of messages starts falling down 

from superstep 14, using factor α, this happens to iGiraph after superstep 8. From this 

point onwards in iGiraph, three conditions for partition merging are provided and 

according to Figure 3.13 it can be seen that the number of active workers are 

decreasing. The results for Pokec and YouTube are shown in Figure 3.11 and 3.12, 

respectively. 
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Figure 3-10 Number of network messages transferred between partitions across 
supersteps for the Amazon graph using shortest path algorithm 

 

Figure 3-11 Number of network messages transferred between partitions across 
supersteps for the Pokec graph using shortest path algorithm 

 

Figure 3-12 Number of network messages transferred between partitions across 
supersteps for the YouTube graph using shortest path algorithm 
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Figure 3-13 Number of machines varying during supesteps while running 
connected component algorithms on different datasets on iGiraph 

 

Figure 3-14 Total time taken to perform shortest path algorithm 

The above figure shows that the time taken to complete shortest path algorithm on 

16 machines using iGiraph is not significantly different than Giraph. As a result, 

considering total execution time and decreasing number of active workers in each 

experiment, iGiraph is more cost-effective than Giraph for convergent algorithms on 

public clouds. 

2) Evaluation of Non-Convergent Algorithms 

Processing non-convergent algorithms such as PageRank shows that the number of 

messages generated in each superstep is almost the same as other supersteps during 

the whole processing. In PageRank for example, vertices always update their neighbors 

during the computation hence as long as the number of vertices is the same, the 

number of messages is also the same. But it is still possible to reduce the network 

messages by using α factor. α determines the partitions that receive more messages 

through network than the other partitions (high degree partitions). Then, to balance the 
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messaging pattern, iGiraph selects a number of border vertices from high degree 

partitions to relocate based on the aforementioned algorithm in section 3.4. After 

relocating the vertices, a load balancer method will balance the number of vertices in 

each partition. It can be seen that the average number of network messages falls down 

a bit in iGiraph results in faster computation. Figure 3.15 shows the average number of 

network messages in both Giraph and iGiraph. The total execution time for each 

experiment also can be seen in figure 3.16. According to these figures, although we did 

not decrease the number of workers like what was done for convergent algorithms, 

total runtime of the system decreased because there are few messages passing through 

network compared to Giraph.  Table 3-2 is showing the monetary cost of processing for 

each algorithm on different frameworks. 

 

 

Figure 3-15 The average number of network messages in each experiment 

 

Figure 3-16 Total time taken to perform PageRank algorithm 
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Table 3-2 Processing cost on different frameworks 
 

Dataset Giraph (SSSP) iGiraph (SSSP) Giraph (PR) iGiraph (PR) 

Amazon  $0.0215 $0.0146 $0.0320 $0.0232 

YouTube $0.0140 $0.0092 $0.0502 $0.0410 

Pokec $0.0235 $0.0170 $0.0816 $0.0725 

  

3.6     Related Work 

According to The National Research Council of the National Academies of the United 

States [55], graph processing is one of the seven computational giants of massive data 

analysis. Google’s Pregel [148] is the first graph processing framework in the literature 

that uses a bulk synchronous parallel (BSP) model [231] for graph computation based 

on a vertex-centric approach. Public implementations of this framework include 

Giraph, GoldenOrb [36], etc. These frameworks are developed based on distributed 

architectures in which usually one machine acts as the master and one or several other 

machines act as workers. In the master-worker approach, the input graph is split into 

partitions and each partition assigns to a worker to process it. Many of graph 

processing frameworks use a simple hash function for partitioning the graph. 

However, such simple partitioning leads to huge network traffic in a graph processing 

task that consequently affects the system performance. To improve the partitioning 

efficiency, various approaches are proposed in different frameworks [69] [34] [20]. 

While most graph processing systems offer some specified improvements on HPC 

clusters with fast interconnects, their conduct on virtualized commodity hardware 

which is provided by cloud computing paradigm and is accessible to a wider 

population of users is less investigated [187]. 

Frameworks designed to process large-scale graphs based on Pregel are called 

Pregel-like frameworks. They are designed based on distributed architecture on high 

performance computing systems such as distributed clusters. Although graph 

processing systems created to overcome previous large data processing solutions such 

as MapReduce, some of distributed frameworks use series of MapReduce jobs 
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iteratively. Giraph and Surfer are examples of these systems. Other features of Pregel-

like frameworks include using bulk synchronous parallel (BSP), message passing 

communication method and global synchronization barrier between supersteps. 

However, systems such as GraphLab [142] provide asynchronous computations. Since 

iGiraph is a Pregel-like system and developed based on Giraph, it contains all of these 

specifications with some additional features such as dynamic repartitioning and cost 

minimization. There are many non-Pregel graph processing frameworks developed on 

distributed architecture. Among these frameworks are Trinity [202] and Presto [233]. 

GPS is the most similar to our work. It has an optimization called LALP (large 

adjacency-list partitioning) by which stores high degree vertices and use the list to send 

one message, instead of thousands for instance, to the partitions are containing those 

vertices. After the message gets to the destination, it will be replicated thousands times 

to the message queues of each vertex in its outgoing neighbors list. Instead of storing 

the list of vertices, iGiraph stores two lists of the number of outgoing and incoming 

messages from/to each partition that show which partitions are sending or receiving 

more messages. These lists are noticeably smaller than GPS’s adjacency lists. 

Another difference between our system and GPS is that high degree vertices in GPS 

are defined by the programmer, but in iGiraph, the decisions about migrating the 

partitions are making based on an automatic formula. In GPS, the programmer 

specifies a parameter . If the number of outgoing messages for any vertex is more than

, it will be considered as high degree. Here, selecting the right value for is very 

important and can directly affect the system’s performance.  

There are previous studies on the performance effects of different partitionings of 

graphs on other systems. The main challenge in partitioning a graph is to find how to 

partition the data to gain better vertex or edge cuts with considering the simplicity of 

computation. Pregel, Giraph and GraphLab partition the graph by cutting the edges 

while PowerGraph [80] and X-Stream [192] cut vertices for partitioning. From another 

point of view, the majority of graph processing frameworks only use static partitioning 

approaches that means they only partition the graph once before the processing starts 

or they do it once during the computation. On the other hand, some frameworks such 

as GPS use dynamic repartitioning approach that allows them to repartition the graph 
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multiple times during the computation based on some pre-defined features to achieve 

better performance. 

 

3.7      Summary 

Huge amount of data is created and stored in the form of graphs every day. In this 

chapter, we presented iGiraph, a Pregel-like system developed based on Giraph for 

processing large-scale graphs on public clouds. iGiraph uses a new repartitioning 

method to reduce the number of messages passing through network by decreasing the 

number of cross-edges between partitions. It utilizes high degree concept in partition 

level for both convergent and non-convergent types of algorithms. iGiraph also 

considers processing large graphs as a service on public clouds. Therefore, it reduces 

the cost of resource utilization by decreasing the number of workers that are using for 

the operation and executes the applications within a period which is reasonably close 

to Giraph’s time.  
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Chapter 4 

4 Network-aware Dynamic 
Repartitioning for Scheduling 

Large-scale Graphs  
 
 

Large amount of data that is generated by Internet and enterprise applications is stored in 

the form of graphs. Graph processing systems are broadly used in enterprises to process such 

data. With the rapid growth in mobile and social applications and complicated connections of 

Internet websites, massive concurrent operations need to be handled. On the other hand, the 

intrinsic structure and the size of real-world graphs make distributed processing of graphs 

more challenging. Low balanced communication and computation, low preprocessing 

overhead, low memory footprint, and scalability should be offered by distributed graph 

analytics frameworks. Moreover, the effects of network factors such as bandwidth and traffic as 

well as monetary cost of processing such large-scale graphs and the mutual impact of these 

elements have been less studied. To address these issues, we proposed two dynamic re-

partitioning algorithms that consider network factors affecting public cloud environments to 

decrease the monetary cost of processing. A new classification of graph algorithms and 

processing is also introduced which will be used to choose the best strategy for processing at 

any operation. We plugged these algorithms to our extended graph processing system (iGiraph)  

This chapter is partially derived from: 

 Safiollah Heidariand Rajkummar Buyya, “Cost-efficient and Network-aware Dynamic 
Repartitioning-based Algorithms for Scheduling Large-scale Graphs in Cloud 
Computing Environments”, Software: Practice and Experience (SPE), vol 48, Issue 12,  
pp: 2174-2192, Wiley & Sons,  2018 
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and compared them with those supported in other graph processing systems such as Giraph 

and Surfer on Australian National Cloud Infrastructure.  We observed that up to 30% faster 

execution time, up to 50% network traffic decline and more than 50% cost reduction is achieved 

by our algorithms compared to a framework such as popular Giraph. 

4.1     Introduction 

ODAY many applications in domains such as the Internet, astronomy, social 

networks, information retrieval and particle physics are experiencing data flood 

and they have already reached peta-scale volume of data. The growth in the volume of 

data needs large computing power to turn the original data into worthwhile insights. 

Nevertheless, massive amount of data is saved and modeled in the form of graphs. 

These graphs provide valuable sources of information for several applications. For 

instance, by studying social networks and the way that relationships are shaped 

between users, psychologists and sociologists can investigate their assumptions and 

hypothesis about people and communities. Analyzing web graphs can make search 

engines more accurate and effective [173]. By detecting social circles and their 

influential members in social networks, politicians can spread their thoughts in these 

communities [256]. Therefore, processing large-scale graphs and unveiling attributes of 

those graphs have become critical requirements. 

Traditional approaches of processing Big Data such as MapReduce [56] are not 

suitable for graph processing because of the intrinsic behavior of graph algorithms. For 

example, MapReduce has a two-phase computation model – Map and Reduce, which is 

not exactly appropriate for the iterative nature of graph algorithms. It also does not 

retain the input graph and its states in main memory across these two phases and is 

very inefficient because of requiring repetitive disk I/O. 

Many research works on large-scale graph processing frameworks concentrate on 

the platforms based on commodity clusters. However, not many studies have been 
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done on cloud platforms, particularly public clouds. Cloud computing is a model of 

computing that has modified hardware, software and datacenters implementation and 

design [35]. It has brought novel technologies and economical solutions such as 

elasticity and pay-as-you-go models by which service providers do not need to worry 

about previous obstacles of delivering services to their clients. Public cloud services are 

getting more popular than other cloud services such as private, hybrid and community 

clouds especially among small and medium size businesses. It is because they do not 

have sufficient funding to have their own private cloud or it is not efficient for their 

business models. So, public cloud is a true response to their needs. Another important 

feature of public clouds is the monetary modeling that different service providers offer 

to their customers. Amazon, for example, has three cost models: spot, on-demand and 

reserved provisioning models for providing resources. Using these commercial 

services, the client might select to pay more to get higher performance or better 

reliability. So, the challenge with using public clouds is making the right decision 

between utilizing the number of resources that the user needs and the amount of 

money he/she can pay for the service. In this research we only consider the reserved 

model. 

Another less studied aspect of graph processing systems is the impact of the 

network environment on the performance of the whole system. Some systems such as 

Surfer [46] and Pregel.Net [187] are implemented to support graph processing on 

public clouds. Although, they consider some network features, none of these systems 

have explored the effects of provisioning and processing on monetary cost. For 

instance, Surfer proposes a graph partitioning approach based on the network 

bandwidth and claims that it could improve the performance. On the other hand, to 

the best of our knowledge, all existing graph processing frameworks –except iGiraph - 

concentrate on decreasing the processing runtime, memory utilization and so on to 

degrade the cost of operation.  They only take an unchanged pool of resources with 

known size into consideration. It means that all existing systems start and finish their 

computation with the same number of resources (machines). So, in many cases, idle 

machines have to wait for other busy machines to finish their jobs and all machines be 

released together which is a waste of money and time. Even systems such as 
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GraphP[261] and GraphR [211] that are reducing the number of messages passing 

between partitions and introducing new memory access techniques respectively, do 

not discuss the monetary costs of the processing. These limitations can be overcome by 

dynamic management of resources in an elastic manner. 

The aim of this chapter is to develop scheduling algorithms that consider 

characteristics of application workloads and resources along with network factors to 

improve the performance and reduce the monetary cost of the whole computation. We 

propose a novel dynamic re-partitioning method that utilizes different factors 

including: a) the type of the graph application that is going to be used, b) some intrinsic 

features of natural graphs such as high-degree vertices, and c) the network features of 

the cloud environment that the system is running on. Our algorithms were plugged in 

to our extended version of graph processing framework (iGiraph) and we compared 

them with those supported in other graph processing systems such as Giraph and 

Surfer on Australian National Cloud Infrastructure.  We observed that up to 30% faster 

execution time, up to 50% network traffic decline and more than 50% cost reduction is 

achieved by our algorithms in comparison with a framework such as popular Giraph. 

Our work makes the following contributions: 

 A new classification of graph applications and processing is introduced in 

this chapter which affects the policy that will be chosen to process the input 

graph. We have studied the impacts of combinations of different situations 

from this classification together on processing large-scale graphs on public 

clouds for the first time and reduced the monetary costs in each situation. 

 A novel mapping strategy is designed to facilitate assigning partitions to the 

workers based on different features that each partition and worker has. 

 A new bandwidth-and-traffic-aware dynamic re-partitioning algorithm and a 

new computation-aware re-partitioning algorithm have been proposed in this 

chapter. These algorithms remarkably reduce the monetary cost of processing 

- which is a vital factor in the procedures of selecting services for any 

customer on a public cloud 

The rest of the chapter is organized as follows: Section 4.2 explains the related work. 

A new classification of graph algorithms is explained in Section 4.3. Section 4.4 and 4.5 
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introduce our new proposed bandwidth-and-traffic-aware and computation-aware 

dynamic re-partitioning algorithms of large-scale graphs respectively, with their 

implementation on iGiraph. We explain the architecture and details of our system 

(iGiraph-network-aware) in Section 4.6 followed by a discussion on the evaluation of 

our works in Section 4.7. Finally, Section 4.8 concludes the chapter and proposes future 

works. 

4.2      Related Work 

To overcome the issues on traditional processing approaches, considerable endeavors 

are made to process large graphs. Some proposed systems try to process the entire 

graph on a single server whereas the main problem of this method is scalability [144]. 

However, the utmost size of graph to be processed is restricted by the single host’s 

memory in which the input graph has to be fully loaded. In addition, this method 

cannot use the strength of other hosts in terms of distribution and parallelization, to 

reduce the processing time. Another method is to utilize libraries that allow graph 

algorithms to be executed in parallel in the shared memory approach [205]. This 

method, tries to solve the issue of the previous method. However, it still has problems 

with fault-tolerance and scalability [85]. Another way of processing graphs is to adopt 

graphic processing units (GPU) to accelerate different graph processing tasks. In 

sampling method, the input graph will be divided into several sub-graphs by the 

system and then the attribute of the main graph will be estimated based on the 

attributes of the smaller sub-graphs. The major issue in this method is that there is a 

big distinction between the actual and estimated solutions.  

Unlike the aforementioned methods, a distributed method utilizes a commodity of 

servers as a generic solution to performance, scalability, and availability issues [53]. 

This can be specifically utilized for solving large graph problems. Pregel [148], which 

was proposed by Google in 2010, is a computational model dedicated for processing 

large-scale graphs. The main inspiration for Pregel is the Bulk Synchronous Parallel 

(BSP) model [231] which streamlines the implementation of distributed graph 

algorithms. A program in Pregel contains sequences of iterations called superstep. 
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Within a superstep, a user-defined function called Compute() is invoked by Pregel for 

each vertex that specifies the conduct of the node in the superstep. The Compute() 

reads messages that have been sent to the related node during the prior iteration, 

applies some processing and dispatches messages to other nodes, that will be collected 

at the next superstep. This function can also change the states of vertices and their 

outgoing edges. Pregel uses supersteps to accomplish fault tolerance and high 

scalability in a cluster of machines. Nevertheless, this might be an impasse for 

performance when the amount of communications grows in a graph with vertices in 

millions-scale. Many distributed graph processing frameworks have been introduced 

after Pregel. Systems such as Giraph [11], Apache Hama [13], ExPregel [193], GPS [195], 

GraphLab [142] and iGiraph which have been developed based on Pregel are called 

Pregel-like systems. There are also other frameworks that are not developed based on 

Pregel. 

Pregel-like frameworks are developed based on a distributed architecture in which 

one machine will act as the master while other machines will be workers (slaves) and 

do the computation. In this approach, the input graph is splitted into partitions and 

partitions are assigned to workers by the master to be processed. Therefore, 

partitioning a graph is a critical job and since it has a direct influence on the 

performance of the system, various methods have been proposed for achieving better 

outcomes. A vast majority of graph processing systems propose some determined 

improvements on high performance computing clusters with fast interconnects. 

However, their behavior on cloud computing that provides virtualized commodity 

hardware and is available to a broader crowd of users is less investigated. 

Despite introducing various partitioning methods by different frameworks, the 

impact of network factors on the system’s performance and the way that they can be 

used to optimize or improve the processing is not sufficiently studied. Surfer [46], is 

the closest framework to our proposed system. But according to the earlier discussion, 

it has many shortcomings and does not cover many aspects of network bandwidth; 

particularly its mapping strategy is not quite efficient. Another system that considers 

network traffic is Pregel.Net. Pregel.Net [187] is implemented based on Pregel but over 

.Net framework. It has used Microsoft Azure to analyze the impact of BSP graph 
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processing model on public clouds. However, it does not investigate if its changes will 

affect the monetary cost of the operation. 

Table 4-1 Comparison of the most related works in the literature 
 

System Architecture Partitioning 

Method 

Traffic-

aware 

Bandwidth-

aware 

Computation-

aware 

Resource 

Scheduling 

Pregel [148] Distributed Static × × × Static 

Giraph [11] Distributed Static × × × Static 

GPS [195] Distributed Dynamic √ × × Static 

GraphX [81] Distributed Static × × × Static 

Surfer [46] Distributed Dynamic × √ × Static 

iGiraph 

(Chapter3) 

Distributed Dynamic √ × × Dynamic 

Our work - 

iGiraph-

network-aware 

Distributed Dynamic √ √ √ Dynamic 

 

In another research [172], authors have shown that the network does not have a 

significant impact on the processing and the highest impact that any optimization 

solution can bring to graph processing system’s performance would be something 

between 2%-10%. GraphX [81] and Spark18 were used in that experiment and some 

network factors such as the speed of the network was studied in different situations. 

However, McSherry [154] showed that this assumption is completely wrong and many 

other factors have been missed from the study. He showed that using a dataflow 

framework can achieve much better results to 2X-3X compared to GraphX. This study 

and ours in this chapter imply that there are still many features that can be taken into 

consideration and be mixed with novel solutions to leverage the impact of network to 

reach better performance. Table 4.1 demonstrates the features of some of the most 

related works in the literature. 

In this chapter, we extend iGiraph to support more network factors for its dynamic 

re-partitioning approach by providing a novel priority mapping solution to customize 

each machine for each partition. According to this solution, we provide a ranking 

method for this mapping. To distinguish between basic iGiraph and our proposed 

                                                           
 

18 http://spark.apache.org/ 
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network-aware system in this chapter, we refer to the new system as “iGiraph-

network-aware” for the rest of the chapter. 

4.3  Processing Environment Categorization and Graph 

Applications 

Different works use different categorizations for graph applications. For example, 

GBASE [113] and TurboGraph [91], categorize the queries to global queries and 

targeted queries. Algorithms such as diameter estimation that need to traverse the 

entire graph are identified as global queries while other algorithms such as single 

source shortest are put in the targeted queries category. A framework such as 

Giraph++ [223] uses three categories including graph traversal, random walk and 

graph aggregation for graph algorithms while iGiraph utilizes a one dimension 

categorization for all graph applications which divides them into convergent and non-

convergent.  

