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Abstract 

Modeling and optimizing cloud computing service prices are significant challenges facing 

many cloud practitioners and researchers in the field of cloud economics for either achieving 

competitive advantages or managing cloud resources effectively. Currently, the number of 

cloud pricing schemes offered by different cloud service providers (CSPs) is overwhelming. 

Many customers, especially business customers, find these pricing schemes puzzling and do not 

know how to analyze them to develop their business case so that they can transform their legacy 

IT infrastructure into a cloud platform. On the other hand, many new CSPs urgently need to 

know how to create and optimize the cloud price models so that they can effectively compete 

with their peers and serve their targeted customers well with limited resources. These are 

interdisciplinary challenges that involve cloud computing technologies, microeconomics, 

industrial organization, price theory, decision theory, market segmentation theory and value 

theory.  

This thesis investigates these issues from both cloud customers and CSPs’ perspectives. It 

provides cutting edge solutions to resolving the cloud price modeling and optimizing the 

problem. These proposed solutions are hedonic pricing for new cloud service features, cloud 

market segmentation, defining multiple customer utilities and cloud baseline pricing. This 

research advances state-of-the-art cloud economics and makes the main contributions as 

follows. 

1. In light of the value theory, this study presents a comprehensive taxonomy and survey 

of the cloud pricing models proposed by many researchers during the last decade and 

identifies interdisciplinary challenges. It provides a unique way of classifying various 

models. It includes a short history of models and enabling technology-hypervisors.  

2. By leveraging hedonic pricing for the new cloud service features, this work constructs 

different models that accord with customers’ willingness to pay (W2P). To the best of 

my knowledge, it is the first time that cloud pricing is dependent on its service features 

that are differentiated by both intrinsic and extrinsic characteristics. Most significantly, 

this research unveiled the depreciation rate of cloud services, which is equivalent to 

Moore’s Law.  

3. Based on the market segmentation theory, this research generates a novel solution that 

combines both hierarchical clustering and time-series methods to extract the cloud 

customers’ usage patterns from Google’s public dataset and give a demand forecast from 

the local hosting firm's private dataset. 

4. From the result of market segmentation and the demand forecast, six customer utility 

functions have been developed according to the Markov chain analysis, the queuing 
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theory (or M/M/s), and risk assessment for different business application workloads. 

The result of the utility function illustrates that cloud pricing should be built on market 

segmentation rather than on a unified market. 

5. With a foundation of microeconomics, this research demonstrates a comprehensive 

fabric of a CSP’s value-based cloud pricing strategy on how to generate different pricing 

models. In particular, it creates four models derived from cloud customer utility values 

and the CSP’s cloud infrastructure costs. It also shows how to apply a genetic algorithm 

for identifying the optimal price point of each model for CSPs to maximize their profit. 
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Chapter 1 

1. Introduction 

 loud price modeling and optimizing are the major challenges facing many practitioners 

and researchers in the field of cloud economics or Cloudonomics [1] due to cloud computing 

transformation and IT paradigm shift [3]. This implies that the number of new cloud service 

features is growing almost daily and the number of corresponding pricing schemes offered by 

different cloud service providers (CSPs) is overwhelming for different business applications. 

Consequently, it becomes a very complicated issue for many cloud customers, especially business 

customers, to make the right decision concerning the selection of the right pricing scheme for 

their business application needs during this transformation [39] [52]. Moreover, many incoming 

CSPs often want to know how to establish and optimize the cloud price models to maximize their 

profit while serving their targeted customers well and maintaining their cloud business to be 

competitive and sustainable.  Yet many previous studies often focused on cloud pricing from a 

CSP’s revenue and costs perspective (or internal rationality) and often paid less attention to the 

issue of the customers’ utility value (or external rationalities).  

Hence, this research will include both aspects of the cloud customer’s utility values and CSP’s 

profitability, and show how to construct various cloud price models and how to identify the 

optimal price point for each model according to both external and internal rationalities. In other 

words, it takes into account cloud market segmentation, market demand, customers' business 

applications and customer surplus value, as well as new cloud service features, the perishable 

asset effect and cloud infrastructure costs for CSP to maximize its cloud profits. As a result, this 

research will involve many disciplines, such as cloud computing technologies, microeconomics, 

industrial organization, operation research and value theory, to solve this complicated problem. 

Although the problem becomes very challenging, the strategy to tackle it is to divide it into two 

main problems and five manageable sub-problems:  

1.) The first main problem is how to estimate a cloud price for new cloud service features: - 

C 



 

2 

 

• How to estimate cloud pricing for new service features from a panel dataset, and 

• How to estimate cloud pricing for new service features from a cross-sectional dataset.  

2.) The second main problem is how to establish various price models for the cloud baseline 

or basic services: 

• How to segment the cloud business market to understand cloud market demands;  

• How to define the customers’ utility values and functions, and  

• How to develop various cloud pricing models for CSP’s profit maximization. 

The details of these sub-problems can be further elaborated as the first sub-problem is to deal 

with the issue of pricing new cloud service features or characteristics due to cloud technology 

innovation and new service offerings. The second sub-problem is to answer the question of cloud 

service pricing depreciation rate and lifecycle management. The third sub-problem is to tackle the 

challenge of capturing a greater market share, while the CSP can balance between uniform and 

personalized pricing for limited cloud resources. The fourth sub-problem is to define the cloud 

business customers’ utility functions for their business application needs in the light of value co-

creation. The fifth sub-problem is to show how to establish four cloud pricing models and how to 

identify the optimal price point for each pricing model. 

Historically, various themes of computing pricing have been developed throughout the later 

1990s, 2000s, and 2010s. Before the cloud computing era, Buyya et al. [51] attempted to establish 

economic models for grid computing. In 2009, they extended the idea of grid economics [302] to 

cloud price modeling with a market-orientation [52]. Yeo et al. [256] also provided an alternative 

idea of the pricing model, e.g., the automatic metered pricing model for utility computing services. 

Hande et al. [278] constructed a pricing model that is, with some constraints, of network accessing 

limitation. Xu et al. [80] presented a general pricing model that enables CSPs to charge their cloud 

customers according to the cloud infrastructure or resource needs. Moreover, Xu [56] developed 

a dynamic price model to combine both reserved and spot (or auction form) instance pricing 

schemes for a CSP to maximize its profits or revenue. Similarly, Toosi et al. [55] considered three 

different types of existing pricing models offered by Amazon Web Services (AWS) for CSP’s 

revenue maximization. Ben-Yehuda et al. [61] used a dynamic algorithm to describe AWS’ 

pricing models and speculated that the AWS pricing mechanism has a reserved price according 

to their observation of AWS spot instances' price history. Walker [77] [78], Greenberg [60] and 

Wu et al. [75] addressed the issue of cloud pricing model from a data center cost-based perspective 
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while El Kihal et al. [84] and Mitropoulou et al. [85] proposed a hedonic method to model the 

price and pricing index of cloud computing services. 

The main themes of cloud services can be derived from the National Institute Standards and 

Technology (NIST) cloud definition of three service models: Infrastructure as a Service ((IaaS), 

Platform as a Service (PaaS), and Software as a Service (SaaS), four deployment models: Private 

cloud, community cloud, public cloud, and hybrid cloud and five characteristics: on-demand self-

service, broad network access, resourcing pool, rapid elasticity, and measured service, which can 

be simply presented as “3S - 4D - 5C”. The common sense of clouds computing is more like a 

new business model rather than a new technology ([297] [298] [299] [300] [301]) because it 

enables and redefines a new business relationship and a new value chain between cloud customers 

and CSPs in term of IT resource provisioning, delivery, deployment, consumption and 

management in cloud transformation. The stipulation of the cloud transformation leads to the 

central debate on the issue of how to make the right decision for cloud customers and how to 

make profit maximization for a CSP by establishing and optimizing various cloud price models. 

Weinman [1] recapitulated this topic in the new single word: “Cloudonomics” or how to apply an 

interdisciplinary approach for cloud computing service delivery. 

Over the last few decades or so, many researchers have made excellent efforts for either cost-

based pricing or resource-based pricing from a business to consumer (B2C) perspective, but these 

studies ([80] [86] [113] [114] [118] [119]) only provided a theoretical proof of the optimal pricing 

point for various pricing models and an explanation of existing models offered by various CSPs. 

Very little research has been done for customer values and market segmentation from the business 

to business (B2B) perspective. There is a significant gap in addressing how to create cloud pricing 

models and how to identify the optimal pricing point of these models based on the value-based 

pricing for business customer’s application needs. It is urgently required to bridge this gap 

because the field of cloud computing has entered an “early majority” stage [15] and many business 

customers start to migrate their various workloads or business applications (e.g., mission-critical, 

e-Commerce, virtual desktop infrastructure (VDI), database backup) to the cloud infrastructure. 

They begin to consider a comprehensive cloud solution in terms of various cloud service features, 

end-user experiences and cloud ecosystems rather than a pure IT cost-cutting solution. From an 

evolutionary perspective of computing, IT pricing has been moving from “pay as you make” to 

“pay as you use” (billing method), and from a simple dashboard to auto-orchestration with 

OpenStack Application Programming Interface (API) due to cloud transformation. All these 
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trends are summarized in Figure 1⎯1 from the long-term evolution (or the ecosystem) of pricing 

model, service delivery and billing methods.  

Figure 1—1 The evolutionary view of Cloud Computing Price Modelling [1] 

On the basis of this evolution, the problem of definitions and consideration of previous 

theoretical investigations, this research will provide a total solution framework for the overall 

problem of pricing and optimization of cloud computing services. This total pricing solution 

consists of five sub-solutions (1.1, 1.2, 2.1, 2.2 and 2.3) that correspond to five issues (or sub-

problems). The reason to divide the overall problem into two solution components with five 

smaller and manageable sub-solutions is that the overall problem is too challenging to be resolved 

as a whole. The first component is to model the cloud price based on the growing number of new 

characteristics (features) of cloud computing services. The new cloud service features may 

include security compliance, global data center footprints, OpenStack API, Burstable CPU, 

Failover, money-back guarantees, etc. The second component of the solution is to model the 

baseline service. It is not just to explain or prove the existing pricing model, but also to provide a 

 

 

1 OpenStack – This is an open source cloud management package that provides a common platform for controlling 

clouds of servers, storage, networks and even application resources. It is vendor-free management software. 
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practical solution for how to create various pricing models: for example, how to create the on-

demand pricing model. The baseline service means the basic unit configuration of Infrastructure 

as a Service (IaaS), such as 1 CPU core, 4 GB RAM, 100 GB storage, 10 GBits network 

bandwidth in the specified data center location for one hour.  

Figure 1—2  The Total Solution Framework of Cloud Service Pricing 

Figure 1-2 illustrates the details of five sub-solutions: 1.1: adopting hedonic analysis to extract 

a new cloud service feature’s price, 1.2: using time dummy to calculate a fixed effect for the price 

depreciation rate, 2.1: leveraging hierarchical clustering and time series to segment the cloud 

market, 2.2: defining cloud customers’ utility functions based on a value co-creation principle, 

2.3: building various cloud pricing models and identifying an optimal price for CSP’s profit 

maximization by a genetic algorithm.  

Overall, this research work proposes five practical sub-solutions for cloud price modeling that 

can be summarized from three aspects.  1.) This investigation establishes a comprehensive 

framework of cloud pricing from end to end for all cloud service features.  2.) It provides a novel 

solution that is not only for new cloud service characteristics pricing but also for cloud service 

lifecycle pricing.  3.) It establishes a fabric of value-based pricing strategy and demystifies the 

entire process of modeling and optimizing cloud prices for the baseline features.  
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In the context of the total solution of cloud pricing, the rest of this introduction chapter has five 

sections. The first section provides background information, which is to clarify some key concepts 

and terms for cloud price modeling and highlights my motivation behind this research work. The 

second section states the research problems and objects. The third section provides the evaluation 

method for various cloud price models that have been established. The fourth section gives a 

summary of the conclusions for this thesis. The fifth and final section draws a roadmap of how 

this thesis is organized and presented in detail.  

1.1 Background 

Suppose a hosting firm wants to extend its business to cloud computing services. The firm’s 

executives or decision-makers decide to invest “𝑥” amount of capital into cloud computing to 

grow its new cloud business. The subsequent question that the decision-makers wish to have 

answered is what the outlook of the cloud business revenue and profitability in terms of capital 

investment is likely to be. Intuitively, the fundamental problem is how to decide the cloud service 

pricing for various service features and how to estimate sales prices, market demand, and unit 

cost based on the defined business strategy (e.g. ,targeted customers, specified cloud service 

features, own service delivery expertise, technology strengths and a specified addressable market). 

From the microeconomics, the profit equation can be easily formalized as the relationship 

between the variables of sales price, market demand and unit cost (See Equations 1-1 and 1-2) 

 𝜋[𝑝] = [𝑝 − 𝑐𝑢[𝑄(𝑝)]]𝑄(𝑝) (1-1) 

where 𝜋[𝑝] is the profit,  𝑝 is the sales price, 𝑄(𝑝) is the market demand and 𝑐𝑢[𝑄(𝑝)] is the 

unit cost.  

 𝑝 = 𝑄−1(𝑝) (1-2) 

While the definition of the equation appears to be very straightforward, an optimal solution to 

this equation is quite challenging because the relationship of 𝑝 and 𝑄−1(𝑝) is intertwined. This 

study will provide a novel and innovative solution to this challenge by taking into consideration 

both internal and external rationalities for cloud customer’s value proposition and for CSPs' profit 

maximization. The new solution of cloud pricing is driven by the idea of “value co-creation” 

([270] [271] [272]), which emphasizes a partnership between cloud business customers and CSPs 

within the cloud market value chain. The origin of “value co-creation” can be traced back to the 
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motivation for this research, which is how to distribute the “good” value in the new cloud business 

value chain.  

1.1.1 Motivations 

During late 2008 and early 2009, I was involved in a business initiative and worked with a team 

to build cloud computing services capability for business customers. The initiative was the so-

called “Project of Silver Lining” (PSL). The project was a natural extension of the existing hosting 

service business for many enterprise customers and government agents. The project aimed to 

target both existing and new customers' growth with a fixed amount of investment budget. In 

addition, this project also intended to gradually migrate many existing IT workloads from legacy 

infrastructure to a new cloud platform. It can also be considered as a cloud transformation or IT 

infrastructure lifecycle issue. When all issues were boiled down, the primary question was how 

to maintain the cloud business profitability and sustainability. It led to the issues of how to 

establish the cloud pricing models, how to identify the optimal price point for each pricing model, 

and how to capture a board spectrum of the values for various cloud B2B market segments.  

If the pricing strategy is cost- and resource-based, the pricing solution is straightforward and 

relatively easily calculated where the markup price is a certain percentage of unit cost. However, 

this solution does not answer the question of customers' “willingness to pay” (W2P). It ignores 

external rationality. It could lead to a cloud price to be either overshot or undershot. T. Nagle et 

al. [10] demonstrated that cost-based pricing could become absurd. If it is market-based pricing, 

many new and innovative cloud features would not exist in the current market because there is no 

existing market environment to reflect supply and demand. The logic solution is “value-based” 

pricing because it is considered to be a better approach to price the services [36]. Nonetheless, it 

is very ambitious because value-based pricing is subjective, arbitrary and subtle. It is often hard 

to quantify and measure, especially for cloud services within the B2B market. Philosophically, 

the value-based pricing should determine the values contribution to the customer’s business from 

three aspects: “Good to have” (consolidate values); “Good to do” (build new values), and “Good 

to be” (grow future values) [294]. The puzzle of value-based pricing motivates me to investigate 

the cloud pricing further and move beyond just the cost-based and market-based price models. 

1.1.2 Cloud Computing Service Price Modeling 



 

8 

 

If the value-based pricing for cloud service concerns both internal and external rationalities, the 

logical question is, what is the relationship between value-based, cost-based and market-based 

pricing? Based on the value theory, which is to study the nature of value evaluation, cloud price 

modeling can be classified into three basic strategies that have already been mentioned above: 

value-based (subjective) pricing (refer to Section 2.2.3.1), market-based (interactive) pricing 

(refer to Section 2.2.3.2) and, cost-based (objective) pricing (refer to Section 2.2.3.3). 

Mathematically, the relationship of the three pricing strategies can be derived from the Lerner 

Index and presented in the following Equation 1-3 and Figure 1⎯3. 

 

Figure 1—3 Three cloud pricing Strategies 

 𝑝 = 𝑚𝑐(∙) +
𝑄(∙)

|𝜕𝑄(∙)/𝜕𝑝|
 (1-3) 

 where 𝑚𝑐(∙) is the marginal cost or average cost, 𝑝 is the market price and 𝑄(∙) is the market 

demand, 
𝑄(∙)

|𝜕𝑄(∙)/𝜕𝑝|
 represents the markup price.  In this equation, the markup price is the primary 

factor that determines the value-based pricing because it is ultimately derived from the cloud 

customer’s “willingness to pay” (W2P). This W2P is dependent on the value estimation for 

various cloud service features. What is the cloud service feature?  

1.1.3 Cloud Service Characteristics 

Cloud service features and characteristics are often used interchangeably. They are innovative 

attributes of cloud services for CSPs to gain competitive advantages in the cloud market place. 

For example, AWS has grown its new innovative cloud service feature almost daily since 2006. 

Up to the end of 2017, AWS has released a total of 1,430 new features [295], such as burstable 

CPU, Elastic Cache, IoT platform, Greengrass, Lex, and AWS Lambda FaaS, which is in contrast 

to a baseline cloud service. Often, a CSP marks up a price for baseline service (e.g., Infrastructure 
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as a Service or IaaS) that may include different cloud service features. Different CSPs may offer 

different baseline services. It is very challenging for a cloud customer to compare cloud prices for 

different baseline services that may include different cloud service features. 

If we just compare the price of IaaS among 30 leading global CSPs, AWS’s price is not the 

cheapest. AWS’s price of its IaaS is slightly above the median price.  But AWS can still maintain 

over 31% of its IaaS global market share and keep double-digit revenue growth year on year 

(YoY). This phenomenon, together with the pricing puzzle of PSL, inspires me to formulate the 

following research topic and objectives.     

1.2 Research Problems and Objectives 

The purpose of this thesis is to address the question of cloud price modeling and optimizing for 

a value proposition for both CSPs and cloud customers. The research topic can be defined as 

How to predict, model and optimize the prices of both new and baseline cloud computing 

services based on the value-based pricing strategy for a CSP to maximize revenue or profit that 

allows the CSP to develop a competitive and sustainable cloud service business. This complicated 

problem can be solved by five proposed solutions, shown in Figure 1⎯2. 

 In order to implement this research, the following research objectives have been identified. 

• Classify and survey the current state of the art of cloud computing price modeling 

systemically in order to fully understand the significant findings, controversies, and gaps 

of previous works. 

• Propose a practical solution for cloud services pricing by consideration of its ecosystem, 

which has to cope with an ever-changing environment of cloud infrastructure. This 

investigation will apply a hedonic analysis to modeling for both cloud intrinsic and 

extrinsic features of cloud services based on the utilitarian theory, as shown in Figure 

1⎯2. This study will implement three experiments: a.) Test intrinsic characteristics’ 

impact on pricing by leveraging the AWS dataset; b.) Test time dummy’s impact on 

pricing by leverage the  AWS panel dataset of the past 10 years, and c.) Test extrinsic 

characteristics’ impact on pricing by leveraging five leading CSPs’ cross-sectional 

dataset in one year. 
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• Implement the hierarchical clustering and time series algorithms to segment and predict 

the market demand for the cloud B2B market based on Google’s public dataset. 

• Define and create different cloud customer utility functions according to the cloud 

market segment for cloud pricing modeling and optimization. This research will apply 

Markov Chain analysis, queueing theory and  risk analyses for various cloud customers’ 

utility functions 

• Create various cloud pricing models and identify the optimal price point of each model 

for a CSP to achieve business revenue and profit maximization. This study proposes to 

establish four possible pricing models according to customers’ surplus values and adopt 

the genetic algorithm to identify the optimal price point for each proposed price model.    

1.3  Evaluation Methodologies 

Regarding pricing new cloud service features, this study adopts the regression analysis 

forecasting method to predict cloud prices. The process to evaluate the predicted performance is 

first to create a robust hedonic function that consists of intrinsic, extrinsic and time dummy 

variables from both panel and cross-sectional datasets. The second step is to use the generated 

hedonic function to predict future price point of 2017 from a 2014 dataset. The accuracy of 

prediction results shows as high as up to 78.6%. 

For the cloud market segmentation, this investigation employs the majority rule method to 

determine and evaluate the optimal number of cloud market segments. R’s NbClust package has 

developed more than 30 methods or indices to evaluate the optimal number. This study used the 

NbClust package to evaluate the number of cloud market segments. Regarding the cloud market 

demand evaluation, the Time Series estimation is assessed by the Auto-Correction Function (ACF) 

to check the residuals movement based on the local hosting firm’s dataset. The final result is also 

verified by the forecast data published by global leading technology research firms, such as 

Gartner, IDC, Forrester Research and ISG. 

The methodology used to evaluate cloud customer utility function is to compare a CSP’s profit 

margin, sales volume, unit cost and optimal price with the existing state of the art, such as simple 

linear and resource-based pricing based on the uniform market assumption. The experiment's 
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results show that the proposed multiple utility function solution can improve the CSP’s profit 

margin by over 213% compared to current solutions. 

On the assumption that a CSP offers four various pricing models in the cloud market, this study 

is also to evaluate the business performance in terms of that of CSP’s profit margin, sales volume, 

optimal price and unit cost between cost-based and value-based pricing. The markup assumption 

for cost-based pricing is 100%, while the value-based pricing is dependent on customers’ surplus 

values or utility functions. The performance results show that although the sales volume is the 

same, the profit margin is over 100% compared with resource-based pricing. In other words, the 

value-based pricing can achieve over 200% profit margin. 

1.4  Thesis Contributions 

The significant contributions of this work can be classified into five categories.  The first is a 

survey and taxonomy of cloud pricing models. In contrast to previous surveys and taxonomy, this 

work is based on value theory to “carving (cloud pricing) the nature at its (economic) joints” [295].  

Secondly, this work proposes a novel hedonic model to capture cloud extrinsic characteristics or 

innovative service features. The third category is to classify the cloud market into different 

segments by hierarchical clustering and time series method. The fourth one is to identify multiple 

cloud customers' utility functions along various market segments to lay out a framework of value-

based pricing strategy.  Lastly, this thesis demystifies and establishes the complete process of 

cloud price modeling through four different value-based models for CSP to maximize its cloud 

business profits. 

The primary contributions of this thesis can be further articulated in the following details. 

1.  A taxonomy and literature survey of cloud models provides an overview of cloud pricing 

evolution of both practice and theory and highlights an outlook of cloud price modeling 

in the context of value theory with a multiple-discipline approach of economics, industrial 

organization, price theory, market theory and cloud computing technologies. 

 

2. Formalization of a hypothesis that cloud services have both intrinsic and extrinsic 

characteristics based on utility theory.  This then tested and validated a cloud pricing 

model according to both an AWS panel and five leading CSPs’ cross-sectional datasets. 
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• A novel hedonic model is established that can differentiate three variables, namely, 

intrinsic, extrinsic and time dummy. 

• With the novel hedonic model, a CSP can identify how much a customer is willing 

to pay. The experimental results showed that the extrinsic value is about 43% above 

the baseline service. 

• The hedonic model has also unveiled the cloud service average annual growth rate 

(AAGR) at - 20% (or depreciation rate) between 2008 and 2017, which is at a much 

slower pace than with Moore’s law.  

• The research work of the hedonic pricing model illustrates that CSPs should not 

compete on price but rather price based on innovative service features. 

• The model provided a less biased pricing model for many cloud decision-makers to 

develop their investment strategies in the cloud business. 

 

3. According to the classical theory of market segmentation, a novel solution is proposed to 

segment the B2B cloud market. It consists of both supervised and unsupervised learning 

algorithms that can precisely quantify the cloud market segment that lays out the 

foundation for CSPs to construct various cloud pricing models. 

•   Demonstrate how to use hierarchical clustering algorithms to identify the optimal 

number of cloud market segments by leveraging Google’s public cloud dataset as the 

input to extract cloud customer usage patterns. 

•   Show how to assess the clustering tendency that contains the cloud usage pattern. 

•   How to determine the number of market segments and the proportion of each 

segment and how to validate the cloud market segments statistically. 

•   How to adopt the Time Serial method to predict local cloud market demand. 

•   Illustrate how to combine the predictable cloud market demand with the segmented 

market. 

 

4. Define various utility functions in terms of multiple cloud market segments. It is built 

upon the various utilities by a Markov Chain analysis, queue theory and risk assessment. 

•   Use cloud customers’ revenue and profit as a measurement quantity for cloud 

customers’ utility level, which directly reflects cloud customers’ fundamental value 

proposition.   
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•   Adopt a Markov chain analysis to calculate the cloud customer’s business value in 

terms of SLA measurement and requirements for a cloud business customer. 

•   Leverage the queuing theory, the customers’ utility function to reflect the minimum 

response time in terms of cloud customers’ revenue impact for e-Commerce business 

application, such as an online checkout system. 

•   By microeconomics, the utility functions of business customers are defined by a risk 

assessment, in which the utility function is dependent on the relationship between a 

risk factor and the cloud resources. 

 

5. According to the combined result of cloud market segmentation and cloud customer 

utility functions, four value-based cloud price models, namely, on-demand, bulk, 

reserved, and bulk + reserved, are established and then optimized. In contrast to previous 

cost- or resource-based pricing, the pricing models include both internal and external 

rationalities. With the proposed genetic algorithm (GA), CSP’s revenue and profit can be 

maximized for each pricing model.  

•   Formalize four value-based cloud price models as a business solution that allows 

CSPs to maximize the profit and revenue for the B2B cloud market, which enables 

CSPs to develop a business partnership with their business customers to achieve the 

value co-creation or a business partnership. 

•   By developing various cloud pricing models, it allows CSPs to capture a broader 

spectrum of cloud market share and customers' surplus values. 

