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Edge/Fog computing is a novel computing paradigm that provides resource-limited In-

ternet of Things (IoT) devices with scalable computing and storage resources. Compared

to cloud computing, edge/fog servers have fewer resources, but they can be accessed with

higher bandwidth and less communication latency. Thus, integrating edge/fog and cloud

infrastructures can support the execution of diverse latency-sensitive and computation-

intensive IoT applications. Although some frameworks attempt to provide such integra-

tion, there are still several challenges to be addressed, such as dynamic scheduling of

different IoT applications, scalability mechanisms, multi-platform support, and support-

ing different interaction models. To overcome these challenges, we propose a lightweight

and distributed container-based framework, called FogBus2. It provides a mechanism

for scheduling heterogeneous IoT applications and implements several scheduling poli-

cies. Also, it proposes an optimized genetic algorithm to obtain fast convergence to

well-suited solutions. Besides, it offers a scalability mechanism to ensure efficient re-

sponsiveness when either the number of IoT devices increases or the resources become

overburdened. Also, the dynamic resource discovery mechanism of FogBus2 assists new

entities to quickly join the system. We have also developed two IoT applications, called

Conway’s Game of Life and Video Optical Character Recognition to demonstrate the

effectiveness of FogBus2 for handling real-time and non-real-time IoT applications. Ex-

perimental results show FogBus2’s scheduling policy improves the response time of IoT

applications by 53% compared to other policies. Also, the scalability mechanism can

reduce up to 48% of the queuing waiting time compared to frameworks that do not

support scalability.
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Chapter 1

Introduction

Internet of Things (IoT) devices has become an inseparable part of our daily lives, where

IoT applications provide diverse solutions for intelligent healthcare, transportation, and

entertainment, to mention a few [1]. IoT applications often produce a massive amount

of data for processing and storage. IoT devices connect to different networks with

numerous sensors interacting with or sensing the internal and external environments

on every second [2]. However, the computing and storage resources of IoT devices

are limited. Therefore, IoT devices are usually integrated with resourceful surrogate

resource providers to obtain better services for their users. Cloud computing, as a

centralized computing paradigm, is one of the main enablers of IoT that offers unlimited

computing and storage resources [3, 4]. IoT devices can place whole or some parts of

their applications to cloud servers for processing and storage. These applications benefit

from cloud computing as the computing is delivered in the form of services provided by

the cloud, which are stable and with high performance, [5–7].

However, the networking between IoT devices and cloud clusters or data centers (which

are usually aggregated) involves transportation of massive data over the Internet. This

physical structure brings high latency when IoT applications use cloud computing as a

part of the primary computing module in the design. The emergence of real-time IoT

applications indicates that cloud computing cannot solely provide efficient services for

latency-sensitive IoT applications due to its high access latency and low bandwidth [8, 9].

Moreover, although cloud services providers provide a ‘pay as you go’ plan [10–12] that

charges only on-demand computing, storage, and networking resources, it is expensive

when the amount of data needed to be processed, transported and stored is enormous

[13]. To address these issues, edge/fog computing, which is a novel distributed comput-

ing paradigm, is proposed, providing distributed computing and storage resources in the

proximity of IoT devices with higher access bandwidth and lower communication latency

1
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Figure 1.1: Environments and applications of IoT, Edg/fog and Cloud layers

[14]. Edge computing exists closely to IoT devices where data is generated. It computes,

stores, and forms networks to serve IoT devices with low latency, high bandwidth, and

distributed mobility [15–17]. Edge servers process and analyzes data around where it

is generated, the overload of transmission to a centralized data center is dramatically

reduced. Combining with techniques like 5G networks, edge computing further enables

faster data processing which boosts the evaluation of applications like autonomous elec-

tric transport vehicles, autonomous drones, healthcare devices, and autonomous robots

in factories [18, 19]. The environment and applications of IoT, Edg/fog and Cloud layers

are presented in Figure 1.1.

1.1 Challenges and Motivation

Compared to cloud servers’ resources, edge/fog servers have limited computing and

storage resources, and hence they cannot efficiently execute computation-intensive tasks

of IoT devices. To address this issue, edge/fog servers can collaboratively use their

resources or cloud servers’. However, there is overload when simultaneously using dis-

tributed resources. Not only the algorithms and communication protocols need to be

carefully designed, but networking bandwidth and latency also need to be considered.

Thus, seamless integration of edge/fog and cloud infrastructures to support different IoT

applications is an important research topic. Resources of distributed edge/fog servers

and cloud servers are highly heterogeneous in terms of computing capabilities, proces-

sors’ architectures, RAM capacity, and supported communication protocols [20]. Also,
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IoT applications are heterogeneous in terms of applications’ granularity (i.e., task, ser-

vice), dependency model of constituent parts of IoT applications (i.e., independent tasks,

sequential dependency, and complex dependent tasks), and their quality of service re-

quirements (such as computation-intensive or latency-sensitive applications).

According to these factors, there are several framework design challenges to be con-

sidered. First, frameworks working in the integrated platform should support platform-

independent techniques to overcome communication and run-time obstacles. Second, due

to the heterogeneity of resources and the requirements of IoT applications, distributed

scheduling mechanisms are required to place/offload tasks/data of IoT applications on

suitable servers for processing and storage. Third, fast application deployments and

scalability support are required in this integrated environment to provide services for

IoT devices in a timely manner. Fourth, to efficiently reuse the resources, the container-

ization concepts can be adopted for the software components of the framework and IoT

applications.

1.2 Research Problems

To address the challenges we discussed, the following questions are identified and in-

vestigated in this thesis. By answering these questions with solutions in the framework

design, the challenges in the previous chapter should be completed.

• How to use edge/fog servers and cloud servers simultaneously in an ef-

ficient way? When cloud servers are centralized, and with high performance, the

access latency is always high. Thus, cloud servers cannot solely provide efficient

services for latency-sensitive applications. Edge/fog servers are with lower perfor-

mance but very high bandwidth and low latency to IoT devices complete cloud

servers and offset the drawbacks of cloud servers. An efficient framework has to

use both the resources of edge/fog servers and cloud servers collaboratively.

• How to provide a scheduling mechanism for incoming requests from

different types of IoT applications (latency-sensitive and computation-

intensive)? When the performance and resources diverse in the heterogeneous

edge/fog servers and cloud servers, numerous applications may be latency-sensitive

and or computation-intensive. A platform needs to intelligently decide how to

arrange the executions for all the kind of applications. Typically, there is a time

limitation for the scheduling algorithm to perform, which requires the algorithm

to finish in a short time but finishes with a reasonable solution of the arrangement

of the execution.
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• How to provide a scalable platform in these heterogeneous computing

environments? With the scheduling mechanism, a framework allows real-time

scheduling for the heterogeneous application execution request. However, the de-

mands need to be rapidly responded even there are a huge amount of requests

coming to the system at the same time. To respond to the requests efficiently,

scalability is required for frameworks that automatically scale, create, or allocate

resources responding to the execution requests of IoT applications. This mecha-

nism helps reduce user-side waiting time for resource placement, thus bring users

a better experience.

• How to support automatically discover resources and reuse for such

platform? The amount of IoT devices and edge/fog servers is countless and

keep growing all the time. Under this background, a framework should have the

ability to automatically identify resources when IoT devices and edge/fog servers

join or leave the system unpredictably. Nevertheless, after discovering resources,

an effective mechanism should be designed to operate the resources reasonably,

including the reuse of the resources. Frameworks should recognize this problem

during the design phase to better advantage all the heterogeneity IoT, edge/fog

servers, and cloud servers.