In this work, we extend the iGiraph’s categorization into two-dimensions by adding 

an extra layer. Figure 4.1 shows the new categorization for all sorts of processing where 

any kind of application can be either computationally-intensive, communicationaly-

intensive or a combination of them. 

 
Figure 4-1 Graph applications and processing environment categorization 

 Computationally-intensive processing: This type of processing often has a 

large impact on CPU utilization because it spends more time on computing 

than communication and the memory side. Sometimes the graph processing 

application itself is computationally intensive and sometimes other 

applications keep the CPU busy in VMs and the graph application has to find 

a way to be processed faster. This situation happens mostly in a public cloud 

Non-convergent Application 

Convergent Application 

Graph processing environment on a 

public cloud 

Computational-intensive 

Environment 

Communicational-intensive 

Environment 

Convergent Application 

Non-convergent Application 
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environment. 

 Communication-intensive processing: This type of processing usually has a 

big impact on network and memory especially when an application needs to 

keep the intermediate states of a computation. 

In this chapter, we utilize two typical algorithms (convergent and non-convergent) 

to show the impacts of each algorithm on both types of processing. Here, we give a 

brief description of sample algorithms that we are going to use for our experiments. 

1. PageRank: PageRank algorithm was proposed to weigh the importance of web 

pages and websites by calculating the number of links connected to them. The 

more hyperlinks the page gets from other websites, the more significant the 

page is. PageRank assesses every page individually and will not weigh the 

whole website as a unit. In this algorithm, the importance of a typical web page 

will not be affected by the PageRank of other pages because each page has its 

own exclusive approximated weight. According to the categorization we 

presented in this section, PageRank is a non-convergent algorithm due to 

generating a constant number of messages in each iteration during the 

processing. 

2. Single source shortest path: The aim of solving the shortest path problem is to 

find a route between two nodes in a graph while the sum of the weights of its 

edges is minimized. Shortest path is a famous problem in graph theory and 

various approaches have been suggested to solve it. Single-source-shortest-path 

(SSSP) problem is a special case of the original shortest path problem. SSSP is 

about discovering the shortest route between a typical source vertex and all 

other nodes in the graph. Before SSSP starts, the values (distance) of all vertices 

are set to INF (∞) except the source vertex which is set to 0. Any possible route 

from the source vertex in the graph will be shorter than INF. During each 

superstep, vertices receive messages from their adjacent nodes, update their 

value using the minimum value received from their neighbors and send any 

recently found minimum value to all neighbors. In the initial iteration, only the 

adjacent vertices of the source node will be updated. In each superstep, the 
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updated nodes will send their new values to their neighbors until the 

computation ends. The processing finishes when the status of all nodes in the 

graph is changed to inactive and no more updating happens. According to this 

definition, SSSP is categorized as a convergent algorithm. 

The total cost of processing in a graph system is depending on two major factors 

(considering equal size for the messages in the network): 1) the number of machines, 

and 2) the time in which a specific type of machine is being used, as shown in Equation 

4.1.            

                                 CostTotal= 
0 1

( ( ) ( ))i i

m n

j i

VC TM VM
 

                                          (4.1) 

In the above equation, C(VMi) is the price of each machine and T(VMi) is the time 

within the machine is used. To reduce the total cost of the operation, either less costly 

machines must be used, or the total time that each machine is being used should be 

reduced. In order to achieve this in a graph processing system, partitioning plays an 

important role. For instance, there is no need to keep all the initial machines in the 

system for convergent algorithms if there is a way to repartition the graph and place 

the remaining of the graph on less number of machines and reschedule the resources. 

In this chapter, we show that to provide an effective dynamic repartitioning 

mechanism, considering factors such as traffic, bandwidth and computation burden in 

the network can help to reduce the monetary cost and improve the performance. 

4.4  Bandwidth-and-Traffic-aware Graph Scheduling Algorithm 

with Dynamic Re-partitioning 

Assume that the average amount of network traffic sent along each cross-partition is 

NM(Pi, Pj) , the networks bandwidth between the machines stored Pi and Pj to be Bi,j, and 

C(Pi , Pj) to be the number of cross-partition edges from partition Pi to Pj. Because 

network bandwidth is a scarce resource in the cloud environment, it is considered as 

the major index for network performance. So, the approximate data transfer time 

(DTT) from Pi to Pj will be as follows: 
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DTT(i,j) =
 ,

,

( , )i j M i j

i j

P P N P P

B

C 
 

 

(4.2) 

This estimation is adequate for large-scale graph processing in both public and 

private cloud environments. Suppose we have stored P graph partitions on P disparate 

machines; the overall data transfer time (DTTTotal) in the network caused in all partition 

pairs is as follows: 

DTTTotal=
1 1

0 0

( , )
P P

i j

DTT i j
 

 

  
 

(4.3) 

Obviously if network bandwidth amongst different machine pairs is constant, the 

total network data transfer time will be minimized when the total number of cross-

partition edges is minimized. Nevertheless, the network bandwidth amongst different 

machine pairs can change remarkably in the cloud. Cloud providers have noticed such 

network bandwidth unevenness. The network bandwidth of every machine pair 

amongst 64 and 128 small Amazon EC2 instances is shown in Figure 4.2. On the other 

hand, research shows that in public cloud, the network bandwidth between two 

instances is provisionally steady. This allows us to perform our mapping calculation 

before each superstep. 

Because of the network bandwidth unevenness, an important factor for an efficient 

graph processing is the mechanism of partitioning the graph and storing its partitions 

on the VMs. According to [15], because there might be a large number of partitions and 

workers for processing the graph, there is P! possible ways to store partitions on 

workers which is a huge solution space. Another issue is finding a solution by which 

both graph processing and graph partitioning algorithms can be aware of the 

bandwidth variability for networking efficiency.  
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(a) (b) 

Figure 4-2 Network bandwidth unevenness in Amazon EC2 small instances with (a) 64 
instances and (b) 128 instances [46] 

To address these issues in a public cloud environment, a new dynamic re-partitioning 

method is proposed in this chapter. The idea is to place the partitions with larger 

number of high-degree border vertices – which means they have larger number of 

cross-partition edges – on workers with higher network bandwidth. This is because 

those graph partitions need more network traffic. It also helps the partitions to be 

processed faster. 

To achieve performance improvement, we implemented a mapping strategy 

(illustrated in Figure 4.3) in iGiraph. The processing starts with a random partitioning 

approach as we use this method for all our experiments to start with. This is because 

random partitioning is shown to have the worst performance among most of the 

existing well-managed partitioning approaches. So, we aim to improve this situation as 

the cheapest implementing strategy which is not good performance-wise. According to 

this strategy, the first iteration (superstep 0) starts with a random partitioning method, 

the processing of the iteration completes and the global synchronization barrier occurs. 

Before going to the next superstep, we use the information we collected from the first 

iteration to plan a new partitioning (re-partitioning) for the next iteration. 
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Figure 4-3 Mapping strategy for 5 partitions and 5 workers. Partitions with higher 
priorities are assigned to the machines with higher bandwidth 

After the completion of the first superstep, each partition is assigned a factor called 

Partition Priority (PP). The partition with PP=0 is the one that receives the larger 

number of messages over the network when compared to other partitions. In other 

words, this partition contains more high-degree border vertices than other partitions. It 

is also a candidate for being merged with other partitions or its vertices being migrated 

to other partitions. All other partitions also get their own PP which shows their 

importance based on the amount of network traffic they generate. On the other hand, 

each worker also will be assigned a factor called Worker Priority (WP). The worker 

with WP=0 is the one with the highest bandwidth among all workers (machines). All 

other workers also will be given their own WP based on their bandwidth rating in the 

network. In case in which two or more partitions have the same priority after 

calculation, one of them will get the higher PP randomly. The same logic also applies to 

workers. After assigning PPs and WPs to partitions and workers respectively, the 

partitions with specific PPs will be assigned to the workers with the same WPs (Figure 

4.3). The calculations and assignments are done after each superstep i and before each 

superstep i+1. 

Algorithm 4.1: Bandwidth-and-traffic-aware dynamic re-partitioning 

1: 
2: 
3: 
4: 

 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

Partition the graph randomly 
Set PP=0 for each partition and WP=0 for each worker 
For the rest of the computation do 
     Calculate PP for each partition based on the number of messages that   each 

partition receives 
     Calculate WP for each worker using end-to-end mechanism 
     If global synchronization happened then 
          Merge the partitions or migrate vertices if needed 
          Set the priorities based on PP and WP 
          Map partitions(based on PP) and workers(based on WP) 
     If VoteToHalt() then 
          Break 
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Another issue that should be considered is the time when the priority setting should 

be done. Due to the possibility of merging or removing the partitions after each 

superstep, the priority setting is done after these operations, immediately before the 

next iteration starts. Therefore, the partitions that have received migrated vertices will 

be given the highest priorities. This is because the reason for vertex migration is to 

bring high-degree vertices closer to their neighbors. If there is more than one partition 

receiving migrated vertices, the one that has got more migrated vertices will get the 

highest priority and so on. Also for the partitions that get merged, the priority of the 

final partition (combined partition) will be set as the priority of the partition with 

highest priority (its priority from the previous iteration). At the beginning of the 

processing (superstep 0), all partitions’ priorities will be set to 0 (highest priority). 

In a nutshell, according to Algorithm 1, after each superstep, initial priorities for the 

partitions and workers will be calculated based on the measurement of various 

network factors (traffic and bandwidth here) that have been completed during the 

iteration. Then, if needed, partition merges and vertex migrations might happen based 

on the aforementioned mechanism. Eventually, final priorities will be set for partitions 

and workers and they will be mapped accordingly. 

According to our experiment results (Section 4.7.2), using a mapping strategy that 

assigns partitions to workers based on the traffic in the network and the bandwidth 

capacity of workers, combined with iGiraph’s re-partitioning method (for both 

convergent and non-convergent types of algorithms) gives much better results 

compared to previous solutions. These results would be in regard to reducing the 

monetary cost of the processing by reducing the cost of resource utilization, reducing 

network traffic and accelerating the execution time of the whole process. 

4.5 Computation-aware Graph Scheduling Algorithm with 

Dynamic Re-partitioning 

Although many graph algorithms are communication intensive, computation unit can 

still affect the execution of applications. In a public cloud, each VM can host different 

applications at the same time. Some applications might be computation-intensive and 
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keep the CPU busy while other applications are not very CPU-dependent but still can 

be affected by the former. Computation-intensive algorithms or applications can delay 

the computation and execution time of others. 

Various approaches can be applied to deal with such situations. For example, each 

job can have a different priority by which the host can schedule the computation time 

for that. There are many prioritization strategies such as first-in-first-out, first-in-last-

out, assigning priority numbers to tasks, etc. Another approach for when there is no 

priority or preference for job execution can be using equal time-slots for computing 

jobs in an intertwined way. 

 

Algorithm 4.2: Computation-aware dynamic re-partitioning 

1: 
2: 
3: 
4: 

 
5: 

 
6: 
7: 

 
8: 
9: 

10: 
11: 

Partition the graph randomly 
Set PP=0 for each partition and WP=0 for each worker 
For the rest of the computation do 
     Calculate PP for each partition based on the number of messages that   each 

partition receives 
     Calculate WP for each worker using CPU utilization on each worker and 

CPU idle time 
     If global synchronization happened then 
          Merge the partitions or migrate vertices based on machineType if 

needed 
          Set the priorities based on PP and WP 
          Map partitions(based on PP) and workers(based on WP) 
     If VoteToHalt() then 
          Break 

 

We propose a similar mapping strategy as we discussed for traffic and bandwidth-

aware re-partitioning, but we consider CPU utilization instead of bandwidth in the 

algorithm and re-partition the graph differently. We have implemented this strategy on 

iGiraph. As in last section, the computation starts with a random partitioning for 

superstep 0. At the end of superstep 0 when the global barrier happens –before 

superstep 1- we use the information we have got so far to initiate the re-partitioning. 

At this stage, on one side based on the number of messages that has been passed 

between workers through the network, we define Partition Priority (PP) again by 

which the partitions with high-degree vertices can be recognized. On the other side, a 



 

 

116 

 

scalable monitoring tool called Ganglia19 is used to monitor the CPU utilization on each 

worker. Therefore, the information regarding the computational conditions of all 

machines will be written and saved on a separate file on the master machine. The 

information include the percentages of CPU idle times at the end of each supestep so 

that it can be possible to find which machines are still busy, or how busy they are, and 

which one is free and ready to use. The reason for choosing the CPU idle time to use in 

the algorithm instead of CPU working time is that the former is more reliable. There 

might be situations that a very small task can use most of computation resources for a 

short time and increase the utilization percentage remarkably but the reality is that the 

CPU will be idle the rest of the time. From this information, a map of available 

computation resources can be depicted which will be used for dynamic re-partitioning 

during the rest of computation. Figure 4.4 shows the computation map of a system 

with 15 workers where some random computation-intensive applications are running 

on some machines. 

 
Figure 4-4 Percentage of CPU idle time in a system with 15 workers 

According to the aforementioned strategy, there will be four types of machines in 

the environment after the first superstep: 1) a machine with both a computation-

intensive application and high-degree vertices of graph dataset on it, 2) a machine with 

computation-intensive application running on it but the graph partition that have been 

assigned to that does not have high-degree vertices, 3) a machine with a partition 

containing high-degree vertices but no computation-intensive application on it, and 4) 

                                                           
 

19 http://ganglia.sourceforge.net/ 
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a machine that has neither computation-intensive application running on it nor the 

partition that have been assigned to it has any high-degree vertices. 

The idea is to move high-degree vertices with their neighbors to the machines that 

have higher CPU idle time. This is because more computation is needed to be done on 

these vertices in terms of the number of messages they receive. So the algorithm would 

be like this: partitions in machine type 1 need to be migrated to or merged with 

partitions on machines type 4 or 2 respectively. Partitions on machine type 2 can be 

merged with the one on type 3 and 4. Partitions on machine type 3 can be migrated to 

type 4 or be merged by partitions on machines type 2. Based on this algorithm, at the 

start of the processing, all workers have their types set as 0 which will change after the 

first superstep. Then, at the end of each superstep, this algorithm will re-partition the 

graph and assign the proper partitions to their best worker. iGiraph-network-aware 

also considers the available memory on the destination before moving the vertices. 

To summarize, similar to Section 4.4, after each superstep, initial priorities for the 

partitions and workers will be calculated based on the measurement of various 

network factors which in this case are the traffic and the computation capacity of each 

machine. After that, some partitions might get merged and some vertices might get 

migrated using the dynamic repartitioning mechanism. Finally, priorities will be set for 

partitions and workers and they will be mapped accordingly (Algorithm 2). The 

algorithm will be terminated when there is no more active vertices to be processed. 

As will be shown in Section 4.7, our experiments prove that under the equal situation, 

the computation-aware re-partitioning on iGiraph-network-aware significantly reduces 

the execution time of the entire processing compared to Giraph. It is also shown that 

this approach can reduce the monetary cost of the processing for both convergent and 

non-convergent types of applications. 

4.5.1 Complexity Analysis 

We analyzed the time complexity of the two proposed algorithms (traffic-and-

bandwidth-aware and computation-aware algorithms) which are very similar in terms 

of the structure. Both algorithms are dependent to the number of supersteps (N) which 

N varies based on the application and the number of vertices in the graph. Also, 
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prioritizing partitions (P) and worker machines (W) affect the algorithms as they need 

to be calculated in each iteration. Therefore, the complexity of these algorithms is 

O(N(P+W)). Since both P and W are dependent to the number of machines (m) (one 

partition per worker), the complexity also can be written as O(N(log m)). 

On the other side, the complexity of partitioning algorithm for Surfer is 

O(m2)+O[P+log P (n+log P)] where P is the number of partitions and random 

partitioning is used instead of METIS. For Giraph the complexity is O(N(n)) 

(n=number of nodes). As can be seen, algorithms are dependent to the applications’ 

complexities as well. According to [27], for instance, the complexity of SSSP and CC 

algorithms are O(ne) and O((e+n)log n)) respectively, where n is the number of nodes 

and e is the number of edges in the graph. In Surfer, the user should define the number 

of partitions for the processing hence the complexity of the algorithm is dependent to 

the number of partitions (P). 

4.6      System Design and Implementation 

Figure 4.5 shows the design of our proposed software system and the components that 

we have added to iGiraph. The architecture and placement of different components of 

our system is shown in Figure 4.6.  

 
Figure 4-5 The components that we added to original iGiraph are shown in dotted 
rectangles 
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Bandwidth measurement component is implemented on all machines in the system to 

be able to calculate the bandwidth between workers by an end-to-end calculation 

mechanism which is used in [265]. 

4.6.2 Traffic Measurement 

To calculate the network traffic between each pair of machines, the traffic measurement 

module is implemented and installed on all workers. It basically works based on the 

number of messages transferring between machines. Using this information, the 

system ranks the most congested paths and uses that for partitioning purposes. 

4.6.3 CPU Measurement 

As part of a network characteristic, CPU workload shows the amount of computations 

occurring on each qmachine and in the whole network. In a public cloud, there may be 

different jobs running on each machine at the same time and some of these jobs might 

be computation-intensive. By knowing how busy each worker in the network is, we 

can avoid overloading occupied workers by assigning more tasks to them. This module 

uses the information that it receives from Ganglia- a tool by which we can measure 

many specifications of a network- to calculate the CPU idle times per worker. 

4.6.4 Policy Selector 

Policy selector is a component of iGiraph which we have expanded to cover our 

network-aware scheduling algorithms. Using this component, users specify their 

workloads and based on that they define what algorithm (bandwidth-aware or 

computation-aware) they want to be used to process their workload. 

4.6.5 Network KPI Aggregator 

The network KPI aggregator is implemented on the master to aggregate the 

information from all workers and pass them to the next component for partitioning 

decision making. Having this component as an independent module that gathers all 

information in one place helps to reduce the burden of workers and make the 

execution faster. 
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4.6.6 Re-partitioner 

The re-partitioning component partitions the graph again based on the information 

that has been gathered from other parts of the system. Since the system utilizes a 

synchronous approach for execution, re-partitioning happens after each superstep and 

before the next superstep begins. We will show that using these components and the 

new re-partitioning strategy, the performance of the system will increase significantly 

compared to similar frameworks such as Giraph and Surfer. 

 

 

Figure 4-6 System architecture 
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We use m1.medium NECTAR VM instances for all partition workers and the master 

role. NECTAR [163] is the Australian national cloud infrastructure facilities. Medium 

instances have 2-cores with 8GB RAM and 70GB disk including 10GB root disk and 

60GB ephemeral disk. All the instances are in the same zone and use the same security 

policies. Since NECTAR does not correlate any price to its infrastructure for research 

use cases, the prices for VMs are put proportionally based on Amazon Web Service 

(AWS) on-demand instance costs in Sydney region according to closest VM 

configurations as an assumption for this work. Hence, NECTAR m1.medium price is 

put based on AWS m5.large Linux instance which costs $0.12 per hour. However, 

because our experiments are in second scale (instead of hour scale), the prices are being 

calculated for the entire operation in second scale. So, we charge the machines only 

based on the number of seconds they were used and do not charge them for one hour 

because they were used only for few seconds. We also installed NECTAR Ubuntu 14.04 

(Trusty) amd64 on each instance. We plugged in our algorithms to iGiraph  (our 

extended version of Giraph system) with its checkpointing characteristic turned off. To 

distinguish between the original iGiraph and the current work, we refer to the new 

system as “iGiraph-network-aware” in this chapter. We also use Apache Hadoop 

version 0.20.203.0. All experiments run using 16 instances where one takes the master 

role and others are set up as workers. 