•   Illustrate how to optimize these cloud price models using GA. 

•   Cloud price models are dependent on both internal (cloud infrastructure costs) and 

external (customer utility functions and market segments) rationality. 

•   Show that the bulk-selling + reserved pricing model can achieve the best business 

revenue and profit margins in comparison with other pricing models. 

1.5   Thesis Organization 

The structure of the thesis is organized in seven chapters and is shown in Figure 1⎯4.  These 

are based on the number of publications published during my Ph.D. candidature. The overall 
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research topic is seen as having two themes: one is devoted to new cloud service characteristic 

pricing and the other addresses baseline service pricing.  

• Chapter 2 develops taxonomy and a survey of cloud pricing models. The content of this 

chapter is derived from the following paper: 

- Caesar Wu, Rajkumar Buyya and Kotagiri Ramamohanarao, “Cloud Pricing 

Models: Taxonomy, Survey and Interdisciplinary Challenges,” ACM Computing 

Surveys, Volume 52, No. 6, Article No. 108, Pages: 1-36, ISSN 0360-0300, ACM 

Press, New York, USA, October 2019. 

 

• Chapter 3 provides hedonic price modeling for cloud computing services. It mainly 

focuses on new cloud service features or characteristics. The content of this chapter is 

underpinned by the following paper: 

- Caesar Wu, Adel N. Toosi, Rajkumar Buyya and Kotagiri Ramamohanarao, 

“Hedonic Pricing of Cloud Computing Services” IEEE Transactions on Cloud 

Computing, Cloud Computing, IEEE Transactions on, IEEE Trans. Cloud 

Computing, no. 99, p. 1-15. 

 

• Chapter 4 presents a novel solution to the segment cloud computing market segment, 

which is based on the theory of market segmentation. This chapter is built upon the 

following paper: 

- Caesar Wu, Rajkumar Buyya, and Kotagiri Ramamohanarao, “Cloud Computing 

Market Segmentation” ICSOFT proceeding, 2018, p. 888-897 

 

• Chapter 5 exhibits how to model cloud customers’ utility functions based on various 

applications in different market segments. This chapter is determined by the following 

paper:  

- Caesar Wu, Rajkumar Buyya, and Kotagiri Ramamohanarao, “Modeling Cloud 

Customers’ Utility Functions,” Journal of Future Generation Computer Systems 

(FGCS) Volume 105, Pages: 737-753, ISSN: 0167-739X, Elsevier Press, 

Amsterdam, The Netherlands, April 2020. 

- Caesar Wu, Rajkumar Buyya and Ramamohanarao Kotagiri. “Big Data Analytics 

= Machine Learning + Cloud Computing,” Big Data: Principles and Paradigms, 



 

15 

 

ISBN: 9780128053942, Waltham, MA Morgan Kaufmann, Elsevier, 2016. p. 3-

37   

 

• Chapter 6 proposes four value-based cloud price models based on cloud customers’ 

utility functions and cloud market segmentation. This chapter is developed in the 

following paper: 

- Caesar Wu, Rajkumar Buyya, and Kotagiri Ramamohanarao, “Value-based 

Cloud Price Modeling for Segmented Business to Business Market,” Journal of 

Future Generation Computer Systems (FGCS) Volume 101, Pages: 502-523, 

ISSN:0167-739X, Elsevier Press, Amsterdam, The Netherlands, December 2019.  

 

• Chapter 7 provides the summary information about this thesis together with an analysis 

and discussion on future direction. This chapter is again derived from the following paper:  

- Caesar Wu, Rajkumar Buyya, and Kotagiri Ramamohanarao, “Cloud Pricing 

Models: Taxonomy, Survey and Interdisciplinary Challenges,” ACM Computing 

Surveys, Volume 52, No. 6, Article No. 108, Pages: 1-36, ISSN 0360-0300, ACM 

Press, New York, USA, October 2019. 
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Figure 1—4 Thesis organization 
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Chapter 22 

2. Taxonomy and Literature Survey 

This chapter provides a systematic overview of cloud pricing in an interdisciplinary approach. 

It examines many historical cases of pricing in practice and tracks down multiple roots of 

modeling in research. The purpose of this overview is to help both cloud service providers (CSPs) 

and cloud customers to capture the essence of cloud pricing when they need to make a critical 

decision either to achieve competitive advantages or to manage cloud resources effectively. 

Currently, the number of  available pricing schemes is overwhelming. It is an intricate issue to 

understand these schemes clearly due to involving several domains of knowledge, such as cloud 

technologies, microeconomics, operations research, and value theory. Some earlier studies have 

introduced the cloud pricing models unsystematically. Their approaches inevitably lead to much 

confusion for many cloud decision-makers. Consequently, this chapter presents a comprehensive 

taxonomy of cloud pricing models, which is driven by a framework of three fundamental pricing 

strategies that are built on 9 cloud pricing categories. These categories can be further mapped 

onto a total of 60 pricing models. Many of pricing models have been already adopted by CSPs. 

Others have been widespread across other industries. This study gives descriptions of these model 

categories and highlights both advantages and disadvantages. Moreover, this chapter offers an 

extensive survey of many cloud pricing models that were proposed by many researchers during 

the last decade.    

2.1 Introduction 

 loud Computing transformation is now taking a momentum [12] [13]. It has entered the stage 

known as “early majority” of the cloud technology adoption life cycle, in which cloud computing 
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• Caesar Wu, Rajkumar Buyya, and Kotagiri Ramamohanarao, “Cloud Pricing Models: Taxonomy, Survey and 
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has become a mainstream market of IT infrastructure [15]. According to Wikibon [14], the 

Compound Annual Growth Rate (CAGR) of true private cloud (a hyper-converged cloud solution) 

alone will grow 29.2% from 2017 to 2027 while IaaS will grow 15.2% during the same period. 

However, one critical issue has remained unclear, which is how to understand a variety of cloud 

pricing models that are offered by different Cloud Service Providers (CSPs). Yet, the number of 

pricing schemes in the current cloud market is overwhelming. The aim of this chapter is to provide 

a systematic overview of many pricing models for both CSPs and cloud customers [3] so that CSPs 

can achieve its cloud business competitiveness and sustainability while cloud customers can make 

the right decisions during this cloud transformation. 

Recently, many CSPs or cloud computing advocators claim that cloud computing is cheaper 

computing due to its Total Cost of Ownership (TCO) [16] [17]. However, Weinman [1] argued 

that “Cloud Computing is not cheap computing.” Martens et al. [2] echoed this view, and they 

have noticed that many cloud cost (price) conclusions lack a systematic approach for a cost 

estimation regarding various models. Many favored claims are often dependent on an ad-hoc 

processing approach without consideration of some indirect and hidden variables. 

As a result, Buyya et al. [3] [4] suggested that the topic of cloud computing pricing should be 

considered in an interdisciplinary way, which should be studied under the scope of multiple 

disciplines including cloud technologies, price theory, microeconomics, operations research, and 

value theory. Similarly, Kash and Key [306] also indicated “current cloud pricing schemes are 

fairly simple.” “Multidimensional scheduling and pricing offer greater potential for increasing 

both customer satisfaction and (CSP)’s revenue” with a growing number of new cloud service 

features. According to [5] [6], no single discipline can provide a satisfying solution for cloud 

pricing. An isolation approach of cloud pricing could increase the difficulty for decision-makers 

to comprehend the benefits and risks of cloud services as well as a price to be paid. One of the 

examples is how to understand Amazon Web Services (AWS) spot instance or spot block (up to 

6-hour service duration time) pricing. It can be considered as dynamic-based pricing [4] [37] [38] 

 

 

3 Cloud business customers have their own business, such search engine optimization (SEO), storage backup, virus 

scanning and etc., run on the cloud infrastructure to serve other customers. They are not end users. From a cloud 

customer’s perspective, CSP’s cloud price is equivalent to its cost.   
4 The dynamic pricing model means the price is a function of many variables, such as time, season, customer demand, 

etc. Many firms adopt this price to manage their yield for their limited capacity or resources. It has been widely 

applied in many service and utility industries such as airline, hotel, electric and gas utilities. 



 

19 

 

because of the nature of fluctuation [97]. On the other hand, it can also be regarded as auction-

based or even cost-based pricing because of its multiple characteristics [98] [99]. Therefore, this 

chapter argues the cloud pricing issue must be investigated by an interdisciplinary approach from 

a value proposition perspective. 

Although this survey draws multiple disciplines for the pricing issue, it mainly focuses on four 

knowledge domains: the Cloud pricing model is the focal point. Microeconomics is the theoretical 

tool to understand the cloud price that is influenced by supply and demand in the cloud market 

place. Value theory is the measurement of a customer’s value proposition, which is defined by a 

CSM. Operation research is a method to help cloud decision-makers to make better decisions for 

any given cloud price during cloud transformation. Cloud technologies allow CSP to establish 

various new cloud pricing models to capture maximum customer surplus values from multiple 

cloud market segments. Throughout this taxonomy and survey, we will examine both the pros 

and cons of different cloud pricing strategies [5] and models [6] regarding a fundamental question 

of value [100]. We will also investigate pricing models to reflect the subjective experiences of 

many cloud business customers. These subjective experiences are often measured by Cloud 

Service Metrics (CSM) [103] [104], such as acquisition, retention, and efficiency from a business 

customer’s perspective.  

Overall, this work derives from three strategies of cloud pricing through both subjective (values) 

and objective (fact) views. Value-based pricing is demand-driven, and cost-based pricing is 

supply-driven. Moreover, market-based pricing can be seen as the result of an equilibrium of both 

supply and demand in a cloud market. Based on these basic strategies, we can define a hierarchical 

pricing framework that is illustrated in Figure 2⎯1. Each layer of the framework is driven by its 

goal. At the top, the pricing is driven by the principle of value [100]. The next layer down is 

derived from three pricing strategies, which are to pursue a long-term goal of a business. The 

layer further down is drawn from pricing tactical [7], which is oriented by short-term objects. The 

aim of tactical pricing is how to translate a pricing strategy to tactical objects. Finally, the bottom 

 

 

5 Strategy is how does a decision maker deal with or solve the given business problem for a long term or overall goal.  
6 Model is a representation of strategy. It can help us to visualize and access the relationship of the various objects. 

It is a simplified or abstracted description of reality, especially a mathematical one, for us to predict the future. 
7 Tactic is similar as a strategy, which is a plan to achieve a specified aim. However, the aim of a tactic is to gain 

immediate or short-term benefits rather than long term one. It is possible to win a game tactically but lose it 

strategically. Many tactics can support an overall strategy. 
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layer of cloud pricing consists of 60 individual models, who are detail-oriented. It explains the 

details of implementing a pricing strategy. The meaning of this framework implies if a strategy is 

cost-based, the final price “𝑝” is determined by a cost that is driven by internal rationality. In 

contrast, if a strategy is value-based, “𝑝” is dependent on cloud customers’ utility value, which is 

mainly determined by external rationality. If a CSP decides to adopt market-based pricing, “𝑝” is 

a result of the market equilibrium of supply and demand. The essence of this hierarchical 

framework can reflect the microeconomics [9] in term of price theory.  

 

Figure 2—1 Big Picture of Multiple Disciplines of Cloud Pricing Models 

According to this framework, we can find many earlier works mainly focused on both cost-

based and market-based pricing and paid less attention to value-based pricing. Therefore, this 

study will not only include all three pricing strategies into consideration but pay special attention 

to value-based pricing. The primary reason is if a CSP knows all the pricing components (facts) 

of cloud (such as cloud service cost, markup ratio, market share and target rate of return, etc.) [7] 

[8] objectively, a cloud price still can't be determined because a decision-maker does not know 

how to handle these facts, which item (fact) is more important than the others, why and when it 

is much more important than others. These questions are the question of value [19]. If someone 

would insist on derivate from the fact to value alone, it becomes a naturalistic fallacy [20], which 

T. Nagle et al. [10] demonstrated that this kind of pricing strategy would become absurd. In order 

to avoid this logic fallacy, this work will provide a comprehensive framework by considering both 

CSP’s cost and customers’ value proposition for cloud pricing. As a result, this chapter has made 

the number of contributions listed as follows:  
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• It establishes the unique framework of classifying various cloud pricing models 

• It categorizes 60 pricing models into three pricing strategies and nine pricing categories. 

Many models have not been considered by CSPs yet, but they have been widely adopted 

by other service industries, such as airline, travel, hotel, recreation, healthcare, telcos, 

and retail sectors. The purpose of exploring these potential models is to help many CSPs 

to compete on pricing, not on a price. 

• It reviews most of the recently proposed models in considerable depth regarding their 

contributions and gaps plus their business application. Moreover, our work also 

highlights characteristics of pricing models offered by leading CSPs, which they often 

leverage their business strength to build their models. 

• It provides the key for many cloud decision-makers to comprehend various cloud 

pricing models easily. 

The rest of the chapter is organized as follows: Section 2.2 reviews the history of cloud pricing 

from a practical perspective. It includes cloud service launch times and virtualization technologies 

that underpin various cloud prices and cloud business. The aim of having this historical overview 

is to understand the multiple roots of cloud pricing models proposed by many researchers during 

the last decade. This work then outlines a relationship three pricing strategies based on value 

theory. Section 2.3 establishes the taxonomy of cloud pricing models. Section 2.4 provides a 

detailed survey of selected papers that were published from 2008 to the present. Finally, this 

chapter compares each pricing model with other models for its methodology and theoretical roots 

(All acronyms in this Chapter are listed in Table 2⎯1) 
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Table 2—1 Acronym Used In This Chapter 

Acronyms Definition Acronyms Definition Acronyms Definition 

AWS Amazon Web Service DevOps Development and 

Operation 

NoOps No Operation System 

API Application 

Programming Interface 

EC2 Elastic Compute Cloud Opex Operation Expenditure 

B2B Business to Business E2E End to End QoS Quality of Service 

B2C Business to Customer GCP Google Cloud Platform PAYG Pay As You Go 

CAGR Compound Annual 

Growth Rate 

KVM Kernel-based Virtual 

Machine 

S3 Simple Storage Service 

Capex Capital Expenditure HARA Hyperbolic Absolute 

Risk Aversion 

SCADA Supervisory Control& 

Data Acquisition 

CBA Cost-Benefit Analysis DaaS Database as a Service SEO Search Engine 

Optimization 

CoD Code on Demand IaaS Infrastructure as a 

Service 

SLA Service Level Agreement 

COTS Cost off The Shelf PaaS Platform as a Service SME Small Medium Enterprise 

CPI Customer Price Index SaaS Software as a Service SOA Service-Oriented 

Architecture 

CRM Customer Relationship 

Management 

FaaS Function as a Service TCO Total Cost of Ownership 

CRRA Constant Risk Aversion XaaS Anything as a Service TPU Tensorflow Process Units 

CSM Cloud Service Metrics NPV Net Present Value VM Virtual Machine 

CSP Cloud Service Provider NPC Net Present Capacity W2P Willingness to Pay 

2.2 History of Cloud Pricing Models 

2.2.1 Cloud Pricing Models In Practice 

The first cloud pricing model can approximately be traced back to Salesforce.com’s Russian 

doll model [8] [101], which are similar to optimal feature pricing (one of the retail-based pricing 

models). We can also consider it as per-user-based pricing for Software as a Service (SaaS). It is 

dependent on a value proposition. Salesforce.com’s pricing model is a contrast to Siebel’s 

distributed or perpetual licensing model. Back in 2000, the average price of Siebel’s Customer 

Relationship Management (CRM) software would be around $10,000 per license plus additional 

$5,000 ongoing costs for a patch, regular upgrades, bugs fixes, maintenance, backup, and help 

 

 

8 Russian Doll or Matryoshka Doll pricing model is a type of marketing strategy to bundle different product features 

into one nested deal, like a Russian Doll.    
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desk support. Consequently, it is beyond many small and medium enterprise (SME) customers 

reach because they could not afford to allocate a significant amount of IT budget or Capital 

expenditure (Capex) upfront. This issue led to an opportunity for Marc Benioff (one of the 

founders of Saleforce.com) to offer a subscription-based pricing model for SaaS [21]. 

The cloud technology that underpins per-user-based pricing is known as software multi-tenancy. 

The idea of multitenancy is an analogy to drawing from an apartment building where the tenants 

can share the cost, such as public facility, body-corporation, security, etc., but still have their 

private space. By the same principle, Microsoft Hotmail or Google’s Gmail also offers the email 

service, which every user (or tenant) can enjoy the email service via a web browser without any 

stress of installation and configuration of the mail software by themselves.  Figure 2⎯2 

summarizes a timeline of different pricing models that were adopted by some leading CSPs along 

with cloud technologies development.  

Following the similar concept of sharing, AWS, one of the global leading IaaS providers 

adopted the “on-demand” pricing model for its Simple Storage Services (S3) that was launched 

in Mar 2006 and offered Elastic Compute Cloud (EC2) in Aug 2006 for its public cloud. The 

enabling technology of both S3 and EC2 was Xen hypervisor, which Citrix Systems released the 

initial version in Oct 2003. Later in 2009, AWS launched its spot instance (auction or dynamic-

based pricing) with a substantial discount (up to 90%) in comparison with its on-demand price. 

However, spot instances can be terminated at any time with only two minutes of advance warning 

time. In 2015, AWS started to offer two modified pricing models for its spot instance: Spot Fleet 

and Spot Block. Following AWS lead, Google App Engine began to offer a cloud service platform 

(Platform as a Service or PaaS) for its customers to host their web applications within the current 

Google data centers in 2008. Its price model is very similar to AWS, but Google Cloud Platform 

(GCP) charges in per-minute base for Pay as you Go (PAYG). The underlying hypervisor of GCP 

for its PaaS is Kernel-based Virtual Machine (KVM) that was initially released by Qumranet in 

2006. Later, it was acquired by Red Hat in 2008, but Red Hat was taken over by IBM in later 

2018. In 2015, GCP also offered a discount (up to 80%) price or preemptible model for its cloud 

service to match AWS’ spot model. In comparison with AWS and GCP, Microsoft Azure started 

its cloud business in Jan 2010. Its price models are very similar to both AWS and GCP. It has 

quickly captured a large market share according to Gartner’s Magic [18]. Azure’s virtualizing 

technology is built upon its own Hyper –V. Microsoft launched Hyper-V in 2008. In 2017, Azure 
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also followed the footstep of AWS and GCP to offer a “low priority” price model for up to 72% 

discount rate in comparison with “on-demand.”   

 

Figure 2—2 A History of Cloud Service Pricing Model and Enabling Technologies 

Although the top three leading CSPs use three different hypervisors, many public CSPs adopt 

Citrix Xen, such as IBM Softlayer, Rackspace, GoGrid, Oracle VM for x86, Aliyun (Both Xen 

and KVM) and Virtustream’s VM (or Microvisor). Linode moved its VMs from Xen to KVM 

in Jun 2015 because it believes that KVM is 28% faster than Xen. However, the most popular 

hypervisor for the private cloud is still dominated by VMware, which is the first commercial 

hypervisor that was launched in 1999. 

Some public CSPs, such as CenturyLink and Interoute, also adopt VMware to support their 

cloud business because VMware provides a comprehensive toolset that allows customers to 

manage their private cloud service efficiently. However, some analysts [105][106] argued if host 

applications are migrated to a public cloud, it will become too heavy and cumbersome. They also 

believe that one of the significant disadvantages of VMware is overpriced. One of the interesting 

observations is that most public CSPs adopt Xen hypervisors and the minimum billing unit of on-

demand is per hour base. On the other hand, if CSPs adopt the KVM hypervisor, the billing unit 
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is reduced to a per-minute base. Some CSPs that adopt VMware often require cloud customers to 

have a long-term commitment to a cloud service contract. In general, virtualization technologies 

allow CSP to cut out the idle time of cloud data centers and improve cloud resource efficiency by 

4-5 times. It enables CSP to reduce the significant amount of cloud infrastructure footprints. As 

a result, CSP can offer competitive cloud prices to its customers. Table 2⎯2 highlights the various 

price models and underlying hypervisors.  

Table 2—2 Leading CSPs’ Pricing Models and Supported Hypervisors 

Name of CSP Type Pricing Models 

Initial 

offering 

Year 

Minimum 

billing 

Unit/Cycle 

Type of 

Cloud 

Service 

Supported 

Technologies 

Hypervisor 

Launched 

Year 

Salesforce.com Per-User Based 1999 Monthly SaaS Multitenancy - 

AWS On-Demand 2006 Hourly IaaS Xen 2003 

AWS Spot Instance 2009 Hourly IaaS Xen 2003 

AWS Dedicated Hosts 2015 Hourly IaaS Xen 2003 

Google App 

Engine 
On-Demand 2008 Minute PaaS KVM 2006 

Google Cloud 

Platform 
On-Demand 

2010-

2014 
Minute IaaS KVM 2010 

Google Cloud 

Platform 
Preemptible VMs 2015 Minute IaaS KVM 2010 

Azure On-Demand 2010 Hourly XaaS Hyper-V 2008 

Azure Low Priority VMs 2017 Hourly IaaS Hyper-V 2008 

Softlayer (IBM) On-Demand 2006 Hourly IaaS Xen 2003 

Softlayer (IBM) Bare Metal Cloud 2010 Hourly IaaS VMware 1999 

Softlayer (IBM) 
VMware Virtual Data 

Center 
2016 Monthly/Yearly IaaS VMware 1999 

Rackspace On-Demand 2008 Hourly IaaS Xen 2003 

GoGrid On-Demand 2006 Hourly IaaS Xen 2003 

Aliyun On-Demand 2012 Hourly IaaS/PaaS Xen and KVM 
2003, 

2006 

Virtustream 

(Dell) 
Per User Based 2012 Monthly IaaS 

Microvisor 

(Xen) 
2012 

Joynet On-Demand 2013 Minute IaaS/PaaS SmartOS 2011 

Linode On-Demand 2008 Monthly IaaS 
From Xen to 

KVM 

2003, 

2006 

CenturyLink Reserved Based 2011 Monthly/Yearly PaaS VMware 1999 

Interoute Reserved Based 2012 Monthly/Yearly IaaS VMware 1999 

Oracle VM for 

X86 
Reserved Based 2012 Yearly IaaS/DaaS Xen 2003 

 

From a CSP perspective, we argue that discount pricing models would not support CSP’s 

business profitability and sustainability economically. Instead, on-demand and reserved models 
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are the profit-driving forces for CSPs. The reasons to offer a discount price 1) CSP can fully 

utilize its spare cloud capacity. 2.) CSP can manage its cloud resources effectively for its cloud 

infrastructure lifecycle. 3) It can capture more customers’ surplus values at a lower end of the 

pricing spectrum. 3.) It can become one of the marketing campaign tools for CSP to prompt other 

cloud services. 4) It can reduce customer churning by combining discount pricing with on-demand. 

Recently, AWS offered a modified version of spot instance: spot block and spot fleet, which is to 

combine on-demand and spot pricing. In comparison with pure on-demand, both models can save 

typically 30%-45% cost plus further 5% off for a non-peak time in a region. This is an excellent 

example to illustrate the AWS pricing strategy to reduce customer churning. 

From a cloud customer’s perspective, the reserved pricing model is to assure cloud resource 

certainty, and the on-demand pricing model is to accommodate customer’s workload fluctuation 

with advantages of minimum provisioning time and speed to market. Currently, there are at least 

seven types of mainstream pricing models in the cloud market, namely On-demand, Reserved, 

Subscription, Discount (including auction), Code on Demand (CoD), bare metal, and Dedicated 

Host illustrated in Figure 2⎯3. These pricing models are mainly driven by cloud customers’ 

utility values and market segments (Refer to Chapter 4 for more details). These models only show 

a practical aspect of cloud pricing in history. What is the theoretical aspect of cloud pricing in 

research? 

Figure 2—3 Summary of Cloud Pricing Spectrum in the Current Cloud Industry 
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2.2.2. Multiple Roots of Cloud Pricing Models in Research 

The aim of examining various pricing theories is to clarify multiple roots of cloud pricing 

theories. By tracing down the historical roots of various cloud pricing models that were proposed 

by many researchers (more details in the following Section 2.4), we can see that the origin of 

cloud pricing models does not come from single but multiple threads. The current term of the 

cloud pricing model is an amalgam of different sources. On the basis of reviewing more than 

hundreds of research papers between 2008 up to present, we can identify possible four primary 

roots of cloud pricing (as shown in Figure 2⎯4): Utility-computing, Network computing, CSP’s 

profit-driven, and cloud customer performance orientation. This historical tracking suggests two 

possible criteria to classify various cloud pricing models. One is to classify pricing models by its 

historical roots, and the other is to carve (cloud pricing) nature at its (economic) joint [107]. This 

study will exhibit the taxonomy of the cloud pricing models based on economics and value theory 

because it will be not only in align with economic theory, but also help many decision-makers to 

comprehend a value proposition of each pricing model.  

 

Figure 2—4  Multiple Roots of Cloud Pricing Models 
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However, the meanings of some key terms and their relationship are still vague in terms of cloud 

“Carve (Cloud) Nature at its (Economic) Joint”

Value-Based Market-Based Cost-Based

Various Cloud Pricing Research Topics Cloud Pricing Oriented By Economics

Multi-Roots of Cloud Pricing Models Taxonomy of Cloud Pricing

Make Pricing 
Sense from 

Theoretic Research

Optimal 
Price

Revenue
Total 
Cost

Cloud Profit Maximization

Utility-Computing Based Pricing
• Grid Computing
• Resource Scheduling
• Parallel Distributed Computing
• Commoditizing & Metering
Network-Computing Based Pricing
• Network Resource
• Fairness-Aware
• Cloud Datacenter Capacity
• Cost-Orientation

CSP Orientation Pricing
• Profit & Revenue Max
• Resource Pool Optimization
• Dynamic & Auction Pricing 
• Discount Pricing

Customers Orientation Pricing
• User Perceived Value
• Performance & SLA
• Applications & Workloads
• Quality of Service (QoS)

Various Pricing Models In Practice

On-Demand

Reserve

Spot

Spot Block/Fleet

Preemptible

Low-Priority

Code On Demand

Dedicate Host

Bare-Metal

Make Pricing 
Sense from 

Practical History

Practice of Cloud Pricing



 

28 

 

pricing contexts, such as price, pricing, pricing scheme, pricing model, pricing structure, pricing 

category, pricing strategies, value, and customer benefits. These terms and their relationships are 

essential for the following taxonomy and survey. 