1.3 Thesis Contributions

Although there are some frameworks to manage integrated resources in edge/fog com-

puting [21, 22], they barely consider platform-independent techniques, scheduling of het-

erogeneous IoT applications with complex dependent structures, scalability mechanisms

of distributed resource managers, and containerization (see Chapter 2).

To address these limitations and solve these research problems, we propose and de-

velop a lightweight and distributed container-based framework called FogBus2, which

is partially published in [23]. Our framework supports (1) different inter and intra in-

teraction models among edge/fog servers and cloud servers to support the requirements

of different IoT application scenarios when using IP and ports addresses, (2) container-

ization of software components of the framework for fast deployments when supporting

different programming languages by following the communication protocol design, (3)

containerization of constituent parts of IoT applications as dependent tasks or inde-

pendent tasks, (4) scheduling of multiple IoT applications and scalability mechanisms

based on monitoring the whole system by integrating logs from every component (5) con-

current execution of different types of IoT applications including computation-intensive
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and latency-sensitive as well as complex dependent or simply related modules, and (6)

efficient reuse of resources.

The main contributions of this paper are summarized as follows:

• A lightweight and distributed container-based framework, called FogBus2, is pro-

posed to integrate edge/fog and cloud infrastructures to support the execution of

heterogeneous IoT applications.

• Containerization-support for software components of the framework and IoT ap-

plications is proposed for fast deployment and efficient reuse of resources.

• Dynamic scheduling, scalability, and resource discovery mechanisms are developed

for fast adaptation as the characteristics of environment change.

• A real-world prototype is developed using FogBus2 with a real-time IoT application

named Conway’s Game of Life, and a non-real-time IoT application, called Video

Optical Character Recognition (VOCR).

1.4 Evaluation Methodologies

To conduct the experiments and evaluate the performance of our proposed framework,

we had two potential approaches, namely simulation and real-world system setup. We

first run all the virtual environment components, allocating different resources to vir-

tual machines, simulating the heterogeneity of the integration edge/fog and cloud in-

frastructures. However, there was a considerable difference from the result of real-world

infrastructures. Thus, after tried simulation and got no ideal results, we shifted our

experimental setup to real-world devices, including Raspberry Pis, desktop, and cloud

instances provided by different providers worldwide. The specifications of the infras-

tructures for experiments will be introduced in the performance evaluation sections,

respectively.

The features of FogBus2 are evaluated using one real-world application we developed,

named Conway’s Game of Life, which is both computation-intensive and latency-sensitive.

The application is implemented with 62 modules (tasks). For each data frame, every

two modules execute for the computation of grids at the same size. The execution of

modules with different sizes depending on their parent module’s execution result. This

structure strongly increases the complexity of the problem to schedule the execution of

the application.
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Theoretically, when there are N hosts distributed in the system, N62 different potential

solutions exist to execute Conway’s Game of Life. Because the resource of each host and

bandwidth/data rate between any two pair of hosts are not the same, it is impossible to

find a good enough solution in a short time with a native approach such as brute force.

Thus, we implemented two popular policies and compared them with our proposed

policy to evaluate our framework. We use response time, a lower better metric, to

assess the performance of scheduling. The details of this experiment will be presented

in Chapter 4.3.

However, the scheduling mechanism is not the only requirement of the framework to use

edge/fog servers and cloud servers simultaneously efficiently. When there are numerous

requests for the execution in the distributed system, the requests can not be put in a

waiting queue too long, which brings users horrible experiences and wastes edge/fog

servers and cloud servers by leaving them idle. Thus, the scalability mechanism is eval-

uated following the scheduling mechanism. Increasing numbers of simultaneous requests

are tested in the experiment to determine how efficiently the scalability mechanism of

FogBus2 is. We define and use Scheduling Finish Time (SFT). This metric is also lower

better. The details will be presented in Chapter 4.4.

Moreover, as we use the containerization technique in the implementation, we experiment

to evaluate how much Resource Ready Time (RRT) can be reduced when the containers

for execution can be reused. In the experiment, we tested five different applications.

Before requesting each of them, there are already execution containers in the cool-off

period and ready to be reused. Thus, to verify the performance of the resources reuse

mechanism, an experiment has been conducted to compare how long it would take for the

resources placed to be ready when heterogeneous IoT applications are requested. With

the defined metric, resource ready time, reuse mechanism is applied and bypassed for

two IoT applications. The applications have different complexity regarding the number

of modules (containers) required. The performance of our reuse mechanism will be

examined in the experiment. The details will be shown in Chapter 4.5

Finally, startup time and RAM usages are studied in Chapter 4.6 comparing with FogBus

[21] which shows the FogBus2 framework is lightweight.
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1.5 Thesis Organization

The rest of the paper is organized as follows. Relevant frameworks are reviewed, and

features of them are summarized in topologies in Chapter 2. Chapter 3 presents the

hardware and software components of the FogBus2 and some of the details of frame-

work design. The performance of FogBus2 is evaluated in Chapter 4. Finally, Chapter 5

concludes the paper and draws future works. A visualized thesis organization is pre-

sented in Figure 1.2.



Chapter 2

Literature Review

This chapter discusses related frameworks integrating IoT-enabled systems with edge/-

fog and cloud infrastructures. We have discussed research questions that include 1) how

to use edge/fog devices and cloud servers simultaneously efficiently, 2) how to provide

a scheduling mechanism for incoming requests from different types of IoT applications,

3) how to provide a scalable platform in these heterogeneous computing environments,

and 4) how to support automatically discover resources and reuse for such platform. To

answer these questions, five aspects are identified as follows based on the importance

to consider the heterogeneity of infrastructures, heterogeneity of IoT applications, effi-

cient use of heterogeneous resources, intelligently discovering resources, and making the

strength of containerization technologies:

• Integration IoT applications produce a massive amount of data for processing

and storage when edge computing exists extremely close to IoT devices. Edge/fog

devices compute, store and form networks to serve IoT devices with low latency,

high bandwidth, and distributed mobility. Cloud computing that provides unlim-

ited computing and storage resources is necessary for computation-intensive appli-

cations with high performance even though cloud computing has low bandwidth

and high latency. Seamless integration of edge/fog and cloud infrastructures to

support different IoT applications is an important research topic. It is a challenge

that a framework makes the most of strength by using the three efficiently in the

framework design. Chapter 2.1 reviews frameworks that integrate IoT, edge/fog,

and or the cloud.

• Multi-platform Support There are vast amounts of IoT devices, and they are

gracefully embracing the heterogeneity of multiple platforms. The emergence of

IoT devices brings a growing capacity of programming for distinct and different

8
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devices when they use various CPU architectures, and a wide variety of operat-

ing systems [24]. A framework designed for running on IoT devices, ECs, and

cloud servers with high diversity needs to support multiple platforms to integrate

edge/fog and cloud infrastructures to support the execution of heterogeneous IoT

applications and helps to reduce the burden of developers to support a variety

of platforms. Chapter 2.2 introduces related frameworks which support multi-

platform.

• Multi-application Support IoT devices diverse when they have various hard-

ware and sensors when the data they produce and traffic demand also require

different resources to transport and compute [25]. Consequently, IoT applications

developed on top of various sensors and hardware are varied in a large number.

A framework needs to support multiple IoT applications, which may be latency-

sensitive, computation-intensive, and or bandwidth-sensitive. When different ap-

plications usually run simultaneously and distribute over the network, they can

run separately or co-operate with each other. Thus, a framework needs to have

the ability to support such different kinds of applications without requiring much

effort that developers need to make. Chapter 2.3 reviews related frameworks which

support multi-application.