We chose shortest path and PageRank for communication-bound convergent and 

non-convergent algorithms respectively. Also to show the effectiveness of the 

distributed processing on large-scale graphs by using our proposed solution, we utilize 

three real datasets of different sizes: Amazon, YouTube and Pokec [125] . Properties of 

these datasets are shown in Table 3.1. 

 

4.7.2 Results 

To evaluate the proposed algorithm we chose Giraph as a popular graph processing 

framework to compare the performance of our system with. We also implemented the 

bandwidth-aware graph processing method proposed by Surfer on Giraph to use it as 
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another baseline. Although Giraph has been improved since Surfer was developed, the 

implemented algorithm still shows Surfer’s behavior on the network. We have also 

compared the results with original iGiraph (chapter 3). In addition, the size of 

messages in all experiments is the same. Therefore, the communication cost is 

independent from message size and is calculated based on the number of messages 

that are transferred through the network. 

 

Figure 4-7 Number of network messages transferred between partitions across 
supersteps for Amazon graph using shortest path algorithm 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8 Number of network messages transferred between partitions across 
supersteps for YouTube graph using shortest path algorithm 
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Figure 4-9Number of network messages transferred between partitions across 
supersteps for Pokec graph using shortest path algorithm 

 

The first group of experiments is carried out for communication-intensive scenarios. 

Most graph processing applications are classified in this category. As the results show, 

iGiraph-network-aware could achieve better performance compared to Giraph, 

original iGiraph and Surfer on both convergent and non-convergent applications. Both 

Giraph and Surfer start computing with a constant number of machines and finish the 

computation with the same number of machines; no matter if the graph is shrinking or 

not during the execution. On the other hand for convergent algorithms, as the 

processing continues, the number of active vertices decreases. So, iGiraph and iGiraph-

network-aware remove deactivated vertices from the memory which means the graph 

is shrinking during the processing. Our experiments (Figures 4.7-7.9) show that the 

number of messages in the network is reduced even more significantly compared to 

original iGiraph by using dynamic bandwidth-and-traffic-aware re-partitioning and 

mapping approach on iGiraph-network-aware. This leads to reducing the number of 

active workers during the processing. As a result, when the number of machines 

declines, the cost of processing will also drop significantly. The results even show that 

the number of workers tends to be reduced faster compared to original iGiraph 

(chapter 3) because using the new algorithms in this chapter, the number of messages 

in the network is decreasing too. This also affects the total execution time as illustrated 

in Figure 4.11. 
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Figure 4-10 Number of machines varying 
during supersteps while running shortest 
path algorithm on different datasets 

 

Figure 4-11 Total time taken to perform 
shortest path algorithm 

 
Figure 4-12 The average number of 
network messages in each superstep 

 
Figure 4-13 Total time taken to perform 
PageRank algorithm 

It is also shown that the new mechanism works well on non-convergent algorithms 

such as PageRank. According to Figures 4.12 and 4.13, not only the average number of 

messages in the network is reduced in iGiraph-network-aware compared to Giraph, 

original iGiraph and Surfer, but also the processing has been completed faster using 

our bandwidth-and-traffic-aware dynamic repartitioning algorithm. Table 4.2 and 4.3 

show the cost comparison for different datasets for shortest path and PageRank 

algorithms respectively on each framework. Table 4.2 and Table 4.3 show the dollar 

cost of the operations is much less with the proposed techniques in this chapter. 

Table 4-2 Processing cost for SSSP on different frameworks 
 

Dataset Giraph Surfer iGiraph iGiraph-network-
aware 

Amazon  $0.0140 $0.0130 $0.0096 $0.0079 

YouTube $0.0125 $0.0120 $0.0082 $0.0067 

Pokec $0.0145 $0.0140 $0.0099 $0.0071 
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Table 4-3 Processing cost for PageRank on different frameworks 
 

Dataset Giraph Surfer iGiraph iGiraph-network-
aware 

Amazon  $0.0250 $0.0210 $0.0140 $0.0110 

YouTube $0.0430 $0.0370 $0.0380 $0.0295 

Pokec $0.0760 $0.0640 $0.0630 $0.0525 

 

The second group of experiments is carried out for computation-intensive scenarios. It 

is shown that using computation-aware re-partitioning that considers CPU idle time on 

each worker for mapping, the system performs better compared to Giraph. For this 

experiment, we have created two 500×500 matrices with random integer numbers and 

multiply them to keep the CPU busy on a random number of machines. The results of 

multiplication will not be saved because we do not want to decrease the memory of 

workers during the experiment. The results of the experiments have only been 

compared to original Giraph under the same conditions. It means that, for example we 

have done the experiments on both iGiraph-network-aware with computation-aware 

dynamic re-partitioning algorithm and Giraph when matrices multiplication is running 

on six workers and the same workers every time. The results have not been compared 

with Surfer because it does not have such capability to process the graph using 

computation information on the network. 

 
Figure 4-14 Total time taken to perform 
shortest path algorithm 

 
Figure 4-15 Total time taken to perform 
PageRank algorithm 
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Figure 4-16 Number of machines varying 
during supesteps while running shortest 
path algorithms on different datasets 

 
Figure 4-17 The average number of 
network messages in each experiment 

As shown in the Figure 4.16, again the number of machines has noticeably 

decreased in iGiraph-network-aware using computation-aware dynamic re-

partitioning approach for a convergent algorithm such as shortest path algorithm. So, 

processing the graph on iGiraph-network-aware is much cheaper than doing so on 

Giraph (Table 4.4). The same results have been obtained for non-convergent algorithm 

PageRank. It shows that our proposed mechanism has reduced the average number of 

messages in the network while completing the computation faster. Table 4.4 and Table 

4.5 show that the dollar cost of the operations is much less with the proposed 

techniques in this chapter. 

Table 4-4 Processing cost for SSSP on different frameworks 
 

Dataset Giraph iGiraph-network-
aware 

Amazon  $0.0115 $0.0055 

YouTube $0.0110 $0.0042 

Pokec $0.0140 $0.0068 

 

Table 4-5 Processing cost of PageRank on different frameworks 
 

Dataset Giraph iGiraph-network-
aware 

Amazon  $0.0195 $0.0130 

Pokec $0.0600 $0.0545 
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4.7.3 Discussion 

We compared our algorithm with Surfer’s algorithm [46], due to its relevance to our 

work. Both approaches use mapping strategy to map partitions and worker machines 

for computation. They both consider bandwidth as an important factor that affects the 

performance of processing which shows the role of network to make the processing 

costly. Both methods try to reduce the number of cross-partition edges to reduce the 

number of messages transferred between machines so that they can decrease the 

communication cost. 

Apart from the similarities, there are significant differences between Surfer and our 

work. First, Surfer partitions the graph before the processing starts and never 

repartitions data during computation. It creates the partition map at the beginning of 

the operation along with the workers map, but it only changes the workers map during 

the processing. The problem is that after each iteration, a new map is generated for 

workers and partitions have to be moved to a different worker every time. It is 

specifically very costly when all active and inactive vertices are meant to be transferred 

together. This is the reason that iGiraph-network-aware distinguishes between 

convergent and non-convergent algorithms and is using a re-partitioning algorithm to 

make a new partition map and workers map after each superstep. Second, the Surfer 

authors evaluate their approach using METIS and ParMETIS to initiate the partitioning 

the graph while iGiraph-network-aware uses a random approach. METIS and 

ParMETIS have been shown to give better partitioning results than random 

partitioning. So, we believe that this is the reason that Surfer’s approach does not work 

well by being initiated with random partitioning. However, initiating iGiraph-

network-aware by either METIS or ParMETIS will still give better results compare to 

Surfer because of different strategies that they are using. Third, all experiments on 

Surfer have been done on random graph datasets which is generated by a graph 

generator and not real-world datasets. Therefore, the impact of high-degree vertices 

has not been investigated by Surfer, although it is an important feature of real-world 
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graphs. Fourth, Surfer has not investigated monetary cost of the processing. This is the 

unique feature of iGiraph-network-aware as it reduces the number of using machines 

as the operation progresses whereas both Surfer and Giraph maintain the same higher 

number of machines during the entire operation. 

Overall, there are many factors that need to be considered for scheduling resources 

in cloud environments [28]. However, factors such as monetary cost and networks 

aspects of clouds have not been investigated much in graph processing context. Our 

work is one of the first works that combines all those factors to not only improve the 

performance but also to minimize the cost of using public clouds. 

 

 

4.8      Summary 

As the amount of data is growing every day, processing and analyzing them in a cost-

efficient way is a challenge. Distributed graph processing frameworks have emerged in 

the past few years to facilitate the processing of large-scale graphs that are made and 

stored by applications such as social networks and mobile applications. On the other 

hand, cloud computing has brought new facilities to streamline large-scale computing 

and storage. It has brought different models of computing with new paradigms such as 

pay-as-you-go model, scalability and elasticity. In this chapter, a new graph processing 

framework was proposed to analyze large-scale graph data. To achieve this, a new 

two-dimension classification of graph applications was used for the processing 

strategy. A novel dynamic re-partitioning was also introduced which considers 

network factors such as bandwidth and network traffic to process the graph by 

reducing network, communication and monetary costs. According to our experiments, 

this model could significantly outperform other frameworks such as famous Giraph. 
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Chapter 5 

5 Auto-scaling Algorithm for Graph 
Processing with Heterogeneous 

Resources 
 
 

Graph processing model is being adopted extensively in various domains such as online 

gaming, social media, scientific computing and Internet of Things (IoT). Since general purpose 

data processing tools such as MapReduce are shown to be inefficient for iterative graph 

processing, many frameworks have been developed in recent years to facilitate analytics and 

computing of large-scale graphs. However, regardless of distributed or single machine based 

architecture of such frameworks, dynamic scalability is always a major concern. It becomes 

even more important when there is a correlation between scalability and monetary cost - similar 

to what public clouds provide. The pay-as-you-go model that is used by public cloud providers 

enables users to pay only for the number of resources they utilize. Nevertheless, processing 

large-scale graphs in such environments has been less studied and most frameworks are 

implemented on commodity clusters where they will not be charged for the resources that they 

consume. In this chapter, we have developed algorithms to take advantage of resource  
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heterogeneity in cloud environments. Using these algorithms, the system can automatically 

adjust the number and types of virtual machines according to the computation requirements for 

convergent graph applications to improve the performance and reduce the dollar cost of the 

entire operation. Also, a smart profiling mechanism along with a novel dynamic repartitioning 

approach helps to distribute graph partitions expeditiously. It is shown that this method 

outperforms popular frameworks such as Giraph and decreases more than 50% of the dollar 

cost compared to Giraph. 

5.1      Introduction 

RAPH-LIKE data has grown to a very large-scale and it is becoming massively 

critical with the emergence of social networks and Internet of Things (IoT). Many 

other areas and applications such as healthcare, search engines, maps, mobile 

computing and machine learning are also generating and using large-scale graph data. 

Traditional data processing approaches such as MapReduce [56] has been well-

considered for processing large-scale graphs in spite of its initial purpose of operating 

on tuple-based databases, due to its comprehensiveness in big data processing. 

Nevertheless, MapReduce is not suitable for the inherent iterative characteristic of 

graph algorithms. This has led to the development of many specialized graph 

processing systems such as Pregel [148], GraphLab [142] and others [192] [241]. These 

systems can inherently represent and perform efficiently on iterative graph algorithms 

including PageRank [173], shortest path and connected components [96] by developing 

optimizations to specialized graph abstractions. As a result, graph processing systems 

perform significantly better than multi-purpose data flow systems such as MapReduce 

[2]. Recently graph processing application models are also adopted even for stream 

data processing applications [25].  

While it has been shown that graph processing frameworks offer a good level of 

scalability on fast interconnected high-performance computing machines, their 

behavior on “virtualized commodity hardware” which is available to a broader range 

of users is less studied [187]. Cloud computing brought on-demand and scalable 

distributed storage and processing services by which it overcomes challenges and 
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restrictions of traditional computing. Meanwhile, public cloud has become more 

popular by offering services such as infrastructure-as-a-service (IaaS), platform-as-a-

service (PaaS) and software-as-a-service (SaaS). It provides cost scalability by 

facilitating on-demand compute resource provisioning based on its pay-as-you-go 

model where resource access is democratized. However, issues such as the overhead for 

virtualizing infrastructure on a commodity cluster, performing in controlled situations 

and environments, lack of complete control on communication bandwidth and latency 

due to imperfect virtual machine (VM) placement affect the advantages of using such 

systems. Additionally, performance consistency will be affected by multi-tenancy. On 

one side, in some cases, users may value the monetary cost more than reliability or 

performance while selecting a public cloud service. On the other side, while many 

scientific computing need to utilize more than thousands of cores on a high-

performance cluster, the dollar cost of public cloud resources restricts the number to 

tens/hundreds. Therefore, scientific applications that require resources beyond a single 

large server and less than a huge cluster of high-performance nodes can fit the elasticity 

of public clouds. 

Despite the significant impacts of elasticity and cost in cloud environments, 

investigating these features for graph processing systems’ performance on such 

platforms is still a major gap in the literature. Few graph processing frameworks such 

as Pregel.Net  [187] and Surfer [46] are developed to be used on public clouds in order 

to process large graphs but they are investigating only particular characteristics other 

than scalability and monetary cost. For instance, Surfer has offered a latency-based 

graph partitioning approach by which partitions will be placed on workers based on 

their bandwidth while the .Net-based version of Pregel, Pregel.Net, has evaluated the 

influence of Bulk Synchronous Parallel (BSP) model [231] on processing graphs using 

Microsoft Azure public cloud. 

Cloud providers usually provide a wide range of resources including various types 

of virtual machines so customers can choose between resources and find the best 

option to fulfill their requirements with different priorities. In fact, the adoption of 

heterogeneous computing resources (VMs with different configurations) by cloud users 

will permit for promoting the efficiency of resources and hence reducing energy usage 
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and costs. At the moment, none of the existing graph processing frameworks are taking 

advantage of this feature. 

Scalability is another important feature that can help cloud applications to gain 

optimal performance and minimize the cost. iGiraph is a Pregel-like graph processing 

framework which is developed based on Apache Giraph [11] and deploys a scalable 

processing approach on clouds. iGiraph proposes a dynamic repartitioning method to 

decrease the number of VMs during the operation (scalability) by using network 

message traffic pattern to merge or move partitions across workers. It also executes 

faster by reducing network traffic based on its mapping strategy. Therefore, iGiraph 

reduces the cost of processing on public clouds. What distinguishes iGiraph from its 

other counterparts such as Giraph is that not only it proposes methods for faster 

execution and provides better performance, but also offers approaches for the less 

investigated side of such frameworks on public clouds which is the dollar cost of 

resource utilization. However, iGiraph works only with homogeneous resources instead 

of heterogeneous VMs. Since the cost model for cloud service providers is based on 

pay-as-you-go approach, it is very important for customers to choose suitable services 

by considering the factors that affect the cost of various services. 

Distributed graph processing contains a set of iterations in which graph partitions 

will be placed on different machines (workers). The operation continues until the 

expected result is achieved or there are no more vertices to be processed. An effective 

approach to minimize the cost in such system is to provide the best combination of 

resources (appropriate number of resources with the right type) out of the available 

resource pool at any iteration. To utilize the aforementioned capacity of public clouds 

in providing heterogeneous computing resources in the context of large-scale graph 

processing, we have used iGiraph to propose an auto-scaling algorithm for optimizing 

the cost of processing on public clouds. Our approach significantly reduces the 

financial cost of utilizing cloud resources compared to other popular graph processing 

frameworks such as Giraph [11] and ensures faster execution. To the best of our 

knowledge, this work is the first implementation of a graph processing framework for 

scalable use of heterogeneous resources in a cloud environment. This approach is very 

effective when the monetary cost is important for the user. 
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The key contributions of this work are: 

 A new cost-efficient provisioning of heterogeneous resources for convergent 

graph applications 

 A new resource-based auto-scaling algorithm  

 A new characteristic-based dynamic repartitioning method combined with a 

smart process monitoring that allows efficient partitioning of the graph 

across available VMs according to VM types. 

 A new implementation of operation management on the master machine. 

The rest of this chapter is organized as follows: Section 5.2 describes graph 

applications and the proposed auto-scaling method that we use in this chapter. Section 

5.3 explains the scaling policy and how we are going to apply it to the heterogeneous 

resources in a cloud environment for processing large-scale graphs. Section 5.4 explains 

the proposed approaches and algorithms for repartitioning and processing graphs in 

such a heterogeneous environment. The implementation and evaluation of the 

proposed mechanisms are provided in Section 5.5, while related works are studied in 

Section 5.6. Finally, we conclude the chapter and vision our future work in Section 5.7. 

 

5.2      Graph Applications And Auto-Scaling Architecture  

In this section, we discuss in details the applications that we used along with our 

proposed auto-scaling architecture. 

 

5.2.1 Applications 

According to iGiraph (Chapter 3), when it comes to processing, there are two types of 

graph algorithms: 1) non-convergent algorithms, and 2) convergent algorithms. During 

processing a large-scale graph by a non-convergent algorithm such as PageRank [173], 

the number of messages that are being created in every iteration (superstep) is the same 

and will not change until the end of the operation (Fig. 5.1 - c). Basically, PageRank 
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calculates the importance of a web page by counting the number of connections (links) 

from other pages to it. So, more connections mean higher rank for the page. For a 

specific web page P, the value will be measured by receiving the values of all the 

neighboring pages during a processing iteration. This generates almost the same 

number of messages every time and will continue until all the pages update their 

values. The graph never shrinks because vertices are actively sending and receiving 

messages. Therefore, a graph processing framework uses a constant number of 

machines to process a graph using PageRank for the entire operation. 

On the other side, while processing a graph by a convergent algorithm, the number 

of messages that are being generated in the network will start decreasing at some point 

during the operation until the end of processing (Fig. 5.1 – a,b). This is because as the 

more iteration is completing, the more vertices become deactivated (processed) and do 

not need to exchange messages with their neighbors anymore. As a result, once in a 

while within an operation using convergent algorithms, deactivated vertices (processed 

vertices) can be kept outside the memory which means less number (or smaller type) of 

resources will be sufficient for the rest of the processing (remaining vertices). This 

continues until there are no vertices to be processed or the desirable result has been 

achieved. According to this, the processing can be dynamically scalable. Two important 

algorithms in this category are single source shortest path [190] and connected 

components [96] that have been used in many studies. 

 

Figure 5-1 General patterns of the number of messages passing through the network 
during a typical processing show convergence by the end of the operation for (a) CC 
and (b) SSSP, but (c) PageRank is not converged 

Single source shortest path (SSSP): single source shortest path is derived from 

shortest path problem. In a directed graph, the aim of SSSP is to find the shortest path 
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from a given source vertex r to every other vertex v∈ V--{r}. The weight (length) of a 

path p=⟨ v0 , v1 ,…, vk ⟩ is the sum of the weights of its constituent edges: w(p) = ∑ w( 

vi-1 , vi). At the beginning of the algorithm, the distance (value) for all nodes will be set 

to INF (∞) except the source node that will be set to zero (0) (because it has zero 

distance from itself). During the first iteration in a graph processing operation, all 

neighbors of the source node will be updated by receiving its value and update their 

distance values. In the second iteration, the updated neighbors will send their values to 

their own adjacent vertices and this will continue until all vertices in the graph update 

their value and there is no more active node in the graph. Changing the status of 

processed vertices during the operation means, in most cases, we do not need them for 

the rest of processing. Therefore, SSSP is a convergent algorithm. 