The term price is an estimated value or a value tag of cloud service (e.g., $1.00/per hour). 

Pricing is to give an estimated value based on a value proposition. The pricing scheme is a price 

plan or cloud service package with a pricing tag (e.g., AWS c4.larg instance consists of 3.75GB-

RAM, 8-ECU or EC2 Compute Unit, 2-vCPU or virtual Central Processing Unit, Linux-OS, and 

is marked as $0.10/per hour at US East Ohio data center in April 2019). It may be considered as 

a price configuration. Some CSPs allow cloud customers to create their own pricing scheme by 

setting a range of standard prices. Pricing model (e.g., on-demand or reserved) is a simplified 

description that is often defined by a mathematic function for CSP’s profit maximization (e.g., 

𝑝∗ = max
𝑝

𝜋[𝑅(𝑝) − 𝐶(𝑝)], where 𝜋 is a profit, 𝑝 is a price, 𝑅(𝑝) is total revenue and 𝐶(𝑝) is a 

total cost). Pricing category is a group of pricing models that has some common characteristics, 

while pricing strategy is a blueprint by coordinating various activities to achieve a long term 

business goal (e.g., A strategic goal is to achieve a 20% revenue growth in next five years). If the 

pricing scheme is an abstraction of various prices of cloud components, then the pricing model is 

an abstraction of pricing scheme, and pricing strategy can be considered as an abstraction of 

pricing model. They are all dependent on a set of value propositions for a purpose to deliver cloud 

customers’ benefits (Refer to Figure 2-5). 

The term “value” means how much worth to an agent for an object. It is measured by a unit of 

utility [120] (worth, satisfaction, happiness and subjective experience). Fundamentally, value 

concerns things are good or bad in a successful and efficient sense [22] [23]. To this extent, it can 

be further articulated into three types of good values: 1) “Good to have” (e.g., a pricing strategy 

aims to consolidate good customers’ experiences of cloud services), 2) “Good to do” (e.g., the 

strategy drives the customers’ value proposition of willingness to pay, which focus on new values), 

and 3) “Good to be” (e.g., a strategy is to simulate customers demand to migrate more workloads 

to off-premises). By delivering various “good” values of cloud services, customers are willing to 

pay (W2P) for their service benefits and CSP will get a profit reward from its cloud business. It 

means “value co-creation” [124]. We can briefly illustrate the relationship with all these key terms 

in Figure 2⎯5. The aim of having three types of “good” is to know how to handle all the factors 
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of pricing model so that a cloud decision-maker can know which factor is more important than 

others. 

 

Figure 2—5  Relationship of Key Terms for Pricing Models and Value Proposition 

2.2.3.1.  Value-Based Pricing 

In comparison with other pricing strategies, value-based pricing is much subjective. It might 
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ratio between the worth of a cloud service and a price to be paid [24]. According to Sheth et al. 

[25], customers perceived values have five dimensions, namely functional, conditional, social, 

emotional and epistemic values. The final decision of customer choice is a function of multiple 

perceived values. The main benefit of value-based pricing is that it provides competitive 

advantages to capture a wide range of cloud services’ values [26], such as emotional and epistemic. 
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In principle, the value-based pricing emphasizes the measurements of customer’s experience, 

satisfaction, and expectation. It includes both intrinsic values [9], e.g., CPU, RAM, bandwidth and 

extrinsic (or instrumental) values [10], which are determined by the relationship about something, 

e.g., Pay as You Go (PAYG), 24X7 supports, burstable CPU, resource auto-scaling, etc. (See 

Chapter 3 for more details). The value-based pricing is often applied to innovative cloud service 

features and some new niche market segments. By a similar line of reasoning, we can extend the 

value-based criteria to both market-based and cost-based pricing. Consequently, we can form a 3 

 3 matrix as the classification criteria to differentiate various cloud pricing models listed in Table 

2⎯3 

Table 2—3 Classification Criteria Matrix for Cloud Pricing Models 

Pricing Strategies Value-Based Pricing Market-Based Pricing Cost-Based Pricing Target Values 

Good to Have (GH) GH for Value-Based GH for Market-Based GH for Cost-Based 
Consolidate Current 

Values 

Good to Do(GD) GD for Value-Based GD for Market-Based GD for Cost-Based Grow New Values 

Good to Be (GB) GB for Value-Based GB for Market-Based GB for Cost-Based Identify Future Values 

 

2.2.3.2. Market-Based Pricing 

“Market-based pricing” is driven by the equilibrium of all customers and CSPs [28]. The market 

environment will stabilize the market price, which is price equilibrium due to supply and demand. 

We can use “Freemium” as one of the examples to illustrate the idea of market-based pricing, 

which it becomes popular due to rising FaaS (Further details in Section 2.4.4) “Freemium” is to 

give away a product with basic functionality or features for free to gain the market share [29]  

The primary purpose of Freemium is aiming to convert free customers into premium buyers by 

giving away just enough values for initial taste so that it can attract regular customers. That is 

why the word “Freemium” is the combination of two words of “Free and Premium.” “Freemium” 

is one of the pricing models for many CSPs, such as AWS, GoGrid, SoftLayer, Dimension Data, 

Microsoft Azure, ElasticHosts, and Dropbox, to implement their market-based pricing strategy. 

The market-based pricing takes consideration of two kinds of impacts on the pricing. One is price-

sensitive and the other is the competitiveness of a market for similar services. Practically, CSP 

 

 

9 Intrinsic Value – A value can be isolated by its own 
10 Extrinsic Value – A value is dependent on others, or instrumental value 
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may adopt different pricing models to implement its business strategy, such as classic feature-

limited freemium (such as AWS and Dropbox), Free trial period (such as Azure), unlock the 

capped speed or bandwidth or unique features (such as mobile apps and gaming), free software 

and premium service support. Moreover, these models can be measured by various metrics. 

Marius F. Niculescu et al. [30] highlighted four different measurements, which are features, 

quantity, quality, and period. These models can attract many high-end customers and get much 

valuable feedbacks from a large number of audiences for a CSP to improve its services. The 

criteria to classify this marketed-based pricing can be summarized as to be competitive in 

response to a market price due to supply and demand. 

2.2.3.3.  Cost-Based Pricing 

Although market-based pricing is common for many retailer businesses, most of the enterprises 

and government agents with on-premises cloud infrastructure often adopt cost-based pricing 

because it is much easier to be comprehended from a decision-making perspective. One of the 

primary reasons to use this pricing strategy is it is concrete and tangible. There is no other 

interpretation. It is also known as fact-based pricing. Despite the fact that many pricing experts 

emphasize value-based pricing [31] [32] [33], the cost-based pricing is still common because it 

can help decision-makers to set a baseline price to charge customers so that they can at least cover 

Capex. Moreover, cost-based pricing can articulate a unit cost and provides a reference point for 

benchmark comparison. It becomes one of the managerial tools for many decision-makers to drive 

CSP’s business performance. Lastly, the components of cost are the essential element of Cost and 

Benefit Analysis (CBA) so that a decision can be made much realistic [34] and a cloud price can 

be validated internally. 

In practice [35], value-based pricing is often far less than the other two pricing strategies, and 

market-based pricing is the most popular strategy and followed by cost-based pricing, as shown 

in Figure 2⎯6. This result indicates value-based pricing is much more challenging to be applied 

due to a value estimation of cloud customers’ experiences, satisfaction, and perception. T. Nagle 

et al. [10] proposed a practical solution of value metrics, which consists of six actives or value 

cascade to implement value-based pricing. They are value creation, value communication, price 

structure, pricing policy, price setting, and price competition. With clarification of three pricing 

strategies and some critical terms of cloud pricing in upfront, the taxonomy of cloud pricing can 

be developed. 
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Figure 2—6 Adoption of Pricing Strategies in Practice Across All Industries [36] 

2.3. Taxonomy of Pricing Models 

Based on the root of three pricing strategies, we can further map onto 60 different pricing 

models that are determined by four factors of value, fact, supply, and demand, which we can build 

a comprehensive framework of taxonomy that includes 9 different categories that are formed a 

33 matrix as shown in both Figure 2⎯7 and Figure 2⎯8 Each category of pricing consists of 

between 3 and 6 pricing models except retail-based pricing models. From Section 2.3.1 to Section 

2.3.9, this chapter will first define each category and then will explain why some models have 

been adopted by CSPs and others not. Finally, this chapter will link each category to today’s cloud 

pricing practice 

Notice that it is possible to carve various pricing models at different joints. It may lead to one 

price model to be mapped onto different categories and different strategies. It is dependent on 

many factors, such as a business strategy, investment budget, the expertise of cloud technology, 

a competitive market environment, and targeted customers. Ultimately, it is dependent on a value 

proposition. In practice, we can combine various pricing models to form a new pricing category 

and to achieve a particular tactical object. This taxonomy, together with three pricing strategies 

and a 33 value matrix defines the conceptual framework for cloud decision-makers to 

comprehend cloud price models systematically. 
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Figure 2—7 Taxonomy of Overall Cloud Pricing Models 

 

Figure 2—8 Taxonomy of Retail-Based Pricing 

2.3.1 Service-Based Pricing 

Service-based pricing category is to emphasize the value of “Good to have” for cloud customers. 

In comparison with the other two value-based pricing categories, the value of “good to have” 

focuses on value consolidation for the cloud services. Many CSPs of SaaS adopt service-based 

pricing models, such as Salesforce.com and Azure. It can also be considered as incentive-based 

pricing because this pricing category could be determined by a client’s business revenue, cost-

saving, and early project delivery. The advantage of this category of pricing models is their values 
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can be identified and predicted. The value of “good to have” can be incremental. There are six 

different models of value pricing: on-demand, tier-based, per-user based, per device-based, all 

you can eat, and priority-based pricing. The value measurement of these models may be 

dependent on a Service Level Agreement (SLA) [63] [91]. Although service-based pricing is 

closely associated with performance pricing due to SLA measurement, the former focuses on the 

pricing of service contents while the latter aims at the pricing of the performance required. 

The concept of service-based pricing could also be mixed with resource-based pricing because 

both categories of pricing may involve some components of intangible inputs and outputs. 

However, the service-based pricing focuses on value-added service, while resource-based pricing 

emphasizes the requirement of various inputs. The typical example of service-based pricing for 

cloud service is “on-demand” or PAYG, which is one of five essential characteristics of cloud 

service [197]. 

2.3.2.  Performance-Based Pricing 

This pricing category can be distinguished as the value is “good to do.” It is measured by 

customers’ performance experiences, such as the specified reliability of a cloud service or 

utilization rate of a limited resource (e.g., cloud infrastructure or data center capacity). The aim 

of these models is to sell the new service values to customers for performance requirements, such 

as end-users response time, network throughput, latency, security, and scalability. To some extent, 

it may also be considered experience-based pricing. According to M McNair's definition [40], 

“Performance-based pricing is an arrangement in which the seller is paid based on the actual 

performance of its product or service.” 

A typical example of performance-based pricing is online advertising payment, which is 

dependent on the measurement data, such as the number of clicks or purchases [41]. Other 

applications include telecom services (such as multi-party video conferences, mobile apps, 

satellite connectivity, etc.), in which the service prices rely on its specified performance metrics. 

This pricing category is often connected to the customer’s business outcome. The basic idea is to 

make sure that a CSP’s services meet the customer’s business objectives or value. The reward of 

this model is that both parties’ values are aligned. By doing so, the CSP will not undercharge the 

pricing, and a cloud customer will be given the performance guarantees for the services. The 

advantage of these models can become “win-win” pricing models and be fair to both parties. From 

a customer perspective, this model shifts the uncertainty risks to a CSP. However, not every 
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performance metric can be quantified or determined. Sometimes, the performance metric is quite 

complicated. For example, how to determine the length of the period for the number of clicks for 

one online adverting camping? Often, the advertising campaign time may take longer than what 

was initially expected. In practice, the performance-based pricing models can be subdivided into 

four different models based on customer’s experiences of “good to do.” They are outcome-based, 

customer care-based, brand-based, and usage of experience-based pricing. In comparison with 

other categories of value-based pricing strategy, the performance-based pricing is practical 

because of its definable performance metrics. In a cloud practice, many B2B cloud services 

emphasize on performance-based pricing, which a CSP offers a guarantee performance, such as 

five-nine service reliability or 20 Gigabit/s network throughput and in return to charging a 

premium price. 

2.3.3.  Customer Value-Based Pricing 

This category of value-based pricing consists of four pricing models, namely perceived-value, 

psychological, feature, and hedonic based pricing. A customer’s core value is the main reason to 

build various price models. If the customers believe the cloud service value offered by a CSP is 

“good to be,” they will be willing to pay (W2P) for it. These four models are constructed by the 

context of perception, psychology, sociology (broad environment) and economics (utility). The 

primary advantage is that it allows a CSP to maximize its business profit and lead the cloud market. 

The main challenge is how to define the value metrics by measuring customers’ subjectiveness 

value for “good to be.” In comparison with other models, both feature and hedonic pricing, 

Chapter 3 can be established if the historical dataset is available. These models can be effectively 

applied to an ever-changing environment in terms of new cloud features (characteristics). 

However, not every feature of service would be “good to be” for every customer. As a result, a 

decision to select cloud service features corresponding to the charging price could become a 

challenge from a CSP perspective. Kilcioglu and Rao [117] observed one of the possible solutions 

was to modularize cloud resources and build a relationship between cloud services and customer 

value metrics for future growth. This solution has been implemented by many CSPs. 

2.3.4. Free Upfront and Pay Later Pricing 

Due to intensive market competition, many CSPs adopt “Free upfront and pay later” pricing 

model. The idea is to leverage free products with minimum features so that the pricing model can 

capture more customers and make the profits from premium customers. There are often three 
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types of models, namely free products-pricing on advertising, Freemium, and Razor-and-Blades 

pricing. With free product pricing on the ads model, it can stimulate customer’s demand, and 

customers can enjoy free products. The bad news for customers is that they could waste a lot of 

unnecessary time to try various free products. Moreover, this model requires a sizable market 

from a supplier’s perspective. If the market size is not large enough to offset the cost of free 

products, the pricing model is unsustainable. For the freemium model, there are four types of sub-

category models: 1) Classic feature-limited freemium (AWS and Dropbox adopt this model). 2) 

Free trial period (MS Azure and Oracle cloud services). 3) Free software and premium service 

support (Red Hat Linux), and 4) Unlock the capped speed or bandwidth or unique service feature 

(mobile apps, gaming, and pay-TV services). These models are pricing four different values, 

which are quantity, period, quality and service features. The critical issue is how to draw a line 

between free and premium services. Recently, AWS began to offer Lambda service or FaaS, 

which is one of the freemium services in term of quantity (execution times or a number of clicks 

and memory size/per month)  

Razor-and-Blades model is similar to freemium, but the main difference is Razor-and-Blades 

emphasize the concept of regular and consumable components. For example, a provider may give 

away or charge a minimum price for the initial or not-consumable element, such as a printer but 

charge a high premium for a regular and consumable replacement component, such as printer 

cartridges. The main advantage of this model is it can optimize the product prices and increase 

sales and maximize the business profits by redefining different values of product components. 

However, not every product can be divided into “Razor” and “Blades” Moreover, with the 

intensive market competition, the provider may risk recovering the “Razor” cost due to losing the 

returning customers. From a value perspective, these market-based pricing models are “good to 

have” to consolidate a CSP’s market share. Now, many leading CSPs start to offer this pricing 

model for their Function as a Service (FaaS), such as IBM Openwhisky, GCP, and Azure function 

services. FaaS based pricing is one type of Free Upfront and Pay later pricing. 

2.3.5. Auction and Online-Based Pricing 

2.3.5.1.  Auction Pricing and Auction in Cloud 

Auction-based pricing is that the auction mechanism will decide the pricing. Asunción Mochón 

[46] stated: “Auction is a market mechanism, operating under specific rules, that determines to 

whom one or more items will be awarded and at what price.” The reason for the auction-based 
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pricing is that the market price of some products, such as artworks, antiques and certain rights 

(radio spectrum licenses), would be best to be settled via pricing bidding mechanisms. Today, 

numerous products and services are under a hammer from inexpensive items sold on the internet 

(eBay) to a billion-dollar mobile spectrum license. Many commodity products, property, and 

financial bonds are included. AWS also places its EC2 and S3 under its auction bidding rules.  

There are some pros in term auction-based pricing: The speed of the auction is relatively fast. 

There are no backward and forward processing steps. The price is also very transparent, which 

the bidder only pays the increment cost at each bid. Moreover, it is fair to all bidders or players 

who obey the auction rules. The auction process is straightforward and direct. The limitations of 

the auction are: For a bidder (or customer), they have very little time to think during the bidding 

process. Subsequently, it is the price that may be overbidding on the real value of goods. Under 

the auction theory, there are different types of auctions based on the design criteria. Lawrence M 

Ausubel [47] listed about 13 different kinds of auctions:1) Clock auction, 2) Combinatorial 

auction or package bidding, 3) Dutch auction (Open Descending), 4)  English Auction (Open 

Ascending), 5) First Price Auction, 6) Second Price Auction, 7) Pay-as-bid action, 8) Revenue 

Maximization or optimal action, 9) Simultaneous ascending auction,10) Uniform-price auction,11) 

Vickrey auction (Second Price Seal-Bid Auction),12) Vickrey-Clarke-Grove (VCG) mechanism, 

and 13) Winner’s curse. These are different auction forms.  

The popular auction pricing models can be categorized into four models: Spot and forward 

pricing, English Auction, Dutch Auctions, and Sealed-bid Auction. This chapter only focuses on 

a few auction models that are closely associated with the cloud market. For example, AWS has 

adopted a modified spot and forward pricing since 2009. The term “spot” literately means the 

value of an asset at the right moment of settling based on English auction. It is derived from a 

commodity market. “Modified” means that AWS spot instance is not a real spot price because 

AWS reserves its right to toss or terminate your bided instances at any time by providing two 

minutes warning time in advance. Currently, the only CSP or AWS provided the spot instance for 

public cloud customers. In 2015, AWS offered two modified version of spot instances, namely 

Spot block, and Spot feet to exploit more customer’s surplus-value. With spot instance, a customer 

only bids for one instance. Spot block means the customer can bid for an instance that can lock 

in a finite number of continuous runtime hours (from 1 to 6 hours). For the Spot fleet, AWS allows 

a customer to bid multiple spot instances from a spot instance pool. AWS also allows customers 

to mix with different pricing models (e.g., on-demand and spot instance) to form a specified 
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computing capacity, such as 10 VMs that consists of 8 on-demand instances and 2 spot instances. 

The auction-based pricing model can be considered as designing for a niche and growing market, 

such as big data analytics workloads. Economically, the aim of the spot pricing model is similar 

to other discount pricing models, such as GCP’s preemptible or Azure’s low-priority VM, which 

is to capture more customers’ surplus values at a lower end of the cloud pricing spectrum.   

2.3.5.2.  Online Pricing 

In contrast to offline pricing, the meaning of “online” is the purchasing goods can only be 

processed via the Internet and cannot be handled offline or in a physical store. However, some 

online retailers may also offer both online and offline purchasing prices for customers, but the 

offline price could be higher than the online one. For example, Officeworks provides both online 

and offline prices, but the offline price is sometimes higher than online.  

The upside of online pricing is it can instantly reach a vast number of customers for a provider. 

The purchase transaction can be made very quickly via an electronic transaction. There are no 

extra handling expenditures except postage costs. It is much convenient for a customer to do 

online shopping and make an easy for the customer to compare different online pricing with 

different online suppliers. Overall, online pricing enables customers to do the shopping and 

achieve at least six benefits: “shopping at a finger-click,” saving time, competitive pricing, a wide 

range of goods, no time pressure for shopping and reading product information details, and 

various brands and models to be selected. The downside of online pricing is high risks of security 

and privacy issues, lack of or no significant discount, fraud in online pricing and the extra cost of 

goods delivered. From a CSP perspective, it can leverage online information via a 

recommendation system to tail cloud services for a personalized price or price discrimination. As 

a result, the CSP can improve its both revenue and profit margin. 

2.3.6. Retail-Based Pricing 

By its name, the retail-based pricing models are based on a small quantity that consumers buy 

from physical locations or retail outlets (such as, discount shop, warehouse, factory outlet, 

shopping malls, petrol station, department stores, supermarket, Sunday market, etc.) By and large, 

the retail providers sell products in a small quantity. It is mainly business to customer (B2C) type 

of pricing model. However, some models are also applied in B2B. There are at least four 

subcategories of pricing models: product mixing, discounts, and allowances, promotional, and 

discriminatory pricing. Altogether, retail-based pricing has a total number of 26 models. Each 
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pricing subcategory has a different orientation, as shown in Figure 2⎯8, which the products 

nature drives the product mix pricing, the payment option drives the discounts and allowances 

pricing, the sale strategy drives the promotional pricing, and the customer segment drives the 

discriminatory pricing. 

2.3.6.1.  Product Mix Pricing 

This pricing model category is to mix or combine with different types of pricing models in 

different ways. Providers can depend on customers’ usage patterns to combine different pricing 

models. The standard practice for cloud services is to combine both on-demand and spot instance 

pricing models to accommodate both predictable and unpredictable workloads [39]. There are six 

types of product mixing models, namely product line, optional feature, captive product, two-part 

tariff, by-product, and product bundling. The primary focus on this subcategory of pricing is the 

relationship of different products, which is how to mix various services to achieve the maximum 

profit by consideration of limited resource capacity, perishable assets, marginal cost and an 

optimal mixture of multiple products.  

The benefits of these models can boost sales, generate extra revenue or profits and meet various 

demands or market segments. However, the main disadvantages of these models are some 

customers may feel the frustration of trapping into a cost black hole. Others may decide not to 

buy at all. It may create a backlash among some premium customers and lead to a bad reputation 

for service providers. It may also increase the provider’s operational costs. The bottom line is 

how to make a rational decision on pricing that can reflect customers’ demands by different 

segments. Recently, AWS had implemented this type of pricing model in 2015, which is called 

“Spot-Fleet.” The distinct advantage is that it can reduce the customer’s churning rate and increase 

sales revenue and profits. 

2.3.6.2. Discounts and Allowances Pricing 

Price discounts and allowances are two techniques for a firm to response fluctuation conditions 

due to market dynamics. The term discount represents a firm to give a pricing reduction because 

of product promotion, off-season, cash payment, bulk purchase, display, and bundle, wholesale, 

and two-part tariff. This technique is applied to many perishable services. Cloud Computer 

resource is one of the perishable assets. AWS had a few price reductions between 2006 and 2014 

[42]. Allowance pricing is another type of price discount, but it is mainly designed for wholesale 

customers or commercial clients or SME. Overall, this subcategory of pricing models has six 
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kinds of common discount and allowances pricing models, which are early payment, off-season, 

bulk purchase, retail discount, cash discount, and trade-in allowance. 

The goal of this subcategory is “payment-driven” to improve net present value (NPV), which 

is to increase the return of net cash flow. The benefits of these pricing models are to reduce the 

stock inventory or to improve the capacity utilization rate, especially for perishable assets, like 

cloud resources. The main disadvantage of these models may reduce the profit margin and do not 

have a brand identity. Currently, all three leading CSPs are offering a price discount, such as spot, 

preemptible, and low priority for the number of reasons presented in the above Section2.2.1. 

2.3.6.3. Promotional Pricing 

Promotional pricing is one of the sales strategies, which is to give a discount within a specified 

period. “Most product management teams will create and agree upon a seasonal promotions 

calendar for their business. The calendar plans out the flow of promotions over a year and is used 

as a framework that ensures that the available product is sufficient to meet customer demand and 

maximize business opportunities. Promotions help generate demand and provide for immediate 

cash flow into a business. Likewise, promotions can help stimulate demand for slow-selling 

products and so can help reduce product over-stock” [34] 

The obvious reward is to increase sales and minimize stock levels [44]. The drawback is that it 

will drag down the overall profit margin. There are seven different pricing models to boost sales, 

which are a loss leader, special event, cash rebate, low-interest financing, longer payment terms, 

warranties and service contracts, and psychological discounting. The primary focus of this pricing 

subcategory is the sales-driven. One of the typical examples is a laptop sale with a cash rebate for 

a particular model of the laptop. Recently, GCP has started to offer a promotion price for its cloud 

Tensorflow Process Units (Cloud TPUv2) for US$4.50/per hour [112] in comparison with TPUv3 

with an $8.00/per hour. The price is substantially low in comparison with a regular price.        

2.3.6.4. Discriminatory Pricing 

Discriminatory pricing means that the pricing model is charging different prices to different 

customers for the same services. If we look from a value perspective, it is a customer value-based 

pricing strategy to charge each customer at the maximum price according to the customer’s 

perceived value, which is the price that a customer is willing to pay. Based on the classification 

of the microeconomic theory [8], if it is the 1st degree of pricing discriminatory, the price is 

usually dependent on one-to-one negotiation, such as property sale (in private sale). It often 
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requires a lot of effort to capture the customer’s maximum value. It is less likely applied to a 

commodity product.  

If the price discriminatory (or price discount) is dependent on sales volume, this is called the 

2nd price discrimination. The typical example is a bulk-purchase discount in comparison with a 

single purchase. It is a common practice for wholesale. If the price charge is based on the specific 

group of people in society, such as senior citizens, students, it is the 3rd degree of price 

discriminatory. For instance, Microsoft charges a student license for MS office package. If we 

combine different types of price discriminatory, we should have various price models in practice. 

Overall, they are seven different types of pricing models: customer segment, product form, 

image, location, geographical location, dynamic or surge-based, and loyalty programming pricing. 