• Scheduling Mechanism Resources of distributed edge/fog devices and cloud

servers are highly heterogeneous in computing capabilities, processors’ architec-

tures, RAM capacity, and supported communication protocols. The scheduling

task is usually a complex undertaking to manage such countless and growing

resources [26]. Thus, an efficient scheduling mechanism is required to arrange

heterogeneous IoT applications’ execution using distributed edge/fog devices and

cloud server resources. A scheduling algorithm (policy) real-timely configures the

executions of different modules of an application, usually decides how to arrange

and control the executions based on the current environment of the system, such

as how many resources are available. The framework needs to obtain the ability

to integrate multiple scheduling policies. Chapter 2.4 surveys related frameworks

that use scheduling mechanisms.

• Scaling Mechanism The scaling mechanism is eminent to automatically keep

Quality of Services (QoS) at a reasonable level which gives users a seamless expe-

rience when the workloads come into a system are unpredictable [27]. The scaling

mechanism in a framework is responsible for automatically adding or allocating

resources when the workload feeding into a system is growing. IoT applications

are close to the natural environment and humans’ living environment. Therefore,
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the demand for the execution of the applications changes dynamically and un-

predictably. A framework should have scaling mechanism support to dynamically

control the distributed resources with such changing IoT applications execution

demand. Chapter 2.5 studies a framework on its scaling mechanism.

• Resource Discovery Mechanism Resource Discovery, sometimes called Service

Discovery, is the capability to automatically find and locate resources and or ser-

vices that are not predefined or addressed in a network [28]. IoT devices, edge/fog

devices, and cloud servers are fully distributed geographically and logically; thus,

the resource discovery mechanism empowers the hosts to discover others, form a

subnet, and share their resources. A framework needs to obtain the capability of

resource discovery mechanism trying to use distributed resources as efficiently as

possible. Chapter 2.6 investigates a framework on its resource discovery mecha-

nism.

• Containerization Technique Containerization is the technique that provides

operating system-level isolation of a process, a program, or a complete operating

system environment. It is as secure as a virtual machine but more lightweight

since it does not depend on the host hardware emulation [29]. The containeriza-

tion technique allows both the framework components and IoT applications to be

containerized, which benefits faster deployments of IoT applications, easy config-

uration of the framework itself, and automatic scaling mechanism. A framework

supporting the containerization technique can be quickly released when retaining

and taking advantage of the features of the containerization technique. Chapter 2.7

statisticizes related frameworks which adopts containerization technique.

2.1 Integration

Tuli et al. proposed the FogBus framework based on a master-worker approach [21]. This

framework integrates IoT systems to the cloud and edge infrastructures when harnessing

IoT resources, edge resources, and cloud resources. FogPlan, developed by Yousefpour

et al., is a container-enabled framework integrating IoT devices with edge/fog devices

and cloud devices to minimize the response time of IoT applications [30]. Merlino et

al. developed a framework recognizing offloading patterns [20]. They use a middleware

platform to integrates IoT, edge/fog devices, and cloud devices, which tries to improve

OpenStack and Stack4Things. Nguyen et al. [31] proposed a privacy-preserving frame-

work that handles requests and data in edge/fog devices and cloud devices, combining

local execution at the edge and remote processing at the cloud. An et al. developed the

EiF framework to bring artificial intelligence services to the edge of the network [22].
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It manages service dependencies and relations of IoT applications over the network of

edge devices and cloud devices. Borthakur et al. developed the SmartFog framework,

integrating IoT devices with edge/fog devices to analyze pathological speech data ob-

tained from wearable sensors [32]. Yigitoglu et al. developed a container-enabled Foggy

framework that provides automatic resource control in heterogeneous infrastructures

such as IoT devices, edge/fog devices, and cloud devices [33]. Bellavista et al. proposed

a centralized framework extending Kura framework, and the design includes compo-

nents running on IoT, edge/fog devices, and cloud devices [34]. Ferrer et al. developed

an Adhoc-based framework to support the integration of IoT devices with multi-hop

edge/fog devices [35]. Noor et al. developed a centralized container-enabled IoTDoc

framework to manage interactions between IoT devices and cloud resources [36].

2.2 Multi-platform Support

Tuli et al. proposed FogBus, which overcomes the difficulty of executing applications

in heterogeneous infrastructures by developing the framework in a cross-platform pro-

gramming language [21]. By doing so, the framework can be barrier-freely deployed

on heterogeneous infrastructures without any implementation changes. FogPlan pulls

services (applications) which were automatically pushed to the cloud [30]. This design

ensures the new versions of their services are always fresh in the cloud database. This

deployment mechanism masks the heterogeneity of platforms and enables the migra-

tion of their services between hosts. Merlino et al. proposed a middleware platform

based on OpenStack, which encompasses edge/fog devices and cloud devices [20]. It

is designed for big data processing in a hierarchical design involved cloud devices. In

the design of the Foggy framework, the authors present a list of deployment workflow

with the assumption that the required environment of applications is maintained by

other Orchestration Server [33]. By following the workflow, the framework helps devel-

opers reduce the effort to considering the complex heterogeneity of IoT infrastructures,

edge/fog infrastructures, and cloud infrastructures.

2.3 Multi-application Support

Nguyen et al. proposed a framework in which the edge/fog devices support content,

services, and applications from different providers to serve their customers by proactively

distribute the data into edge/fog devices [31]. Bellavista et al. proposed a framework

that adds brokers at gateways side trying to solve the problem that a flat topology
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is insufficient for both envisioned IoT applications and various real-word applications

domain [34].

2.4 Scheduling Mechanism

Ferrer et al. designed a mechanism to utilize the existing capacity of edge/fog devices,

which responses to the increasing demands from IoT with a massive volume of data [35].

FogPlan has the scheduling mechanism to deploy or release services by monitoring the

incoming traffic and other parameters with the hypothesis that their service controllers

only maintain the edge/fog hosts in a particular topographical subnet[30]. Nguyen et al.

developed a centralized resource allocation technique that considers the current resources

of edge/fog devices and cloud devices[31]. An et al. proposed the SmartFog framework,

which uses an unsupervised clustering method analyzing the lower-resources workload

on Intel Edison and Raspberry Pi [32]. Foggy integrates a mechanism to scheduling

tasks aiming to optimize overall resources utilization, minimize latency between IoT,

edge/fog devices, and cloud devices [33].

2.5 Scaling Mechanism

Bellavista et al. use docker containers and the Kubernetes to scale computing infras-

tructures that support geographically distributed IoT applications and their deployment

mechanism [34]. FogPlan supports a simple mechanism of scalability based on the mon-

itored aggregated traffic rate, which uses the ping approach [30]. However, FogPlan

does not support policy integration which makes the scaling mechanism fixed and not

extensible.

2.6 Resource Discovery

The middleware discovers resources when assumes edge/fog devices join or leave the

system unpredictably [20]. Using a Cloud Manager monitoring subsystem, the discovery

is triggered when a signal shows the reducing synthetic manipulation performance. Fog-

Plan has mechanism of edge/fog resources discovery. The hosts at edge advertise their

IP addresses to IoT devices that run IoT applications [30]. FogPlan also carries URI

in communication protocol routing the requests to edge hosts, which achieves resource

discovery.
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2.7 Containerization Technique

FogPlan has the assumption that the applications running on their framework are con-

tainerized, which allows to automate the deployment and to release of services [30]. The

services are also considered stateless; thus, migration, deployment, and release of the

services are faster than VM-based migration procedures. Merlino et al. containerized

edge/fog devices and cloud devices resources in their work [20]. Foggy uses container-

ization techniques to detach subnets and attempts to decrease the overhead on the

constraint resource among hosts over edge/fog devices, and cloud devices [33]. Docker

containers and the Kubernetes technologies are used by Bellavista et al. to manage

the execution of various IoT applications over the heterogeneous resources of edge/fog

devices and cloud devices [34]. Ferrer et al. employ workload virtualization, which is

containerized to facilitate the execution in heterogeneous edge/fog devices environments

[35]. Noor et al. proposed a framework that is also developed with containerization

technology [36].