Connected components (CC): Connected components algorithm is for detecting 

various sub-graphs in a specific large graph where there is a route between any two 

nodes of the sub-graph but it may not be connected to all nodes in the large graph. A 

highly connected component algorithm starts by setting all graph nodes’ status to 

active. At the start of the computation, each node’s ID will be considered as its initial 

component ID. The component ID can be updated if a smaller component ID is sent to 

the node. Then, the node will send its new value to its neighbors. In this operation, the 

number of messages required to be passed between vertices will reduce as the 

processing progresses. It is because the states of vertices change to inactive during the 

operation. Similar to SSSP, CC is also a convergent algorithm that can be considered for 

our auto-scaling approach. 

We have targeted convergent algorithms in this chapter as they are more suitable for 

scaling scenarios and will show how they can benefit from the heterogeneity of public 

cloud’s resources using our proposed auto-scaling and repartitioning algorithms and 

framework. 

 

5.2.2   Proposed Auto-Scaling System Architecture 

A user can have access to different types of VMs on a public cloud according to his/her 

requirements. If the application is communication-intensive, VMs with larger 

memories and more bandwidth can be utilized and if the application is computation-
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intensive, VMs with more CPU capacity will be more helpful to use. Most distributed 

graph processing frameworks rely only on homogenous implementation and try to 

reduce the cost by speeding up the computation and decreasing the execution time [80] 

[223] [32]. These frameworks consider dedicated clusters in various sizes whereas in 

real world it is not possible for all users to provide such infrastructures. Instead, from a 

user point of view, it is beneficial to use public clouds for large-scale graph processing 

[35]. However, monetary cost is a very important issue in choosing the right service 

from a provider. Issues such as what is the best scaling policy (horizontally or 

vertically) to reduce the cost?, what is the best partitioning method to take advantage of 

more cost-efficient VMs?, how these policies can be applied to a graph processing 

framework?, how to improve the system performance on public cloud?, etc. are very 

important problems that influence the final performance and cost of the processing. To 

enhance the performance of large-scale graph processing on public clouds, first, we 

implement an auto-scaling approach within our graph processing framework to utilize 

the heterogeneity of resources in this environment. 

As shown in Figure 5.2, our proposed auto-scaling system is aware of the states of 

available machines at any moment. The system consists of a monitoring module by 

which it tracks different states of each machine and the network such as the number of 

generated messages, memory utilization, CPU utilization, VM info, etc. There is also a 

decision-making module that decides how to apply the right scaling policy based on 

the information that has gathered about current situations of VMs, network and the 

graph itself. Finally, the partition distributor module distributes the partitions across 

the available VMs according to the computing strategy. All these modules are 

implemented on the master machine that controls the entire processing and partition 

assignments. 

At the end of each superstep, the monitoring module collects various information 

from all workers about the current state of the system, network and the graph and 

passes them to decision making module. Decision-making module compares new 

information with information from the previous superstep and investigates different 

scenarios to replace VMs in order to reduce the cost. For each calculation, the cost of 

iteration i+1 should be equal to or less than the cost of iteration i. If migrating vertices 
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and merged partitions to smaller/less costly VMs decreases the cost of iteration 

compared to the previous iteration, then current VMs will be replaced by new ones. 

Otherwise, the current configuration will be untouched. This module also determines 

the number of VMs that can be replaced and the types of new VMs based on the 

information from monitoring module. Eventually, partition distributor module will be 

notified of the new configuration and distributes new partitions accordingly. 

 

 

5.3      Horizontal Scaling (Step Scaling)  

Horizontal scaling is simply adding more machines to the existing configuration of 

resources. Although scaling happens based on additional needs to new resources, 

adding new machines does not necessarily mean adding more powerful machines. 

Sometimes a large resource needs to be broken down into smaller types and share the 

burden to minimize the cost. When the machines that are added to or removed from a 

pool of resources in a particular configuration are from the same type, the scaling is 

called homogeneous whereas it is called heterogeneous when machines are from 

different types. Scaling also can be upward when new resources (machines) are being 

added to the system or downward when some machines are being removed from it. 

 

Figure 5-2 Proposed auto-scaling architecture 
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iGiraph is an extension of Giraph [11] and the only Pregel-like framework that scales 

down homogeneously across public clouds while processing convergent algorithms 

(Fig. 54 - a). Basic iGiraph does not monitor network factors (except network traffic) or 

VM availability. Its decisions are made based only on the number of generated 

messages in the network, size of the partitions and memory. The idea is to merge small 

partitions from two different machines to make a bigger partition that fits into one 

machine, or migrate border vertices of a partition to another partition to reduce 

message passing ratio between VMs. Although the number of VMs will be reduced in 

this approach, the processing starts and finishes by only using one type of machines 

(e.g. large machines) during the entire operation. 

 
 

(a) iGiraph homogeneous scaling policy 

Figure 5-3 General horizontal scaling policies 
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(b) Our proposed heterogeneous scaling policy 

Figure 5-4Scaling policies for large-scale graph processing using convergent algorithms 
(a) basic iGiraph uses the same VM type during the entire processing, (b) iGiraph-
heterogeneity-aware replaces VMs with smaller/less costly types as the processing 
progresses 

The alternative to make this method even more efficient is to use a combination of 

different VM types. We observed that in many experiments, during final supersteps, 

the last VM (which is usually a large or medium size VM) is larger than what is needed 

to complete the operation and it means that the user is paying for a big machine to 

accomplish a small task. 

To address this issue, we propose a heterogeneous scaling in VM level which is 

specifically appropriate for processing large-scale graphs using convergent algorithms. 

In this method, as the processing continues, the system chooses suitable VM type based 

on the required capacity to host and process the rest of the graph, and partitions it 

accordingly. The new framework can easily be used as a cost-efficient graph processing 

service. Fig. 5.4 compares the original iGiraph homogeneous scaling policy versus our 

proposed policy. 

iGiraph-heterogeneity-aware, unlike basic iGiraph, measures and monitors more 

network factors such as bandwidth and CPU utilization in addition to the network 

traffic. Combining this with other information such as memory utilization, VM states, 

partitioning changes, vertices migration, available VMs, etc. provides the new 

approach with a holistic view of the entire system and the environment that it is 

operating in it which in turn is required to estimate and optimize the cost of 
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processing. Since every processing operation consists of several iterations (supersteps), 

to reduce the overall cost of the processing, the summation of the costs of iterations 

must be decreased. To achieve this, the cost of every iteration should be either equal to 

or less than the cost of its previous iteration. 

 

C(Si+1) ≤ C(Si)                                                             (5.1) 

 

According to Formula 5.1, new VMs can be added and replaced only if the cost of 

new configuration will be less than the cost of the current configuration. C(S) is the cost 

of the superstep. This decision will be made by the decision-making module (Section 

5.2.2). This approach successfully deals with price heterogeneity of the cloud resources 

too as price is one of the variables in the equation. This ensures that not only the 

smaller VMs are being used, but the monetary cost is being considered as well. 

 

5.4      Dynamic Characteristic-Based Repartitioning  

In this section, we discuss the smart VM monitoring and our proposed characteristic-

based dynamic repartitioning approach. 

 

5.4.1   Smart VM Monitoring 

The first step towards a smart partitioning is smart monitoring. A large number of 

existing graph processing frameworks do not measure important environmental factors 

such as network metrics and VM properties. These factors have huge impacts on the 

system’s performance in various manners. For example, monitoring network traffic can 

help to lead communication messages to the channels with less traffic to reduce latency, 

or monitoring available memory and price of VMs enables to choose the right 

machines for hosting partitions in order to increase the performance and reduce the 

cost of processing. In addition, the knowledge that is achieved from monitoring these 

factors can be utilized in helping to design and develop a more efficient framework. 
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Therefore, to better take advantage of aforementioned metrics, we have designed a 

smart monitoring center in the heart of our proposed system, the master machine. The 

reason for centralizing this information on the master is that all decisions can be made 

in one place which leads to more accurate decision-making process. 

There are two types of information that are gathered by our proposed system: 1) The 

information that is generated during the processing which is very dynamic and can 

change over time (such as network traffic, remaining VM memory, etc.), and 2) The 

information that remains unchanged during the entire operation (such as VM price, 

VM total memory capacity, etc). At this stage, the information that is listed in the 

proposed monitoring system includes the network traffic, VM bandwidth, CPU 

utilization, available VM memory and partition sizes. All information will be stored on 

the master machine and updated at the end of each superstep after the synchronization 

barrier occurrence. Having these, the algorithm is able to choose the best approach to 

repartition the graph continuously, scale up by using available heterogeneous resources 

on the cloud and distribute the new partitions accordingly. Meanwhile, selecting the 

appropriate set of information to be used at each step depends on the strategy that is 

defined in the repartitioning algorithm which is usually dependent on the application 

itself. For example, if the application is communication-bound, the algorithm aims to 

reduce the network traffic by repartitioning the graph in a way that high-degree 

vertices will be migrated and placed near their neighbors. This way, a large number of 

messages will be passed in-memory and do not need to travel across the network. The 

communication will speed up as well by mapping new partitions and VMs based on 

their bandwidth. The strategy would change when the application is computation-

bound. These situations have been investigated in Chapter 4. In this chapter, we use 

two convergent communication-bound algorithms: single source shortest path and 

connected components. 

Different mechanisms have been implemented to measure various factors in the 

environment. As discussed in Chapter 3, to measure the network traffic, we calculate 

the number of messages that are passed between partitions in each iteration. This 

measurement also shows us which partitions contain more high-degree border vertices 

which will affect our decision-making strategy. Bandwidth and CPU utilization are two 
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factors which were not measured in basic iGiraph. For measuring the bandwidth 

between each pair of machines, we use an end-to-end mechanism that is utilized in 

[79]. This factor is important because the bandwidth constantly changes in a cloud 

environment. Moreover, since we store one partition on each worker, this evaluation 

gives us the bandwidth between two partitions in the network which in turn can be 

used in the mapping operation. On the other side, we use Ganglia20 monitoring tool to 

obtain CPU utilization and other network metrics. To have a more accurate 

measurement, the percentages of both CPU utilization and CPU idle time is measured. 

CPU idle time is for cases where a small piece of a job consumes a large part of the 

computation resources for a very short amount of time while they are free for the rest 

of the time (Chapter 4). However, in some cases, one small continuous task will be 

running on CPU for a long time. In this situation, the idle time is small while CPU 

utilization is also small. So, only if idle time is small and the CPU utilization is big, the 

VM will not be considered for migration or replacement. The system will consider a 

default threshold of 50% for both CPU utilization and idle time and selects the policy 

based on that. Nevertheless, the user can define the threshold for both variables 

manually too. We also calculate the available capacity of each machine by considering 

the correlation of the sizes of partitions and VMs. Additionally, to avoid making 

monitoring a bottleneck for the performance of the system, changeable information will 

be stored on workers until the synchronous barrier happens and final values will be 

sent to the master only once after every barrier signal. 

Besides factors that are being persistently modified during the processing, there are 

constant factors such as VM properties, prices and types of machines that will not 

change. In fact, they are inherently part of the cloud environment. So, they will be 

stored at the beginning of the operation. The system also will know how many 

machines are available on the network and how much resources they can provide for 

the execution. The resource pool will be considered based on the maximum amount of 

resource requirements by users at the beginning of the processing which later will be 
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optimized during the operation. Another important difference between iGiraph-

heterogeneity-aware and basic iGiraph is that the latter is environment-agnostic and 

did not use any of this information for a better computation. All these information 

alongside the changeable metrics’ information will be stored in a separate file on the 

master machine to be used in the partitioning algorithm. 

 

5.4.2   Dynamic Repartitioning 

 
Algorithm 5.1: Characteristic-based Dynamic Re-partitioning 

1: 
2: 
3: 
4: 
5: 

 
6: 
7: 
8: 

 
9: 

10: 
11: 

 
12: 
13: 
14: 

 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

Get the information about available VMs in the network 
Partition the graph randomly 
Set PP=0 for each partition and WP=0 for each worker 
For the rest of the computation do 
     Calculate PP for each partition based on the number of messages that each 

partition receives 
     Calculate WP for each worker using end-to-end mechanism 
     If global synchronization happened then 
          If Size(Partition P1)<=Size(MemoryOfSmallVM) and  
              Size(Partition P2)<=Size(MemoryOfSmallVM) and Size(Partition 

P1+Partition P2)<=Size(MemoryOfSmallVM) then 
              mergeIntoSmallVM(P1,P2) 
              removeCurrentVM(P1,P2)    
          If Size(P1+P2)>Size(MemoryOfSmallVM) and  
              Size(P1+P2)<=Size(MemoryOfCurrentVM) then 
              mergeIntoCurrentVM(P1,P2) 
              removeCurrentVM( ) 
          If Size(Partition P1) is very small and there is enough space 
             in its adjacent partitions then 
             migrateIntoAdjacent(P1)         
Merge the partitions or migrate vertices if needed 
Set the priorities based on PP and WP 
Add/Remove VMs if needed 
Map partitions(based on PP) and workers(based on WP) 
If VoteToHalt() then 
   Break 

 
To enable and improve the usage of heterogeneous resources, we have proposed a 

characteristic-based repartitioning method. “Characteristic-based repartitioning” here 

means that the system knows the characteristics of the resources and is aware of 

specific statistics (such as network metrics) by which new decisions can be made about 
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partitioning the graph again in a dynamic manner. To achieve this, the algorithm 

contains two major steps: 1) prioritization step, and 2) mapping step. In the 

prioritization step, the algorithm prioritizes partitions and resources based on the 

application requirements before distributing partitions across the network. The 

mapping step is where the algorithm decides how to utilize the available resources. 

As mentioned in section 5.4.1, the static information about the available VMs and 

their types will be stored on the master. This information includes the price, the 

number of cores and memory capacity of each VM along with labeling VMs based on 

their size e.g. small, medium and large. The labeling mechanism increases the speed of 

algorithm when it is making decisions about where to place the new partitions 

(Without a labeling mechanism, the algorithm had to compare VM capacities to find 

out which type they are). In this chapter, the system knows how many machines are 

available in the network (resource pool) and it will be given by a list of information 

before the processing starts. However, to start the processing, the initial number and 

the type of VMs will be given by the user. So, at this step, out of the resource pool, only 

a specific number of VMs will be used to start the processing with. This can be 

considered as a pre-processing operation. Also, in all our experiments in this chapter, at 

the start of the processing, the graph will be partitioned randomly (based on vertices 

identifiers). It has been shown that other well-managed partitioning methods such as 

METIS have better performance compared to the cheap random partitioning (in terms 

of time and cost). Therefore, if we are able to improve the system by using random 

approach, it will work even better when the processing starts with other well-managed 

methods in many cases. The first iteration of processing (superstep 0) ends when the 

global synchronization barrier happens. At this point, the VM monitoring module 

collects the information (changeable information-Section 5.4.1) before the next 

superstep to use them for repartitioning purpose. 

After superstep 0, the algorithm starts prioritizing partitions and VMs according to 

the changes that occurred in the first iteration. It also investigates any scaling 

possibility at the resource level for the next iteration. At this phase, like each partition 

will be given a new label value called Partition Priority (PP) based on the number of 

messages they have received. The PP for the partition that has received the largest 
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number of messages will be set to 0 (PP=0), the PP for the partition that has received 

the second largest number of messages through the network will be set to 1 (PP=1) and 

so on. When a partition receives more messages in comparison with other partitions, it 

means that it contains more high-degree border vertices. Therefore, since the aim is to 

move high-degree vertices closer to their adjacent vertices, this can be considered as a 

candidate for partition merge or vertex migration. With a similar mechanism, all 

worker machines that were used in the operation will be labeled by a Worker Priority 

(WP) label. Because we are using communication-bound application in this chapter 

(computation-bound algorithms will be investigated in our future works), the 

prioritization of workers is based on their bandwidth (not CPU utilization) and 

available memory. So, the WP for the VM with the highest bandwidth will be set to 0 

(WP=0), WP for the VM with the second highest bandwidth will be set to 1 (WP=1) and 

so on. If two partitions or two workers have the same value for prioritization, one of 

them will be given the higher priority randomly. After this phase, because we put one 

partition per VM, the partitions and VMs with the same priority number will be 

mapped to each other. This calculation is fast as all information is gathered during the 

iteration. 

As mentioned above, the system selects VMs of the same type from the resource 

pool based on the user’s requirement.  For example, if partition P1 has higher priority 

than partition P2, after merging these two partitions (P3=P1+P2), P3’s priority will be 

set to the former priority of P1. Meanwhile, the priorities of the new partitions that are 

formed by merging other partitions will be set to the highest priority among existing 

partitions. Also in cases a big VM is splitting into smaller VMs or moving its entire 

assigned partition to a smaller type of VM, the priority of the new VM will be 

calculated the same way as a large VM. The priorities of all partitions and VMs are set 

to 0 at the beginning of the operation (before superstep 0 starts). 

As mentioned, the system starts with the number of VMs that is determined by the 

user. These VMs are part of available VMs in the network (resource pool). The 

operation also starts with the VMs of the same type. For example, if the user set the 

number of VMs to 16, and choose the type medium, then 16 medium VMs will be 

allocated to the processing. Nevertheless, both the number and the type (size) of VMs 
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will change during the execution due to partition merges or vertices’ migrations. The 

aim of merging partitions or migrating vertices is to take high-degree vertices closer to 

their adjacent vertices. This, results in a significant reduction in cross-edges between 

machines which leads to less message transmission throughout the network. When the 

total number of messages that are transferred during the superstep i+1 is less than the 

total amount of the messages that were transferred during superstep i, there is a 

possibility for partition merge. So, as long as the number of messages is increasing, 

partitions cannot merge (e.g. SSSP). After each superstep, if the sum of the size of 

typical partition P1 and partition P2 is less than the memory capacity of a smaller VM 

type, then they will merge and partition (P1+P2) will be moved to the new small VM. If 

(P1+P2) is larger than the memory of small VM, but it can be fit into the memory of one 

of current VM types, they will merge into one VM and the other VM will be removed. 

If some partitions, that are neighbors of a very small partition (a partition that has 

occupied a tiny fraction of a VM memory), have enough space to host the vertices of the 

small partition without needing to employ a new VM, then all vertices of the small 

partition will be distributed among its adjacent partitions. So, there is no need to add a 

new machine. Algorithm 1 shows the characteristic-based dynamic repartitioning. In 

this algorithm, CurrentVM and SmallVM are two representatives of the current 

utilized VM and the smaller VM that partitions and vertices will be migrated or 

merged to, respectively. So, for example, if the CurrentVM is “Large” type, then 

SmallVM can be a “Medium” type and so on. As a result, this algorithm is working for 

any types of VMs. 