The main idea behind this subcategory is customer segmentation, which is to design different 

pricing models for various groups of customers. Amazon segments its customers by mixing 

operational revenue streams [45], as shown in Figure 2⎯9.  This subcategory of pricing models 

does not only allow a CSP to boost its sales but also to maintain the profit margin. The flip side 

of these pricing models would increase sales costs, which will ultimately increase the investment 

risks. The criteria of model classification are two measurements: market segmentation and value 

principle of “Good to be” to create new values for CSPs. In the cloud industry, the practice of 

discriminatory pricing is pervasive, especially for cloud storage services. “Bulk -selling or 

purchase” that is 2nd order discriminatory is a typical example. AWS S3 has a bulk-selling price. 

Figure 2—9 Amazon Segmentation of operational revenue [45]   

2.3.7. Expenditure-Based Pricing 
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Expenditure-based pricing means every price model is derivate or built up from the center 

component – a unit of “cost.” In this category, there are three types of pricing models, namely: 

cost-plus, percentage, and target return pricing. The primary driver behind this category is all 

price values proportional to the particular percentage of the total cost.  

The benefits of these types of models are that a CSP knows a targeted-return. They are very 

concise, more straightforward and quick to be constructed. They can guarantee the profit bottom 

line, at least from a modeling perspective. However, these models ignore customer values and 

market supply and demand. Subsequently, these models may result to be either overestimating or 

underestimating the market price. Moreover, if the expenditure (cost) item is inaccurate, it would 

lead to the wrong pricing. Furthermore, the end to end (E2E) or the total expenditure for many 

large enterprises and government agents are not transparent. It is quite often that one cost item 

has been accounted multiple times. If so, it leads to overestimating a price for offering services. 

As a result, larger firms or enterprises could lose many business opportunities. However, if some 

cloud customers have some special requirements, such as regulatory compliance for their running 

business applications regarding cloud infrastructure, expenditure-based pricing models are good 

to have. In 2015, AWS released a new pricing model: a dedicated host to meet customers’ 

compliance requirements. IBM has had a similar price model, called “bare metal,” to eliminate 

the “noisy neighbor” effect. All these models are driven by cloud expenditure (or costs). This kind 

of pricing model may appear to be contradictory to the concept of cloud, but it is fit into particular 

business requirements – regulatory compliance, a high degree of security control, streaming 

applications, and dedicated computing power. 

2.3.8. Resources-Based Pricing 

Instead of pricing on cost account, resource-based pricing focuses on a consumption base. 

Sometimes, it might also be considered as activity-based pricing (costing) [121]. We classify 

resource-based pricing as one of the categories for the cost-based strategy because they have some 

common properties that are associated with the expenditure components. However, not all 

resource consumption costs money. Some natural resources are free. For example, the natural 

resource of solar or wind power does not cost any money. The resource-based pricing emphasizes 

on scalability. Many cloud services are built on resource-based pricing. Chen [122] found the 

cloud market or customers have a stronger preference for a particular CSP or a CSP can offer 

higher SLA than its competitors. The CSP is more likely to adopt the resource-based- pricing. 
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Resource-based pricing is common for the services industry. Traditionally, there are many 

service industries that adopted resources-based pricing models, such as e-commerce, airline, 

travel and leisure, recreation and entertainment, healthcare, and education. Resource-based 

pricing is also adopted by the IT industry, especially for IT outsourcing purposes. Resource-based 

pricing aims to offer a better method that allows customers to consume and deploy the scalable 

resources both efficiently and effectively.  

This category of pricing emphasizes resource scarcity [102]. There are four types of resource-

based pricing, namely, Transaction-based, FTE-based, Licensing-Based, Time-Material Based 

pricing. We can roughly differentiate this category of pricing models by criteria of “Good to do.” 

Softlayer and VMware recently launched the “VMware virtual data center.” It can be considered 

as one of the resource-based pricing because it includes all resources of cloud service, even 

including archive storage resources.   

2.3.9. Utility-Based Pricing 

Ruparelia, Nayan B [39] defined the term of a utility pricing model as: “Utility models are 

metered price models whereby your usage of the service is monitored, and you pay accordingly.” 

His further explanation is that the origin of the model was “from the price plans that utility 

companies have adopted, they are characterized by regular payments, often monthly, to the cloud 

service provider.” 

The term of utility has serval different connotations. 1) From a computer software perspective, 

it means that the software can perform multiple specified functions. For example, utility software 

(iOS or Windows) can be utilized to perform the tasks of monitor, mouse, printer, and disk driver. 

2) Another meaning utility is very close to the utility function, which is utilization rate for a certain 

amount of capacity. 3) From a public service perspective, it means an incumbent service provider 

can provide public services, such as telecom, electricity, gas, water, public transportation, which 

these services are essential to the modern society. 4) The economic term of utility is that the 

person receives satisfaction or pleasure for consumer goods or services. The original meaning of 

“utility” was coined by Bentham [48], which means the principle of utility or usefulness that is 

“greatest happiness for the greatest number of people.” 

 For the category of utility-based pricing, the meaning of utility is similar to the metered price 

for public services. The benefit of utility-based pricing is that every individual can access the 
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cloud service directly via a credit card for infinite scaled resources without a prerequisite 

condition, upfront Capex. The flipside is that it is not a good idea to commoditize some new or 

innovative cloud service features by using this model. Nevertheless, this type of pricing model 

provides the value of “good to be” for cloud end-user because of OpenStack [123] development. 

According to various business requirements, usage time, resource commitment, customer 

segments, and payment types or different workload patterns, utility-based pricing can have 

different pricing models, namely, Peak and Off-Peak and fixed cost-based pricing. Chen et al. 

[122] argued that if cloud market demand is less volatile, cloud customers would prefer the 

resource-based pricing. In contrast, if their demand is highly volatile, they would prefer to utility-

based pricing.   

2.3.10. Summary of Pricing Models Classification 

From both Figure 2⎯2 and Table 2⎯2, we can find that service-based pricing, especially on-

demand, per use-based and tier-based pricing models, became common pricing models widely 

adopted by many CSPs. The aim of these pricing models is that they can reflect the cloud 

characteristics of both scalability and “on-demand” (or Pay as You Go). If we look back 40 years’ 

computing history as shown in Figure 1⎯1, we can see that billing method is moving from “Pay 

As You Make” to “Pay As You Use” or “Pay As You Can” and the delivery model is moving 

from “Big Iron” to “FaaS” and pricing model is moving from hardware base to functional base. 

Altogether, a pricing strategy is moving from cost-based to value-based one. However, it does not 

mean cost-based pricing will disappear. They could co-exist with various new types of pricing 

models based on the computing technology adoption lifecycle [15]. 

As we have also shown in Figure 2⎯3, there are approximately seven cloud pricing models or 

model categories offered by leading CSPs at the moment. From a historical perspective (exhibited 

in Figure 2⎯2), we argue more new pricing models will be created often alongside with the 

innovative cloud technologies. We have observed many CSPs, such as Cloudheat [109], 

Databricks [111], Cisco systems and RingCentral [110] start to roll out a new pricing model that 

is supported by a hyper-converged solution to extend cloud computational power to the edge, 

which is close to the end-user. They call it as distributed or fog computing or data center in a box. 

This solution can eliminate network latency and routing path hops and provide much mobile 

computation power. Although this type of cloud service may still be in an incubation stage, they 

could become the major player. On the other side of the pricing spectrum (Refer to Figure 2⎯3), 
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other CSPs, such as Iex.ce [108], Cambridge Intelligence, Arkessa, and Vizolution extend cloud 

resource pools to a global market reach by leveraging blockchains and desktop grid technologies 

with a much competitive price for “Pay-per-Task” (See Figure 1⎯1) These practical cases 

illustrate that innovative cloud technologies with competitive new pricing models will stimulate 

new cloud service demands.  

Practically, we can have at least 60 different pricing models for various cloud services. The 

reason to illustrate 60 pricing models is that different cloud services require a different approach 

to address various issues of cloud services, a method of delivery, payment, promotion, 

discrimination and etc. The detail of each pricing model is excluded from this chapter due to the 

limited space. The analysis results in this chapter for cloud pricing strategy are similar to 

Hinterhuber’s findings shown in Figure 2⎯6, which the dominated pricing strategy is market-

based pricing strategy (35 pricing models). Overall, this chapter has defined and highlighted many 

pricing model categories that have been already applied to different industries, especially service 

industries. Although many of them are not available in today’s cloud market, CSPs should not 

eliminate their imagination to a few pricing models. As Weinman [1] indicated, CSPs should learn 

from other industries and compete on pricing, not on price alone. Table 2⎯4 provides the 

summary information of these categories of pricing models at a glance. 

Table 2—4 Summary of Taxonomy Pricing Models 

Name of the 

model category 

Qty. of 

models 

Sub-C 

Qty. 
Simple Definition Advantages Disadvantages 

Typical 

example of 

Applications 

Service-Based 6  

It is driven by the 

customer value 

proposition of “good 

to have” (select) 

The value can be 

defined 

objectively 

If the quantity 

grows fast, the 

cost could be out 

of control 

SaaS delivery 

Experience Based 4  

The pricing category is 

driven by customers’ 

value proposition of 

“good to do.” It is 

equivalent to 

performance-based 

pricing 

It is a win-win 

model and fair to 

both parties 

Not every service 

can be specified 

with a list of 

performance 

metrics 

On-line 

advertising 

camping 

Customer value 

Based 
4  

The pricing models are 

driven by customers’ 

value proposition of 

“good to be” 

Maximized the 

sales profit-based 

customers W2P 

Challenging to 

select the right 

service features 

for pricing 

models 

Many services 

real including 

the real estate 

industry 



 

46 

 

Free Upfront and 

Pay Later 
3  

It is to leverage free 

products with 

minimum features for 

generating higher 

profits from premium 

customers 

Increase customer 

base and market 

share 

Challenging to 

decide product 

components 

between free and 

premium 

E-commerce, 

pay-TV, 

proprietary 

software 

license 

Auction 5  

Price is settled by 

bidding-based rules in 

public 

Price is 

transparent; Price 

is quick to be set 

down 

The price is 

unpredictable 

Real estate 

industry 

Online 1  
Price is published on a 

web page 

No extra handling 

cost, Price is 

transparent 

High risk of 

Security and 

privacy issues 

e-commerce 

Retail-Based (RB) 26  
It is a B2C type of 

pricing model 

The optimizing 

product set to 

maximize profit 

Too many options 
Retails industry 

or online retail 

Sub-RB: Product 

Mix 
 6 

Product-oriented 

pricing models 

Boost sales, 

generate extra 

revenue 

Lead to a bad 

reputation 
Telco services 

Sub-RB: Discounts  6 
Payment driven 

pricing models 
Increase cash flow 

Reduce the profit 

margin 

Nearly all retail 

industries 

Sub-RB: 

Promotional 
 7 

Sales strategy driver 

pricing models 

Increase sales and 

reduce inventory 

stock 

Reduce the 

overall profit 

margin 

PC sales 

Sub-RB: 

Discriminatory 
 7 

Customer 

segmentation driver 

pricing models 

Increase in profit 

margin 

Increase in sales 

cost 

Service 

industries and 

automobile 

retails 

Expenditure-

based 
3  

Price is decided by a 

proportion of cost or 

expenditure of 

production 

More comfortable 

to be constructed 

and understood 

Either overshoot 

or undershoot 

Dominated 

firms often 

have a market 

monopoly 

Resource-based 4  

Price is decided by 

resources to provide 

the services 

Consumers 

deploy scarce 

resource both 

efficiently and 

effectively 

Providers have no 

incentive to 

optimize price 

Professional 

Consulting 

industries 

Utility-Based 4  

Price is metered. 

Usage is monitored. 

Payment is according 

to usage or pre-

defined plan in a 

regular term 

Each customer 

can access the 

service that is 

unfordable by a 

single individual 

Each individual 

has to rely on the 

utility service 

Utility 

industries: gas, 

electricity, 

water supply, 

and sewage, 

telco 

Total 60      

 

In the taxonomy of pricing models, this chapter emphasizes on value-based pricing strategy for 

cloud service because the nature characteristics cloud computing is service-oriented. However, it 

does not mean that cost-based pricing is not important. It often provides a bottom-line price for 

CSPs. The value-based pricing illustrates the maximum price, which is how much the cloud 

customers are willing to pay, while the market-based pricing will give CSPs an estimation of 
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competitive prices in the marketplace. If the cost-based pricing can set up the lower bound price, 

then the value-based price is to estimate the high bound. The market-based pricing gives a price 

variation between the lower and higher bounded prices. Cloud pricing strategies, tactics, and 

models are mainly dependent on various cloud services features, cloud technologies, targeted 

customers, market environment, cloud orchestration, and etc. 

2.4. Survey of Pricing Models in Details 

During the last decade or so, more than hundreds of papers are published regarding cloud 

pricing models. Many pricing models can be considered as an extension of the grid, cluster, 

distribution, high performance, parallel, Peer to Peer (P2P), network and utility computing. Based 

on the taxonomy criteria, the following survey will be organized into three cloud pricing strategies. 

This chapter selected published work between 2008 and present for in-depth diving investigation. 

One of the compelling reasons to select these research works is the majority of studies proposed 

either new mathematical solutions or novel ideas for various innovative pricing models.  

According to the context of these papers and our criteria, we classify [49] [50] [52] [55] [56] 

[61] [62] as market-based pricing and [60] [78] [79] [80] [113] [114] [115] [116] [118] [119] as 

cost-based pricing, and [84] [85] [86] [91] [93] [95] and Chapter 3 as value-based pricing. This 

investigation highlights the uniqueness of their ideas, new concepts, and the contributions of each 

paper. Moreover, this chapter shows their relationship whether it is a continuation of previous 

work or the original work.  

2.4.1.  Pricing Models of Pre-Cloud Computing 

In the later 1999 and early 2000s, Buyya et al. [49] [50] proposed a computational economy 

framework to regulate grid computing resources based on market supply and demand. The basic 

idea was to provide a set of different pricing models that can optimize grid resources and objective 

consumer functions through trading and broker services on an open commodity market. The 

authors introduced at least seven different types of pricing models: commodity market, posted 

price, bargaining, tendering/contract-net, auction, bid-based proportional resource sharing, 

community/coalition/bartering and monopoly & oligopoly models. In addition, the authors also 

indicated there were many challenges [51], such as managing grid resources, leveraging grid 
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technologies to allocate grid resource and implementing different pricing models. As a result, 

many proposed pricing models need further consolidation.  

When virtualization has become a mature cloud technology during the 2000s, cloud computing 

was on the horizon. Based on many years’ research experiences, Buyya et al. [52] [53] argued 

that the paradigm had shifted. The authors proposed the architecture solution for market-based 

pricing for cloud resource allocation. The solution was an extension of the grid computing [54]. 

The goal of this architecture is to create third-party services (or a cloud broker) to allow cloud 

consumers to utilize global cloud infrastructure effectively. The idea of global cloud or multi-

cloud service providers was cutting edge at that time. It has only become practicable after the 

serverless container technology has emerged recently [108].  

2.4.2. Market-Based Cloud Pricing 

By leveraging Buyya's early proposal, Toosi et al. [55] developed a novel algorithm in 

combination with different cloud price models that a CSP can optimize its cloud capacity for 

cloud business revenue maximization. The main contributions of their research are: 1) present a 

stochastic dynamic programming technique to calculate the maximum number of reserved 

instances that a CSP can offer to cloud customer for its revenue maximization, 2) Due to the 

computational complexity of dynamic programming technique, the authors provided two heuristic 

algorithms. 3) The paper created a framework that is validated by a large-scale simulation dataset 

provided by Google. The following four equations can illustrate the essence of their solution 

shown in Figure 2⎯10 
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Figure 2—10 Optimization Solution for Cloud Business Revenue Maximization  

Equations 1, 2, and 3 are three constraints. Equation 4 is the sum of quantity multiplied by unit 

prices all three revenue streams based on three price models: reserved, on-demand and spot. The 

paper presented a novel idea about how to maximize cloud revenue with a fixed cloud capacity. 

However, there are some gaps regarding pricing model assumptions: 1) the revenue function 

excluded the cost component; 2) AWS is charging on hourly base for on-demand instance while 

Google Cloud Platform (GCP) is charging on minute base; 3) Based on the AWS price model, 

spot instances can be terminated in 2 minutes warning advance. So, the 𝑙𝑡
𝑠 can be set to zero at 

any time and  𝑠𝑡  can also be set to zero if there is an issue for cloud capacity contention. Overall, 

Toosi explained AWS’s pricing models for a market-based pricing strategy by combining 

different pricing models to maximize CSP’s revenue. The remaining challenge is how to model 

an arbitrary behavior of the instance termination. 

Similarly, Xu et al. [56] tackled the same problem by introducing a dynamic pricing model that 

can be traced back to Gallego’s work [57]. The main idea of their dynamic pricing model was to 

assume both arrivals 𝑓(𝑝) and departure 𝑔[𝑓(𝑝)] = 𝑘[1 − (𝑓(𝑝)] (where, k >0) rates for AWS 

spot instance demand are a Poisson process. If the optimal stochastic policy changes price 

continuously (or the price change is a continuous variable), then the expected revenue function 

𝐸𝑢  and maximum profit 𝐽∗(𝑥, 𝑡) are shown in See Figure 2-11 

Upfront Reserved Fee $

Reserved Usage $ On-Demand Usage $ Spot Usage $

At any time “t” (reserved)

Usage time

On-Demand Price

Real Utilized Capacity Ratio for Reserved 

Total Computational 
Capacity

Total Committed Capacity

Predicted Time of 
Computational 

workload

Reserved Usage time

Price Ratio of on-
demand/Spot

Price Ratio of on-demand/Reserve

On-Demand Usage Time

⎯(4)

⎯(2)

⎯(1), 
⎯(3)
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Figure 2—11 Dynamic Price Modeling AWS Spot Instance for Profit Maximization 

The main contributions of this paper offer an alternative pricing model for CSP to price its spot 

instance dynamically. This means that a CSP reserves its right to change the spot price at any 

time. Moreover, this pricing model can provide a regulating tool for CSP to balance its limit cloud 

capacity resources and control or cap the spot instance demand and support on-demand and 

reserved instances. However, few assumptions need further consolidation: 

 The observation of spot price variation within a narrow band could be valid. It is right for a 

particular instance in the past. However, it is quite challenging to be generalized to all instances, 

zones, and regions in today’s environment. Joshua Burgin (General Manager from AWS) 

indicated: “Prices for instances on the Spot Market are determined by supply and demand. A low 

price means that there is more capacity in the pool than demand. Consistently lower prices and 

lower- price variance mean that the pool is consistently underutilized. This is often the case for 

older generations of instances such as m1.small, c1.xlarge, and cc2.8xlarge.” [58]. AWS “Spot 

Bid Advisor” shows many instances are frequently outbid shown in red in comparison to its on-

demand price in Figure 2⎯12. In one case, the spot price reached a ridiculously high price - 

$999.00.[58] 

Usually, the spot instance price variant with time is neither convex nor continuous. As Gallego 

[57] noticed that “the stochastic optimal policy changes prices continuously and thus may be 

undesirable in practice” Both arrival and departure functions are defined as more like a power 

function rather than a Poisson distribution function because (see Equation 2-1) 

Optimal Spot Price  Quantity of Spot

Max. Profit

At Arrived Rate of  
Optimal Revenue

After Departure Rate 
of Optimal Revenue

“ ” =number of spot instances
, = capacity of instance

= at any time
= price varies with time “s” variable
) = System utilization = No of Instances in system 

If , spot demand is filled at time s
If , spot demand is not filled at time s  

One Pricing Policy in a set of  Possible Policies

= Expected  Revenue

Expected  
Optimal RevenueOptimal Price

Arrived Rate Departure Rate
Max. Profit Derivative
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 𝑓(𝑝) = 𝑘(1 − 𝑝𝑎)𝑏 , 𝑔[𝑓(𝑝)] = 𝑘[1 − 𝑓(𝑝)]   (where, k > 0, a > 1, 0 < b < 1) (2-1) 

 

 

Figure 2—12 AWS Spot Bid Advisor  

The model also excluded the cost component for CSP’s revenue maximization based on 

Greenberg [60] works. This assumption could be inaccurate to interpret Greenberg’s work. The 

paper also assumed that cloud customers are price takers. AWS has full control of the spot 

instance based on both arrival and departure rates. It means that AWS has control of the spot 

instance’s bidding process. 

So, the question is how the AWS controls or regulates its spot instance and what mechanism is 

behind the AWS’ spot instance bidding processing. Before our further discussion of the AWS 

spot instance, it is important to understand how it works. AWS spot instance bidding mechanism 

is similar to the first price sealed-bid (FPSBA). It is a prevalent auction practice in the real estate 

industry, which is called “Sale by Set Date.” In contrast to the English auction process, it is a 

blind auction, which all the bidders submit their bidding prices simultaneously without any pre-
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knowledge of other bidding prices — the highest price the bidder wins the cloud instance time 

slot. However, the price that the highest bidder pays for is the market price, not his bidding or 

reserved price. For example, the highest bidder’s reserved price is $2.00, but the next highest 

bidding price is only $1.00, the highest bidder only pays $1.01, not $2.00.  

AWS might have its own reserved price with different types of spot instances cross different 

regions and zones based on the availability of its cloud infrastructure capacity after satisfying its 

“on-demand” and reserved customers. When a new bidder submits a fresh bidding price that is 

higher than the old bidder’s reserved price at any time, the old bidders have two minutes of 

warning time to terminate their running instances. In this case, AWS will not charge its customers 

if the instance running time is less than one hour. The existing customers can either revise their 

upper ceiling reserved price or move their workload to “on-demand” instances. As we illustrated 

above, the bidding price might be well above the “on-demand” price. It might sound irrational, 

but if a customer only pays a very short period. It will become acceptable if the average price is 

still less than the “on-demand” price. Recently, AWS has capped four times of “on-demand” price 

as the highest bidding price. Moreover, AWS also offers up to 6 hours of spot instances (Spot 

block in 2015) to accommodate different types of workloads. These new rules will change the 

bidding game. 

Orna et al. [61] provided a different interpretation of AWS spot pricing, which they show a 

mechanism of AWS spot instance via a reversed engineering based on the traceable data or files 

(from Tim Lossen’s Cloud Exchange and Kurt Vanmechelen’s Spot Watch) in Apr. 2011. They 

concluded that AWS sets its spot instance price in a random auto-regression manner. For the high 

bound price, it is set to reflect a market-driven mechanism. For the lower bound, it is reserved 

within a narrow band, which shows as Equation 2-2: 

 𝛿𝑖 = −𝑎1𝛿𝑖−1 + 𝜀(𝜎),   𝑎𝑛𝑑  𝑝𝑖 = 𝑝𝑖−1 + 𝛿𝑖  (2-2) 

 

where, 𝛿𝑖is the narrow band, 𝑎1is the coefficient, 𝜀(𝜎)  is the white noise, 𝑝𝑖 is a price at any 

time “𝑖.” It is an empirical observation. The goal of the paper was to help cloud customers to 

understand AWS spot mechanism in order to bid the spot price. 
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To answer similar questions, Zheng et al. [62] presented spot price bidding models or strategies 

for different types of workloads. The authors’ conclusions are their bidding strategy can reduce 

90% of the cost in comparison with the “on-demand” price. The paper assumed two types of 

scenarios, which are one-time bidding and continuous bidding strategies. For the one-time bidding 

strategy, the cloud consumers can achieve the lowest possible bid price 𝑝∗ illustrated as following 

Figure 2⎯13. 

 

Figure 2—13 CSP’s Profit Maximization and Customers’ Bidding Strategies to 
Minimization Spot Price  

Zheng’s work can be summarized into three main contributions of AWS spot instance pricing 

bid strategy: 1.) Price orientation bid strategy, 2.) SLA priority bid strategy, and 3.) MapReduce 

workload application. Based on the authors’ observation, they conjecture that only a few users 

bid for spot instances due to heavy-tailed spot price distribution. However, the gaps in the paper 

are: 1.) they assumed that the highest spot bid price should be less than the on-demand price, but 

the reality is the bid price could exceed the on-demand price. 2.) The maximum revenue function 

analysis did not include the marginal cost from a CSP perspective. 3.) The authors did not give a 

further explanation of the capacity utilization function, 4.) The assumption of uniform distribution 

for bid prices appears to be contradicting the following contents of the bid price distribution, 

= minimum price
= maximum price
= user bidding price

spot price at time 
= the cumulative distribution function when 

,
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= the probability  rate of job will be terminated

= job execution time (without interruption)
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= coefficient value of utilization rate

No. of Spot VM in the system No. of Incoming Spot VM
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namely Pareto and exponential distribution. 5.) The paper intended to isolate the issue of the spot 

resource from other on-demand and reserved resources, but in reality, the CSP has a big cloud 

resource pool for all price models. 6.) The assumption of workload is i.i.d needs further 

clarification. 

Overall, the possible spot pricing model serves well for interruptible workloads. These jobs 

have some essential characteristics 1.) Running time for the job is unpredictable, 2.) It has many 

checkpoints 3.) The job can continue to run after any stop point, 4.) It works well for stateless [11] 

applications (The server does not save the client’s data that is generated in one session). Based on 

the paper’s final discussion and conclusion, the spot pricing bid strategies are only applied for 

interruptible workloads rather than all types.  

Since AWS launched its spot instance in 2009, it has generated enormous interest in the 

academic world. The amount of published papers [63] [64] [65] [66] [67] [68] [69] [70] [72] 

regarding of AWS spot pricing model is overwhelming. Perhaps, it has a large price discount in 

comparison with “on-demand” and reserved price models. The basic idea of a spot instance 

mechanism can be considered as an analogy of a spot price of electricity in an energy market [71]. 

Most of SLA and cost-oriented papers presented some impressive and complicated mathematical 

formulas based on both historical spot price data and subjective assumptions. However, AWS can 

terminate any spot instance at any time, although it gives you only 2 minutes of advance warning 

time. It is very challenging to consider any logic or rational pattern behind AWS to terminate any 

spot instance.  

A SaaS company –MOZ’s experience in 26/Sep/2011 [59] provided a perfect example shown 

that it would be a very high risk to rely on the spot instance price alone for SLA services delivery. 