2.8 Summary

Table 2.1 identifies and compares the main elements of related frameworks with ours.

These frameworks often do not support platform-independent techniques and or con-

tainerization of software components of the framework and IoT applications. Moreover,

most of these frameworks do not offer scheduling, scalability, and resource discovery

mechanisms. FogBus2 provides a lightweight and container-enabled distributed frame-

work for computation-intensive and latency-sensitive IoT applications to overcome these

limitations. It dynamically schedules heterogeneous IoT applications and scales the re-

sources to serve IoT users efficiently.

Tuli et al. proposed the FogBus framework based on a master-worker approach to pro-

cess data generated from sensors on edge/fog devices or cloud devices [21]. Due to

platform-independent technologies used in the FogBus, it can work on multiple plat-

forms. However, it does not provide any mechanism for dynamic scheduling of IoT

applications, scalability, and resource discovery. Besides, it does not support different

communication topologies between workers and the master. Moreover, FogBus is not a

container-enabled framework, which negatively affects the deployment cost of IoT ap-

plications and software components. Yousefpour et al. developed a container-enabled
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Table 2.1: A qualitative comparison of related works with ours

Work Integration
Multi

Platform
Support

Heterogeneous
Multi

application
Support

Dynamic
Scheduling

Mechanism and
Policy Integration

Dynamic
Scaling

and Policy
Integration

Dynamic
Resource
Discovery

Container
Support

[21]
IoT, Edge,

Cloud
X × × × × ×

[30]
IoT, Edge,

Cloud
X × X × X X

[20]
IoT, Edge,

Cloud
X X × × X X

[31]
IoT, Edge,

Cloud
X X X × × ×

[22]
IoT, Edge,

Cloud
× × × × × ×

[37]
IoT, Edge,

Cloud
× × X × × ×

[32] IoT, Edge X × × × × ×

[33]
IoT, Edge,

Cloud
X × X × × X

[34]
IoT, Edge,

Cloud
× X × X × X

[35] IoT, Edge × × X × × X
[36] IoT, Cloud × × X × × X

FogBus2
IoT, Edge,

Cloud
X X X X X X

framework, called FogPlan, integrating IoT devices with edge/fog devices and cloud de-

vices to minimize the response time of IoT applications [30]. FogPlan supports dynamic

resource discovery, scheduling of IoT applications, and simple scalability mechanism and

policies. Merlino et al. developed a container-enabled framework for container discov-

ery at edge/fog devices and cloud devices, and horizontal and vertical offloading [20].

However, it does not provide any policies for the dynamic scheduling of IoT applications

and the scalability of resources. Nguyen et al. proposed a privacy-preserving framework,

which uses obfuscation to keep users’ information private meanwhile tasks are computed

[31]. Besides, they developed a centralized resource allocation technique that considers

the current resources of edge/fog devices and cloud devices. An et al. developed the

EiF framework to bring artificial intelligence services to the edge of the network [22].

Although the EiF provides some resource allocation techniques for network resources,

it does not offer any scheduling and scalability mechanisms for IoT applications. A

mobility-aware framework, called Mobi-IoST, is developed by Ghosh et al. [37], which

uses a probabilistic approach for the placement of IoT applications. Borthakur et al.

developed the SmartFog framework, integrating IoT devices with edge/fog devices to

analyze pathological speech data obtained from wearable sensors [32]. It embeds ma-

chine learning techniques to analyze the generated data at the proximity of patients.

Yigitoglu et al. developed a container-enabled Foggy framework that supports dynamic

scheduling of containerized IoT applications with dependent tasks [33]. Bellavista et

al. proposed a centralized container-enabled framework that uses docker containers and
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the Kubernetes to scale computing infrastructures [34]. However, it does not provide

any policies to support scalability, scheduling, and resource discovery. Moreover, as

the cloud orchestrator manages the deployments of applications, it may negatively af-

fect the response time of latency-sensitive IoT applications. Ferrer et al. developed a

container-enabled Adhoc-based framework to support the integration of IoT devices with

multi-hop edge/fog devices [35]. Noor et al.developed a centralized container-enabled

IoTDoc framework to manage interactions between IoT devices and cloud resources [36].



Chapter 3

FogBus2 Framework for

IoT-enabled Systems and

Applications

This chapter describes the hardware and software components of FogBus2 in detail.

Chapter 3.1 presents the hardware components and related design of the framework.

Fig. 3.1 presents a high-level overview of computing environment supported by FogBus2.

Chapter 3.2 presents components and sub-components of the framework design.

3.1 Hardware Components

FogBus2 supports heterogeneous hardware resources such as different IoT devices, Edge/-

Fog servers, and multiple cloud data centers. In Chapter 4, devices of three of the in-

frastructures in the real world have been used to run FogBu2’s components. Since the

containerization technique is used in our framework for all the components, FogBus2

should also be compatible with other devices that are supported by the containerization

technique. As Fig. 3.1 shows, multiple different subnets are existing over the three layers

simultaneously. And one particular host can run several components according to what

resources it owns.

16
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Figure 3.1: FogBus2 high-level computing environment

3.1.1 IoT devices layer

IoT devices layer consists of heterogeneous types of resource-limited IoT devices (such as

drones, smart cars, smartphones, security cameras, any types of sensors such as humidity

sensors, etc) that perceive data from the environment and perform physical actions on

the environment. FogBus2 provides a distributed platform for IoT devices to connect

with proximate and remote service providers through different communication protocols

such as WiFi, Bluetooth, Zigbee, etc. Hence, the generated data from IoT devices can

be processed and stored on surrogate servers with higher resources, which significantly

helps to reduce the processing time of data generated from IoT devices.

In this layer, the IoT devices play the role of user when they sense the data from the

internal or external environment and request various applications running on the system.

After the requests have been approved and resources placed are ready, devices in this

layer send data to the system and receive the result. The actuator of a device itself will

finally consume the result, and or actuators in other peers will do.

3.1.2 Edge/Fog layer

FogBus2 provides IoT devices with low-latency and high-bandwidth access to heteroge-

neous edge/fog resources distributed in their proximity. These heterogeneous edge/fog
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servers can be either one-hop away from IoT devices (such as Raspberry pis (RPi), per-

sonal computers, etc.) or multi-hop away (such as routers, gateways, etc.). Moreover,

to extend the computing and storage capacity of edge/fog servers, FogBus2 supports

the collaborative execution of IoT applications among different edge/fog servers in a

distributed manner. Hence, FogBus2 offers a wide range of service options for different

types of IoT devices with heterogeneous service-level requirements.

FogBus2 components are primarily running in this layer since they are close to IoT

devices, with low-latency and high-bandwidth advantages. By collaborating with others

hosts in this layer, the components running in this layer dramatically boost the execution

of IoT applications.