5.5    Performance Evaluation 

5.5.1 Experimental Setup 

To evaluate our framework and effectiveness of the proposed algorithms, we utilized 

resources from Australian national cloud infrastructure (NECTAR) [163]. We utilize 

three different VM types for our experiments based on NECTAR VM standard 

categorization: m2.large, m1.medium, and m1.small. Detailed characteristics of utilized 
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VMs are shown in Table 5.1. The reason for using m-type VM is because the algorithms 

that we are using are memory-intensive and using m-type machines provides better 

performance. Since NECTAR does not correlate any price to its infrastructure for 

research use cases, the prices for VMs are put proportionally based on Amazon Web 

Service (AWS) on-demand instance costs in Sydney region according to closest VM 

configurations as an assumption for this work. According to this, NECTAR m2.large 

price is put based on AWS m5.xlarge Linux instance, NECTAR m1.medium price is put 

based on AWS m5.large Linux instance and NECTAR m1.small price is put based on 

AWS t2.small Linux instance. All VMs have NECTAR Ubuntu 14.04 (Trusty) amd64 

installed on them, being placed in the same zone and using the same security policies. . 

We observed that regardless of which region the user chooses VMs from, our solution 

always reduces the monetary cost by the order of magnitude compared to other 

existing frameworks. We use iGiraph with its checkpointing characteristics turned off 

along with Apache Hadoop version 0.20.203.0 and modify that to contain 

heterogeneous auto-scaling policies and architecture. All experiments are run using 17 

machines where one large machine is always the master and workers are a combination 

of medium and small instances. We use shortest path and connected components 

algorithms as two convergent graph algorithms for our experiments. They are good 

representatives of many other algorithms regarding their behavior. We also use three 

real-world datasets of different sizes: YouTube, Amazon, and Pokec and Twitter [125] as 

shown in Table 3.1. 

 

Table 5-1 VM characteristics 

VM Type #Cores RAM Disk 

(root/ephemeral) 

Price/hour 

m2.large  4 12GB 110GB (30/80) $0.24 

m1.medium 2 8GB 70GB (10/60) $0.12 

m1.small 1 4GB 40GB (10/30) $0.0292 
 

 

5.5.2 Evaluation and Results 

We have compared our system and algorithms with Giraph because it is a popular 

open source Pregel-like graph processing framework and is broadly adopted by many 
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companies such as Facebook [49]. We also compared the performance of basic iGiraph 

that scales out homogeneously with our proposed heterogeneous extension of iGiraph 

(iGiraph-Heterogeneity-aware). The size of the messages in all experiments is equal, 

hence the total cost of communication is independent of message size. Instead, the total 

number of messages that are transferring through the network is calculated for cost. In 

addition, one medium VM is almost equal to two small VMs in terms of capacity and 

the power, or we can say each small VM is equal to 0.5 medium VM. We use this when 

we are calculating the number of machines that are being used by the system at any 

moment. For example, 1.5 means that there is one medium VM (1) and one small VM 

(0.5) being used, or 1 can mean either one medium VM or two small VMs (0.5+0.5=1), 

etc. All experiments start with medium VMs as their workers. 

 

 

Figure 5-5 Number of machines during 
processing shortest path on Amazon 

Figure 5-6 Number of machines during 
processing shortest path on YouTube 
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The first group of experiments is conducted for processing various datasets using 

shortest path algorithm. As shown in the above figures, the blue area demonstrates the 

number of VMs that are being used by Giraph wich is correlated with the cost of the 

operation. So, Giraph is the most costly solution among the three systems because it 

Figure 5-7 Number of machines during 
processing shortest path on Pokec 

Figure 5-8 Number of machines during 
processing shortest path on Twitter for 
the first 50 supersteps 

Figure 5-9 Total execution time for 
processing connected components 
algorithm on various datasets 
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uses the same number of machines during the entire operation. Many existing 

distributed graph processing frameworks never reduce the number of resources during 

the processing. On the other hand, as the operation is being progressed and more 

vertices become processed, iGiraph removes unnecessary VMs and distributes the rest 

of partitions on the remaining machines. The red area shows that iGiraph is reducing 

the number of utilized VMs. This declines the cost significantly on a public cloud 

compared to the Giraph. However, basic iGiraph only removes the machines 

homogeneously. It means that if the processing is started by medium machines, it will 

end by medium machines as well despite the VM reduction. In this case, although 

smaller partitions tend to be merged to create a bigger partition that is suitable for the 

current using VMs to optimize VM utilization, there are always situations where a tiny 

partition cannot be merged or migrated but occupies a big VM and all its capacity. To 

address this, iGiraph-Heterogeneity-aware replaces current VMs by smaller one. It has 

been shown that iGiraph-Heterogeneity-aware provides more than 20% cost reduction 

compared to original iGiraph (the green area).  The majority of this cost saving is due to 

removing unnecessary VMs from the list of active VMs or replacing them with smaller 

types. We consider VMs as a package of resources including computation resources, 

storage resources, etc. Hence, removing or downsizing VMs lead to huge cost savings. 

All VM types are correlated with particular prices as shown in Table 5.1. Therefore, as it 

can be seen in the diagrams (Fig. 5.5, 5.7, 5.9) for both basic iGiraph and iGiraph-

heterogeneity-aware, the cost of each superstep is either equal to or less than the cost of 

its previous superstep due to VM elimination or replacement (Section 5.3). However, 

iGiraph-heterogeneity-aware achieves better results by taking advantage of resource 

heterogeneity. As shown in Figures 5.6, 5.8 and 5.10, iGiraph-Heterogeneity-aware even 

completes the processing faster than other two frameworks due to its new partitioning 

approach which distributes partitions based on their characteristics and the properties 

of available machines. Figures 5.11-5.13 show the number and types of machines in each 

iteration. These results that have been generated by putting together the average 

outcomes of 45 runs demonstrate the behavior of our proposed solution and how it 

removes or replaces VMs during the processing. 
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As a result, the total cost of the processing is dependent on the number and the time 

(duration) that a particular type of VM is being utilized during the operation. This is 

shown in Formula 5.2, where C(VMi) is the price of the VM and T(VMi) is the time that 
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Figure 5-10 Resource modification during processing shortest 
path on Amazon 

Figure 5-11 Resource modification during processing 
shortest path on YouTube 

Figure 5-12 Resource modification during processing 
shortest path on Pokec 
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within the VM is used. The equation calculates the cost for all VMs (n) during the 

entire processing iterations (m). 

 

Costfinal = 
0 1

( ( ) ( ))i i

m n

j i

VC TM VM
 

                                            (5.2) 

 

Although data transfer affects the ultimate cost calculation, we did not consider that 

in this equation, but we will take it into consideration for our future works. Table 5.2 

shows the cost comparison for different datasets for shortest path algorithm on each 

framework 

 

Table 5-2 Processing cost for SSSP on different frameworks 

Dataset Giraph PowerGraph LFGraph iGiraph 
iGiraph-

heterogeneity-
aware 

Amazon $0.0133 $0.0118 $0.0107 $0.0082 $0.0064 
YouTube $0.0117 $0.0114 $0.0098 $0.0070 $0.0045 
Pokec $0.0149 $0.0143 $0.0121 $0.0095 $0.0056 
Twitter $8.84 $7.48 $5.61 $4.92 $3.303 

 

 

We carried out similar experiments on connected component algorithm using the 

same datasets. Final results are showing significant improvements and cost saving 

compared to Giraph (Fig. 5.14-5.17). Also, our proposed partitioning method for 

iGiraph-Heterogeneity-aware makes it outperform basic iGiraph up to 20%. Table 5.3 

shows the cost comparison for different datasets for connected components algorithm 

on each framework. 

 
 

Figure 5-13 Number of machines during 
processing connected components on Amazon 
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Figure 5-14 Number of machines during 
processing connected components on 
YouTube 

Figure 5-15 Number of machines during 
processing connected components on Pokec 
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Figure 5-16 Number of machines during 
processing connected components on Twitter 



 

 

156 

 

 
 
 

Table 5-3 Processing cost for CC on different frameworks 

Dataset Giraph PowerGraph LFGraph iGiraph 
iGiraph-

heterogeneity-
aware 

Amazon $0.0138 $0.0116 $0.0110 $0.0062 $0.0051 
YouTube $0.0128 $0.0109 $0.0087 $0.0065 $0.0053 
Pokec $0.0160 $0.0146 $0.0135 $0.0086 $0.0072 
Twitter $8.5 $7.99 $5.78 $4.07 $3.43 

 

 

It should be noted that there is always overheads while migrating or merging 

partitions and vertices across the system. However, the overhead is not very large that 

can affect the total performance of the system. That is because migrating and merging 

usually lead to removing a VM from the list of active resources or replacing that with a 

smaller type. Therefore, this trade-off cannot influence the performance significantly. 

Table 5.4 demonstrates different characteristics of the three systems and the newly 

implemented features. 

 

Figure 5-17 Total execution time for processing 
connected components algorithm on various 
datasets 
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Table 5-4 Comparison of scheduling and resource provisioning algorithms 

Property Giraph iGiraph iGiraph-
heterogeneity-

aware 

Dynamic 
repartitioning 

× √ √ 

Traffic-aware × √ √ 

Bandwidth, CPU, 
environment-
aware 

× × 
√ 

Heterogeneity-
aware 

× × √ 

 

 

5.6      Related Work 

We investigated various factors such as scalability, dynamic partitioning, which are 

studied individually by other works. Scalability is a major concern in many systems. 

Each work has addressed scalability issue in a different way. Pregel-like frameworks 

such as Giraph [11], GPS [195] and GiraphX [220] along with some non-Pregel-like 

frameworks such as Trinity [202], Presto [233] and PowerSwitch [240] argue that a 

distributed architecture can provide better scalability. The system can access as many 

resources as needed to operate and increase the performance. However, these systems 

use other optimizations to deliver better performance as well. GPS [195], for instance, 

introduced a dynamic repartitioning approach by which the partitions will be 

distributed again among faster workers who complete their jobs before other workers 

inside each iteration. This keeps all workers busy all the time during the processing 

and faster workers do not need to wait until slower workers finish their jobs. This 

approach has become possible by utilizing an asynchronous implementation of 

partition distribution inside supersteps. Another system like PowerSwitch [240], 

improves the performance of the system by effectively predicting the proper heuristic 

for each step and switching between synchronous and asynchronous execution states if 

required. iGiraph-heterogeneity-aware provides not only scalability over heterogeneous 

resources, but also is elastic as it provisions in an autonomic way such that at any given 
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time the current demand and resource consumption matches, according to [95]. 

Although distributed graph processing frameworks are developed based on 

commodity cluster environment properties, the situation is different on cloud 

environments, particularly public clouds. There are different pricing models available 

on clouds and users have to pay for the resources that they use. The pay-as-you-go 

model provided by cloud service providers is defined based on this fact. In such 

environment, it is important to reduce the cost of utilizing resources as much as 

possible. Many graph frameworks tried to decrease the cost by executing faster to 

reduce the total runtime so that they can release the resources quicker to pay less. For 

example, Surfer [46] develops a bandwidth-aware repartitioning mechanism by which 

partitions are being placed on workers based on their bandwidth. While only few 

graph processing frameworks are developed to specifically operate in cloud 

environments, iGiraph, which we used in this chapter as one of the benchmarks, is 

using a different strategy. Using its novel dynamic repartitioning approach, iGiraph 

eliminates unnecessary resources during the processing period while operating on 

convergent algorithms which leads to significant cost saving compared to other 

frameworks. Although systems such as GPS [195] and Mizan [118]  implement dynamic 

repartitioning and vertex migration, they do not scale across VMs. It has also been 

shown that iGiraph outperforms frameworks such as popular Giraph while operating 

on non-convergent algorithms like PageRank. It declines the number of messages that 

are passing through the network and executes faster. 

In addition to distributed systems, many graph processing frameworks are 

developed at the scale of a single machine [91] [165] [204]. Since system memories and 

disks have unprecedentedly become large and available on single PCs, these 

frameworks implement mechanisms for processing large-scale graphs without the 

hassle of distributed computing. Solid state drives (SSD) that provide higher speed 

data access compared to hard disk drives (HDD) have made the idea of processing on a 

single server even more promising. GraphChi [127] is one of the firsts in this category. 

It is a vertex-centric framework that offers a parallel sliding window (PSW) which is an 

asynchronous computing method to leverage external memory (disk) and is suitable 

for sparse graphs. Using PSW, GraphChi requires transmitting only a small number of 
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disk-blocks sequentially. PSW’s input is a subset of the graph that is being loaded from 

the disk. It then updates the values on vertices and edges and finally writes the new 

values back on the disk. Systems such as FlashGraph [262] are specifically designed to 

perform on SSDs. In FlashGraph, I/O requests will be merged cautiously to improve 

the throughput and decrease CPU overhead. Despite various optimizations and 

improvements in single-machine-based graph processing frameworks, they are not still 

efficient compared to their distributed counterparts in more sophisticated scenarios 

such as when there are multiple datasets that need to be processed at the same time. 

Finally, dynamic partitioning and network factors are the last two aspects of our 

work in this chapter. Many graph processing frameworks partition the graph at the 

start of operation and never change it again until the end of processing. Nonetheless, 

repartitioning the graph during the operation is becoming more common as the 

system/user can change the partitions’ properties at any time to improve the 

performance. According to [195], a dynamic repartitioning function should be able to 

answer three main questions: 1) Which vertices must be reassigned?, 2) How and when 

to move the reassigned vertices to their new machine?, and 3) How to place the 

reassigned vertices? A framework like GPS [195] repartitions the graph based on using 

high-degree vertices while LogGP [244] does so based on analyzing and reusing “the 

historical statistical information” to rectify the partitioning outcomes. Other systems 

such as Mizan [118], XPregel [222] and xDGP [232] also have used various approaches 

to partition graphs dynamically. Network is another important factor that affects 

partitioning and the processing but it is studied less in the context of graph processing. 

Frank McSherry21 has investigated the impact of fast networks on graph analytics after 

an NSDI paper [172] claimed that the network speed does not make a huge change in 

the processing performance. He showed that under some general conditions, a faster 

network can improve the operation’s efficiency. Chapter 3 has used network factors 

such as bandwidth, traffic, and CPU utilization to partition the graph dynamically. It 

has shown that using a suitable combination of factors will make the system to 

                                                           
 

21http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html 
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outperform frameworks such as Giraph. A detailed comparison of many existing graph 

processing frameworks has been discussed in Chapter 2. 

5.7      Summary 

The amount of data that is being made and stored every day in the form of graph is 

dramatically increasing. Social networks popularity, IoT birth, and mobile applications 

improvements are among the many reasons for this growth. To address the challenges 

in this area, where traditional data processing solutions could not be helpful, graph 

processing frameworks have been developed in the past few years. On the other side, 

cloud computing provides solutions to facilitate large-scale computing and storage. It 

also brings various features such as pay-as-you-go model, elasticity, and scalability to 

the computing. However, cloud-based graph processing and how these features can be 

utilized to streamline operating on large-scale graphs is less investigated. In this 

chapter, a new auto-scaling algorithm is proposed and is plugged into the iGiraph 

framework to reduce the monetary cost of graph processing on public clouds. To 

achieve this, heterogeneous resources have been considered alongside horizontal 

scaling policy. Also, a new characteristic-based dynamic repartitioning approach is 

introduced which distributes new partitions on heterogeneous resources. The 

experiments show that the new mechanism that is called iGiraph-heterogeneity-aware 

reduces the cost of processing significantly and outperforms frameworks such as 

original iGiraph and the famous Giraph. To the best of our knowledge, iGiraph-

heterogeneity-aware is the first implementation of a graph processing framework that 

horizontally scales up using heterogeneous resources in a cloud environment. 
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Chapter 6 

6 Graph Processing-as-a-Service  
 

Large-scale graph data is being generated every day through applications and services such 

as social networks, Internet of Things (IoT), mobile applications, etc. To overcome challenges 

and shortcomings of traditional processing approaches such as MapReduce, several exclusive 

graph processing frameworks have been developed since 2010. However, despite broad 

accessibility of cloud computing paradigm and its useful features namely as elasticity and pay-

as-you-go pricing model, most frameworks are designed for high performance computing 

infrastructure (HPC). There are few graph processing systems that are developed for cloud 

environments but similar to their other counterparts, they also try to improve the performance 

by implementing new computation or communication techniques. In this chapter, for the first 

time, we introduce the large-scale graph processing-as-a-service (GPaaS). The algorithm that 

we introduce for this service consider service level agreement (SLA) requirements and quality 

of service (QoS) for provisioning appropriate combination of resources in order to minimize the 

monetary cost of the operation and also reduces the execution time compared to other graph 

processing frameworks such as popular Giraph. We show that our service significantly 

improves the performance compared to Giraph or other frameworks such as PowerGraph. 

 

 

 

This chapter is partially derived from: 

 Safiollah Heidari and Rajkumar Buyya, “Quality of service (QoS)-driven Resource 

Provisioning for Large-scale Graph Processing in Cloud Computing Environments:  

Graph Processing-as-a-Service (GPaaS)”, Future Generation Computer Systems 

(FGCS), 2018 (Second Review: Minor Revision) 



 

 

163 

 

6.1      Introduction 

ODAY data is an asset and being able to collect, analyze, protect and use big data 

provides companies with critical advantages. Every second huge amount of data 

is being created by various applications such as social networks, Internet of things 

(IoT), mobile Apps, bloggers, and even smart web robots that are using artificial 

intelligent (AI) to produce news. According to [6], during each minute at 2017, 3.3 

million posts were put on Facebook, 3.8 million queries were searched on Google 

search engine, 500 hours of new videos were uploaded on YouTube and 448.800 tweets 

were shared on Twitter. These numbers are almost doubled compared to the amount of 

content was made per minute in 2014. Moreover, a big fraction of generated data is in 

the form of graphs. Graph-shape data encompasses a set of vertices that are connected 

to each other via a set of edges. In a typical social network website, users are vertices 

and friendship relationships between users form the edges of the graph while in an IoT 

environment, sensors are considered as vertices and the connections between sensors 

shape the edges. 

Increasing amount of graph data on one side and proven inefficiency of traditional 

processing approaches such as MapReduce for graphs on the other side [2] resulted in 

the appearance of exclusive large-scale graph processing frameworks. Pregel [148] was 

the first graph processing framework that was introduced by Google in 2010. After 

that, extensive efforts have been conducted in the research community to develop new 

processing frameworks or optimize previous ones. However, most existing works have 

implemented on high performance computing (HPC) environments where the number 

of resources are considered to be unlimited. So, users do not have to deal with other 

complicated scenarios such as lack of sufficient computing resources, limited storage 

space, competitions in order to obtain resources, time limitations, cost limitations, etc. 

that are possible on a distributed environments such as clouds. Based on these 

assumptions, most current works are concentrating on improving different 

components of the system namely as partitioning, computing, communication, and 

I/O. 

T
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Unlike HPC, a cloud environment has more complications as mentioned. 

Nevertheless, HPC is not available for everyone and many small/medium companies 

do not have the resources (budget, professionals, etc.) to own and preserve such 

infrastructure. Hence, researchers have started investigating cloud-based deployments 

recently. Cloud computing is a paradigm of computing that has changed software, 

hardware and datacentres design and implementation. It overcomes restrictions of 

traditional problems in computing by enabling some novel technological and 

economical solutions namely as scalability, elasticity and pay-as-you-go models which 

make service providers free from previous challenges to deliver services to their 

customers. Cloud computing presents computing as a utility that users access various 

services based on their requirements without paying attention to how the service is 

delivered or where it is hosted. It brings many advantages for both service providers 

and service consumers. For example, providers can virtually locate their services at the 

shortest distance to their users and decrease latency of delivering their services, which 

was a problem in traditional computing methods [174]. Because of these benefits, cloud 

computing has got attracted many attentions in recent years. Among the limitations 

that make many current graph processing frameworks not to be suitable for 

deployment in a cloud environment are: 1) they are not able to utilize scalability and 

elasticity capability of cloud environments, 2) they do not consider monetary cost 

(processing cost) as a crucial element in cloud computing, 3) they are not designed to 

take advantage of the heterogeneity of cloud resources which can affect the 

performance of the system, 4) they cannot work efficiently in a dynamic environment 

as clouds where for example network metrics are changing constantly. 