Due to MOZ out of the bid [12], all MOZ [13] services had been shot down [73] . It took MOZ 14 

days to restore its services fully. MOZ has about 26,474 subscribers plus 5,000 free trial customers. 

If we assume MOZ’s customers pay premium $599/ per month, the estimated revenue loss is 

about $8 million in 14 days if we do not take consideration of potential new incoming subscribers, 

 

 

11 Statefulness means a backend hosting server or VM maintains user’s state information in the sessions form. In 

contrast, Stateless does not keep any state information for the end-user. Anything is stored on the end-user or 

client’s side in the form of a cache.  
12 MOZ reserved bid was $2/per instance for more than 3 years 
13  MOZ provides Search Engine Optimization (SEO) web crawler services to its customers. MOZ charges its 

customers on monthly subscription fee. 
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customer experiences and the company’s brand and reputation. That is why MOZ had switched 

its cloud infrastructure from a public cloud to colocation [74] in 2013 

Usually, the spot pricing instance is not suitable for mission-critical applications, but many large 

and medium-sized enterprises or even some small firms require mission-critical infrastructure. 

Spot instances could be applied to interruptible workloads. However, some computation-intensive 

workloads, such as batch processing, encoding or decoding, rendering, modeling or continuous 

integration, cannot generate checkpoints over its multi-hour running period. Other leading CSPs 

do not offer spot pricing models, but they provide a fixed discount price with limited cloud service 

features, which are similar to AWS’ spot instance. It means there is no free lunch. 

2.4.3. Cost-Based Cloud Pricing 

As early as 2008, Greenberg et al. [60] discussed the cost-based strategy regarding cloud data 

centers. It provided a rough estimation of infrastructure costs for cloud services. Some critical 

assumptions of their estimation were 50,000 physic servers or nodes and 5% of an interest rate 

for capital investment, $3,000 per server, a three-year lifecycle time and an electricity price of 

$0.07/per Kilowatts hour (KWH). The guideline to build its own cloud data center showed in 

Table 2⎯5 

Table 2—5 Cost Guideline of Cloud Data Center 

Amortized Cost OECD Electricity price in 

2014 

Cost Components Sub-components 

~45% ~37% Servers CPU, RAM, Storage Systems 

~25% ~20% Infrastructure Power distribution and Cooling 

~15% ~30% Power draw Electrical Utility Costs 

~15% ~12% Network Links Transit Equipment 

 

The authors highlight major issues across many data centers at that time (before 2008), which 

has a lower utilization rate of data center resources. They identified some approaches to increase 

the data center efficiency, such as optimize the data center internal network, design market-based 

algorithms for data center utilization and improve inter-connected data center networks. We argue 

the estimated costs for the cloud data center are dependent on each case and the location of a data 

center. For example, the authors assumed the electricity price is $0.07/per KWH. This price 

estimation is on the lower end [75]. The average price of electricity power cross developed nations 

(OECD) is US$0.23 [76]. Even in the US, the average price of household electricity is around 

0.125, and the industrial price is about $0.10. If we use OECD average price and keep other cost 
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items unchanged, the proportion of each cost component for the amortized cost will be changed 

dramatically. The portion of the amortized cost of electricity will be double. Moreover, the paper 

did not include the data center space cost, which is another significant cost item. It could be up to 

15% [75] of the total cost of a typical cloud data center. Nevertheless, the paper made a significant 

contribution to cloud data center price estimation. They are the pioneer of cost-based pricing.  

In comparison with Greenberg’s approximation estimation, Walker [77] [78] laid out the precise 

costs of both CPU and storage for Net Present Value (NPV) in comparison with AWS EC2 and 

S3 (or public cloud) presented in Figure 2⎯14 

Figure 2—14 NPV Value Versus Leasing Public Cloud 

According to Walker’s calculations with assumptions of 90% of server utilization rate, 5% of a 

capital cost, and clusters of 60,000 CPU cores capacity, he concluded that a three-year investment 

commitment is the optimal term length for purchase case because of the lowest cost per CPU hour. 

Second, the operational lifespan should be within ten years. Moreover, if the lifespan is less than 

two years, it would be cheaper to lease computational capacity (off-premise). Finally, if the 

capacity utilization rate is less than 40%, it would always be more reasonable to use cloud 

resources (off-premise). Based on the same principle of NPV, Walker demonstrated formula for 

the enterprise storage cost in the comparison between own build (on-premise) or purchases and 

public cloud (off-premise) shown in Figure 2⎯15 

: Cost of electric utility ($/kilowatt hour)
Size of purchased disk drives (Gbytes)

: Proportional difference between human 
effort in maintaining a purchased versus a leased 
storage infrastructure

:  Used disk depreciation factor on salvage 
([0.0, 1.0])

: Disk controller unit cost ($)
: Annual human operator salary ($)

: Risk-free interest rate (%)

:Current per-Gbyte storage price ($/Gbyte)
: Expected annual per-Gbyte lease payment 

($/Gbyte/year)
:Disk controller power consumption (kW)
:Disk drive power consumption (kW)
:Expected storage requirement in year T (Gbytes)

:Incremental Net Present Value
the operating cost in year T,

:the capital cost in year T
:expected end-of-life disk salvage value 
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Figure 2—15 Storage Pricing Comparison between Purchasing and Leasing 

The hypothetical assumption for cloud storage pricing was based on the threshold levels of 

storage illustrated in Table 2⎯6. It means that CSP often gives a volume discount, which is a 

kind of linear discount rate. 

Table 2—6 Hypothetical Assumption of Cloud Storage Pricing Structure (2010)[78] 

Default Storage > 50 TBytes Storage > 100 TBytes Storage > 500 TBytes 

$0.15/Gbyte/month $0.14/Gbyte/month $0.13/Gbyte/month $0.12/Gbyte/month 

 

However, the reality is that the storage price is quite challenging to be generalized because each 

CSP will have a different cost-based pricing model for cloud storage (as shown in Table 2⎯7). 

The price range could be as high as 21 times difference, which is dependent on many storage 

performance factors. Moreover, each CSP may give different depreciation rates of cloud storage 

prices each year. This means the 𝐿𝑇 (Expected annual per GB lease payment) is a time variable, 

not a constant. 

  

: The real cost of CPU hour for purchase case

Y: Lifespan of Year
K : Cost of capital (interest rate)
T: Asset value at Year T

: Hardware acquisition cost
: Operation cost at each year T

TC: Total Useful Capacity
A: The server cluster’s original purchase cost

: The real cost of purchase and upgrade case

: The real cost of Lease
PC: Present Capacity
FC: Future Capacity
NPC: Net Present Capacity
: The expected server utilization rate
TCPU: Total CPU cores the server cluster
H: The expected number of operation hours
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Table 2—7 Cloud Storage Pricing From Different CSPs (in 2017) [58] [75]   

Cloud Service Provider Storage ($/GB/Month) Download ($/GB) 

Backblaze $0.005 $0.02 

AWS S3 $0.021 $0.05 

Microsoft Azure $0.022 $0.05 

Google Cloud Platform $0.026 $0.08 

Softlayer $0.10 $0.09 

Rackspace $0.105 $0.12 

 

Walker’s suggestion was if a decision-maker wants to have cloud storage resource for more 

than four years, the solution of building own storage infrastructure (on-premise) is a preferred 

option otherwise cloud solution (off-premise) would become a favorite option because of a higher 

NPV value. The main contribution of Walker’s papers is it demonstrated how to use the NPV to 

construct a cloud cost-based model by taking consideration of Moore’s law or IT assets 

depreciation within a specified period. However, the predicted cost per Gbytes is dependent on 

previous observation. Different sources of price data collection could lead to different results. For 

example, if we adopt McCallum’s dataset [79], the 𝐺𝑥 = 1.3314𝑒−0.06𝑇   (the depration rate of 

$/per GB) between Apr-2003 and Sep-08 (Refer to Figure 2⎯ 16 a) Moreover, if we take the 

period from 2003 to 2017, the best format to fit the historical HDD price data set would be 

logarithm rather than an exponential one (Refer to Figure 2⎯ 16 b).  𝐺𝑥 = −0.306 ln(𝑇) +

1.3466. The R-square value is 0.8925. Finally, if we take the time span from 2008 to 2017 and 

change the price scale from dollar /GB to dollar /TB, the coefficient of the fit equation would 

change again: 𝐺𝑥 = −41.3 ln(𝑇) + 196.83. The R- square value is 0.9183 (Refer to Figure 2⎯ 

16, c)  

Figure 2—16 Hard Disk Drive Price 

It indicates that 𝐸𝑇 (a capital cost in year T in Figure 2⎯ 14) is dependent on the number of 

observation years (or data points) and the unit of time span and unit price/per HDD. If these 

variables are changed, the fit-equation and its coefficients will also be changed. Subsequently, the 

decision model is oscillating according to different time spans. Walker’s cost-based pricing can 

be considered as a root of resource performance driven by cloud customer’s NPV. If we shift our 

y = -0.306ln(x) + 1.3466
R² = 0.8925
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focus from cloud customer to CSP, a value proposition becomes an issue on how to optimize the 

finite capacity of the cloud resource pool 

Xu et al. [80] proposed a preliminary price model for cloud resources. The basic idea of their 

model is derived from the alpha-fair utility function as an economic utility function, which is the 

same as the Isoelastic or constant elasticity function (a particular case = constant relative risk 

aversion (CRRA) of Hyperbolic Absolute Risk Aversion (HARA)) based on economic utility 

theory [81]. It means a CSP seeks to maximize its revenue if cloud consumers make rational 

choices with risk aversion preference. If the CSP wants to maximize its revenue, it could have 

five different strategic options for pricing: (1) basic, (2) the 1st order price discrimination, (3) 

throttling, (4) SLA performance, and (5) profit maximization illustrated in Figure 2⎯ 17 and 

Figure 2⎯ 18, Equations 6 and 7 of Figure 2⎯ 18 shows how to maximize CSP’s reverence with 

a capacity constrained.  

Figure 2—17 CSP’s Revenue Max. Basic, the 1st Order Price Discrimination 

The main contribution of Xu’s paper is that it articulated various CSP’s pricing choices by 

exploring the iso-elasticity function as a cloud customer’s utility. The author demonstrated that 

CSP could leverage customers’ surplus values to maximize its revenue if there is only one type 

of utility. However, there are a few practical gaps: 1.) the customer utility function and alpha-fair 

utility are two different concepts. One is the utilization rate of the limited amount of cloud 

capacity, and others have an economic connotation, which is to measure customer’s subjective 

experiences. If a preference can be measured by a marginal value, it is a cardinal utility. Otherwise, 

Constant Relative Risk Aversion (CRRA)

Basic Choice

1st Order Price Discrimination Choice

: utility level
: utility function

: The inverse of Price Elasticity
: Virtual machine or cloud instance price

VM or instance demand
: Price elasticity

:  CSP’s Revenue
: the density function of probabilistic 

utility level distribution
: Tenant’s surplus

: The capacity of Cloud instance
: A fraction of throttling

:  Subject to
:Constant to optimize price p for 

maximizing the CSP revenue
: Extra charge for SLA performance
: Fixed energy costs independent of 

workload
: Variable energy costs per unit of 

resources
: Major operational cost

: utility range for 
: optimal price over utility range 

Lagrange function
Lagrange multiplier

Surplus value will 
reflect on demand

Demand impacts 
on Revenue1

2

op
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it will be measured by a ranking order, which is an ordinal utility. 2.) As authors indicated in their 

paper, it is challenging to charge cloud consumers with 1st order degree price discrimination 

because of the price transparency. In practice, it is more likely to adopt the 2nd degree (volume 

discount) and the 3rd degree (different prices to different consumer groups) pricing discrimination. 

3.) The assumption of throttling requires further consolidation because the characteristics of 

online pricing, CSP has to declare its performance of cloud resources. If a CSP reduces the 

specified VM performance (such as CPU speed, RAM, and storage size), this means it cannot 

fulfill its legal obligation. An alternative option is to declare the cloud performance in a rough 

range. For example, AWS specifies its network performance as low, low to moderate, moderate, 

high. AWS does not provide a quantitive specification. 4.) It is not practical to assume that all 

cloud consumers have the same utility functions. 5.) A probability density function 𝑓(𝑣) needs 

further clarification. In addition, Google Cloud Platform (GCP) and the Amazon Web Service 

(AWS) pricing models are different (Refer to Table 2⎯2) 

 

Figure 2—18 CSP’s Revenue Max. Strategies for Throttling, SLA and Profit Max 

Furthermore, the assumption of elasticity 𝐸𝑑 =
1

𝛼
=  3 should require a further explanation 

because this parameter will impact on the shape of the utility function, which ultimately will 

determine the optimal price. Subsequently, the level of utility 𝑣 = 𝑝√𝑥
3

 If we use the paper’s price 

assumption: p= 0.08/per hour for a small Linux instance, then utility level 𝑣 = 0.08√𝑥
3

. And then, 

the paper used Google, RICC and ANL cluster trace information to validate the utility density 

distribution. Based on the Alam et al. [84] research work, the workload pattern of Google cluster 

trace is more like the trimodal pattern rather than a convex. In addition, RICC is a parallel 

Profit Max- Operation Cost and Capacity Right Sizing

Throttling Option Choice Performance or SLA Guarantees Choice3 4

5
Maximize Revenue Subjective to Capacity

6

7
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computing cluster [83], and ANL is a grid computing cluster [84]. It would be very challenging 

to use these datasets for validation purposes of cloud resources modeling. 

Although the paper had included a cost component in the equation of profit maximization, it 

excluded this critical element from other inference. Practically, the revenue maximization is not 

equal to profit maximization. Sometime, it might mean losing money if the marginal cost is higher 

than the sales price, which the higher revenue, the larger deficit is. According to Belleflamme and 

Pietz [85], the above revenue maximization function (monopoly pricing formula) should be 

altered as (Equation 2-3) 

 max
𝐷𝑣(𝑝)

𝜋(𝐷𝑣(𝑝)) = 𝐷𝑣(𝑝)𝑝(𝐷𝑣(𝑝)) − 𝐶(𝐷𝑣(𝑝)) (2-3) 

where 𝐶(∙) is an average cost and both price 𝑝 and cost 𝐶(∙) are the functions of demand: 𝐷𝑣 , 

and demand is a function of 𝑝. Conversely, the price is also a function of demand: 𝑝 = 𝐷𝑣
−1(𝑝). 

It would be a challenge to find an optimal value of 𝑝. 

If we trace the root of Xu’s research work, we can find Xu’s cloud pricing model can be 

considered as an extension of Joe-Wong and Sen’s [113][114] work. The difference was that Xu 

introduced a probability density function for cloud market demand. Joe-Wong and Sen proposed 

an analytical or mathematical framework of cloud pricing to optimize resource allocation, fairness, 

and revenue with a finite capacity of cloud resources. The core idea of their pricing model can be 

further traced back to Chiang et al.’s [115][116] study of network utility maximization (NUM). 

The essence of Joe-Wong’s work can be summarized in the following mathematical pricing 

models shown in Figure 2⎯ 19 

As authors have noticed that “the function of 𝜋𝑏 is a non-differentiable function of the amount 

of each resource 𝑖  (e.g.𝑏𝑖 ).” Subsequently, the value of 𝑏𝑖  is a constant. This result actually 

reflects on a common practice in the cloud industry that was summarized by Kilcioglu and Rao 

[117], which any price of AWS MV can be presented as a proportion to the price of a base unit 

of VM configuration. Mathematically, Equation 2-4 shows this relationship. In other words, 𝑏𝑖 is 

equal to 2𝑘−1 for the majority of AWS VMs. 

 𝑝𝑘 = 2𝑘−1𝑝0 (2-4) 

where 𝑝0 is the price of the smallest VM size, 𝑝𝑘 is the 𝑘 size of VM and 𝑘 = 1,2,⋯ is the 

number of VM sizes offered by a CSP. The distinct advantage of adopting this price model is that 
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the CSP can build a large VM resource pool at the finest granular level of scalability for cloud 

capacity and minimize a footprint of cloud infrastructure in a cloud data center. 

 

Figure 2—19 Profit Optimization for Fixed Configuration of VM instance 

By a similar line of reasoning for the network-oriented cloud price modeling, Shahrad [118] 

proposed a novel price model so-called Graceful Degradation (GD) to increase its cloud business 

profit by improving its cloud infrastructure (data center capacity) utilization rate and efficiency. 

The key idea of the GD pricing model is a self-capping mechanism, which is to “absorb demand 

fluctuation and reduce spare capacity.” In other words, the GD price model is a cloud capacity 

regulator to smooth Service Providers’ (SP, or business customers) demand between peak and 

valley. Their pricing model was built upon a function that is similar to the Cobb-Douglas utility 

function (Equation 2 in Figure 2⎯20) for an SP revenue function, which was reduced to the 

alpha-fair function (Item 3 Figure 2⎯20) regarding the total deliverable capacity and service 

degradation factor. 

The significant contribution of Shahrad et al. work was the novel idea of leveraging a fine-grain 

pricing model to the regulator, a CSP’s limited cloud capacity, which is a hybrid pricing solution 

to balance customers’ demand and limited cloud capacity by brownout mechanisms (similar to 

electricity supply). The aim of this pricing model is to find a win-win solution for both customers 

Resource type = variable and user type = type of user, 

=cost of per job

= volume discount rate 
= number of submitted jobs by user 

= bundle price = specified VM price

= each user’s utility function

= Customer surplus value

= parameter of concavity of the utility function

= Utility level of each user

= Maximum amount of resource i for user

= the amount of each resource  
= Capacity of type of resource 
= optimal revenue for bundle price

Capacity Constraint

Profit Optimization
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(gain price discount) and CSP (improve cloud infrastructure utilization rate). Later, Shahrad et al. 

[119] applied the same principle for customers’ SLA delivery. In comparison with many previous 

works, they included a cost component in a profit maximization function shown in equation 1. To 

achieve the optimal value of 𝑐𝑏, the profit function 𝐸(𝑝) is selected to be differentiable.    

Figure 2—20 Pricing Model for Business Customer to Self-Cap its Cloud Capacity 

2.4.4. Value-Based Cloud Pricing Strategy 

For the value-based cloud pricing, one of the scientific approaches is known as a hedonic model. 

It has been widely applied to the consumer price index (CPI) by many OECD countries, such as 

Australia Bureau of Statistics (ABS), US Bureau of Labor Statistics (BLS), British Office for 

National Statistics (ONS), Germany Federal Statistical Office (Destatis), etc. 

El Kihal et al. [84], Weinman [1], Mitropoulou [85] and Zhang [86] either proposed or presented 

a hedonic pricing model for cloud services. El Kihal showed the comparison results among major 

  =   −   
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CSPs (AWS, IBM Cloud, Microsoft Azure, Terremark, and Google App Engine) in terms of three 

cloud characteristics: memory ($ per GB), CPU ($ per CPU) and Storage ($ per 100GB). The 

hedonic function is shown in Figure 2⎯21. Overall, the paper had a gap to explain the details of 

how the dataset was collected and how many cloud instances were gathered.  

The experiment result indicated that an adjusted R-squared value of the linear regression was 

between 0.43 and 0.69 (or 0.76 for Terremark). The interpretation of their experiment results 

seems to be unclear. Ideally, the constant coefficient of linear regression should be equal to zero 

because none would like to pay the monthly fee for no hedonic characteristics (RAM =0, CPU=0, 

and Storage =0). If the constant is not equal to zero, it often means a fixed effect. Otherwise, the 

linear regression model has some issues. Checking the adjusted R square values, it only explained 

43% ~ 69% of the data.  Both IBM and Microsoft’s adjusted R square values were less than or 

equal to 50%. It might indicate the linear equation is not “goodness of fit.” 

Figure 2—21 Hedonic Pricing Model for Cloud Services  

In comparison to El Kihal et al. [84] paper, Mitropoulou et al. [85] made some progress of the 

hedonic method. Their work explained how and where the dataset was collected, but the author 

did not generalize the hedonic linear equation. Moreover, the adjusted R2 value of the experiment 

is only 57.5% and 53.7% for linear and exponential models, respectively. It means the linear 

model can just explain 1,577 out of the total of 2,742 data points. Nevertheless, the paper added 

three more cloud characteristics (RAM, CPU, Storage, OS, Transfer-Out and Subscription) for 

the hedonic calculation. The primary issue of the paper is that if the paper adopted a hedonic index 

measurement, it needs a base period for comparison. 

This issue was solved by Zhang’s works [86] based on Pakes [87]’s seminal work. The author 

explained the fundamental concept of the hedonic method. The main contribution of the paper 

Hedonic Characteristics
: number of hedonic characteristics

: Error term of the regression equation

: Total number of Characteristics
: Total number of CSP

: Price plan or billing amount

P: Number of CSP
: the constant coefficient of linear regression

: Parameters of hedonic characteristics
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was to introduce the time dummy variable for the hedonic model of cloud price to analyze AWS’ 

cross-sectional data between 2009 and 2015 (See Figure 2⎯22).  

Figure 2—22 Hedonic Function with Time Dummy Variable  

According to their experiment results, the adjusted R2 value was 0.9792 for 277 data points. In 

comparison with other papers, their work made a significant improvement. However, the author 

could not collect enough data points for earlier years of AWS cloud service. It might explain that 

the author did not provide the coefficient results for time dummy variables. The calculated result 

for the time dummy effect has a big gap. Furthermore, the 𝑝-value of storage is less significant 

than other cloud service characteristics. The value of the storage coefficient showed as negative. 

As the author concluded, the major issues of the paper are 1) a small sample of data is not enough 

to lead a reasonable conclusion, and 2) some hidden cloud characteristics were left out.  

All the above issues regarding of hedonic pricing model have been solved in Chapter 3. This 

study developed a much-sophisticated hedonic pricing model for cloud services. The model 

categorized hedonic values with three types of cloud characteristics or three variables, namely 

intrinsic, extrinsic and time dummy (See Figure 2⎯23). It improved the accuracy of the future 

cloud price. The significant contribution of the study is to unveil a depreciation rate of cloud 

service, which is equal to 20%. This rate is equivalent to Moore’s law for computer hardware. 

: Characteristics and price of other goods 

: Time dummy coefficients 
: Time dummy variable
: Error term of the regression equation

: Total number of Characteristics
: Number of the time period (year)

: The vector of cloud characteristics 
: Consumer preference over characteristics

: Hedonic values with a dummy variable
: Price of goods “i” at time “t.”
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: The demand function for good i
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In addition to the hedonic method, there are also many other value-based pricing models. For 

example, Jain’s [88] social welfare pricing model focuses on the sum of cloud consumers’ value. 

The performance-based pricing model [89] is associated with cloud resource and application risks. 

Feature-based pricing [90] that is related to prioritizing cloud features. The service-based pricing 

model [91] correlates to the Service Level Agreement (SLA). 

Figure 2—23 A Comprehensive Cloud Pricing Model by Hedonic Analysis 

Jain’s model is much similar to a spot pricing model. In other words, cloud users can submit 

their ceiling bid prices (willingness to pay) and CSP can adopt different algorithms to schedule 

and allocate cloud resources based on the optimized metrics (such as profits, cloud capacity, 

performance, time of a day, energy consumption, etc.). However, it is quite challenging to be 

implemented because it left out the cost components of the cloud services. Naturally, all 

customers would like to have free or near-free cloud resources, but “cloud computing will never 

be free” [92]. 

Lucanin’s [89] performance-based price is mainly driven by CPU’s properties, namely 

electricity price, and CPU’s temperature traces. The paper claimed that it could save up to 32% 

of the cost under certain assumptions. The pricing model is that the cloud price is dependent on 

the workload characteristics and determined by the performance that is perceived by users. 

However, the cloud price is not only dependent on the CPU but also memory, storage size, access 

bandwidth, and other service characteristics. 

: price of cloud service
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: the number of intrinsic characteristics
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Kar’s [90] feature prioritized pricing model is to estimate the potential value of the workload to 

the individual user for a particular context. The paper proposed an integrated approach to price 

IaaS resources from a multi-user perspective. In other words, the model will aggregate all 

potential values for all cloud features. The issue is how to define the benefits of these cloud 

features from a cloud customer perspective because these values are highly subjective. 

Wu et al.’s [91] SLA-based model is a resource allocation or scheduling for SaaS delivery. 

Similar to the feature-based concept, SLA can be interpreted as different cloud features, which 

include response time, provisioning time, data transferring speed, etc. However, SLA is not only 

response time and data transmission speed, but also include security, cloud regions, and zone 

diversity, API compatibility, auto-scaling, vertical and horizontal scaling without a reboot, 

burstable CPU, backup-snap, 24X7, etc. Many of these features are quite challenging to be 

measured by the cost-based pricing. They are built into cloud service as a whole for a particular 

CPS to differentiate its service from other CPS competitors. 

Despite many theoretical models that are illustrated above, AWS first launched the new pricing 

model in 2014, namely the Lambda function. It is delivered by the serverless sandbox technology, 

which is also known as Function as a Service (FaaS). It is supported by the Docker container and 

Application Programming Interface (API). A Docker is the default container runtime engine, and 

a container can be easily destroyed, stopped and built with minimum effort of set-up and 

configuration or “ephemeral,” which is like a sandbox. 

Adam Eivy [93] argued that the serverless sandbox allows cloud consumers to have infinite 

cloud resources with vendor-free. In other words, if all CSPs support Open API, cloud users can 

quickly switch among the different CSPs without worrying about vendor-locked in. The price of 

AWS Lambda function consists of two components, namely, Hit Pricing and Compute Pricing 

(Memory allocation). AWS [94] and Peter Sbarski showed [95] the details of how to calculate the 

total cost of AWS Lambda function. We can use Equation 8 to calculate the AWS Lambda price. 