3.1.3 Cloud layer

FogBus2 expands IoT devices’ computing and storage resources by supporting multiple

cloud data centers in different geo-location areas, which bring location-independency

for IoT applications. Moreover, cloud resources can either be used to process and or

store computation and or storage-intensive tasks or when the edge/fog servers resources

become overloaded. When the requested application from user components from IoT

applications is computation-intensive, and there is a lack of resources, the execution of

the application is likely to be arranged to the cloud layer.

3.2 Software Components

FogBus2, which is developed from scratch, consists of five main containerized compo-

nents (using the docker containers technique) developed in Python. Since FogBus2 is a

distributed framework, these components can run on different hosts based on the appli-

cation scenario, as depicted in Fig. 3.1. FogBus2’s main components, sub-components

(Sub-C), and their respective interactions is shown in Fig. 3.2. In each component, a

message handler Sub-C is embedded for inter-component communications.

3.2.1 User component

This component runs on users’ IoT devices and consists of sensor and actuator. It can

send placement requests to the master component for each IoT application, developed
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Figure 3.2: FogBus2 software components and interactions

with either dependent or independent tasks. Also, it handles the sensors’ raw data and

collects the processed data from master.

3.2.1.1 Sensor

This Sub-C controls the sensing intervals of physical sensors and captures and serializes

the sensors’ raw data.

3.2.1.2 Actuator

This Sub-C collects processed data from master and executes an action based on the ap-

plication scenario. To support multiple application scenarios, the actuator can perform

actions in real-time or perform periodic actions based on aggregated data.

3.2.2 Master Component

This component can run on any hosts, either in edge/fog or cloud layers, based on the

application scenario. It dynamically profiles the environment and performs resource

discovery to find available computing and storage resources. Besides, the master com-

ponent receives placement requests from IoT devices, schedules them, and manages the

execution of IoT applications.
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3.2.2.1 Registry

When the master receives joining requests from actors or task executors, it records

their information and assigns them a unique identifier for the rest of communications.

Moreover, it handles placement requests of users, assigns them a unique identifier, and

initiates the scheduler & scaler. The master uses each user’ s unique identifier to distin-

guish heterogeneous data arriving from other users. Also, it can manage authentication

mechanisms for the actors and task executors.

3.2.2.2 Profiler

This Sub-C initially receives information about available resources (such as CPU speci-

fications, RAM), network characteristics (such as average bandwidth and latency), and

IoT applications’ properties (such as the number of tasks, dependency models) from

registry Sub-C. Afterward, the profiler periodically updates its information from stored

data in the remote logger component. Moreover, if the required data is not available in

the remote logger or the master requires updated information, it can directly communi-

cate with IoT devices, actors, or task executors to obtain the data. Also, it keeps track

of the status of the master and its available resources.

3.2.2.3 Scheduler

When the IoT user registered in the master, its placement request will be forwarded

to the scheduler & scaler and will be queued based on First-In-First-Out (FIFO) pol-

icy. Algorithm 1 describes the scheduling mechanism and the integrated Optimized

History-based Non-dominated Sorting Genetic Algorithm (OHNSGA) scheduling pol-

icy. The scheduler de-queues each placement request based on the FIFO policy. Next,

the scheduler receives the list of actors from the registry Sub-C, and continues the

scheduling procedure if there exists at least one registered actor. Otherwise, it notifies

the user that there are not enough resources for the scheduling (lines 1-4). Afterward,

the scheduler examines the local resources of the host. If the CPU utilization is above

the threshold (max cpu util) or the received placement requests exceeds the threshold

(max shed count), it attempts to find a substitute master (sub master) to serve this

request in order to reduce the waiting time of user ’s placement request in the queue.

If there exists other master components in the computing environment, it attempts to

find the best sub master (with lowest access latency), otherwise it runs the scaler to

initiate a new master component. (lines 5-12). If the current host has enough resources

for the scheduling, the scheduler retrieves the application and its dependency model
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Algorithm 1: Scheduler

/* req: user request, prev dec: decisions history, prof: hosts profiles,

curr sched count: current scheduling threads count, max sched count: max

scheduling threads count, curr cpu util: current CPU utilization, max cpu util:
max CPU utilization, dependencies: tasks dependencies, task actrs map: map task

to actors */

1 actrs← GetAllActors()
2 if actrs is empty then
3 WarnUser(req)
4 return

5 curr cpu util← GetCPUUtilization()
6 curr sched count← GetScheduleCount()

/* If busy, forward request or scale a new Master */

7 if curr cpu util > max cpu util or curr sched count > max sched count then
8 sub master ← GetBestMaster(req,masters)
9 if sub master is null then

10 sub master ← Scaler(req, actrs)

11 NotifyUser(req, sub master)
12 return

/* Otherwise schedule */

13 dependencies, task list← GetDependenciesAndTaskList(req)
14 i, task actrs map← 0, []
15 foreach task list do
16 j, task actrs map[i]← 0, []
17 foreach actrs do
18 if actr has image of task then
19 task actrs map[i][j]← actr
20 j ← j + 1

21 i← i+ 1

/* Use OHNSGA to schedule */

22 prev dec← LoadHistory(req)
23 res← OHNSGA(prev dec, pop size, prof, task actrs map, req )
24 for k from 0 to i− 1 do
25 actr ← res[k]
26 task exec list← GetIdleList(actr, task list[k])
27 if task exec list is empty then
28 SendInitTaskExecutorMsg(actr, task list[k], dependencies)
29 continue

30 SendReuseTaskExecutorMsg(task exec list[0], dependencies)

(for IoT applications with dependent tasks) from the placement request. Moreover, it

finds the list of actors that can serve each task of an IoT application and stores them

in task actrs map (lines 13-21). The scheduler then retrieves the history of previous

decisions for this application (line 22). Next, the scheduler initiates the OHNSGA to

find a suitable set of actors for the IoT application to minimize its response time. (line

23). The response time of an IoT application is defined as the time difference when a

user component starts sending data to the time it receives the result.
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Algorithm 2: OHNSGA

/* hist ratio: ratio indicating the number of individuals generated based on history,

init pop: initial population, n offsprings: number of offsprings, pop:
population */

1 max num hist indv ←
⌈
pop size/hist ratio

⌉
2 if len(prev dec) > max num hist indv then
3 prev dec← prev dec[0 : max num hist indv]

4 random indv ← RandomIndiv(pop size− len(prev dec))
5 init pop← Merge(prev dec, random indv)
6 pop← RemoveDuplicates(init pop)
7 for i from 0 to max iteration num do
8 while True do
9 parents← TournamentSelection(pop, n parents)

10 offsprings← SimBinCrossover(parents, n offsprings)
11 offsprings← PolynomialMutation(offsprings)
12 pop← Merge(parents, offsprings)
13 pop← RemoveDuplicates(pop)
14 if len(pop) >= pop size then
15 pop← pop size[0 : pop size]
16 break

17 pop← Sort(pop)
18 return pop[0]

The OHNSGA works based on a genetic algorithm (GA) which is a population-based evo-

lutionary algorithm. Each candidate solution for assignments of actors to tasks is called

an individual, and the set of candidate individuals creates the population. The OHNSGA

attempts to find better individuals in each iteration of the algorithm to converge to the

best solution. OHNSGA uses the history of previous decisions of each application to

initialize a portion of the first population while the rest of the population is randomly

generated. It helps the OHNSGA to start from a better initial state and reduces the

convergence time of this technique. Also, as a portion of the population is randomly

generated, the OHNSGA keeps the randomness as well, which significantly helps to jump

out of local-optimal solutions. The OHNSGA uses the Tournament selection method to

find the best individuals in each iteration. Then, to generate the population of the next

iteration, OHNSGA uses the Simulated Binary Crossover operator, that its efficiency is

proved in [38], and Polynomial mutation operator. Algorithm 2 presents an overview of

the OHNSGA. According to the outcome of OHNSGA, the scheduler notifies the actors

to run task executors or reuse the available ones for the current IoT application (lines