To choose an appropriate service in a cloud environment, the client investigates 

some factors that can affect his/her processing requirements. Factors such as 

processing deadlines, available budget and costs, resource accessibility, etc. are usually 

taken into consideration for service selection. From there, both the service provider and 

the customer negotiate on a service level agreement (SLA) [175] by which the quality of 

service (QoS) will be guaranteed. SLA also determines the conditions of service 

violation, whose responsibility is to respond and how they can be avoided. An 
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important step is to constantly monitor and evaluate the quality of service against pre-

defined factors to ensure that the expected level of quality is provided. 

Increasing growth in graph data which in turn results in raising processing 

demands, and the popularity of cloud computing, led to cloud-based design of graph 

processing frameworks in recent years. However, although few graph processing 

frameworks such as iGiraph (Chapter 3) are developed specifically to take advantage 

of cloud computing features, there is no mechanism to certify the quality of service that 

is provided by these systems on cloud. Current frameworks typically receive a large-

scale graph dataset as input and return the output after completing the processing. 

Nevertheless, different users have different priorities while using a system and when it 

comes to cloud environments, a framework should be able to handle multiple requests. 

Therefore, in this chapter we consider large-scale graph processing, as a service on 

cloud. We used iGiraph to deploy the architecture of our graph processing service on 

it. The new approach provides a service that like any other services on the cloud, 

monitors and maintains the quality of service based on the users’ requirements and the 

submitted service level agreement (SLA) while the user does not need to know the 

details of service implementation to be able to work with it. Our service also makes 

sure that at any given time during execution, an optimized amount of resources are 

provisioned to minimize the monetary cost of processing. To the best of our 

knowledge, this work is the first implementation of a large-scale graph processing 

framework in which we go beyond simply processing a graph to considering it as a 

service that can be used by multiple customers on the cloud. 

The key contributions of this work are: 

 A novel service-based architecture for processing large-scale graphs on cloud 

to monitor and maintain the quality of service 

 A new multi-handling mechanism for multi-graph processing requests  

 A built-in dynamic auto-scaling algorithm that enables scale up and down 

according to the characteristics of different arriving workloads and agreements 
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 A new dynamic repartitioning approach combined with a new mapping 

strategy to improve the resource usability and performance  

The system that we have developed in this work can be used in providing many 

services such as: 1) finding shortest paths between two or more positions in a 

geographical positioning system (GPS) where places are the vertices of a large-scale 

graph and roads are the edges of the graph, 2) finding relevant products by a 

recommendation algorithm to suggest to customers (products and customers are the 

vertices of the graph and relationships are the edges), 3) discovering various patterns 

in graphs and extracting knowledge using pattern matching algorithms, and so on. 

The rest of the chapter is organized as follow: Section 2 is providing the related 

work study by investigating existing research works about large-scale graph 

processing frameworks and the opportunities for them on cloud environments. Section 

3 explains in detail the architecture and workflow of our proposed solution for 

enabling a service-based graph processing. Section 4 describes the novel dynamic 

scalable resource provisioning algorithm by which appropriate amount of resources 

will be provided for every operation based on their requirements. Section 5 provides 

performance evaluation and finally, Section 6 concludes the chapter. 

 

6.2       Related Work 

Since 2010, when Google introduced its graph processing framework called Pregel 

[148], many research works have been conducted to exclusively improve processing of 

graph data structures. Some graph processing systems such as GraphChi [127], 

TurboGraph [91], X-Stream [192] and Grace [236] were developed to enable operating 

based on single-server architecture to operate in-memory. Although, these systems are 

fast and they do not need to be worried about the communication difficulties between 

different nodes as their distributed counterparts, they have other restrictions such as 

limited amount of memory that make them inefficient for more complicated scenarios 
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when the graph is larger than their capacity. On the other side, distributed graph 

processing frameworks such as Mizan [118], PowerGraph [80], GiraphX [220], Trinity 

[202], etc. are designed to overcome these issues. However, there are other challenges 

in distributed environments such as distributed memory, communication, distributed 

processing and so on that make developing such systems more complex. Many of these 

challenges have been investigated in various research works and different solutions 

have been proposed to address them. 

One of the less studied areas for graph processing frameworks is cloud 

environments. Although cloud computing is providing interesting features namely as 

scalability, elasticity and pay-as-you-go billing model by which large-scale processing 

can be accessible for everyone, the majority of research works are conducted on high 

performance computing (HPC) clusters where they assume that the number of 

resources are unlimited, resources are always available and there is no need to pay to 

use the them. The problem is that owning HPC infrastructure to deploy such 

computations is very costly and many small and medium companies or individuals 

cannot afford it [35]. Another issue is that because HPC-based frameworks do not need 

to consider the aforementioned cloud features, they cannot take advantages of their 

benefits. Even few graph processing frameworks such as Surfer [46] and Pregel.Net 

[187] that are developed to be used on clouds are not investigating scalability or 

pricing models. Instead, these systems are trying to reduce the cost of processing by 

providing faster execution so that they can release the resources quicker. For example, 

Surfer is offering a bandwidth-aware graph partitioning algorithm that places 

partitions on VMs according to the VMs’ bandwidth and Prgel.Net is evaluating the 

impact of Bulk Synchronous Parallel (BSP) model [231] on graph processing using 

Microsoft Azure public clod. 

In addition to attempts to improve the performance of processing by ameliorating 

the computing operation, a system such as iGiraph (Chapter 3) is also proposing 

strategies to take advantage of scalability feature of clouds in order to decrease the 

dollar cost. iGiraph is a Pregel-like graph processing framework that is developed 
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based on popular Giraph22. iGiraph is also employing BSP model while it is 

implemented on top of Hadoop23 and is using its distributed file system (HDFS). Since 

cost is a main element for utilizing cloud infrastructure, iGiraph came up with the idea 

of reducing the number of resources dynamically during the processing rather than 

using the same amount of resources for the entire operation. It introduced a dynamic 

repartitioning algorithm that is being applied to the computation at the end of each 

iteration according to the type of application that is being used. iGiraph categorizes 

graph applications into two major categories including 1) non-convergent, 2) 

convergent. When graph data is being processed by a convergent application, the 

vertices that their status has changed to inactive will be eliminated from the memory at 

the end of every superstep. Therefore, the rest of the graph with active vertices might 

be fitted into less number of VMs and spare VMs can be terminated. For non-

convergent applications in which the status of vertices is always active during the 

operation, utilizing high-degree vertices concept assists the computation to be 

completed quicker while reducing the communication cost. 

Scalability and monetary costs have been investigated separately in few other 

research works. For example, Pundir et al. [185] have developed a dynamic 

repartitioning technique based on LFGraph framework [98] in which, similar to 

iGiraph, they aimed to enable scale out/in by minimizing the network overhead and 

migrating vertices between machines. In another work, Li et al. [136] have investigated 

monetary cost of large-scale distributed graph processing on Amazon cloud. Graphic 

processing units (GPUs) have been also utilized in some works such as [63], where 

authors are improving the performance of the system by distributing the computation 

among GPUs to boost the computation speed while others such as [246] are evaluating 

the performance of single-node frameworks on cloud environments. Table 6.1 shows 

the comparison of the most related works. 

                                                           
 

22 https://giraph.apache.org/ 
23 https://hadoop.apache.org/ 
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Table 6-1 Comparison of the most related works in the literature 

System Architecture 
Implemented 
Environment 

Partitioning 
Method 

Resource-
aware 

Scalability 
QoS-

aware 

Pregel  Distributed HPC Static No No No 

Giraph  Distributed HPC Static No No No 

PowerGraph Distributed HPC Static No No No 

GPS  Distributed HPC Dynamic No No No 

Pregel.Net  Distributed Cloud Dynamic No No No 

Surfer  Distributed Cloud Dynamic No No No 

iGiraph  Distributed Cloud Dynamic Yes Only 
Scale-in 

No 

Our work - 
GPaaS 

Distributed Cloud Dynamic Yes Scale-
in/out 

Yes 

 

Despite the specific development of cloud-based graph processing frameworks, they 

have never been considered to provide processing as a service on cloud infrastructure. 

This even make the implementation of graph processing systems harder because there 

will be new parameters that need to be taken into consideration for delivering an 

acceptable service [242]. Parameters namely as response time, throughput, cost, etc. are 

usually negotiated in SLA between the customer and cloud provider to ensure the 

quality of the provided service. According to Ardagna et al. [18], “Quality of service 

(QoS) is the problem of allocating resources to the application to guarantee a service 

level along dimensions such as performance, availability and reliability”. QoS in cloud 

computing has been investigated well in many research works and various techniques 

have been proposed to monitor and maintain the quality of the service in different 

platforms [149] [157] [130]. However, in order to addressing QoS challenges in the 

context of large-scale graph processing, every solution needs to meet specific 

requirements due to the inherent characteristics of highly connected graph data. in this 

chapter, we are providing a graph processing as a service framework based on our 

latest version of iGiraph that discussed in Chapter 3. This service enables multiple 

users to submit their graph processing requests to the system, while the system 

considers their preferred QoS parameters and provides the best combination of 

resources to meet the pre-defined requirements. 
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6.3       Overview of the Proposed Solution 

Figure 6.1 and 6.2 show the workflow and architecture of our proposed solution, 

respectively. As can be seen in the picture, the system contains seven different 

functionality modules that are depicted by seven different colors. These modules 

include: 1) Users, 2) Repositories, 3) Priority queue, 4) Monitoring, 5) Management, 6) 

Partitioning, and 7) Computation. Each functionality module comprises a couple of 

components and is responsible for accomplishing different function while it has input 

from/output to other parts of the system. Our proposed solution: 1) enables multiple 

users to apply their jobs at the same time for processing (unlike all other existing 

frameworks that only accept one job at a time), 2) enables users to submit their QoS 

requirement for each job (none of existing systems can do so), 3) introduces a new 

complex workflow to handle intertwined requests, 4) utilizes the heterogeneity of 

cloud resources with graph algorithm characteristics to reduce the monetary cost of 

processing, 5) considers various important metrics to adjust dynamic repartitioning in 

order to meet QoS requirements, 6) can handle multiple scenarios of different job 

requirements. Here, we explain each zone and its components in detail. 

 

Figure 6-1 The workflow of our proposed solution (GPaaS) 
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Figure 6-2 The components that we added to our work in Chapter 5 are shown in 
dotted rectangles 

 

6.3.1 Users 

Users provide the input to the system. Each user has to enter two objects into the 

framework: 1) a large-scale workload or dataset that contains the graph data, and 2) a 

list of QoS requirements that are derived from the negotiated SLA between customer 

and service provider. In this chapter, we discuss two factors for QoS and develop 

algorithms to manage these factors: a) budget and price, b) processing time and 

deadline. Cloud computing features enable us to supply sufficient amount of resources 

to manage various situations. Cloud providers usually provide a broad range of 

resources with various characteristics that can be mixed to deal with more complicated 

requirements and scenarios. For example, if a user has low budget to spend, but he has 

no deadline for his processing request to be completed, cheaper virtual machines 

(VMs) can be assigned to his request. Instead, if a user has strict deadline but no 

budget restriction, more powerful VMs can be dedicated to his request for meeting the 

deadline properly. In order to provide the user with a prioritization mechanism which 

helps him to demonstrate his preferences over each QoS requirement, two priority 

statuses have been defined: a) Urgent, b) Normal. Urgent refers to the immediacy of a 

request execution which in turn mentions the execution time. Meanwhile, requests 

with Normal priority compete over low price. Therefore, the user defines the priority 
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of his job by providing his preferred priority status while submitting his request to the 

system. 

6.3.2 Repositories 

There are two main repositories in the system. QoS requirements repository includes a 

set of pre-defined quality conditions and constrains namely as execution time, 

execution cost, availability, throughput, energy, reliability, etc. In this chapter, we 

consider two important QoS factors including execution time and execution cost. 

Resource information repository contains the information about all the available 

resources in the resource pool. For instance, for a typical VM, information such as 

number of cores, memory capacity, usage cost, networks speed, etc. are stored in the 

repository. Having this information helps the system to make decision about which 

resources and how they can be mixed to meet the quality of service (time and cost) 

properly for a specific request. 

6.3.3 Priority Queue 

This module comprises two components. As mentioned above, each workload will be 

submitted with a set of QoS requirements and a priority status. The whole submission 

is called a Job in this system. All jobs will be stored in the workload queue where 

priority analyser analyses the priority of each job and reorders them to be processed 

according to their priority compared to other jobs. Jobs with urgent priority are time 

constrained with deadline and usually need to be processed before other jobs. So, the 

first step is to prioritize urgent jobs over normal ones. Next step is to find the execution 

priority among urgent jobs since there might be more than one urgent job in the queue. 

In order to do so, a simple version of Knapsack algorithm is employed by which urgent 

jobs will be prioritized based on their required execution time and deadline. Moreover, 

jobs with normal priority will be processed based on a first in first out (FIFO) strategy. 

The prioritization procedure occurs every time a new job is submitted to the system. 

However, this might keep some jobs with normal priority in the queue forever because 

urgent jobs are being submitted constantly. To avoid this, we assign each normal job 

with a timestamp based on its required execution time (deadline). When the timestamp 
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run out, the job will be considered and treated as an urgent job. This makes sure that 

no job will be trapped in the queue forever. Algorithm 1 demonstrates the described 

prioritization mechanism. 

Algorithm 6.1: Prioritization algorithm 
1: 
2: 
3: 

 
4: 
5: 

 
6: 
7: 
8: 
9: 

Queue == receiveInput (Job) 
For the entire Queue do 
      If (getPriority(Job i) == NORMAL) and (getPriority(Job i+1) == URGENT) 
then 
            swap(Job i, Job i+1) 
       If (getPriority(Job i) == URGENT) and (getPriority(Job i+1) == URGENT) 
then 
            knapsackJob(Job i, Job i+1) 
For any suspendedJob(Job i) in the Queue do 
       If (priorityTime(Job i) == (Job i).Deadline) then 
           setPriority(Job i) = URGENT 

 

6.3.4 Monitoring Module 

This module is responsible to constantly monitor the system and measure various 

metrics that can be used in each processing based on its requirements. The input to this 

module is coming from the computation module where the actual graph processing 

operation happens. This is because it is very important to track every changes that 

might affect the processing and use the metrics to enhance the operation. Therefore, the 

output from monitoring module goes to management module where metrics will be 

used in the decision making and dynamic scheduling processes for the next step. 

Inputs and outputs of this module will be exchanged after each superstep i and before 

superstep i+1. Moreover, this is the only module in our proposed solution that is 

partially implemented on worker machines. The reason is that its components need to 

gather information from workers during the execution. All other modules are 

implemented on the master machine. Monitoring module contains the following 

components: 

- Resource monitoring: It is very critical to know about the amount of resources 

that are available in the resource pool at any moment along with their 

characteristics. So, this component is placed in the intersection of resource 

information repository and the computation module to be able to provide a 
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holistic view of the resource usage situations. It is aware of the amounts and 

properties of all resources in the repository while it is monitoring the changes 

that occur to resources that are being used in the operation. The information 

that this component gathers from the computation part includes: the CPU 

capacity, memory capacity, monetary cost, VM type, etc.  

- Network KPI Aggregator: This component monitors network factors such as 

network traffic, bandwidth, latency, topology, etc. In this chapter, we are using 

two major factors including traffic and bandwidth in our dynamic 

repartitioning algorithm. We are using the method that is introduced in 

Chapter 4. Network KPI aggregator component gathers information from the 

computation module and passes them to the decision making component. 

- QoS Monitor: As mentioned before, every job in the system is submitted with a 

list of SLA requirements which in this chapter comprises the customer’s 

preferred time and dollar cost. Using this information, the system tries to 

provision the best combination of resources for each job to maintain the quality 

of service. Like other components in this module, QoS monitor components 

also receives the input from computation module by watching the mixture of 

VMs and the execution time of each superstep. It then passes the information to 

decision making component where various provisioning possibilities will be 

assessed. 

6.3.5 Management Module 

Management module is the heart of the system in our proposed architecture. This 

module is responsible for scheduling the tasks and provisioning the best combination 

of resources in a way that each job can meet its SLA requirements while ensuring the 

QoS. It is also responsible to minimize the occurrence of service violation as much as 

possible. This module collects information from all other modules in the architecture 

directly or indirectly which enables it to have a comprehensive view on what is 

happening in the system and the status of other parts. Having such a comprehensive 

view is a critical pre-requisite for making optimized decisions. All the outputs from 
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this module also directly affect the partitioning module. Management module includes 

three main components as follow: 

- Dynamic Scheduler: Since a cloud provider has to provide services for many 

users in a cloud computing environment, resources need to be scheduled 

efficiently to achieve maximum profit. Dynamic scheduler component first 

becomes active as soon as a job is coming out of the queue to schedule the 

primary amount of resources for the processing. The number of initial resources 

will be determined by the user. However, to better utilize the resources, 

dynamic scheduler takes the size of the submitted dataset and QoS 

requirements into consideration to select best VM type to start with (Algorithm 

2 – Line 1-4). At the beginning of the processing, all VMs will be from the same 

type. Later during the processing, dynamic scheduler receives the information 

about the changes in the system from another component in the management 

module called decision maker. This information will be obtained during the 

intervals between supersteps and will be used to dynamically re-schedule the 

resources. 

Algorithm 6.2: Dynamic Scheduler 
1: 
2: 
3: 
4: 
5: 
6: 
7: 

InitialVMs = userInitialVMs(UserVMs) 
VMMemory = DatasetSize/InitialVMs 
VMType = bringVMWithMemory(VMMemory) 
startVM(VMType, InitialVM) 
For Superstep1 to the end of computation do 
      NewInfo = receiveInfo(DesisionMakerVMList) 
      matchVMWith(NewInfo) 

 

- Policy Selector: Original iGiraph (Chapter 3) and its extended network-aware 

version (Chapter 4) provided a general categorization for various processing 

environments on clouds and different graph algorithms. This is shown in 

Figure 5.3. Depends on what algorithm is being used for the processing, the 

user will choose the proper policy for his application while submitting his job. 

Policy selector component selects the appropriate approach for re-partitioning 

the graph and informs the system. For example, if the algorithm is convergent 
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and the environment is communicational-intensive, policy selector will pick up 

a traffic-and-bandwidth-aware  strategy for repartitioning. 

-  Decision Maker: To help dynamic scheduler with the provisioning of 

appropriate resources, decision maker component provides a holistic view of 

the system’s state at any given moment. It collects data from monitoring 

module which in turn includes three components. According to the collected 

data, the system will learn about the available resources and their 

characteristics, network situation, possible service violations, etc. by which it 

can intelligently make decision about the amount of resources that is needed for 

the rest of the operation. Information will be sent to decision maker during the 

intervals between supersteps. The output of this component will be sent to 

partitioning module and dynamic scheduler. 