(Equation 2-5) 

 𝑃𝑡 = ℎ𝑟 +𝑚𝑟 = (𝛼⌈𝑋100⌉ℎ − 𝑘) × 𝑟ℎ + (
𝛼⌈𝑋100⌉ℎ

10

𝑅

𝑦
− 𝑔) × 𝑟𝑚 (2-5) 

  where, 𝑃𝑡 is the total price of the Lambda function per month, ℎ𝑟is the hit price and 𝑚𝑟is a 

memory resource price. 𝑎 is the constant value of second per month = 2,628,000.  ⌈𝑋100⌉ is a 
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ceiling function for the round-up integer of code execution time/per 100ms. ℎ is the hit rate/per 

second (execution rate of computing request). If the user’s code execution time is less than 100 

ms, for example 𝑋100 = 85𝑚𝑠, “⌈𝑋100⌉” is equal to or normalized to 1, if the code’s execution 

time is more than 100, e.g., 𝑋100 =101, “⌈𝑋100⌉ is equal to 2. 𝑅 is the allocated memory resource, 

e.g., 256 MB-second. 𝑦 is the baseline memory 1024MB-second (reference price). 𝑟ℎis the price 

rate $.020/per million hits (Lambda@Edge. 𝑟ℎ= $0.6). 𝑟𝑚  is the price rate =$1.667E-06/per 

100ms for 1024Mb-s. 𝑘 is the free allowance of the first one million hits/per month (If the hit rate 

is less than about 23 hits/per minute, it would be free for compute resource. However, 

Lambda@Edge has no free allowance). 𝑔 is the free allowance of 1024Mb-s is 400,000 GB-

second/per month. For instance, if a cloud user has an application code that has 50 hit/per second 

and code execution time is 125 ms, and the memory size is allocated to 256MB/per 100ms, we 

should have h=50, ⌈𝑋100⌉=2, y =1024MB/per 100ms, The total monthly bill is:𝑃𝑡 = ℎ𝑟 +𝑚𝑟 =

(𝛼⌈𝑋100⌉ℎ − 𝑘) × 𝑟ℎ + (
𝛼⌈𝑋100⌉ℎ

10

𝑅

𝑦
− 𝑔) × 𝑟𝑚 = (2,628,000 × ⌈125100⌉ × 50 − 1,000,000) ×

0.0000002 + (
2,628,000×⌈125100⌉×50

10

256

1024
− 400,000) × 0.000001667 = $52.36 + $10.95 =

 $63.31/per month. 

However, if we can reduce the execution time of code to less than 99ms, the monthly bill can 

drop down $31.56/per month. From a CSP perspective, this pricing model allows CSP to allocate 

75ms (200ms – 125ms) to compute execution time for another user. On the other hand, the cloud 

consumers only pay what the code execution time slot, which is Pay As You Use (PAYU) or Pay 

per Task (P/T). Obviously, this price does not include the cost of storage, API gateway, and data 

egress.     

The trend of the cloud pricing model is moving towards a much more flexible direction, and the 

billing method becomes PAYU and P/T rather than upfront lump sum payment. However, the bad 

news for this model is if the number of hits/per second is remarkably higher, the cost of the Code 

of Demand (CoD) could be out of a hand. Sometimes, it could be three times higher than VM on-

demand [93]. Overall, the new pricing model is to support the new service (FaaS) that is working 

with a new platform or orchestration, such as AWS’ Cloud-Watch Rackspace’s OpenStack, and 

Google’s Kubernets. Following AWS’ step, both Google Cloud Platform (GCP) and Microsoft 

Azure also launched Functions as a Service (FaaS) platform in early 2016. All three CSPs have 

almost the identical pricing model for serverless computing (See Table 2⎯8).  
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Table 2—8 FaaS Pricing Model 

CSP Free Tier (per month) Memory Resource  Allocation * Price/per 128MB/per 100 ms  

AWS 
400,000 GB-s 1024 MB $0.000 0166 7/GB-s 

1 million executions  $0.20 per million executions 

Google Cloud Platform 
400,000 GB-s 1024 MB (1.4GHz CPU) 0.000 0165 0/GB-s 

2 million executions  $0.40 per million executions 

Microsoft Azure 
400,000 GB-s Up to 1,536 MB $0.000 0160 0/GB-s 

1 million executions  $0.20 per million executions 

*Note: Different sizes of memory allocation have different prices/per 100 ms execution. Here, 

we only use 1GB memory as an example.   

2.4.5. Summary 

This chapter reviewed the number of papers regarding cloud pricing models from 2008 to the 

present. It presented an in-depth analysis of these research works, which can be summarized from 

three basic pricing strategies according to the principle of value theory. We highlight these pricing 

models in Table 2⎯9.  

Table 2—9 Summary of Cloud Pricing Models Survey 

Category of 

pricing 

models 

Mathematical Equation of model Main Contributions Potential and Gaps 

Marketed 

Based 

pricing: 

 

Toosi et al.’s 

Max CSP 

Revenue 

(2014) 

𝜋 = max
𝑟𝑡

∑𝑟𝑡𝜑 + 𝛼𝑝𝑢𝑡(𝑙𝑡
𝑟

𝛤−1

𝑡=0

+ 𝑟𝑡)

+ 𝑝( 𝑙𝑡
𝑜 + 𝑜𝑡)

+ 𝛽𝑝(𝑙𝑡
𝑠

+ 𝑠𝑡) 

Novelty Idea of how to maximize 

the cloud revenue for the fixed 

cloud capacity. It combines all 

revenue streams including on-

demand, reserved and spot 

instance 

Omitting the cloud cost could be an issue 

in practice. It is challenging to define a 

unified price practically. GCP and AWS 

have different charging mechanisms. AWS 

can empty spot instances at any time and 

only gives two minutes advance warning 

time. 

Marketed 

Based 

pricing: 

 

Xu et al.’s 

dynamic 

pricing 

model 

(2013) 

𝐽∗(𝑥, 𝑡)

= 𝑠𝑢𝑝
𝑢∈𝒰

(𝐸𝑢 [∫𝑝(𝑠)𝑑𝑋(𝑠)

𝑡

0

]) ,  ∀𝑡

> 0 
𝜕𝐽∗(𝑥, 𝑡)

𝜕𝑡
= 𝑠𝑢𝑝

𝑝
[𝑝𝑥 + 𝑓(𝑝)𝐽∗(𝑥 + 1, 𝑡)

− 𝐽∗(𝑥, 𝑡) − 𝑔(𝑝)𝐽∗(∆𝑥, 𝑡)] 

The main contributions of this 

paper offer an alternative pricing 

model for CSP to price its spot 

instance dynamically 

 

However, the spot pricing cannot be 

generalized to all instances. In one case, 

the spot price reached a ridiculously high 

price - $999.00. Usually, the spot instance 

price variation with time is neither convex 

nor continuous.  Two critical functions are 

defined as more like a power function 

rather than a Poisson distribution function 

Marketed 

Based 

pricing: 

Orna, et al. 

Traceable 

data (2013) 

𝛿𝑖 = −𝑎1𝛿𝑖−1 + 𝜀(𝜎),   𝑎𝑛𝑑  𝑝𝑖
= 𝑝𝑖−1 + 𝛿𝑖 

It intended to unveil the spot 

price mechanism of AWS and 

indicated spot price within a 

limited band 

If the authors adopt the auto-regression or 

statistical method, the result and 

conclusion may have more weight when 

the p-value is demonstrated. 
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Marketed 

Based 

Pricing: 

Zheng, 

Liang, et al. 

(2015) 

𝑚𝑎𝑥
𝑖=1,⋯,𝑀

𝑇𝑖𝐹𝑝(𝑡)(𝑝𝑏)

=
𝑡𝑠 + 𝑡𝑜 −𝑀𝑡𝑟

𝑀(1 −
𝑡𝑟
𝑡𝑘
(1 − 𝐹𝑝(𝑡)(𝑝𝑏)))

 

1.) Price orientation bid strategy, 

2.) SLA priority bid strategy, and 

3.) MapReduce workload 

application. 4.) Based on the 

authors’ observation, they 

conjecture that only a few users 

bid for spot instances due to 

heavy-tailed spot price 

distribution 

1) In practice, the bid price could exceed 

the on-demand price. 2.) The maximum 

revenue function analysis did not include 

the cost from a CSP perspective. 3.) The 

assumption of uniform distribution for bid 

prices is a contradiction with the later 

contents 4.) It is an unrealistic assumption 

to isolate the spot price alone.  

Cost-Based 

Pricing 

Greenberg 

et al. (2008) 

Not Applicable 

It highlighted a significant issue 

across many data centers at that 

time (before 2008). It provided a 

rough estimation of cloud data 

center element cost 

It ignored space costs, which could be up 

to 15% of the total cost. The assumption of 

electricity power cost was at the lower 

end.  

Cost-Based 

Pricing 

Walker, 

Edward 

(2009) 

𝑅𝑝(𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) =
𝑁𝑃𝑉

𝑁𝑃𝐶

=

(1 −
1

√2
) ×∑

𝐶𝑇
(1 + 𝑘)𝑇

𝑌−1

𝑇=0

(1 − (
1

√2
)
𝑌

) × 𝑇𝐶

 

𝑅𝑙(𝑙𝑒𝑎𝑠𝑒) =

∑
𝐶𝑇

(1 + 𝑘)𝑇

𝑌−1

𝑇=0

𝑌 × 𝑇𝐶
 

The paper highlighted a 

significant issue across many 

data centers at that time (before 

2008). The authors identified 

some approaches to improve data 

center efficiency. 

The primary assumption of the future CPU 

price is stable, but the real future CPU 

price in the market is very volatile.  

Subsequently, the expected NPV value is a 

probability distribution among a specific 

range 

Cost-Based 

Pricing 

Walker, 

Edward 

(2010) 

∆𝑁𝑃𝑉 =∑
𝐶𝑇 − 𝐸𝑇 + 𝐿𝑇
(1 + 𝐼𝐹)

𝑇

𝑁

𝑇=0

+
𝑆

(1 + 𝐼𝐹)
𝑁

− 𝐶 

The main contribution is to 

demonstrate how to use the NPV 

concept to construct a cloud cost-

based model by taking 

consideration of Moore’s law. The 

author provided a particular 

period for the decision of on-

premises or off-promises 

The predicted cost per Gbytes is 

dependent on previous observation. 

Different sources of price data collection 

could lead to different NPV results. As a 

result, the range of NPV value could be 

uncertain. 

Cost-Based 

Pricing, 

Xu, Hong, 

and 

Baochun Li 

(2013) 

max
𝑝∗

∫ 𝑅𝑣(𝑝)𝑓(𝑣)𝑑𝑣,   

𝑣1

𝑣0

 

  𝑠. 𝑡. ∫ 𝐷𝑣(𝑝)𝑓(𝑣)𝑑𝑣

𝑣1

𝑣0

≤ 𝐶 

𝑆𝑣(𝑝) = 𝑣𝑈[𝐷𝑣(𝑝)] − 𝑝𝐷𝑣(𝑝)

=
𝛼𝑝

1 − 𝛼
(
𝑣

𝑝
)

1
𝛼

 

𝑆𝑣(𝑝) ≥ 0, ∀𝑣,   𝑂𝑣𝑒𝑟 𝑝 

The major contribution of their 

work was to introduce a 

probability density function 𝑓(𝑣) 

for cloud market demand.   

1.) The revenue optimization without a 

cost component appears to be not obeyed 

to the basic economic principle. 2.) The 

price model remains as a theoretical 

discussion 3.) the assumption of 

elasticity value that is equal to 0.3 

requires further explanation.  

Cost-Based 

Pricing, 

Joe-Wong et 

al. (2012) 

 

𝐶𝑆𝑗 = 𝑚𝑎𝑥
𝑥𝑗
∗
[𝑈𝑗(𝑥𝑗) − 𝑟𝑗𝑥𝑗

𝛾
] 

𝜋𝑏 = 𝑝∑(𝜇𝑗𝑥𝑗
∗[𝜇𝑗

𝛾
𝑝 ])

𝛾
𝑛

𝑗=1

 

The significant contribution of 

the paper is that it adopted the 

iso-elasticity function for the 

utility to model the cloud 

resource price. It emphasized 

that CSP could leverage cloud 

customers’ surplus to maximize 

its revenue. 

1) Various bundle types for cloud 

resources seem only to add complexity to 

cloud pricing models.  

2) The model did not clearly articulate 

two different meanings of economic 

utility and the capacity utility (or 

utilization rate) for fairness.  

3) The assumption for all customers’ 

utility functions that are continuous and 

concave may need further consolidation. 

Cost-Based 

Pricing, 

Shahrad et 

al. (2017) 

 ( ) =  ( ) −  ( ) 

It is the first time to propose a 

cloud price model with a self-

capping solution to help CSP to 

increase the utilization rate of 

cloud infrastructure capacity 

The profit functions of cloud customers 

have to be differentiable. Otherwise, the 

optimal capacity value cannot be found. 

Value-Based 

Pricing 

𝐵𝐴𝑝 = 𝛽0𝑝 +∑𝛽𝑖𝑝𝑥𝑖 + 𝜀𝑝
𝑖∈𝐼

, [𝑝

∈ 𝑃] 

It is the first time to apply the 

hedonic method for cloud 

computing prices. 

The interpretation of their experiment 

results seems to be inaccurate. The 

adjusted R square value is only between 
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El Kihal, 

Siham et al 

(2012) 

43%~69%. It means the linear regression 

is not “goodness of fit.” 

Value-Based 

Pricing, 

Zhang, Liang 

(2016) 

ℎ𝐷𝑉(𝑥𝑖): ln 𝑃𝑖,𝑡 = 𝛼 +∑𝛽𝑘𝑋𝑘,𝑖,𝑡
𝑘

+∑𝛿𝑡𝐷𝑖,𝑡
𝑡

+ 𝜀𝑖,𝑡 

The issue of “goodness of fit” was 

picked by Zhang’s hedonic 

regression formula (semi-log 

form). 

The other significant 

contribution is to introduce a 

time dummy variable in the 

hedonic analysis for cloud price.  

1.) The hedonic method that some hidden 

cloud characteristics were left out. 2.) The 

coefficient of time dummy variables 

between 2009 and 2015 was not provided. 

 

Value-Based 

Pricing, 

Wu. et al. 

(2018) 

𝑙𝑛[𝑝(𝑋)] = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

+∑𝛿𝑡𝑑𝑡

𝑇

𝑡=1

 

 

-20% of Cloud services 

depreciation rate that is 

equivalent to Moore’s law for 

computer hardware. The 

prediction for future cloud price 

has been significantly improved 

Some extrinsic coefficient values require 

further consolidation when all leading 

CSPs data become available. 

Value-Based 

Pricing 

Adam Eivy, 

and Peter  

Sbarski 

(AWS 

Lambda 

Function) 

(2017) 

𝑐𝑡 = ℎ𝑟 +𝑚𝑟 = (𝑎𝑛𝑥 − 𝑘) × 𝑟ℎ

+ (𝑏𝑛𝑥𝑦

− 𝑔) × 𝑟𝑚 

Cloud users pay precisely the 

code execution time or Code on 

Demand if the code the execution 

time is very close but less than 

the unit 100ms. CSP can allocate 

unused execution time for other 

cloud users 

If the code execution time is unknown or 

very long, the monthly bill can be quickly 

out of hand. Sometimes, the price could be 

three times more than VM on-demand 

pricing model 

 

Based on the above table, we notice that the goal of cloud pricing models is to maximize 

business profits and to improve cloud resources efficiency, which is to minimize cloud 

infrastructure costs. The common trait of early solutions was the cloud infrastructure cost is the 

central theme of the pricing model. During the early era of cloud computing, many researchers 

mainly focused on the cost and limited capacity of cloud infrastructure. Walker’s two papers [77] 

[78], Greenberg’s [60] and Joe-Wong’s [113] [114] studies provided a good example. When the 

cloud market becomes the mainstream computing resource, especially after AWS launched the 

spot-instance in 2009, the research topic had been shifted to market-based pricing. Xu [80] [56], 

Orna [61], and Toosi [55] included on-demand, reserved and spot-instance models into their 

solution of profit maximization. Just recently, El Kihal [84], Mitropoulou [85], Zhang [86], and 

Chapter 3 adopted the hedonic method to evaluate CSP’s pricing, which is considered as a value-

based pricing strategy. 

The differences of three pricing strategies are that value-based pricing is driven from the 

demand side, while cost-based pricing is oriented by the supply side and the market-based pricing 

is to focus on the equilibrium of supply and demand. The primary goal of having different pricing 

strategies and generating multiple price models is to capture more surplus value under a cloud 

customer’s demand curve. From Figure 2⎯24, we can see that moving from 2009 (diagram A) 
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to present (diagram B), more customer surplus values have been gained after new cloud service 

features alongside new price models have been created. For example, the dedicated host pricing 

models supported by new cloud technology, such as Cloudheat [109] can draw customer’s surplus 

values from the upper end (area “1”) of the demand curve, and discount pricing category enabled 

by desktop grid technology can draw a customer’s surplus value from the lower end (area “2”). It 

implies that the new cloud price models underpinned by innovative cloud technologies can 

maximize cloud business profit for CSP. 

 

Figure 2—24 More Pricing Models to Capture Customer’s Surplus Value 
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Chapter 314 

3 Hedonic Pricing of Cloud Computing 

Services 

Cloud service providers (CSP) and cloud consumers often demand to forecast the cloud price 

in order to optimize their business strategy. However, the pricing of cloud services is a 

challenging task due to its services complexity and dynamic nature of the ever-changing 

environment. Moreover, the cloud pricing based on consumers’ willingness to pay (W2P) 

becomes even more challenging due to the subjectiveness of consumers’ experiences and implicit 

values of some non-marketable prices, such as a burstable CPU, dedicated server, and cloud data 

center global footprints. Unfortunately, many existing pricing models often cannot support value-

based pricing. This chapter proposes a novel solution based on value-based pricing, which does 

not only consider how much does the service cost (or intrinsic values) to a CSP but also how 

much customer is willing to pay (or extrinsic values) for the service. This study demonstrates that 

the cloud extrinsic values would not only become one of the competitive advantages for CSPs to 

lead the cloud market but also increase the profit margin. The approach is referred to as a hedonic 

pricing model. This chapter shows that the hedonic model can capture the value of the non-

marketable price. This value is about 43.4% on average above the baseline, which is often ignored 

by many traditional cloud pricing models. This work also shows that the Average Annual Growth 

Rate (AAGR) of Amazon Web Services’ (AWS) is about -20.0% per annum between 2008 and 

2017, ceteris paribus. In comparison with Moore’s law (-50% per annum), it is at a far slower 

pace. This chapter argues this value is Moore’s law equivalent in the cloud. The primary goal of 

this research is to provide a less biased pricing model for cloud decision-makers to develop its 

optimizing investment strategy.  

3.1 Introduction 

 RICING cloud computing has always been a big challenge not only to many Cloud Service 

Providers (CSPs) but also to many cloud consumers because of the exponential growth of new 

service features or characteristics that appear almost daily. Although pricing of cloud service 

delivery has often been drawn an analogy as a new public utility service [125], the underlying 
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structure of cloud pricing is much more complicated than the traditional public utility services 

due to the rapid development of cloud technologies and multiple layers of service delivery models 

(or Anything as a Service: XaaS). 

 As Weinman [1] had noticed, the utility pricing or Pay-As-Your-Go (PAYG) is not the only 

possible model for the cloud. Some firms have begun to explore their marketing strategy to 

support “pay-what-you-like.” He indicated one of the important lessons that CSPs should learn 

from other industries is that relying on innovative cloud services and technologies is not enough. 

CSP has to also come up with new pricing models for its services. This means that CSPs should 

“move beyond competition just on a price to compete on pricing.” The question of how to move 

beyond competition just on price leads to the idea of how to establish innovative pricing models 

for cloud services. The primary objective of the cloud pricing model is to capture cloud service 

values along with its pricing variation as well as the dynamic nature of cloud technology 

development. 

Our observation shows that the revenue growth of Amazon Web Services (AWS), one of the 

leading global CSPs, has a positive correlation with its cloud characteristics (See Figure 3⎯1). 

This means various cloud service features, such as PAYG, burstable CPU, data center global 

footprint, GPU, one account for all location, etc. (Notice that the number of characteristics has 

been increased from just a few in 2006 to more than a thousand in 2017 due to AWS’ continuous 

cloud innovation [145]). The fundamental question is, “Will the cloud characteristics impact its 

service price or customer willingness to pay (W2P)?” If so, what is the relationship between cloud 

characteristics and service prices? Most importantly, how we can calculate or estimate the values 

of these characteristics. One of the solutions is a so-called hedonic model. The compelling reason 

to propose the hedonic model is that it can capture non-market values (extrinsic values) for the 

cloud ecosystem and evolutionary characteristics that either directly or indirectly impact on its 

service prices. 

Empirically, the basic premise or assumption of the hedonic function is that the product price 

difference is closely aligned with its characteristics (or features) variation. This means that if we 

can successfully establish a relationship between cloud service price differences with various 

cloud service characteristics, we will be able to estimate the price of cloud services accurately.   
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Another advantage to consider the hedonic approach is that the cloud price can be modeled by 

the regression analysis for the cloud service features along with its price variation over a period. 

In comparison with other methods, such as survey-based or contingent valuation [126] or Delphi 

[127] method, the hedonic regression approach is quick and cost-effective if the chosen dataset is 

sufficiently large for the regression analysis. Moreover, it can be easily updated. It is a good fit 

for the cloud environment because of its ever-changing market conditions and rapid technological 

innovations. 

Figure 3—1 AWS Revenue Expansion and Characteristics [145] 

Historically, the hedonic model has two different objectives. One is to predict the future price 

of goods or services that customers are willing to pay. The purpose of hedonic prediction is to 

help decision-makers to make an optimized strategic decision. The other is a hedonic index, which 

is to establish a price ratio by comparing it with a price in a base period. The goal of the hedonic 

index is to monitor the price of either inflationary or deflationary, which is to verify what has 

happened in the past.  

In this chapter, we mainly focus on hedonic prediction or estimation. In order to achieve a better 

estimation, we introduce the concept of both intrinsic and extrinsic variables for the hedonic 

function model, which is inspired by G.E. Moore [20] as a solution for the cloud pricing problem. 

The intrinsic variables of cloud instances are defined as cloud resources, such as memory, CPU, 

storage, and network performance. They often appear as numerical variables. In contrast, the 
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extrinsic variables can be anything from Burstable CPU, OpenStack compatible API, the global 

footprint of Cloud Data Center (DC), Mobile Application, vertical scaling without a reboot, to 

even one account for all locations. They are binary or categorical variables. In this chapter, we 

propose a pricing model based on hedonic principles to capture the values of both intrinsic and 

extrinsic variables. This can help both CSPs and cloud consumers to estimate cloud prices more 

accurately. In addition, it explains the reasons why some market leaders of CSP do not only 

compete based on the price of intrinsic value but also on the price of an extrinsic one. Our 

proposed model will help many cloud decision-makers to understand price differentiation. We 

believe it will become a practical tool in a price modeling toolbox for many CSPs and it will also 

provide a pricing technique for many cloud consumers to select the right CSP for their application 

need. In summary, we have made the following contributions: 

1. We articulate that cloud prices are dependent on both intrinsic and extrinsic variables 

according to the utility theory. We have also demonstrated how to compute these extrinsic 

values practically.  

2. We construct a novel form of hedonic function for cloud pricing, which consists of three 

explanatory variables: intrinsic, extrinsic and time dummy. 

3. To the best of our knowledge, this is the first attempt to use the time dummy variable to 

correctly calculate the Average Annual Growth Rate (AAGR) for cloud service. If we use 

AWS as a benchmark, it is about -20.0% per annum. This rate basically captures Moore’s 

law behaviors. It is also the first time to comprehensively describe the context regarding 

the hedonic model for cloud pricing. Moreover, it attempts to pricing cloud services with 

both panel and cross-sectional datasets.    

4. We show that cloud price is declining but at a slower pace than what Moore’s Law 

predicts for computing hardware [158]. We argue this slow pace is due to the non-

marketable pricing values (by alone, these features have no value), namely, extrinsic 

variables or characteristics.  

5. We exhibit that our novelty pricing model can provide a good and simple solution to 

predict cloud prices. We also show that a customer is paying more than a typical baseline 

service price (a standard configuration of cloud instance) on average for their business 

needs. 

This study uses AWS data in 2014 to generate a simple hedonic regression model. Based on 

this model, we estimate a cloud price (by a typical configuration of cloud instance) in 2017 and 
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then compare it with the real price in 2017. Our results show that the model can predict with an 

average accuracy of 87%. We use AWS 10 years unbalanced panel (longitudinal) data to construct 

a hedonic model with time dummy variables. According to this model, we can calculate the value 

of AAGR. By using AAGR, we can revise our estimation of cloud price. However, this price 

estimation does not take into consideration of the extrinsic variables. In order to capture the 

extrinsic values, we develop a comprehensive hedonic model to calculate the value of each 

extrinsic characteristic based on the cross-sectional data of five CSPs. Finally, we update the 

estimated cloud price to achieve many accurate results based on a particular type of workload. 

The rest of the chapter is organized as follows: Section 3.2 provides the background information. 

Section 3.3 reviews related works and introduce the hedonic concept. It consists of three parts: 

the empirical work of hedonic analysis, the hedonic pricing model for computer prices and the 

hedonic model for the cloud. Section 3.4 defines the hedonic function for cloud pricing. Section 

3.5 provides a performance evaluation. Section 3.6 analyses the results with detailed discussion. 

The final section provides summary information. 

3.2 Background 

To set the background, we consider a scenario where a Chief Information Officer (CIO) of a 

firm needs to make a strategic investment decision whether to build their own private cloud (on-

premises) or just migrate IT workloads to the cloud provider (off-premises, either private or public 

cloud infrastructure). Assume that the firm has its own on-premises IT infrastructure that still 

supports its existing business applications and the book value of IT assets that cannot be written 

off for the next 12 ~ 36 months. 

In this discussion, we ignore other issues such as types of IT workload, migration cost, and 

system lifecycle management (SLCM) cost. The fundamental issue can then be boiled down to 

“how can we estimate the future market price of cloud services for the next 12~36 months?”. The 

logic behind this line of reasoning is if we can successfully predict or estimate the cloud price 

along with its service features (or cloud characteristics) that the business requires, we can select 

either building or buying or a hybrid solution for IT infrastructure. This means that if we can use 

the pricing model to predict the future price of cloud services accurately, we can help the CIO to 
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develop a better IT investment strategy. However, cloud pricing modeling is much more 

complicated due to the hedonic nature of many of its characteristics or features.  