24-30).
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Algorithm 3: Scaler

/* my addr: address of this host, cpu util: CPU utilization, cpu freq: CPU

frequency */

1 best actr ← actrs[0]
2 cpu util← GetCPUUtilization(best actr)
3 cpu freq ← GetCPUFrequency(best actr)
4 best score← (1− cpu util) ∗ cpu freq
5 min latency ← FindLatency(user, best actr)
6 foreach actrs do
7 latency ← FindLatency(actr)
8 if latency > min latency then
9 continue

10 cpu util← GetCPUUtilization(actr)
11 cpu freq ← GetCPUFrequency(actr)
12 score = (1− cpu util) ∗ cpu freq
13 if latency == min latency and score < best score then
14 continue

15 best actr ← actr
16 best score← score
17 min latency ← latency

18 SendInitNewMasterMsg(best actr,my addr)

3.2.2.4 Scaler

The scaler is called when the current master requires to initiate a new master container.

Algorithm 3 depicts how scaler works. The scaler receives the list of registered actors

and iterates over them to find the actor with the minimum latency and highest score.

The scaler first considers the access latency of actors (line 7). Then, if the latency of

the actor is equal to or less than the best-obtained latency, the scaler calculates a score

value for that actor. The score value is obtained from current CPU utilization and the

average CPU frequency of the host on which the actor is running (lines 8-12). Finally,

the scaler selects the actor with the minimum latency whose score is higher and sends a

message to the chosen actor to initiate a master container.

3.2.2.5 Resource Discovery

The key responsibility of this Sub-C is to find master and actor containers in the net-

work. Algorithm 4 describes how resource discovery periodically works. This Sub-C

receives the list of its registered actors from the registry (line 8). Then, it examines

the network to find the list of all available neighbors (line 9). Next, this Sub-C checks

each neighbor to find running master and actor containers. If the neighbor runs the

master container, the resource discovery adds the neighbor to its known masters list

and receives the list of registered actors on the neighbor (lines 12-14). This mechanism

helps master containers to automatically know each other in the network and share the

information of their registered actors. Besides, if the neighbor runs the actor container,
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Algorithm 4: Resource Discovery

/* prev ad ts: timestamp of the previous advertising, actrs: all registered actors

in current master, neighbours: neighbours in the network, interval: discovery

period */

1 prev ad ts← Timestamp()
2 while True do

/* Sleep for an interval */

3 ts← Timestamp()
4 if ts− prev ad ts < interval then
5 SleepForAWhile()
6 continue

/* Record current timestamp */

7 prev ad ts← ts
8 actrs← GetAllActors()

/* Advertise itself to neighbours */

9 neighbours← GetAllHosts(net gateway, net mask)
10 new actrs← []
11 foreach neighbours do
12 if neighbour is Master then

13 known masters
+← neighbour

14 new actrs
+← GetActorsAddrFrom(neighbour)

15 if neighbour is Actor then

16 new actrs
+← neighbour

17 foreach new actrs do
18 if new actr is not in actrs then
19 AdvertiseSelf(new actr )

the address of the actor will be recorded in new actrs. Finally, the resource discovery

Sub-C advertises the master to all actors that are not registered in its actor list, actrs

(lines 17-19).

Resource Discovery discovers a component by sending a probing message to an address.

Any running component responds with its component information to the source address

where the probing message is sent from. With this mechanism, resource discovery scans

the network periodically and thus obtain the ability to discover new joined resources.

3.2.3 Actor component

This component can run on any hosts in edge/fog or cloud layers. The actor profiles the

host’s resources and starts the task executors for the execution of IoT applications’ tasks.

Besides, it can initiate the master container on the host for the scalability scenarios.
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3.2.3.1 Profiler

This actor’s profiler works the same as the master’s profiler and records the available

resources of the host and network characteristics. However, contrary to master’s profiler,

it does not have profiling information of other hosts. The actor periodically sends its

profiling information to the remote logger component as well as master component

where it has registered at.

3.2.3.2 Task executor initiator

Whenever a master component assigns a task of an IoT application to an actor for the

execution, the task executor initiator is called. It initiates the task executor and defines

where the results of the task executor should be forwarded.

3.2.3.3 Master initiator

This Sub-C is only called when a master component (e.g., master A) runs its scaler

procedure and decides to initiate a new master component (e.g., master B) on other

hosts. Hence, the selected actor receives a message from its master component (master

A) and runs master initiator Sub-C. Then, the master initiator runs the new master

component B. Master component B receives the list of registered actors from master

component A to advertise itself. After the initiation of master component B, it can also

serve the placement requests of IoT Uers.

3.2.4 Task Executor Component

IoT applications can be separated into multiple dependent/independent task executor

containers based on the properties of the IoT application. Thus, an application can be

easily deployed on several hosts for distributed execution. Moreover, task executors can

be efficiently reused for other requests of the same type, which significantly reduces the

tasks’ deployment time. To obtain this, when a task executor finishes the execution of

a specific user’s task, it goes into a cooling-off period. In this period, the container can

be reused to serve another request.
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3.2.4.1 Executor

The executor Sub-C performs the run command to start the task. Also, it sends the

results to the dependent children task executors (in IoT applications with dependent

tasks) or master component (when there is no dependency).

3.2.5 Remote Logger Component

To support different application scenarios, this component can run on any hosts in

edge/fog or cloud layers. All components send their periodical or event-driven logs to the

Remote Logger. This component collects the data and stores them in persistent storage,

either using a file system or database. The Remote Logger can connect to different

databases distributed on any hosts, which enable IoT application scenarios that require

distributed databases. In our current implementation, however, we run three databases

in one host, including images (keeps the information about available docker images on

different hosts), resources (keeps the information about hardware specifications of hosts),

and system performance (keeps the information about response time, processing time,

packet sizes, etc. of IoT applications). Moreover, the databases are containerized for

faster deployments. Fig 3.3 depicts an overview of databases and their tables.

3.2.5.1 Logger Manager

The logger manager Sub-C receives logs from masters, actors, and task executors and

keeps them in the persistent storage. For efficient and quick tracking of logs, the local

manager keeps the records of system performance, available resources, and containers’

information on different storage. Also, logger manager Sub-C can provide the latest

logs of the system for the master components. Besides, the stored logs can be used to

analyze the overall status of the system.

3.2.5.2 Database Design

As Fig 3.3 indicates, there are three main databases designed for the working of the

FogBus2 framework. The Image Database contains the information of docker images on

every host which have been seen by the framework. Image information is profiled by

actor periodically, and it is sent to master within the registration message at the very

beginning of the actor registers. The image information will also be uploaded periodi-

cally to remote logger to keep the information updated. Since master synchronizes its

logs with remote logger, master will ultimately get the image information of actors over
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Figure 3.3: Database design

the network. Resources Database keeps the system’s dynamic logs such as CPU cores,

CPU frequency, CPU utilization, memory capacity, and memory utilization of every

seen host. This information help scheduler and scaler work more reasonably, enabling

the scheduler and scaler algorithms to find a better host for the workload. Compared

with Resources Database and Image Database, System Performance Database is up-

dated more frequently because it contains more dynamic information of the running

system, including data rate, packet size, delay and latency between each host pairs, as

well as processing time of task executor for particular task and response time from user’s

perspective.