6.3.6 Partitioning Module 

This module is responsible for partitioning the graph into smaller jobs and distributes 

them across the allocated machines. Proper partitioning is the key to improve the 

performance and speed up the execution in a graph system. Similarly, when graph 

processing is being provided as a service, suitable partitioning can help to meet the 

quality of service. However, in the literature, several mechanisms have been proposed 

for graph partitioning and each tries to increase the efficiency (Chapter 2). The inputs 

for this module are all coming from the management module which shows that the 

resources have been provisioned for computation and partitioning should consider the 

limitations. Partitioning module comprises three components: 

- Initial Partitioner: When a user submits a job, it will be waiting in the priority 

queue until its priority is higher than other jobs. Then, it will be passed to 

dynamic scheduler and policy selector, respectively. At this stage, initial 

resources have been allocated to the processing and the large graph needs to be 

partitioned and distributed across the machines. Initial partitioning will be 

applied to the graph only before the first superstep. The approach for initial 

partitioning in this chapter is a simple random partitioning which is a hash 
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function on vertex IDs. However, the user can replace the simple initial 

partitioning with more complicated one such as METIS [116] to improve the 

performance even more. 

- Dynamic Re-partitioner: Unlike initial partitioning that is statistic and happens 

only at the start of the processing, dynamic re-partitioning changes the 

partitioning of the graph multiple times during the operation. The aim of 

dynamic re-partitioning is to match the size and number of partitions with the 

allocated resources based on graph modification. The core of our dynamic 

repartitioning algorithm in this work is coming from our other work in which 

we employed a characteristic-based repartitioning to take advantage of 

heterogeneous resources on cloud environments (Chapter 5). This allows us to 

achieve better performance with less monetary cost compared to other 

frameworks such as popular Giraph.  

- Partition Distributor: When partitions are ready, they need to be distributed 

across the machines. Entry data to this component might come from the initial 

partitioner if it is before the first superstep or they can come from dynamic re-

partitioning component after the first iteration. The output from this 

component goes to computation module which means that the computation 

function will be executed on all allocated worker nodes. 

6.3.7 Computation Module 

Computation module is the computation function that will be executed on graph 

vertices. This module does not have additional components like other modules. It 

receives the partitions from the partitioning module and applies the compute() 

function on them. So, this function is being implemented on each worker machine. The 

output of this module is metric measurements that will be passed to the monitoring 

module. Depending on the graph algorithm, status of vertices might change to inactive 

or may remain intact. 
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6.4       Dynamic Scalable Resource Provisioning 

To ensure that a service is responding properly to SLA requirements for each request, 

it should be able to employ flexibility for resource provisioning and processing. In this 

section, we discuss the first multi-handling resource provisioning algorithm for a 

graph service. In our framework, “dynamic resource provisioning” belongs to the 

management module and receives inputs from various modules. Our experiments 

show that using this approach, adequate amount of resources will be assigned to 

processing jobs and enables them to meet their pre-defined QoS. 

Different jobs with different priorities and requirements will be sent to the graph 

processing service and they will be processed based on their priorities one after the 

other. However, there are situations in which while a job is being processed in the 

system, another job with a strict deadline or higher priority arrives and need to be 

processed as soon as possible. In a typical scenario, imagine job A with Normal priority 

is being assigned a number of resources and it is being processed in the system. 

Suddenly, job B with Urgent priority arrives and makes a request for the service. One 

solution for dealing with this situation is to make the later request to wait until the 

ongoing processing is finished. In this approach, the urgent request will miss the 

deadline whereas a possible SLA violation might happen and the service will not be 

efficient at all. 

Another solution, which we implemented in this chapter for our service, is to stop 

the processing, take the less urgent job out of the system and start processing the more 

urgent job. After completion of the urgent job, the previous job will be brought back to 

the system to continue its processing from where it was stopped. However, there are 

some questions that need to be answered here: 1) what will happen to the resources 

that were being used by the former processing?, 2) how the new processing will receive 

enough resources to ensure that the requirements will be met?, 3) can we utilize the 

already existing resources from the previous operation for the new processing?, and 4) 

do we need to restore the same resources for the less urgent job as the ones it was 

assigned before being stopped? 
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Algorithm 3 demonstrates our proposed dynamic scalable resource provisioning 

mechanism. According to this algorithm, if the priority of the ongoing job in the system 

is more than the priority of the arriving job, it continues processing. But, if the priority 

of the arriving job is more than the priority of the ongoing job, then system exchanges 

the jobs. In this situation, if the applied graph algorithm to the current ongoing job is 

convergent type, in which the status of processed vertices will change to inactive and 

vertices will be removed from the memory, remaining active vertices in the processing 

will be moved back to the queue. If the applied graph algorithm is non-convergent 

type which does not change the status of vertices, the whole dataset will be moved 

back to the queue. Then, the new urgent job will be taken from the queue to be loaded 

for processing. At this phase, instead of terminating the resources from the previous 

processing, the dynamic scheduler calculates the capacity of existing resources in terms 

of VM types, available memory, available computation power, etc. Meanwhile, it 

knows the size of arriving job, its QoS criteria, and the number of resources that is 

ordered by the user at the job submission stage. Following situations are considered in 

order to provision resources for the new processing job. 

1) If the new dataset is small and current resources can handle the SLA 

requirements, then there is no need for employing new resources.  

2) If the size of the dataset is big, and the type of current resources is appropriate, 

then more machines will be employed to reach the resource needs. So, we have 

a combination of old and new resources that are assigned to the new operation. 

For example, if there are 3 medium VMs left from the previous processing and 

system learns that 7 medium VMs are needed for the new operation, it only 

needs to employ 4 more medium VMs 

(3mediumold+4mediumnew=7mediumrequired).  

3) If only parts of the existing resources are usable for the new operation, system 

will keep those VMs and removes the inappropriate ones. Afterwards, it 

repeats the previous step (step 2). For example, if 4 medium and 2 small VMs 

are left from the previous operation and the system learns that the new 

operation needs 10 medium VMs to meet the SLA requirements, it terminates 2 
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small VMs and employs 6 new medium VMs ((4mediumold-

2smallold)+6mediumnew=10mediumrequired). 

4) If any of the remaining VMs from the previous operation are not suitable for 

the needs of the new operation, then all of them will be terminated and new 

appropriate resources will be employed for the new operation. 

As can be seen in Algorithm 3 and the described scenarios, our algorithm can both 

scale up and scale down for provisioning resources. It should be considered that all the 

operations in this chapter will be started with the same VM type. So, if the system 

learns that for example large VM type is suitable for processing, then all VMs at the 

beginning of the processing will be large type whereas if system learns that medium 

VM type is better, then all VMs at the start of the processing will be medium type. We 

will investigate more complicated scenarios such as starting the operation using a 

combination of different VM types (for example combination of large and medium 

VMs) in our future works. 

Algorithm 6.3: Dynamic scalable resource provisioning 

1: 
 

2: 
3: 

 
4: 
5: 

 
6: 
7: 

 
8: 
9: 

10: 
11: 
12: 
13: 

 
14: 
15: 

If ((getPriority(CurrentJob)==URGENT) and 
(getPriority(ArrivingJob)==NORMAL)) then 
      continueWithNoChange() 
If ((getPriority(CurrentJob)==NORMAL) and 
(getPriority(ArrivingJob)==URGENT)) then 
      backToQueue(CurentJob.ActiveVertex) 
      If (currentVMMemory(AvailableVMs)==DatasetSize) and 
(AvailableVMs<InitialVM) then 
            continueWithCurrentConfig() 
      If (currentVMMemory(AvailableVMs)<DatasetSize) and 
(AvailableVMs<InitialVM) then 
            onlyKeepVM(VMType) 
            update(AvailableVMs) 
            NeededVMs = InitialVM – AvailableVMs 
            Start(VMType , NeededVMs) 
            executeWithNewConfig() 
       If (currentVMMemory(AvailableVMs)>DatasetSize) and 
(AvailableVMs>InitialVM) then 
            onlyKeepVM(VMType) 
            update(AvailableVMs) 
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6.5       Performance Evaluation 

6.5.1  Experimental Setup 

To evaluate our framework and effectiveness of the proposed algorithms, we utilized 

resources from Australian national cloud infrastructure (NECTAR) [163]. We utilize 

three different VM types for our experiments based on NECTAR VM standard 

categorization: m2.large, m1.medium, and m1.small. Detailed characteristics of utilized 

VMs are shown in Table 5.1. The reason for using m-type VM is because the algorithms 

that we are using are memory-intensive and using m-type machines provides better 

performance. Since NECTAR does not correlate any price to its infrastructure for 

research use cases, the prices for VMs are put proportionally based on Amazon Web 

Service (AWS) on-demand instance costs in Sydney region according to closest VM 

configurations as an assumption for this work. According to this, NECTAR m2.large 

price is put based on AWS m5.xlarge Linux instance, NECTAR m1.medium price is put 

based on AWS m5.large Linux instance and NECTAR m1.small price is put based on 

AWS t2.small Linux instance. All VMs have NECTAR Ubuntu 14.04 (Trusty) amd64 

installed on them, being placed in the same zone and using the same security policies. 

We use iGiraph (Chapter 3) with its checkpointing characteristics turned off along with 

Apache Hadoop version 0.20.203.0 and modify that to contain heterogeneous auto-

scaling policies and architecture. All experiments are run using 17 machines where one 

large machine is always the master and workers are a combination of medium and 

small instances. We use single source shortest path (SSSP) and PageRank (PR) 

algorithms as representatives of convergent and non-convergent graph algorithms 

respectively for our experiments. They are good representatives of many other 

algorithms regarding their behavior. We also use three real-world datasets of different 

sizes: YouTube, Amazon, and Pokec [125] as shown in Table 3.1. 

6.5.2 Evaluation and Results 

We have compared our systems and algorithms with Giraph because it is a popular 

open-source Pregel-like graph processing framework and is broadly adopted by many 

companies such as Facebook [49]. To evaluate different scenarios by our service, we 
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have provided various workloads and jobs by combining the datasets from Table 2 

with different characteristics. Table 3 demonstrates input jobs and the order of inputs 

along with their properties. 

Table 6-2 Input scenarios for evaluation 

Scenarios Dataset Input 
Order 

Priority Submission 
Time (s) 

Deadline 
(s) 

Number 
of Initial 

VMs 

Algorithm 

Scenario 1 YouTube 1 Normal 0 30 16 SSSP 

Amazon 2 Normal 5 80 8 PR 

Pokec 3 Normal 7 110 16 SSSP 

Scenario 2 Amazon 1 Normal 0 50 16 SSSP 

YouTube 2 Urgent 6 30 16 SSSP 

Pokec 3 Urgent 8 80 8 PR 

Amazon 4 Normal 15 110 8 PR 

Scenario 3 Pokec 1 Urgent 0 60 8 SSSP 

YouTube 2 Urgent 1 30 16 SSSP 

Amazon 3 Normal 12 130 16 PR 

YouTube 4 Urgent 15 90 16 SSSP 
 

Scenario 1: This is the simplest situation in which all jobs in the queue have the same 

priority as “normal”. In this situation, deadline is not very important for the 

processing, so all jobs will be executed by a first-in-first-out (FIFO) approach and it is 

fine if any deadline was missed. However, as can be seen in Figure 6.3, the cost of 

processing in our service is much less than conducting it on a popular framework as 

Giraph. The reason is that our service scales up and down to provision the best 

combination of resources for the processing while Giraph uses the same amount of 

resources for the entire operation. Note that in processing graphs by PageRank 

algorithm, the number of VMs for both Giraph and our service is the same because 

PageRank is a non-convergent algorithm. We also consider up to 20 supersteps for 

PageRank algorithm in all our experiences. In our future research work, we will find 

the best combination to reorder the queue in case if deadlines are different so jobs will 

be processed to meet their deadline as well.  
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Figure 6-3 Scenario1 

Scenario 2: In this situation a combination of “normal” and “urgent” jobs are 

arriving to the service for processing. According to Algorithm 1 and Algorithm 3, 

when a normal job is getting processed, it should be replaced by the urgent job as soon 

as such job is arrived to the system. Nevertheless, the normal job cannot wait in the 

queue forever only because urgent jobs are being submitted constantly. To resolve this 

situation, when the normal job goes back to the queue to be replaced by an urgent job, 

a deadline will be set for it so that its priority will change to urgent when the deadline 

arrives. Figure 6.4 shows how this scenario works and Figure 6.5 demonstrates the 

scenario in which Giraph follows the job order and depicts what is happening in 

reality. 
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Figure 6-4 Scenario 2 – Price(#VMs) Comparison 

 
Figure 6-5 Scenario 2 – If Giraph follows the job order 

 

Scenario 3: In this scenario, jobs are different in terms of their deadline. So, when 

two jobs with the same urgent priority arrive, the one with closer deadline will be 

processed first. Figure 6.6 shows the processing order in this scenario and compares 

that with Giraph. 
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Figure 6-6 Scenario 3 

We conducted the same experiments on PowerGraph, an edge-centric distributed 

graph processing framework. PoweGraph outperforms Giraph due to its vertex-cut 

strategy and implemented optimizations to speed up the execution on natural graphs 

with “highly skewed power-law degree distributions”. However, its processing pattern 

is the same as Giraph as shown in Figures 6.3 to 6.6 while performing under various 

scenarios. The reason is that, like Giraph, PowerGraph does not have any priority 

recognition or other mechanisms to distinguish between the priorities of different jobs. 

So, it executes jobs based on first-in-first-out (FIFO) approach. Similarly, it does not 

distinguish between different graph algorithms’ behaviour (convergent, non-

convergent, etc.), hence it cannot utilize the resources efficiently. 

Figure 6.7 demonstrates the execution time in our service against Giraph and 

PowerGraph for each scenario. It shows that our proposed service completes faster 

than both Giraph and PowerGraph due to its dynamic resource provisioning and 

scheduling. GPaaS also eliminates overheads for manual job submissions after each 

process completion. It reduces the cost even more because resources will be released 

quicker. In Table 6, monetary cost of each scenario in three different systems are being 

compared. It shows that using GPaaS, the user has to pay much less (more than 40% 

less in some cases) for performing the same job when compared to Giraph and 

PowerGraph. Whereas, using PowerGraph can save more money than Giraph due to 

its faster execution. The cost here is calculated based on the amount of time that 
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various resources have been utilized in each system. In both Giraph and PowerGraph, 

the number of provisioned machines remains the same during the entire processing 

which is a very expensive approach while there is no need to keep all machines in use 

if the behaviour of the algorithm and operation characteristics are considered. The 

number and configurations of utilized resources (machines) in GPaaS are being 

updated regularly to obtain the efficient combination of VMs in order to minimize the 

cost. 

Table 6-3 Processing cost for each scenario in different systems 

 Giraph PowerGraph GPaaS 

Scenario 1 $0.0399 $0.0302 $0.0185 

Scenario 2 $0.0532 $0.0483 $0.0342 

Scenario 3 $0.0516 $0.0428 $0.0294 
 

 
Figure 6-7 Total execution time per scenario 

6.6       Sumary 

Many applications such as social networks, mobile applications, IoT devices and 

applications, etc. are generating huge amount of data which a considerable fraction of 

it is graph data. It has been proven that traditional processing solutions such as 

MapReduce does not work efficiently with graph data due to their inherent properties. 

So, many graph processing frameworks are developed to address the challenges of 

large-scale graph processing. However, many of these frameworks are designed to 

operate on HPC environments rather than clouds. Since HPC infrastructure is not 
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available to everyone cloud computing is a suitable candidate for implementing the 

frameworks on as it can be accessible easier. Cloud computing is offering 

unprecedented features such as elasticity and pay-as-you-go billing model that can be 

utilized to improve processing operations’ performance even more. Although, few 

research works developed graph processing frameworks exclusively to be used on 

cloud environments, they have many limitations and cannot guarantee the quality of 

services as it is expected in negotiated SLA between cloud provider and clients. In this 

chapter, we have proposed the first large-scale graph processing service on cloud. 

Unlike graph processing frameworks, our service can handle multiple processing 

requests while it considers each request’s priorities and requirements to avoid SLA 

violations. Our proposed architecture and algorithms such as dynamic scheduling and 

dynamic resource provisioning make it possible to utilize the heterogeneous cloud 

resources efficiently in order to respond the requests. Our evaluation results showed 

that our service can handle graph processing requests successfully to a high extent. We 

showed that GPaaS can minimize the monetary cost more than 40% by utilizing 

resources intelligently and executes faster when compared with Giraph and 

PowerGraph- two popular distributed graph processing frameworks. This means that 

customers can save a lot of money and time while the quality of service is being 

maintained. GPaaS can be used for a wide range of applications such as finding 

shortest path in GPS systems, recommendation systems, pattern recognition, 

knowledge extraction, etc. 
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Chapter 7 

7 Conclusions and Future Directions 
 

This chapter concludes the presented research works’ contributions about cost-efficient 

resource provisioning in distributed graph processing systems in cloud environments. This 

clearly shows the additive approach of the thesis in developing its proposed solutions for the 

identified problem in the first chapter. Summarizing the findings also results in identifying 

promising research directions to be explored In the future.  

7.1      Conclusions and Discussion 

ARGE-SCALE graph processing has attracted a lot of attention since the 

appearance of its new exclusive frameworks in 2010. Although the age of big data 

began many years before 2010, traditional processing solutions such as MapReduce 

were shown not to be working efficiently on highly connected data structures such as 

graphs. This was due to the inherent characteristics of graphs and the infrastructures  
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where operations were conducting on. Meanwhile, cloud computing and its 

comprehensive features for addressing various processing challenges became very 

popular. Cloud computing is committed to supply seemingly endless storage space 

and computing resources via subscription-based services. This enables the users 

(clients) to scale up and down the amount of resources they are willing to utilize while 

the pay-as-you-go billing model allows the cloud providers to charge them on a usage 

basis similar to other utilities namely as electricity, gas and water. However, despite all 

the benefits that cloud computing provides, most distributed graph processing systems 

are designed and implemented on high performance computing (HPC) clusters where 

the complexity of usage billing, elasticity, etc. of cloud environments are not applied. 

Unlike HPC environment where several research works have extensively 

investigated graph processing frameworks on, the impact of implementing such 

systems in cloud environments and how they can take advantage of various features 

there have been less studied. In this thesis, we conducted a comprehensive survey to 

find the gaps in the literature and then proposed several algorithms and techniques to 

overcome the issues related to cost-efficient resource provisioning and scheduling of 

graph processing systems in the cloud. We also implemented all the proposed 

solutions within our extended version of Giraph framework and called it iGiraph. To 

clarify the challenges in this area, Chapter 1 discusses some research problems and 

highlights five major issues which are targeted by this thesis in order to provide cost-

efficient resource scheduling algorithms – scalability, partitioning, network factors, 

heterogeneous resources, and quality of service. Then a summary of the thesis 

objectives demonstrated what is required to tackle these challenges and how they are 

going to be evaluated throughout the thesis. Afterwards, the contributions of the 

conducted thesis were presented following the illustration of the thesis organization at 

the end of the chapter. 

Chapter 2 provided a comprehensive literature review and conducted a taxonomy 

to map the existing research works on that. It started by discussing the inefficiency of 

traditional data analytic methods such as MapReduce for processing large-scale graphs 

and depicted the necessity of exclusive processing approaches by providing several 
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examples in which the system is representing a graph-based environment. It then 

explains the overall scheme of a typical graph processing system which is a basic for 

the rest of the chapter where each subsection can be mapped into this scheme. Chapter 

2 conducted a detailed investigation on various components of graph processing 

frameworks and discussed many examples about how these components are being 

used in existing frameworks in each section. This chapter also analysed the gap in the 

literature and concludes with a tabular review of several important works. 

Chapter 3 introduces iGiraph, our extended version of the popular graph processing 

framework Giraph, that is a distributed framework designed to operate on cloud 

environments by which large-scale graph datasets are processed in a cost-efficient way. 