The term “hedonic” or “hedonism” was derived from a Cyrenaic parable in ancient Greek. It 

literally means “The Choice of Pleasure” [128] in contrast to “pain.” Economically, the 

connotation of hedonic is the meaning of gain, which is the opposite of losing. From a cloud 

consumer perspective, hedonic values can be interpreted as some implicit benefits that are derived 

from specific cloud characteristics offered by a particular cloud service. Often, these service 

values are not only dependent on its intrinsic variables but also on many extrinsic variables. 

Traditionally, the price of any given cloud service (typically IaaS) is often determined by its 

cost components or required resources. It is referred to as cost-based pricing. With cost-based 

pricing, one of the disadvantages is that it cannot capture many cloud service characteristics. The 

other conventional approach to pricing is based on supply and demand, which is dependent on the 

market competition or the existing market conditions. We often call it market-based pricing. 

Unfortunately, many innovative services and cutting-edge technologies do not have an existing 

market to decide the price of goods. In contrast, the hedonic pricing model can overcome these 

issues to some extent because it can capture both intrinsic values (resource costs) and extrinsic 

values (service characteristics) and can estimate the missing or future price based on the existing 

market [152][163]. This way, we can present a hedonic based pricing model to CIOs to estimate 

the future cloud price accurately. (Table 3⎯1 lists all the acronyms used in this chapter.) 

Table 3—1 Acronym Used in This Chapter 

Acronym   Definition Acronym   Definition 

AAGR Average Annual Growth Rate I/O Input / Output 

API Application Programming Interface IaaS Infrastructure as a Service 

AWS Amazon Web Services OLS Ordinary Least Square 

CAGR Compound Average Growth Rate PAYG Pay As You Go 

CIO Chief Information Office RAM Random Access Memory 

CSP Cloud Service Providers SLCM System Lifecycle Management 

EBS Enterprise block Store SSD Solid State Drive 

EC2 Elastic Compute Cloud vCPU Virtual Central Processing Unit 

ECU Elastic Compute Unit VM Virtual Machine 

GCP Google Cloud Platform W2P Willingness to Pay 

GPU Graphics Processing Unit XaaS Anything as a Service 

HDD Hard Disk Drive YoY Year on Year 
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3.3 Related work 

The modern hedonic theory can be traced back to the founder of modern utilitarianism, Jeremy 

Bentham [129]. In Bentham’s view, the hedonic value is a sensational pleasure. He identifies 

seven main variables (IDCNPFE) to calculate hedonic values. We show these values and their 

relevance to cloud computing values in Table 3⎯2 

Table 3—2 Bentham’s Seven Hedonic Variables Relevant to Cloud 

Bentham’s Hedonic 

Variables (IDCNPFE) 
Bentham’s Definition Value Range Hedonic Values Relevant  to Cloud 

Intensity (I) 
the amount of quality for pleasure or 

pain 
0-10 Quality of Services 

Duration (D) 
how long the pleasure or pain will 

last 

From minutes 

to weeks 
Usage Time 

Certainty (C) 
the probability of the pleasure or pain 

will occur 
0 – 100% The certainty of a price discount 

Nearness (N) how far off in the future Now – Years When discount price  starts & ends 

Purity (P) how the decency of pleasure 0-100% Dependent conditions to obtain cloud  service 

Fecundity (F) 
the probability of reproducing the 

pleasure or other pleasures 
0-100% 

The probability of having discount price & more 

cloud service  features continuously in future 

Extent (E) 
the number of people will be 

impacted by the pleasure 
One or Many Number of people can share the  Cloud services 

 

In contrast to Bentham’s view, John Stuart Mill [130] emphasized a higher level of intellectual 

happiness, which differs from Bentham’s pure hedonic value. He stated, “It is better to be a human 

being dissatisfied than a pig satisfied; better to be Socrates dissatisfied than a fool satisfied.” In 

today’s cloud pricing term, Mill’s hedonic value means to pursue a good result for business 

applications, while Bentham’s hedonic value emphasizes to maximize the number of cloud 

service characteristics for the maximizing number of cloud customers.   

G.E. Moore [20] divided the hedonic values into two kinds: intrinsic (or non-instrumental) and 

extrinsic (or instrumental) [131] . This is Moore’s significant innovation to hedonic theory. The 

concept of intrinsic value means that something is good or valuable on its own and the value is 

independent of others. For example, RAM, CPU, and storage can be considered as intrinsic values. 

In contrast, the extrinsic value is determined by the relationship with others, such as PAYG, 
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burstable CPU and 24X7 supports, which are dependent on RAM and CPU. G.E. Moore’s concept 

of intrinsic and extrinsic values underpins our hedonic model. 

3.3.1 The Empirical Hedonic Analysis 

The empirical hedonic analysis had been adopted as early as the 1920s. Zvi Griliches [132] 

generalized the hedonic regression model along with a semi-logarithmic form for the vehicles’ 

application in the 1960s. Griliches noticed many practical issues of the hedonic model analysis 

[151]. One of them was, “How should the regression framework be expanded, what variables 

should be added to it, so as to keep the resulting estimates stable in facing of changing 

circumstances?”. He emphasized the essence of hedonic analysis is to estimate the “missing” 

prices or values due to quality or characteristics change, which influences our hedonic models for 

the cloud pricing. 

3.3.2 Hedonic Model for Computer Price 

In addition to the property and automobile applications, another popular application of the 

hedonic model is computer hardware, such as a mainframe, workstation, and personal computer. 

Since the later 1970s, there have been countless publications regarding of hedonic price index of 

workstation and Personal Computer (PC). One of the earlier works was contributed by R. 

Michaels’ [133]. He demonstrated how to establish a hedonic function with CPU performance, 

memory size, the speed of I/O, storage capacity and high-speed storage characteristics plus brand 

name and time dummy variables. Based on the regression analysis, the paper indicated that brand 

name had an insufficient impact on implicit prices and the deviation of quality-adjusted prices is 

smaller for the high-end computer equipment. The main conclusion of the paper was “observed 

price variations to be consistent with the economic theory” (value for money).  

For the same topic, Cole et al. [134] presented and compared different PC hedonic price indexes 

with a matched-model index and demonstrated that the traditional matched-model index is 

inadequate for PC products because the index excluded many new replacement PC models due to 

rapid technology improvement in the PC industry. However, the authors did not give an 

explanation for why was the reason for PC price deflation. 

Ernst R Berndt and Zvi Griliches [135] separated the price-decreasing problem into two issues: 

one is a price index and the other is the ratio of performance against price. They provided a variety 
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of price indexes to serve the purpose of the deflation explanation for the microcomputer. The 

indexes were a kind of benchmark to measure “a technological frontier in the PC market” based 

on an unbalanced panel data. The paper reported testing results with various hedonic regression 

models, especially leveraging many dummy variables, such as year, vintage, process bit-length 

and age of PC. One of the apparent results was the PC price was decreasing, although the quality 

of the PC was improving. Moreover, the authors noticed the issue of the parameters of the 

regression model has high variances and is unstable. The decision to select a set of variables from 

a pool of characteristics was arbitrary.      

In contrast to many indexes oriented hedonic analysis, Rao et al. [136] mainly addressed the 

issue of how to economically analyze information systems (IS), which is how to acquire 

workstation hardware in the 1990s for many large organizations. The authors presented a hedonic 

function in the Box-Cox [137] transformation form (Equation 3-1) in order to extract a pattern 

between prices and the hardware characteristics. 

 
𝑦𝜆 − 1

𝜆
= 𝛽0 + 𝛽1

𝑥1
𝜆 − 1

𝜆
+ 𝛽2

𝑥2
𝜆 − 1

𝜆
+⋯+ 𝛽𝑛

𝑥𝑛
𝜆 − 1

𝜆
  (3-1) 

where y is the workstation price, 𝑥𝑖
𝜆  is the workstation ith characteristic. 𝛽1⋯𝛽𝑛  are the 

coefficients, 𝛽0 is the intercept value.  is the transformation power parameter. The authors had 

noticed there were many difficulties in constructing a hedonic function form, some of which still 

exist for determining cloud service pricing. These issues include: 

1. How to aggregate the characteristics of a good or service at a box level. 

2. How to specify the characteristics in detail,  

3. How to select each characteristic that can reflect both customers’ values and resource 

costs, 

4. How to handle the evolutionary characteristics, 

5. How to trace and measure these characteristics at the box level, 

6. How to apply the hedonic model or appropriate hedonic function at the box level, 

In comparison with Rao’s hedonic model, Pakes’ paper [138] demonstrated a relatively easy 

way to construct a hedonic model from an index perspective. Parkes’ empirical results show that 

PC’s hedonic price had a sharp decline while the traditional matched model exhibited the near-

zero values. According to Hulten [139], Pakes made three significant contributions to the hedonic 

analysis: 
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1. The coefficients of the hedonic function are not always fixed over time. Moreover, the 

sign of the coefficient is not necessary to be positive. In other words, some product’s 

characteristics may have a negative impact on the overall hedonic values. 

2. Two hedonic functions of the same product could be different from each other. 

3. Each hedonic function is sufficient to make a quality judgment. 

In addition, Pakes’ theory of hedonic function is much easier to be grasped in comparison to 

other forms that have too many “restrictive assumptions.” It can be directly derived from the 

theory of microeconomics [140], in which the hedonic price reflects the price elasticity. Let 

(𝑥𝑖, 𝑝𝑖) denote the characteristics and the price of the product “i” and 𝑄𝑖 is the quantity of demand 

of the product. Note 𝑄𝑖  is dependent on the price 𝑝𝑖  and 𝑥𝑖 . We can graphically show the 

product’s price in Figure 3⎯2 

Figure 3—2 Theoretical Interpretation of Hedonic Price 

From the Lerner index, we should have the Equation 3-2 [7] 

 𝐿𝑖 =
𝑝𝑖 −𝑚𝑐

𝑝𝑖
=
1

𝜖𝑖
 (3-2) 

where “𝑝𝑖” is a market price of the product, and “𝑚𝑐” is the marginal cost for the product and 

𝜖𝑖 is the elasticity. From microeconomics theory [140] , the elasticity can also be represented 

using Equation 3-3 

 𝜖𝑖 = |
𝑝𝑖
𝑄𝑖

𝜕𝑄𝑖
𝜕𝑝

| (3-3) 

From (3-2) and (3-3), we have the Equation 3-4 

Lerner Index:

Marginal cost Markup price
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 𝑝𝑖 = 𝑚𝑐 +
𝑄𝑖

|𝜕𝑄𝑖/𝜕𝑝|
  (3-4) 

Subsequently, the hedonic function can be written as: 

 ℎ(𝑥𝑖) ≡ 𝐸[𝑝𝑖|𝑥𝑖] = 𝐸[𝑚𝑐|𝑥𝑖] + 𝐸 [
𝑄𝑖

|𝜕𝑄𝑖/𝜕𝑝|
| 𝑥𝑖] (3-5) 

This equation consists of both marginal cost (first term) and markup price (second term). The 

first term is also dependent on the customers’ demand. The challenging question is how the first 

and the second terms interact with each other and how to calculate the market price. 

Fortunately, we can use the regression analysis as an empirical tool to estimate the relationship 

between the response variable (cloud price) and explanatory variables (cloud characteristics). This 

is the basic idea of the hedonic approach. The idea of predicting hedonic price has been 

consolidated by Haas, Court, and Waugh and theorized by Lancaster [141] and Rosen [142]. 

According to Brachinger [143], the functional relationship of hedonic prices can be defined as: 

 𝑀𝑊𝑇𝑃 =
𝜕𝑝

𝜕𝑥𝑖
(𝑥) =

𝜕ℎ

𝜕𝑥𝑖
(𝑥), (𝑖 = 1⋯𝑘) (3-6) 

where “MWTP” is the marginal willingness to pay, “p(x)” is the price function, “h(x)” is the 

hedonic function. 𝑥𝑖 is the characteristic of a product. Practically, there are four common types of 

hedonic forms (linear, semi-log, log-log, or Cobb-Douglas and logarithmic, see Table 3⎯3). But, 

as both Rosen and Halvorsen et al. [146] indicated that “The appropriate functional form for the 

hedonic equation cannot, in general, be specified on theoretical grounds.” This means that a 

practical solution to select a particular function form is really dependent on a dataset in hand, 

which is to examine which function form to be goodness-of-fit with a collected dataset. Halvorsen 

proposed a statistical procedure to select a functional form with a Box-Cox methodology that is 

basically to use the likelihood ratio to examine the appropriateness of the alternative functional 

forms. However, Cassel et al. [147] argued that Box-Cox transformation is inadequate for the 

purpose of predicting hedonic prices because: 

1. It is not necessary to increase the accuracy of price prediction. In fact, it could lead to a 

poorly estimated result, which had been demonstrated by Rao [136] . 

2. The collected data may contain some negative values, but the traditional Box-Cos 

function does not allow any negative values because any negative number raised to non-

integer real power would become imaginary. 
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3. Because the mean predicted, the value of the untransformed dependent variable is not 

necessary to be equal to the estimated mean that has been transformed. As a result, the 

nonlinear transformation will introduce a bias for the untransformed variable.  

Overall, the nonlinear transformation results would be challenging to be explained. 

Table 3—3 Common Regression Function Forms for Hedonic Analysis 

Function 

form 
Hedonic Regression Equations 

The inverse of  Price 

Elasticity (Lerner 

Index) 
Hedonic Price 

Interpretation 

of  Hedonic price 

Linear 𝑝 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

 1/𝜖𝐷 = 𝛽𝑖
𝑥𝑖
𝑝

 
𝜕𝑝

𝜕𝑥𝑖
= 𝛽𝑖 Marginal change 

Quadratic 𝑝 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝛾𝑖𝑥𝑖
2

𝑚

𝑖=1

 1/𝜖𝐷 = (𝛽𝑖 + 2𝛾𝑖𝑥𝑖)
𝑥𝑖
𝑝

 
𝜕𝑝

𝜕𝑥𝑖
= 𝛽𝑖 + 2𝛾𝑖𝑥𝑖 

linear marginal 
change 

Cubic 𝑝 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝛾𝑖+1𝑥𝑖
2

𝑚

𝑖=1

+∑𝜃𝑖𝑥𝑖
3

𝑛

𝑖=1

 

1/𝜖𝐷

= (𝛽𝑖 + 2𝛾𝑖𝑥𝑖

+ 3𝜃𝑖𝑥𝑖
2) 
𝑥𝑖
𝑝

 

𝜕𝑝

𝜕𝑥𝑖
= 𝛽𝑖 + 2𝛾i𝑥𝑖 + 3𝜃𝑖𝑥𝑖

2 
Quadratic 

marginal change 

Linear 

Intrinsic & 

Extrinsic & 
Time 

Dummy 

𝑝𝑖𝑗
𝑡 = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

+∑𝛿𝑡𝐷𝑡

𝑇

𝑡=1

 

1/𝜖𝐷

= (𝛽𝑖𝑥𝑖 + 𝜉𝑗𝑧𝑗
+ 𝛿𝑡𝐷𝑡)/𝑝𝑖𝑗

𝑡  

𝜕𝑝

𝜕𝑥𝑖
= 𝛽𝑖 + 𝛼𝑗𝑡 

Marginal change 

+ multiple fixed 
effects 

Exponential 
or Semi-log 

𝑝 = 𝛽0∏𝑒𝛽𝑖𝑥𝑖

𝑘

𝑖=1

,  𝑜𝑟  

𝑙𝑛𝑝 = 𝑙𝑛𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

 

1/𝜖𝐷 = 𝛽𝑖𝑥𝑖 
𝜕𝑝

𝜕𝑥𝑖
= 𝛽𝑖𝑝 Growth Rate 

Semi-log + 

Dummy 
Variable  

𝑙𝑛𝑝𝑡 = 𝛼0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝛿𝑡𝐷𝑡

𝑇

𝑡=1

 1/𝜖𝐷 = 𝛽𝑖𝑥𝑗𝑖 + 𝛿𝑡𝐷𝑡 
𝜕𝑝

𝜕𝑥𝑖
= 𝛽𝑖𝑝

𝑡+𝛼t 

Power of 
marginal change + 

time fixed the 

effect 

Power or 

Double log 

𝑝 = 𝛽0∏𝑥𝑖
𝛽𝑖

𝑘

𝑖=1

 or 

𝑙𝑛𝑝 = 𝑙𝑛𝛽0 +∑𝛽𝑖𝑙𝑛𝑥𝑖

𝑘

𝑖=1

 

1/𝜖𝐷 = 𝛽𝑖 
𝜕𝑝𝑖
𝜕𝑥𝑖

=
𝛽𝑖
𝑥𝑖
𝑝 

Partial 

Elasticities 

Logarithmic 𝑝 = 𝛽0 +∑𝛽𝑖𝑙𝑛𝑥𝑖

𝑘

𝑖=1

 1/𝜖𝐷 =
𝛽𝑖
𝑝

 
𝜕𝑝

𝜕𝑥𝑖
=
𝛽𝑖
𝑥𝑖

 
Marginal change 

of logarithmic 

3.3.3 Hedonic Model for Cloud Price 

To the best of our knowledge, only limited studies of hedonic analysis had been conducted for 

cloud pricing, although the hedonic model has been widely applied in other industries, such as 

real estate, automobile, hotel, airline, and recreation. El Kihal et al. [84] were among the first 
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presented a simple hedonic analysis regarding Infrastructure as a Service (IaaS) clouds. The result 

of the hedonic analysis is not compelling because the adjusted R-squared was 43% (IBM). 

Nevertheless, they initiated the hedonic model for further study of cloud prices. Mitropoulou et 

al. [85] [162] provide a hedonic price index for cloud price comparison purposes among 23 CSPs.  

In summary, previous studies left a large gap of hedonic modeling for the cloud pricing in terms 

of exploring different alternative hedonic forms, reducing regression errors, increasing R-squared 

values and adding practical values for cloud decision-makers. In this chapter, we show how to 

overcome many of these issues. 

3.4 Hedonic Function for Cloud Pricing 

3.4.1 Hedonic Function 

By the extension of previous research for cloud prices, we first define the simplest hedonic 

function form of linear regression using OLS (Ordinary Least Square) method for our initial test. 

It can be directly interpreted as the mean coefficient values multiplied by independent variables 

(a vector of cloud characteristics) plus an error term: 

 𝑝(𝑋) = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ε (3-7) 

where 𝑋 = (𝑥1, 𝑥2, . . , 𝑥𝑘), 𝑥𝑖 are independent variables and also a vector to represent different 

cloud characteristics, such as RAM, CPU core, virtual CPU, storage size and network bandwidth. 

The “k” is the number of cloud characteristics. “p” is a dependent variable to represent cloud 

instance price, which can be observed from CSP’s web price catalog. Both independent and 

dependent variables are numerical values. 𝛽𝑖 is the linear coefficient and 𝛽0 is the interception 

point of the linear equation and ε is the error term or noise. The issues of the linear model are: 

1) It may create substantial errors because of underfitting. The previous analytic results [84] 

demonstrated the R-squared value could be as lower as 46%.  

2) This model cannot capture the price change due to time variation for the unbalanced panel 

data. In other words, it is impossible to measure the price change along with the temporal 

domain. 

3) This model also ignored extrinsic features. 
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4) Moreover, some of the cloud characteristics provided by each individual CSP, such as a 

dedicated server, burstable CPU, and OpenStack API, cannot be captured due to the 

binary nature of these features. Therefore, it could lead to inaccurate pricing estimation. 

In order to overcome these issues, we have to develop many sophisticated hedonic function 

forms to minimize the regression errors based on the collected datasets. 

3.4.2 New Hedonic Function Form 

One of the solutions to minimize regression error due to time dependency is to add another 

independent variable for the unbalanced panel data, namely time dummy or indicator variables to 

the OLS equation. This variable can capture the chronological influence of cloud prices. As a 

result, Equation 3-8 would become Equation 3-9 as: 

 𝑝(𝑿) = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

+∑𝛿𝑡𝑑𝑡

𝑇

𝑡=0

+ ε (3-8) 

𝑿 = 〈𝑥1⋯𝑥𝑘 , 𝑧1⋯𝑧𝑗 , 𝑑1⋯𝑑𝑇〉 

𝑧𝑗 ∈ {0,1},   𝑑𝑡 ∈ {0,1},∑𝑑𝑡 = 1

𝑇

𝑡=0

 

Here, 𝑑𝑡  is the time dummy variable. Often, the unit of T is the number of years. 𝛿𝑡  is the 

coefficient value. ε is the error term that generates by both numerical and binary variables.  

Furthermore, in order to capture the categorical variable of cloud service characteristics, we 

separate all cloud characteristics into two categories, namely intrinsic and extrinsic characteristics. 

The intrinsic characteristics are closely associated with cloud infrastructure costs. They often 

appear to be continuous variables. In contrast, the extrinsic characteristics are the binary variable. 

It means that CSPs can either support or not for a particular cloud instance. These service features 

will only add values to the customers when some intrinsic cloud characteristics are enabled. Let 

alone they often have no instrumental values to customers. Subsequently, we can develop further 

Equation 3-9 to be as follows: 

 
𝑝(𝑿) = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

+∑𝛿𝑡𝑑𝑡

𝑇

𝑡=0

+ ε, 

𝑿 = 〈𝑥1⋯𝑥𝑘 , 𝑧1⋯𝑧𝑗, 𝑑1⋯𝑑𝑇〉 

(3-9) 
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𝑧𝑗 ∈ {0,1},   𝑑𝑡 ∈ {0,1},∑𝑑𝑡 = 1

𝑇

𝑡=0

 

where 𝑧𝑗 is the binary variable (In general, 𝑧𝑗  can be a categorical variable.) that represents 

extrinsic cloud characteristics j and “l” is the number of the extrinsic characteristics. 𝜉𝑗 is the 

coefficient of the binary variable. ε is the term of combination errors for both intrinsic and 

extrinsic characteristics plus time dummy variable. If we take the derivative of Equation 3-9, we 

should have a vector of derivatives. 

 𝛻𝑝(𝑋) = [𝛽1 𝛽2⋯ 𝛽𝑘   𝜁1 𝜁2⋯𝜁𝑙   𝑑1 𝑑2⋯𝑑𝑇 ]
𝑇 (3-10) 

 

Intuitively, the extrinsic cloud characteristics are similar to spatial fixed effects in the property 

data application. Kuminoff et al. [154] suggested adopting a combination of spatial fixed effects, 

quasi-experimental identification, and temporal controls would provide an unbiased result 

because of many unobserved characteristics. If all characteristics are explicit, Cropper et al. 

[155]suggested that linear and quadratic Box-Cox forms would produce the best results.   

However, Triplett [148][149] Griliches [150] and Gordon [152] indicated that the semi-log form 

has frequently emerged as “best” in hedonic function form tests. As a result, we can rewrite 

Equation 3-9 as a semi-log form. It can handle the substantial price variation of cloud instances 

for a long time period. 

 ln [𝑝(𝑋)] = 𝛽0 +∑𝛽𝑖𝒙𝒊

𝑘

𝑖=1

+∑𝜉𝑗𝒛𝒋

𝑙

𝑗=1

+∑𝛿𝑡𝒅𝒕

𝑇

𝑡=1

+ ε (3-11) 

𝑿 = 〈𝑥1⋯𝑥𝑘 , 𝑧1⋯𝑧𝑗 , 𝑑1⋯𝑑𝑇〉 

𝑧𝑗 ∈ {0,1},   𝑑𝑡 ∈ {0,1},∑𝑑𝑡 = 1

𝑇

𝑡=0

 

Transformations will make sense if the dataset has the following features [153]: 

1. The variance of the errors is unequal or heteroscedasticity. 

2. The ratio between max and min is greater than 5. 

3. The scatterplot of dependent and independent variables is curved. 
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4. The data points are skewed, which the data has a long right tail. 

5. All values are positive. 

Generally, the transformation will consider the response variable (cloud instance price) first and 

then both the explanatory and response variables. Another solution to reduce the regression errors 

is to develop a polynomial regression formula, which is to add multiple high order terms for the 

independent variables if the collected dataset shows that the relationship between a dependent 

variable (cloud price) and independent variables (cloud service characteristics) is not linear.    

This chapter considered a variety of hedonic function forms, as shown in Table 3⎯3, to 

minimize estimated errors 

3.5 Performance Evaluation 

3.5.1 Datasets and Assumptions 

3.5.1.1 AWS Panel Data 

The AWS panel data comes from two sources: 1) internet archive [144], 2) Amazon annual 

reports [145]. The data was recorded or sorted based on the time sequence that AWS released a 

new service catalog every time.  

Although Amazon started its AWS business as early as in 2006, AWS had a limited number of 

characteristics for its cloud services. Most of them belonged to intrinsic characteristics. In fact, 

AWS did not offer cloud services to the general public until 2007. Consequently, the cut off time 

for the panel data test began in 2008. In the beginning, AWS offered only four instances to the 

public. Later, AWS gradually added more types of cloud instances to its service catalog. Each 

instance has a particular configuration, the Application Programming Interface (API) name, and 

its price tag. After 2013, AWS superseded some previous generation of Elastic Compute Cloud 

(EC2) and replaced it with a current generation of instances. 

AWS pricing catalog is evolving from time to time due to the innovation of cloud technologies 

and pricing models. Some intrinsic variables are mixed with numerical and categorical values. 

Moreover, AWS sometimes changes its CPU measurement in response to the cloud market 

competition [156]. Therefore, we have made the following assumptions in order to simplify the 

AWS panel dataset: 
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1. For optimized instances, AWS uses HDD for d-serial instance and Non-Volatile Memory 

(NVMe) SSD for i3-serial instance. The rest of the instances are either SSD or EBS only. 

In order to simplify the calculation, we assume these different characteristics of instance 

storage to be the same as HDD in terms of unit cost.  

• However, the prices of SSD, NVMe SSD and HDD are different in the market. So, 

this assumption will contribute the certain price variations in our analysis.  