3.3 Interaction Diagram

We have discussed the five components in FogBus2, user, master, actor, task executor,

and remote logger. Figure 3.4 presents the interaction diagram, which explains how an

application request from user is scheduled and what functionality will be invoked during

the procedure. The sequence begins with user’s request to master. After the master

receives the request from the user, it applies scheduling policies trying to decide how

to arrange the execution. Once the scheduling algorithm finishes, the decision will be

parsed to the respective actors or task executor. For actors, the placement messages

are sent to initiated new task executor containers. For task executor, the reuse messages
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Figure 3.4: Interaction Diagram

stop task executors’ cool-off period and trigger task executor to execute for the new

placement. No matter the placement is initiating a new task executor or reusing cool-off

task executor, the task executor who received the placement message always connects the

dependent peers based on which application is requested. The relationship is contained

in the placement message. Next, a task executor has to connect to its dependent peers,

after which it acknowledges the master with a message to indicate its ready state.

If all the required task executor are ready, master then acknowledges user that the

resources needed for the requested application are all ready. Once the user receives the

ready message, it starts to send the data that need to be processed to the system and

receives the response. The logs during the procedure will be uploaded to remote logger

for dynamical system performance monitoring, administrator maintenance, and further

analysis. To check the list of important messages, which are used in FogBus2 framework,

refer to [39].
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Performance Evaluation

This chapter discusses the properties of two sample container-based applications to rep-

resent real-time and non-real-time IoT applications. Also, we describe our experiments

and evaluate the performance of the FogBus2 framework in real-world environments.

4.1 Sample Container-based Applications

4.1.1 Conway’s Game of Life

It is a well-known 2D simulation game that consists of a grid of cells, where each cell

can be either black or white. To obtain the next state of the grid, a local function must

be applied to each cell simultaneously [40]. In our implementation, each cell is defined

as a pixel, and a group of pixels is defined as a rectangle. Our 2d world is separated into

several rectangles of different sizes, incurring different computation sizes. Besides, these

rectangles have a pyramid structure that defines a dependency model between different

rectangles. Hence, we consider Conway’s Game of Life as a real-time application with 62

dependent task executor containers (one for each rectangle) with different computation

sizes.

4.1.2 Video Optical Character Recognition (VOCR)

Compared to the pure OCR application, our implemented VOCR does not require any

manual image input from users. The VOCR can either receive a live stream or pre-

recorded video and automatically identify key-frames containing text. To filter key-

frames, we used two different techniques, called Perceptual Image Hashing (pHash) and

Hamming Distance. Then, for each keyframe, the text is extracted using the OCR

29
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technique. Finally, we apply the Editing Distance technique to filter the extracted texts

which are similar. Our VOCR application can be used to extract text from books and

important information about objects, such as objects in museums. We consider the

VOCR as the non-real-time application in its current use-case since the text outputs

are not required in real-time for users. However, the VOCR can also be used by smart

vehicles in real-time scenarios such as reading traffic signs and warning messages on the

road.

4.2 Discussion on Experiments

To study the performance of FogBus2 and its integrated policies, three experiments are

conducted. In the first experiment, we analyze the scheduling mechanism of FogBus2

using different scheduling policies. Therefore, we integrate our proposed scheduling

policy alongside two other policies in the FogBus2 framework. These policies attempt

to approximate the real response time of IoT applications while considering different

server configurations and find the best possible server configuration for the execution

of IoT applications. Since all integrated scheduling policies are based on evolutionary

algorithms, the estimated response time of IoT applications in different iterations is

obtained to analyze the convergence rate of different scheduling policies. Moreover, we

evaluate the real response time of IoT applications based on the obtained solutions from

scheduling policies.

In the second experiment, we analyze the performance of the scalability mechanism of

the FogBus2 framework. Typically, IoT integrates thousands and millions of devices that

may send their requests to distributed master components. These master components

are geographically distributed, and each one serves several IoT devices so that alongside

other master components, they can serve thousands or millions of IoT devices. So, in

this experiment, IoT devices send a different number of simultaneous placement requests

to each one of available master components in the environments. Therefore, we study

how efficiently the scalability mechanism of the FogBus2 framework can perform when

the number of simultaneous requests to each master component increases.

In the third experiment, we analyze the performance of the reuse mechanism of the

FogBus2 framework. We normalized the resource reuse time by the VOCR without

a reuse mechanism by comparing the time to evaluate the performance of the reuse

mechanism for complex and straightforward dependent module applications.

In the fourth experiment, we analyze and compare the resource usage of our framework

in terms of its startup time and RAM usage with its counterparts.
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Figure 4.1: Scheduling performance in different iterations

4.3 Analysis of Scheduling Policies

This experiment studies the performance of our proposed OHNSGA scheduling algorithm

and compares it with two other integrated scheduling policies in FogBus2, called Non-

dominated Sorting Genetic Algorithm 2 (NSGA2 ) as used in [41], and Non-dominated

Sorting Genetic Algorithm 3 (NSGA3 ) [38]. To keep fairness, the parameters of all

scheduling policies are the same, including population size, maximum iteration number,

and crossover probability.

In this experiment, the environment contains 2 RPi 4B (ARM Cortex-A72 4 cores

@1.5GHz CPU, and one with 2GB and another one with 4GB of RAM), and 1 Desktop

(Intel Core i7 CPU @3.6GHz and 16 GB of RAM) to show the heterogeneity of servers

in the edge layer. Also, the cloud layer contains 2 computing instances provisioned from

Huawei Cloud (Intel Xeon 2 cores and 4 cores @2.6GHz CPU with 4GB and 8GB of

RAM, respectively). The Desktop acts as a master while it also can act as actor to

start tasks executors. The rest of the hosts acts as actors and runs task executors. Mas-

ter profiler dynamically collects data about network characteristics of the environment

(bandwidth and latency), IoT devices, and IoT applications. In this experiment, IoT

devices send their requests for the execution of Conway’s Game of Life application.

Fig. 4.1 shows the average estimated response time of Conway’s Game of Life application,

obtained from different policies as the number of iterations increases. The OHNSGA

outperforms other policies and converges faster to better solutions. OHNSGA keeps the
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Figure 4.2: Real response time of scheduling policies

records of previous decisions and profiling information for each application and initializes

a part of its population using its recorded history. Besides, the optimized selection step

of OHNSGA ensures that non-duplicated best individuals can be copied to the next

population. Therefore, OHNSGA starts with better individuals compared to NSGA2

and NSGA3 due to its more intelligent initialization and keeps its diversity by selecting

non-duplicated individuals for the next population. Accordingly, OHNSGA can obtain

faster convergence to better solutions in comparison to its counterparts.

Fig. 4.2 depicts the real-world response time of Conway’s Game of Life application,

obtained from the execution of tasks in the real-world environment while considering

different scheduling policies. As OHNSGA tracks the prior execution behaviors of each

application, its obtained real response time is less than other techniques. It proves that

not only the OHNSGA converge faster to a better solution compared to other policies,

but its estimated solutions can better represent the behavior of the Game of Life in

real-world environments.

4.4 Analysis of Master Components’ Scalability

In this experiment, the environment contains 4 RPi 4B (all with ARM Cortex-A72 4

cores @1.5GHz CPU, where two have 2GB RAM and the other two have 4GB RAM),

1 Desktop (Intel Core(TM) i7 CPU @3.6GHz and 16 GB of RAM) to represent the
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heterogeneity of servers in the edge layer. Moreover, the cloud layer contains five com-

puting instances provisioned from Huawei Cloud (three instances with Intel Xeon 2 cores

@2.6GHz CPU with 4 GB of RAM, and two instances with Intel Xeon 4 cores @2.6GHz

CPU with 8 GB RAM). The master and actors are set as the same as in the previous

experiment. Also, IoT devices send simultaneous requests of Conway’s Game of Life and

VOCR to the master. We analyze two scenarios, called scalability and no-scalability.