This chapter is also presenting a new classification of graph algorithms that have not 

been considered in any graph processing system implementation before. Using this 

classification that divides algorithms into convergent and non-convergent, the system 

can adjust the number of required resources for the operation. Another critical part of 

the system is the dynamic repartitioning mechanism that has utilized the 

aforementioned classification with taking advantage of high-degree vertices’ 

characteristics in real-world graphs and the network traffic to repartition and distribute 

nodes across the resources. This resulted in reducing the number of cross-edges in the 

network as well as the number of messages passing through that. The monetary cost is 

also declined because of the faster execution and using optimal number of machines. 

Chapter 4 emphasises on the importance of network factors in a highly distributed 

environment as clouds. The graph algorithm classification from Chapter 3 is expanded 

in this chapter and a second dimension is added to it. Two network-aware dynamic 

repartitioning-based scheduling algorithms were proposed in this chapter too. The 

bandwidth-and-traffic-aware algorithm which is suitable for communication-intensive 

applications measures the bandwidth and the traffic in the network and distributes the 

partitions accordingly. It is shown that the algorithm can effectively reduce the 

monetary cost of the operation and since most graph applications fall into this 

category, the evaluation results seem promising. The computation-aware algorithm 

works well when the processing speed is important for the user/application. Using 
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this algorithm, the system always utilizes the machines with less CPU burden to speed 

up the operation. It is also shown that this approach reduces the dollar cost 

remarkably. 

In Chapter 5, the importance of benefiting from resource heterogeneity in cloud 

environments and its impact on large-scale graph processing is investigated. This 

chapter introduces a smart monitoring mechanism to enable the system to obtain 

information about various metrics during each superstep. Metrics such as network 

bandwidth, CPU utilization, network traffic, available machines, prices of machines, 

available memory, partition size, etc. are being measured and monitored to be used for 

further calculation in our characteristic-based dynamic repartitioning algorithm. 

According to the measured metrics, our proposed characteristic-based dynamic 

repartitioning algorithm migrate vertices or merges partitions and distributes them 

across the provisioned VMs. However, the type and the number of resources in each 

iteration might change based on the decisions that is made in decision-making module 

to minimize the dollar cost of the processing. Then, the auto-scaling algorithm will 

adjust the heterogeneous resources with the actual requirements. This significantly 

reduces the cost. 

Chapter 6 puts all the developed techniques from previous chapters together and 

combines them with its own new mechanisms to provide the large-scale graph 

processing as a service in cloud environments. Unlike existing graph processing 

frameworks that can only handle one dataset, this chapter proposes a multi-handling 

approach in which different users can submit their jobs (that includes the dataset and 

SLA requirements) at the same time. Then the prioritization algorithm will place them 

in the system based on their priorities. A new dynamic scheduling and resource 

provisioning approach has also employed in the framework that comprehensively 

watches the changes in the system and makes decisions based on various measured 

metrics. 
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Figure 7-1 Future directions 

 

7.2     Future Directions 

Although several works have looked into improving graph processing systems, there 

are still a number of issues that are open. For example not many graph processing 

frameworks use dynamic repartitioning which performs better than simple static 

partitioning in many cases. Most the frameworks use checkpointing for error handling, 

which can be costly, and other approaches to fault recovery are not well studied. While 

many researchers have studied classic graph algorithms such as PageRank and shortest 

paths, it is not clear whether these frameworks can still perform as well for more 

sophisticated and real-world applications such as machine learning algorithms. 

Besides these, there are several other advances to the programming and data model 

of large graphs, and the runtime execution of the graph platforms that need to be 

examined. These are discussed below. 
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7.2.1 Incremental Processing Models 

Regardless of the type of framework or algorithms used for processing big graphs, or 

how large the graph is, data can be processed in three different ways as shown in 

Figure 7.2. 

 
Figure 7-2 Data processing approaches 

According to the problem domain that a framework wants to present solutions for, 

each data processing approach shown above can be considered in the framework. 

Offline processing (batch processing) is done where a number of analogous tasks are 

gathered together to be processed by a computing system all at once instead of 

individually. In this method, which is used in many graph processing frameworks, the 

whole graph dataset is loaded into the system, processed for an application, and the 

results will be return to the user. The original graph is not changed externally, other 

than through modifications by the running application, and this leads to predictable 

partitioning and scheduling strategies which make their design easy.  

In online processing, user can communicate with the system and can make changes 

to the graph data stored in the system. Thus, the system will be updated automatically 

and re-process the data with new values periodically or based on user-defined events, 

which is not necessarily real-time and immediate.  

Real-time processing allows the graph to change over time based on incremental 

updates that it receives to the graph topology or properties. Processing such dynamic 

graphs is more like an event-driven system where sensors may generate a stream of 

updates about a vertex or edge that the sensor represents (e.g., road network with 

traffic cameras or sensors). Real-time processing requires that the computation should 

be done immediately after the changes happen to the data, and the updated results 

should be returned with very short delays. Sometimes, the operations may be 

performed on the delta events themselves before they are actually applied to the graph 
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data. Such requirements are increasingly important in competitive businesses such as 

social networks, and in IoT domains. There is limited work in the area of real-time 

processing of large dynamic graphs. For example, Twitter uses a graph-based content 

recommendation engine called GraphJet [203] which is an in-memory framework that 

supplements real-time with batch processing by keeping real-time bipartite interplay 

graph between tweets and users.  

The temporal dimension can also come through the notion of time-series graphs 

where different states of a graph are available, and the application has to operate over 

both the spatial and temporal dimension. However, this data base be collected a priori 

and available offline, and distinct from the changing states of the graph arriving in 

real-time. For example, GoFFish operates over time-series graphs for algorithms such 

as time-dependent shortest path and tracking meme propagation [208]. 

 

 

7.2.2 Complex Workflows 

A workflow is a dependency graph of different tasks that should be done in a specific 

order to complete a bigger job. Current graph processing frameworks are based on 

very simple workflows, typically singleton workflows with one operation executed in a 

data-parallel manner. They pick a dataset and an algorithm and execute the algorithm 

on the data. They usually try to solve very simple problems such as finding shortest 

path or PageRank problem. But, many real world problems are not as easy as this. For 

example, in a social network a typical scenario can be like this: an algorithm finds all 

friends and followers of somebody, then finds the common interests between them 

using another algorithm, draws a map of his/her communication history, combines all 

these information with the information from other people in that city to find the whole 

trends and so on. Such a complicated series of processes cannot be modeled seamlessly 

based on existing graph processing systems without manually creating multiple jobs 

and passing data explicitly between them through the file system. While there is 

limited work on Master-Compute model that allows a master task to change the phase 

of computation on the workers, this can be used to model only simple sequential 
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operations on a single graph rather than more complex operations that may even span 

different graphs. So, new frameworks are needed to allow the users to perform more 

complicated operations.  

On the other hand, such complex scenarios also require efficient resource 

provisioning. That is, proper scheduling is critical to minimize the monetary costs and 

execution time on one side, and improve resource utilization and performance of the 

system on the other side. Graph tasks in the workflow may have different processing 

needs, and may arrive at different intervals, and with different priorities and 

profitability metrics. Managing these graph workloads offer novel challenges as well. 

Some research issues on this include: 

- How to schedule complex graph workflows to gain minimum cost and 

maximum resource utilization? 

- What factors influence workflow management in graph processing systems 

considering graph algorithms characteristics and features of graph datasets? 

- How does workflow management in graph processing frameworks–specially 

for complex scenarios- affect the energy consumption of resources? 

 

7.2.3 Graph Databases 

Relational databases have existed since the 1980s, and have grown mature. While they 

deal well with structured data tuples stored in tables, their use for storing and 

querying graph datasets is limited. As discussed in Chapter 2, graph database, while 

not a novel concept, are still in their early stages when considering large property and 

semantic graphs. It is because relationships in a graph database are much stronger than 

those hypostatized at runtime in a relational database since they are being treated as 

high priority entities [188]. Relational databases are much slower than graph databases 

for connected data, hence using graph databases is recommended for highly connected 

environment and applications such as social networks, IoT, business transactions, and 

Web searching. 

Despite the usefulness of graph databases in the aforementioned environments, they 

are not as mature as relational databases particularly in terms of tools for data mining 
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purposes on massive graph data on distributed systems. Therefore, future directions 

for research include:  

- What are the canonical query models for static and dynamic graphs? What is 

the equivalent of a relational algebra for graph databases? 

- Supporting graph queries in combination with graph kernel algorithms, e.g., 

find all websites hosted in Australia (property) whose PageRank (algorithm 

output) is greater than X. 

- What are the cost models to be developed for efficient execution of graph 

queries on distributed environments? 

- Improve the ability to sustain low-latency processing of large numbers of 

transactional graph queries on distributed and elastic systems like Cloud.  

- How can analysis be performed across data stored in traditional relational 

databases and graph databases seamlessly and effectively? 

- How do we manage distributed data and indexes in graph databases that have 

data constantly changing or streaming in? 

 

7.2.4 Cloud Features and Cost Models 

The Cloud computing paradigm has modified hardware, software and datacenters 

implementation and design. It offers new economical and technological solutions such 

as utilizing distributed computing, pay-as-you-go pricing models and resource 

elasticity. Cloud computing offers computing as a utility in which users can have 

accesses to different services according to their needs without heed to where the 

services are hosted or how they are delivered.  

Computing as a service is the infrastructure service most relevant to graph 

processing. While the scalability offered by VMs has been used for graph processing, 

these are treated as yet another distributed resource by graph processing frameworks 

rather than consider their ability to elastically scale, or consider their costs. There is 

limited work on this regard. As mentioned in this thesis, iGiraph has started to 

consider cost optimization on clouds. It provides various algorithm classifications and 
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utilizes dynamic repartitioning mechanisms by which it reduces the number of VMs 

for the graphs that are shrinking during the operation to decline the price. It also 

performs better on non-convergent applications compared to other frameworks such as 

the popular Giraph. 

Dindokar et al. [59] have proposed an approach to model the computational 

behavior of non-stationary graph algorithms using a meta-graph model for subgraph-

centric programming model. The meta-graph model is able to offer predictions on the 

subgraphs that will be active in different supersteps, and this is used to schedule 

subgraphs to VMs in different supersteps, including elastically scaling the VMs in and 

out [59]. Their strategies show a pricing reduction by half for large graphs like Orkut 

for costly graph algorithms like Betweenness centrality, with minimal increase in the 

runtime relative to static over-provisioning of VMs. Elasticity has also be examined in 

[167] where it uses two partitioning mechanisms called Contiguous Vertex 

Repartitioning (CVR) and Ring-based Vertex Repartitioning (RVR) to 1) scale in/out 

without interfering graph computation, 2) decrease the network overhead after scaling, 

3) keep the load balanced by reducing stragglers across servers. 

Cloud providers have different cost models for their VM resources, typically, on-

demand VMs that you pay for based on the minutes or hours used, and spot VMs that 

have dynamic pricing based on demand-supply, and are pre-emptible when the 

demand out-strips supply. Spot VMs are much cheaper than on-demand VMs and 

their use can also be explored for large graph applications, while addressing the faults 

that can occur due to out of bid event when prices spike. While this has been examined 

for applications like MapReduce, there is no work in this regard yet for graph 

processing. 

Service level agreement (SLA) [175] is a contract between a service provider and a 

service user to define the service features, the time for delivering the service, the steps 

that should be taken in the case of service crashes, service domain, prices, etc. Using 

SLAs, both user and provider can ensure that the service is delivered exactly based on 

what had been agreed upon and penalties can be applied in case of commitment 

violation. Quality of a service (QoS) [18] provides a level of performance, availability 

and reliability offered by software, platform and infrastructure that the service is 
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hosted on them. If we consider graph processing as a service then the quality of this 

service should be in an acceptable level from both provider and customer points of 

views. According to the aforementioned SLA and QoS definitions, and taking graph 

processing characteristics into consideration, some research directions can be defined 

as follow: 

- Which parameters have the most impact on the performance of a graph 

processing service and quality of that? 

- What factors should be considered for selecting appropriate graph processing 

service among other analogous services? 

- How SLA-based resource provisioning and scheduling mechanisms for 

managing graph processing systems and services can be? 

 

7.2.5 Network Optimizations 

The network communication and messaging aspects are less studied in current graph 

processing frameworks. The factors such as network latency, network bandwidth, 

network traffic and topology can affect the runtime performance of the system. The 

problem also becomes more complicated when it comes to the Cloud environments. 

Most existing distributed graph frameworks have been developed for integrated 

clusters in which resource management and communication is more predictable. But in 

a Cloud-based framework, the network performance can be variable and VM 

placement not in the control of users. Hence it becomes essential to consider network 

factors. Unlike earlier works that considered the role of the network as trivial in graph 

processing [172], particularly for the graphs that can fit into the memory of a single 

machine, most recent experiments showed that the network plays a major role in the 

performance of a graph processing system whether the graph can fit in the memory of 

a single machine or it is processed on a distributed system [155]. For example, as we 

demonstrated in Chapter2, allocating larger or denser partitions to the machines with 

higher bandwidth on one side and reducing the network traffic by decreasing the 

number of messages transferred between machines on the other hand can enhance the 
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efficiency of the system. Nevertheless, more research is needed to study other 

parameters such as topology, latency, etc. and how they affect the processing. 

 

7.2.6 Graph Compression 

According to [204], processing large graphs on share memory can be remarkably 

quicker than processing in a distributed memory environment. Although the amount 

of data created in the form of graph is growing every day, the capacity of available 

memory is also increasing which enables very large graph datasets to be fit into 

memory of a single machine. However, improving the space utilization and execution 

time of graph algorithms has become crucial. This leads towards compressing graphs 

to use the memory efficiently.  

Graph compression is a technique that has been investigated in the past in 

frameworks such as WebGraph that could store Web-based graphs using graph 

compression algorithms such as referentiation, intervalisation, etc. in a limited 

memory. By the emergence of graph processing frameworks, some systems started 

proposing similar mechanism to process large-scale graphs. Ligra+ [Shun et al 2015], 

for example, is a shared memory graph processing system that is developed based on 

Ligra to reduce memory usage. Ligra+ combines encoding (compression) and decoding 

techniques utilizing byte codes and nibble codes to represent data. Vertices are being 

parallelized in encoding where edge list of each vertex will be compressed by coding 

the differences between source and target vertices of sequential edges. This framework 

uses two separate methods for decoding out-edge and in-edge lists. Compression on 

single machines has been implemented on a number of frameworks [145] [194]. 

Compression techniques have been used for both single machine and multi-

computing frameworks. Some works proposed a compression mechanism to optimize 

memory usage on distributed frameworks. Their solution which has been developed 

based on Pregel paradigm includes: 1) considering out-edges of each vertex as a row in 

the graph neighboring matrix for the compression to efficiently represent the space, 2) 

quick mining the graph without decompression, and 3) considering memory limitation 

to operate on graph algorithms. GBASE is another distributed framework that utilizes 
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graph compression. To store the graph efficiently, GBASE uses block compression by 

creating multiple regions that contain adjacency vertices. 

Apart from various compression techniques that have been implemented on graph 

processing frameworks, there are some issues that make this topic promising for 

further research. 

- Although compression helps in reducing memory utilization, encoding and 

decoding data are time-consuming and current solutions have made limited 

improvement in execution time of the operations. 

- Some compression techniques might positively influence particular graph 

algorithms but not the others. Is there any mechanisms that can be useful for 

different types of graph algorithms? How about switching between different 

techniques based on the graph application that is being used? 

- How do compression mechanisms affect the bandwidth and other computing 

resources in a single server or distributed environment? 

 

 

7.2.7 Energy-efficient Resource Allocation 

Requests for cloud computing resources are increasing constantly since many years 

ago as more applications are being migrated to clouds every day. This encourages 

cloud providers to raise the capacity of datacenters to appropriately serve the growing 

demands of new clients. One of the major issues of increasing the capacity of 

datacenters is that more energy is needed to power this big infrastructure. However, a 

big fraction of the provided energy is being wasted due to various reasons such as 

inefficient resource provisioning, costly communications, I/O inefficiency, ineffective 

program architecture, old servers, etc. in the past few years, many works have been 

done on replacing green power generated energy such as wind, sun and water to 

supply the needed energy for datacenters and reduce carbon emission. Scheduling and 

provisioning of resources for various applications on cloud infrastructure in a way that 

increases usage of green nodes or optimizes the number of required machines will help 

to decrease the negative impacts of energy wastage. More advanced techniques can be 

proposed for graph processing systems to achieve this goal. 
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7.2.8 Other Improvements 

Since scalable graph processing is still in its infancy, there are many open issues to 

improve the performance and features of each component discussed in Chapter 2, and 

the overall performance of the system. For example, read and write from/to disk is 

costly in these systems and usually acts as a bottleneck.  In many researches such as 

[262] and [167] SSD (solid state drive) is used as a faster storage device compared to 

traditional HDDs (hard disk drive) and cheaper compared to main memory. Further, 

efficient storage models for graph datasets on disks also need to be explored. For e.g., 

when processing large graphs, the time to load data from disk to memory can outstrip 

the time to perform the analysis. Compact and compressed graph data representation 

on disk, loading necessary subsets of the graph on-demand, and support for efficient 

storage of property graph are some novel topics to explore. Literature has also 

examined processing of large graphs on single machines and tries to keep the whole 

graph and computation results in memory. They rely on memory costs dropping and 

capacities increasing with new technologies like 3D stacked RAM, when single 

machines will become viable even for billion-vertex graphs. So there are several aspects 

of storage and memory management that can be explored. 

In addition to these, other parts of graph processing system pipeline can be 

improved as well. These include: 

- What initial partitioning or pre-processing techniques can improve the 

performance of the system and speed up the computation process? How can 

repartitioning improve the efficiency of the system and if it can speed up the 

computation process? 

- How can we better model and predict the behavior of different graph 

algorithms for graphs with different characteristics, such as power law, small 

world, planar, etc.? How are these affected by the different programming 

models? Can we use these to determine the ideal graph processing technique or 

strategy to be chosen, e.g., synchronous vs. asynchronous algorithms, 

computation-bound algorithms vs. memory-bound algorithms, denser datasets 

vs. less dense datasets and so on. 
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- Are there any computational mechanisms that use less memory size or can 

reduce network traffic by reducing the number of messages between machines? 

- What fault-tolerance techniques can be used other than check-pointing to 

improve system reliability and performance? 

- What resource provisioning and scheduling algorithms can be used to optimize 

the processing framework particularly in a competitive environment such as 

cloud spot-markets? 

  

7.3    Final Remarks 

The introduction and provisioning of new features such as unprecedented level of 

scalability, elasticity and pay-as-you-go models by the cloud computing paradigm on 

one side and the expanding popularity of large-scale graph processing on the other 

side have provided opportunities for both technologies to benefit from each other’s 

traits and serve other areas. In this thesis, we used the several characteristics of cloud 

computing environments to propose solutions in order to empower distributed 

processing of large-scale graphs. We investigated and implemented various techniques 

such as different approaches for dynamic repartitioning of the graph during the 

processing, network-aware scheduling algorithms, methods for taking advantage of 

heterogeneous resources that are provided in the cloud, and monitoring and 

maintaining quality of service (QoS) while focusing on minimizing monetary cost as a 

major factor for service selection. The proposed solutions in this thesis provide 

direction towards a comprehensive graph processing-as-a-service (GPaaS) paradigm 

through which analytics in other computing environments such as Internet of Things 

(IoT) and Edge/Fog computing can be conducted and managed more effective. 
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