In the scalability scenario, the FogBus2’s master container scales up either when the

number of received IoT requests increases or when the CPU utilization of the host on

which the master container is running goes above a threshold. The new master con-

tainer can be initiated on any host with sufficient resources, and the rest of the incoming

requests can be managed by all available master containers. In the no-scalability sce-

nario, incoming requests to the master container will be queued until enough resources

for scheduling becomes available. Here, we define a Scheduling Finish Time (SFT) met-

ric as the time difference when each IoT device sends its request to the master until the

master container finishes the scheduling of the request. Hence, the SFT contains the

queuing time of the request in the master plus the scheduling time.

Fig. 4.3 shows the scalability results as the number of simultaneous requests from IoT

devices increases. The SFT values of both scenarios are roughly the same when the

number of concurrent requests is small. However, as the number of requests increases, the

SFT values of the no-scalability scheme dramatically increase compared to the scalability

scenario. It shows the importance of supporting scalability mechanisms and policies in
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FogBus2. The master containers are scaled up as the number of requests increases,

which significantly reduces the queuing time of requests.

4.5 Analysis of Reusing Task Executor Components’ Con-

tainer

Fig. 4.4 presents the normalized resource ready time (RRT) of Conway’s Game of Life

and VOCR. RRT is considered from when User sends the request to when it is informed

that required resources are ready, i.e., task executors are all ready. The experiment

has been conducted on the Desktop only because we only care how much time the

mechanism can save when with the reuse mechanism. The RRTs showing in figure 4.4

are normalized by the time of VOCR, which is without a reuse mechanism. For VOCR, a

computation-intensive application, the reuse mechanism saves time but slightly. Because

VOCR only requires few modules (tasks), i.e., containers, to be prepared. Compared

with VOCR, Conway’s Game of Life requires various more containers, dramatically

raising the RRT without the reuse mechanism. However, when the reuse mechanism

is used, even requiring resources to be placed and ready, the RRT of Conway’s Game

of Life decreases nearly 50 percent, almost equal to VOCR when VOCR requires just

a few containers. It proves that the reuse mechanism runs efficiently, particularly for

applications with complicated dependencies and relationships, because it avoids repeated

container creation and initiation.
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Figure 4.5: Startup time and RAM usage analysis

4.6 Analysis of Startup Time and RAM Usage

This experiment studies the startup time and RAM usage of our framework, FogBus2,

and compares it with FogBus framework [21]. Fig. 4.5 shows the average startup time

and RAM usage of master and actor components on different hosts. As the results are

roughly the same for other components in our framework, we only present the obtained

results for these two components. It can be seen the RAM usage of FogBus and our

proposed framework, FogBus2, is roughly the same for different framework components.

However, the startup time of FogBus2 is roughly 80% and 60% faster compared to

FogBus on Desktop and RPi, which makes it a suitable option for fast deployment of

any IoT-enabled systems.



Chapter 5

Conclusions and Future

Directions

5.1 Conclusions

In this work, we proposed FogBus2, a lightweight and distributed container-based frame-

work to integrate heterogeneous IoT-enabled systems with edge/fog and cloud servers,

with the following main contributions:

• FogBus2 offers fast and low-overhead deployments of applications us-

ing containerization. By using the containerization technique, components of

FogBus2 run in isolation environments on edge/fog servers and cloud servers. The

runtime environments are secure and lightweight, which benefits FogBu2 and em-

powers FogBus2 with quick deployment. The required running environments of

components are pre-compiled and packaged in images when the images can create

as many containers as needed. Moreover, the containerization also decreases the

difficulty of designing a scaling mechanism and scaling policies since the needed

environments are already prepared in the images.

• FogBus2 provides scheduling, scalability, resource discovery, and dy-

namic profiling mechanisms, assisting IoT developers in defining and

deploying their targeted IoT applications on FogBus2. We proposed

OHNSGA to dynamically schedule for heterogeneous requested IoT applications

when OHNSGA converges extremely fast compared with NSGA2 and NSGA3,

and the decisions of OHNSGA are examined to be better (53% lower response

time) in a real-world experiment. Besides, considering the workload growing into

the system is unpredictable, an efficient mechanism to automatically scale resources
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has to be developed when the investigation shows a 48% improvement compared

with no scalability is applied. Moreover, the resource discovery mechanism and

dynamic profiling mechanism are integrated into FogBus2 to locate undefined re-

sources and monitor system performance automatically.

• FogBus2 does not have any constraints on communication topology be-

tween its entities and supports different topologies such as mesh, peer-

to-peer, and client-server. The communication of every components in Fog-

Bus2 framework design, master, actor, user, task executor, and remote logger,

do not couple with others. For example, task executors can communicate to each

other without the participation of master, which dramatically increases the effi-

ciency for task executors to co-operate with others when the computation requires

content exchanging. This loose design of communication enables various commu-

nication topology and make FogBus2 more compatible with different networking

environment. It also gives developers more freedom the develop their applications

over our framework and contribute to FogBus2.

5.2 Future Directions

Due to modular design and containerization support, IoT developers can easily extend

this framework and integrate new software components and policies. Hence, this frame-

work can be further developed by,

• Integrating dynamic clustering mechanisms and policies to cluster re-

sources either horizontally or vertically. When seamless integration of edge/-

fog and cloud infrastructures has been developed in FogBus2 to support hetero-

geneous IoT applications, a horizontal and vertical dynamic clustering mechanism

can also be integrated upon the integration capability. To intelligently cluster

highly heterogeneous resources, a real-world mechanism may be developed learn-

ing from simulations like the mechanism proposed in [42].

• Integrating container-orchestration techniques to automate the man-

agement of application deployments and scaling. FogBus2 manages the

containers of different components and applications using the Docker API with

the developed algorithm of the scaler. However, automatic management tech-

niques to deploy and scale containers, like Kubernetes [43], can be integrated to

obtain more efficient practical performance.

• Mobility-support in different layers of edge/fog computing environment.

Since IoT devices are usually tiny and some of them are mobile such as in-vehicle
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cameras, the mobility support for IoT users and edge/fog servers to provide users

seamless and stable experience is also essential. The potential research may refer

to Sufyan et al. [44].

• Integrating lightweight security mechanisms to ensure data confiden-

tiality and integrity Integration of security mechanisms usually requires extra

overhead, but there are several works [21, 45–48] that can be referred to integrate

blockchain technique which minimizes the overhead on security monitoring and

also keeps tracking the sensitive information during the execution of applications

and serving of the framework.

• Privacy preservation support for the users’ private information and

edge/fog servers. Privacy preservation is significant for IoT applications when

the IoT devices are close to the natural environment and to humans. For exam-

ple, healthcare applications highly concern about privacy and security because the

applications service and run with patients’ sensitive data. When the transmission

of such data is over the edge networking, the protection and preservation need to

be considered, which can be referred to Bakkiam et al. [49] and Sahi et al. [50].

• Integrating machine learning techniques to analyze the current state of

edge/fog computing environment. It is difficult to understand and efficiently

manage an edge/fog computing environment because the current state of such

distributed system is incredibly dynamic and complex. Referring to [14, 51–53],

the machine learning techniques can be integrated into the FogBus2 framework

to understand and analyze the system, as a consequence, develop and improve

policies for scheduling, scaling, and resource discovery mechanism.
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