2. The networking performance in the AWS catalog is mixed with numerical and categorical 

variables. As a result, we unified all variables with the same numerical unit, which the 

category of very low is equal to “1”, “low” is equal to “2”, “low to moderate” is equal to 

“3”, “Moderate” is equal to “4”, “high” is equal to “5” and “Up to 10 GBits” is equal to 

“6”. This assumption might also create some errors because “1” might not be necessarily 

equivalent to 0.1 GBits links.   

3. AWS has two different types of instance prices for two operation systems: Linux and 

Windows. For this chapter, we only use the Linux price on-demand. The price ratio of 

Linux and Windows is ranging between 1.00 and 2.05. It is dependent on the size or 

capacity of the instance. AWS provides customer long-term subscription discounts if 

cloud customers have a long-term commitment, which is the so-called “reserved price.” 

This is another aspect of the problem that will be dealt with separately in other research.     

3.5.1.2 Computer Hardware Data 

In order to make a price comparison between cloud service (IaaS) and general computer 

hardware with the influence of Moore’s law, we include the general computer hardware market 

data of CPU, GPU, SSD, flash memory, storage, Hard Disk Drive (HDD) [164]. There have been 

some other works [77][78][161] for cloud price comparison, but they only focused on the cloud 

compute or storage resources in isolation. Our study takes into account all the dependent variables.     

3.5.1.3 Cross-Sectional Data 

The cloud characteristics are released by different CSPs almost daily. Capturing all cloud 

characteristics is impossible. Due to the limitation of the dataset, we only have a total of 55 

extrinsic cloud characteristics. Among them, 48 are considered to be the typical cloud 

characteristics, such as Pay-As-You-Go, Web interface, API, and Free-Transfer-In, in which 

nearly all CSPs provide these common characteristics for their service. As a result, they have 

become the baseline of extrinsic cloud characteristics. In this study, we limit the number of 

extrinsic characteristics for our analysis because some of the extrinsic characteristics are 
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insignificant (p-value > 0.05) such as vertical scaling without a reboot, OpenStack-compatible 

API and backup snapshot due to a limited number of data points. Furthermore, each CSP started 

the cloud business at a different time. Some of them just launched the cloud business recently. 

3.5.1.4 All Cloud Instances of Five Leading CSPs 

According to the latest Gartner’s magic quadrant market report for the public cloud of IaaS [157] 

AWS, Microsoft and Google are the market leaders and Rackspace is one of the challenges and 

closely follows these three (see Table 3⎯4). Linode is one of the leading competitors in the US 

IaaS market. 

Table 3—4 Five Leading Public Cloud Service Providers 

Name of CSP No of Instances 

prices 
No of Baseline 

Characteristics 
No of Host Domains (30-

Jan-17) 
No of Host Domains 

(30-Mar-17) 
AWS 76 48 948,207 1,015,002 

Microsoft Azure  69 48 142,854 149,175 
Google Cloud 

Platform 21 48 599,846 630,117 
Rackspace 19 48 504,624 487,827 

Linode 14 48 210,106 220,717 
 

Note that some of the extrinsic characteristics add extra costs for the cloud services, for example, 

a 10-node Hadoop cluster would have the extra cost of 0.15/per hour. In order to make a fair and 

horizontal comparison among different CSPs, we only track some extrinsic cloud characteristics 

across the board, which have no extra charge for an instance price. We assume CSPs do not charge 

an extra price for their baseline service configuration in their price catalog. These extrinsic 

characteristics of cloud service often have binary values, which are either 0 or 1. 

3.5.2 Test Design, Roadmap and Results 

We start with the 1st test that is designed to analyze the cloud instance price. We adopt the AWS 

cloud catalog dataset for the 2014 year (see Section 3.5.2.1). It is a simple OLS test. The purpose 

of this test is to examine the relationship between cloud instance prices (on-demand price for 

Linux OS) and its intrinsic characteristics. According to AWS, ECU (virtual server) resource is 

equivalent to CPU capacity of one 1.0-1.2GHz 2007 Opteron or 2007 Xeon processor. However, 

AWS has quietly adopted the unit of vCPU measurement in 2014. Each vCPU would correspond 

to a hyperthread of Intel Xeon core (clock speed) except t-serial instances. The purpose of a 
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hyperthread technology is to increase CPU performance by sharing the computational workload 

among multiple cores. The value of ECU usually is higher than vCPU except for t-serial instances. 

The second test consists of time dummy variables based on AWS unbalanced panel dataset 

between 2008 and 2017 (as discussed in Section 3.5.2.2). This test is an extension of the OLS. 

However, we add the second and third-order polynomial terms into the linear equation in order to 

increase R- squared and reduce p- values.  

The last test is to compare cloud instance prices among five different CSPs based on the cross-

sectional dataset in 2017. This test is designed to add the extrinsic variables into the hedonic 

function form. It is to analyze the impact of cloud extrinsic characteristics on the price of baseline 

instance configuration (as discussed in Section 3.5.2.3). A roadmap of these three tests is 

illustrated in Figure 3⎯3, which illustrates how we demonstrate the cloud extrinsic characteristics. 

In doing so, we report some performance and decision parameters of the preliminary models and 

then the full cross-sectional data for the final model.   

Figure 3—3 Simple Roadmap of Three Tests 

This research used R and R Studio to implement both panel data and cross-sectional data 

regression analysis.    

3.5.2.1 AWS Instance Price Test 

According to our test design, we construct a simple linear regression model between Linux on-

demand price and six explanatory intrinsic variables and then have a normality test and residual 

plots with instance price for the dataset. 

OLS Test (Temporary 
Results)

Time Dummy or Panel data 
test (Temporary results)

Cross Sectional data test 
(Final Result)

Section 5.2.1 Section 5.2.2 Section 5.2.3

AWS 2014 price catalogue
Predict  2017 price

AWS 10 Years Prices
Modified by AAGR

Five  CSPs’ Prices
Corrected by Extrinsic Variables
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Both R-squared and adjusted R-squared values are about 0.82-0.83 so that OLS only explains 

82% of data points. Based on both the normality test and residual plots, we can see two outlier 

data points. These outlier points may cause regression errors. If we excluded these two points, the 

R-squared values could be increased.  

We also notice that the coefficient of both vCPU and Bit (Architecture 32-bit or 64-bit) is 

negative. This may also be triggered by regression errors. By excluding the new large GPU 

instances or outlier data points, we can improve the residual values of this OLS dramatically. The 

R-squared values are lifted to about 93% (Table 3⎯5).  

Table 3—5 The Linear Form of Hedonic Function for 2014 

Coefficients Estimated  Std. Error t-value Pr(>|t|) 
Intercept -0.3377 1.06E-01 -3.176 0.00186 **  

RAM 0.0049 3.98E-04 12.326 < 2e-16 *** 
VCPU 0.0181 5.94E-03 3.044   0.00283 **  
Storage 0.00005 8.42E-06 5.897  3.01e-08 *** 

network performance 0.1755 2.67E-02 6.586 1.02e-09 *** 
Residual standard error: 0.5949 on 130 degrees of freedom 
Multiple R-squared:  0.9273,    Adjusted R-squared:  0.9251  
F-statistic: 414.8 on 4 and 130 DF,  p-value: < 2.2e-16 
Note: “*”means a significant code of p-value, “***”= p<0.001, “**”= p<0.01, “*”= p < 0.05   

Furthermore, the p-values of ECU, CPU, and Bit become insignificant. The test has proved the 

Gartner’s claim [156], which AWS quietly shifted from ECU to vCPU. Therefore, we can safely 

exclude ECU and CPU as independent variables with a limited impact on R-squared and adjusted 

R-squared values. By extracting hidden values from the intercept (or beta zero), we can transform 

it into a semi-log form and add polynomial higher-order terms into the OLS equation (as shown 

in Table 3⎯6). 
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Table 3—6 The Semi-log Form of Hedonic Function for 2014 

Coefficients Estimated  Std. Error t-value Pr(>|t|) EXP(i) 
Intercept -5.04E+00 2.14E-01 -23.483 < 2e-16 *** 0.01 

RAM 8.71E-03 1.64E-03 5.307  4.82e-07 *** 1.01 
RAM^2 -1.02E-05 2.32E-06 -4.402  2.25e-05 *** 1.00 
RAM^3 3.81E-09 8.07E-10 4.726  5.98e-06 *** 1.00 
VCPU 7.87E-02 1.23E-02 6.414 2.55e-09 *** 1.08 

VCPU^2 -6.83E-04 2.14E-04 -3.194 0.00177 **  1.00 
storage 1.99E-05 7.13E-06 2.792 0.00605 **  1.00 

network performance 1.28E+00 9.45E-02 13.571 < 2e-16 *** 3.60 
network performance^2 -9.40E-02 7.29E-03 -12.882 < 2e-16 *** 0.91 

EBS.O -1.22E-04 4.18E-05 -2.913   0.00423 **  1.00 
Residual standard error: 0.4793 on 125 degrees of freedom 
Multiple R-squared:  0.9118, Adjusted R-squared:  0.9055 
F-statistic: 143.6 on 9 and 125 DF,  p-value: < 2.2e-16 
 

One issue with the linear form is that the absolute value of the intercept  𝛽0 (-0.338) is the 

highest in comparison with other 𝛽𝑖 (or hedonic) values. A practical interpretation of this negative 

𝛽0 is that AWS would pay customers upfront for on-demand instance, which is not the case. One 

of the reasons for the higher absolute 𝛽0 value is there are other hidden variables within 𝛽0. With 

the semi-log form, the 𝛽0 value is down from 0.338 to 0.0064. Although both R- squared values 

slightly decline by about 2%, the 𝛽0 value is reduced  by nearly 53 folds. On the other hand, the 

result of the semi-log form is difficult to be interpreted because of the higher-order polynomial 

terms with the negative  values. The model becomes quite sensitive for the large instance 

configuration, especially for the characteristics of RAM and network. One of the reasons is that 

AWS may insert a volume discount mechanism for large instances. The other possible reason is 

AWS does not give the resource-level permission to reboot, start, delete, detach EBS volume, etc. 

for cloud customers to specify a resource in every instance action in order to maintain control of 

its cloud infrastructure resource pool.  

As noted in AWS 2017 catalog, AWS offers a wide variety of configurations for its computing 

instances such as cc1.4xlarge (cluster compute quadruple extra-large VM), cg1.4xlarge (GPU 

VM), and m1.small (general-purpose small resource VM). To predict a cloud price of an average 

configuration resource in the AWS 2017 catalog, we used the m4.10xlarge instance, which is one 

of the general-purpose instances and provides a balance of computing memory and network 

resources. It is designed to support different computing environments such as web applications 
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or line of business or LoB (The letter “m” stands for “general purpose,” “4.10” means the size of 

computing and network resources, “xlarge” stands for extra-large.) The detail configuration of 

this instance is RAM=160, ECU =124.5, vCPU=40, CPU=3.112, storage=0, Network 

Performance=10, EBS.O= 4000.  

Based on this configuration, we can predict the price of the m4.10xlarge instance as $2.925 

(linear form) or $2.961 (semi-log form). The real price for m4.10xlarge instance is $2.155 (see 

Table 3⎯7). Although this prediction value is within 95% of the confidence interval, the 

predicted fitted value is about 36% higher than the real price value, and the price range between 

low and upper bound is high, but the linear form is slightly better than the semi-log. This might 

be due to many factors, such as different function forms, sample size, and skew dataset. Moreover, 

we have not taken consideration of time impact. Based on Moore’s law, the price of computer 

resources should decrease by about -50% per annum. This issue leads to our next topic of analysis, 

namely the time dummy variable. 

Table 3—7 Predicting Price of a Cloud Instance with m4.10xlarge Configuration 

With a 95% confidence interval Fitted Value Real price Price difference ∆𝑝 Accuracy Lower Upper 
Predicted Value by Linear form  $2.925 2.155 $0.77 64.3% 1.716 4.134 
Predicted value by semi-log form $2.961 2.155 $0.806 62.9% 1.110 7.898 

3.5.2.2 AWS Panel Data Test with Time Dummy Variables 

If we consider the time variables, the total number of data points (instances) of an unbalanced 

panel dataset is 837 between 2008 and 2017. The number of explanatory or intrinsic variables is 

almost identical either using vCPU or ECU. However, ECU is AWS long-term measurement for 

CPU resources. The time dummy variables are 9 (10 years, T-1 time dummy variable, Table 3⎯8). 

The linear Q-Q plot shows that it is highly skewed, but after a semi-log transformation of instance 

prices, the Q-Q plot appears to be much better (see Figure 3⎯ 4). 
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Figure 3—4 Log Transformation model and Residual Errors Plots 2008 - 2017 

The primary objective of the semi-log transformation is for time dummy variables inference. 

The initial linear model test only shows 7 variables, including four-time dummy variables (2017, 

2016, 2015 and 2014) are significant. It means that we can only infer for four years. The R-

squared and adjusted R-squared values are 0.8271 and 0.8235, respectively.  

If we take the semi-log transformation, more time dummy variables become highly significant. 

The R-squared and adjusted R-squared values drop slightly to 0.8148 and 0.8109, respectively. If 

we add high order polynomial terms into the semi-log form, the test result is promised (see Table 

3⎯8). There are two additional considerations to transfer hedonic function from linear to semi-

log form: 

  

Semi-log Transformation Model

Linear form residual Semi-log form residual
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Table 3—8 AWS Panel Data Regression Test with Time Dummy Variables (2008-2017) 

Coefficients Estimated , Std. Error t-value Pr(>|t|) Annual Rate 𝐴𝑡 CAGR 

𝐶𝑡 
intercept -3.87E+00 1.42E-01 -27.167 < 2e-16 ***     

RAM 2.46E-03 1.99E-04 12.315 < 2e-16 ***     
ECU 4.48E-02 1.93E-03 23.287 < 2e-16 ***     

ECU^2 -2.47E-04 1.59E-05 -15.578 < 2e-16 ***     
ECU^3 3.29E-07 3.23E-08 10.202 < 2e-16 ***     
Storage 2.26E-05 2.77E-06 8.159 1.27e-15 ***     
Net Perf 6.08E-01 2.77E-06 9.983 < 2e-16 ***     

Net Perf ^2 -6.46E-02 7.01E-03 -9.218 < 2e-16 ***     
Net Perf ^3 1.95E-03 2.27E-04 8.592 < 2e-16 ***     

bit 4.95E-02 2.17E-03 2.17E-03 < 2e-16 ***     
d17 -2.70E+00 1.62E-01 -16.709 < 2e-16 *** -1.49%   
d16 -2.69E+00 1.54E-01 17.479 < 2e-16 *** 0.00%   
d15 -2.69E+00 1.54E-01 -17.479 < 2e-16 *** -9.15%   
d14 -2.59E+00 1.55E-01 -16.769 < 2e-16 *** -44.07%   
d13 -2.01E+00 1.64E-01 -12.261 < 2e-16 *** -77.71%   
d12 -5.08E-01 1.21E-01 -4.196 3.02e-05 *** -14.10%   
d11 -3.56E-01 1.24E-01 -2.859 0.00435 ** -6.69%   
d10 -2.87E-01 1.25E-01 -2.366 0.01822 * -18.54%   
d9 -8.16E-02 1.25E-01 -0.65 0.51563 -7.83%   
d8 0.00E+00 baseline baseline baseline    

AAGR         -20.0 %   
Compound Average Growth Rate        -25.9% 
Residual standard error: 0.4913 on 817 degrees of freedom 
Multiple R-squared:  0.902,     Adjusted R-squared:  0.8999  
F-statistic:   418 on 18 and 817 DF,  p-value: < 2.2e-16 

1. The price of cloud infrastructure is closely associated with computer hardware. 

According to Moore’s law, the hardware price depreciation rate is exponential in the time 

domain.  

2. Previous experiences [159], [160] suggested the adoption of the semi-log model if a test 

is designed for a longer-term comparison.      

Based on the above test result with the time dummy, we can calculate Annual Growth Rate (𝐴𝑡) 

and Average Annual Growth Rate (AAGR) by the following two equations: 

 𝐴𝑡 =
(𝑒𝛿𝑡 − 𝑒𝛿𝑡−1)

𝑒𝛿𝑡−1
 (3-12) 
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 𝐴𝐴𝐺𝑅 =

(

 
 

(

 √∏(1 + 𝐴𝑡)

𝑇

𝑡=2

𝑇−1

)

 − 1

)

 
 
× 100 (3-13) 

Note:  

1. 𝛽0= - 0.021, It is a combination of all explanatory variables. The value appears to be close to zero. It is 

a good indicator. 

2. The coefficient values 𝛿1is relative to 2008. It is emerged into 𝛽0 value. Subsequently, “t” starts from 

2. 

3. There were no price changes between 2015 and 2016 after a significant discount in 2013 and 2014. 

4. We use the geometric mean method to compute AAGR for the years 2008 to 2017, the rate of 

depreciation is -19.98% -20% 

Overall, AWS AAGR or price reduction rate is far less than what Moore’s law prediction [158], 

which is about 50% per annum in general. The gap between AWS AAGR and Moore’s law 

prediction is 50%- 20 %=30%. To a certain extent, this price gap indicates why cloud customers 

are willing to pay more than the benchmark price of computer hardware (see Figure 3⎯5). We 

also see that AWS made a substantial price discount in 2013 and 2014. It may indicate a seven-

year life cycle of computer assets if we consider AWS bought its cloud hardware assets in 2006. 

This is actually in align with Walker’s [77] conclusion. 

Figure 3—5 Comparison of AWS Cloud Depreciation Rate Vs. Moore’s Law 

AWS AAGR =-20.0%
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-80.00%

-70.00%

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

2009 2010 2011 2012 2013 2014 2015 2016 2017

A
W

S 
A

A
G

R

Year

AWS Annual Depreciation Rate
Hardware Value Depreciation by Moore's law
AWS-Average Annual Growth Rate (AAGR)



 

98 

 

The logic for this comparison can be justified by the following reasoning if we assume that the 

cloud instance configuration is ceteris paribus. Moreover, we assume that the independent time 

dummy variables do not interact with other independent variables; then, we should have the 

following two equations: 

 ln((1 + 𝑟)𝑡𝑝) = 𝛽0 +∑𝛽𝑖𝑋𝑖

𝑘

𝑖=1

+ 𝛿𝑡𝑑𝑡 + 𝜀   (3-14) 

 ln((1 + 𝑟)𝑡−1𝑝) = 𝛽0 +∑𝛽𝑖𝑋𝑖

𝑘

𝑖=1

+ 𝛿𝑡−1𝑑𝑡−1 + 𝜀 (3-15) 

where, r = depreciation rate. Subtract (14) with (15) we should have the following equation (3-

16). 

 

𝑟 + 1 = 𝑒𝛿𝑡−𝛿𝑡−1 ,  

𝑟 =
𝑒𝛿𝑡 − 𝑒𝛿𝑡−1

𝑒𝛿𝑡−1
,    𝑟 = 𝐴𝑡 

(3-16) 

   

Based on the proof, we can derivate our conclusion that the AWS AAGR is around -20.0%/per 

annum in comparison with Moore’s law.  

By taking consideration of the impact of the time-dummy variable, the predicted price can be 

further updated. Alternatively, we can also use Compound Average Growth Rate (CAGR) to 

estimate the time impact, which is approximately close to AAGR. The CAGR formula is: 

 𝐶𝐴𝐺𝑅 = 𝐶𝑡 = (
𝑉𝑒
𝑉𝑠
)

1
𝑇−1

− 1 (3-17) 

where 𝐶𝑡is the compound average growth rate, 𝑉𝑒 is the end value of the time period of “T” and 

𝑉𝑠 is the start value of the time period. Using the above prediction price in Table 3⎯7 as an 

example, we can correct the prediction result with CAGR in the following formula. 

 𝑃𝑓 = 𝑃𝑝 × (1 + 𝐴𝑡)
(𝑡𝑓−𝑡𝑝) (3-18) 

where 𝑃𝑓 is for the future price and 𝑃𝑝 is the present price, 𝑡𝑓 is the future year value and 𝑡𝑝is 

the present year.  
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In order to predict future prices accurately, we have to exclude the future year from our dataset 

when we calculate AAGR. In our case, it is 2017 data points. Subsequently, the value of 

𝐴𝐴𝐺𝑅2008−2016 ≈ −17%. 

If we use this 𝐴𝐴𝐺𝑅2008−2016 to predict the instance price of m4.10xlarge in 2017 based on the 

2014 price catalog, we should have the following result (see Table 3⎯9) and the price difference 

between the real price and the predicted price (p) becomes negative. 

Table 3—9 Estimate AWS Instance Price by Leveraging Time Dummy Variable 

Within a 95% confidence interval Fitted Value Real Price Price difference ∆𝑝 Accuracy Lower  Upper 
Predicted value (semi-log) $1.693 2.155 -$0.46 78.59%  0.635 4.516 

 

Now, the question is why consumers should be willing to pay more than the predicted price. 

The possible answer is the non-market characteristics of cloud services. From a CSP perspective, 

it is a part of CSP’s marketing strategy to lead the cloud market. The common term is product or 

service differentiation. It leads to our next topic – a cross-sectional dataset test, which is to 

examine the cloud instance price that is contributed by extrinsic variables. 

3.5.2.3 Cross-Sectional Data Test 

Based on the five CSPs’ product catalogs, we constructed a dataset that consists of the entire 

199 cloud instances. The initial linear model shows that R-squared and adjusted R-squared values 

are about 0.8077 0.7885, respectively and the Q-Q plot shows the data is highly skewed. 

According to the above five principles of transformation (discussed in Section 3.4.2), we can 

transfer it onto a semi-log form. Once the transformation is done, the Q-Q plot shows a better 

result (see Figure 3⎯6) in comparison with the linear form. 
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Figure 3—6 Semi-log transformation Form 

By a combination of semi-log transformation, adding a high order of polynomial terms and 

excluding just a few highly outlier points, the R-squared and adjusted R-squared values are 

increased more than 10% up to 0.913 and 0.904 respectively (see Table 3⎯10). A discussion of 

these elements is noted below:  

  

Semi-log form
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Table 3—10 Cross-Section Data Analysis Results with the Semi-log Transformation 

Coefficients Estimated ,  Std. Error t-value Pr(>|t|) EXP(Z) Above the 

baseline 
Intercept : 𝜷𝟎 -2.68E+00 9.29E-02 -28.806 < 2e-16 ***   

RAM 2.50E-02 3.08E-03 8.122 8.14e-14 ***   
RAM^2 -1.14E-04 1.73E-05 -6.56 5.92e-10 ***   
RAM^3 1.47E-07 2.51E-08 5.875 2.10e-08 ***   
VCPU 1.98E-01 2.43E-02 8.154 6.72e-14 ***   

VCPU^2 -6.03E-03 9.76E-04 -6.18 4.41e-09 ***   
VCP^3 5.55E-05 1.02E-05 5.458 1.64e-07 ***   
Storage 2.68E-04 6.57E-05 4.073 7.03e-05 ***   

Storage^2 -2.53E-08 7.13E-09 -3.551 0.000494 ***   
Storage^3 4.20E-13 1.22E-13 3.428 0.000758 ***   

Network Performance 1.77E-05 2.70E-04 2.479 0.014257 *   
Arch -7.67E-02 1.13E-02 -6.786 1.73e-10 ***   

Arch^2 1.19E-03 1.75E-04 6.826 1.40e-10 ***   
Free Transfer to dedicated location 

2
 5.49E-01 1.68E-01 3.275 0.001292 ** 1.732 73.2% 

GPU instance 
3
 3.43E-01 1.63E-01 2.104 0.036771 * 1.409 40.9% 

Burstable CPU 
4
 5.33E-01 2.19E-01 2.44 0.015692 * 1.704 70.4% 

Dedicated servers
5
 3.20E-01 1.29E-01 2.48 0.014097 * 1.377 37.7% 

One account for all locations
6
 2.45E-03 3.33E-04 7.342 9.66e-12 *** 1.002 0.2% 

Data Center Global Foot Print (AUS)
7
 2.82E-01 1.29E-01 2.19 0.029850 * 1.326 32.6% 

Collocation 
8
 4.00E-01 1.25E-01 3.194 0.001666 ** 1.491 49.1% 

48 Baseline Extrinsic Characteristics 0 Baseline Baseline Baseline 1 - 
Average Extrinsic Price Value (AEPV)      43.4% 

Residual standard error: 0.4607 on 173 degrees of freedom 
Multiple R-squared:  0.9128,    Adjusted R-squared:  0.9042 
F-statistic: 106.5 on 17 and 173 DF,  p-value: < 2.2e-16 

  

1.) Our analysis selected 5 intrinsic variables for cross-sectional data. Some intrinsic variables, 

such as a storage feature of Enterprise Block Store (EBS) optimized excluded from this test 

because it is insignificant for the regression analysis.  

2.) Based on the available dataset, we can make inference for 7 extrinsic variables (p-value is 

less than 0.05) with respect to a baseline characteristics of instance configuration (including, 

API, PAYG, Web interface, auto-scaling, resource usage monitoring, free transfer in, Free 

IP, load balancing, firewall, backup storage, credit card payment, volume discounts, free 

entry-level service and etc.). 
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3.) The value of 𝜁1 that represents the baseline characteristics have been emerged into the 𝛽0 

value. Different baseline configurations will result in different 𝛽0 values. It is dependent on 

the cross-sectional dataset. Ideally, the  𝛽0 the value should be zero. However, it can only 

approach zero in reality. 

4.) Dedicated servers can be considered as extra resources.  

5.) Similar, free transfer to a dedicated location will give cloud customer mobility. 

6.) Burstable CPU can save the CPU price. If you do not use your specified capacity, CSP will 

give you credit so that you can withdraw when you need it.   

7.) The price of GPU Instance is much higher than the baseline instance with the configuration 

of the Intel CPU. AWS, GCP, and Azure provide the option of NVIDIA Tesla K80 GPU 

(launch price $3,169/per unit in 2017. In comparison with Intel Xeon E5-2673 V3 2.4-GHz 

chip, it costs $700/ per unit Jul 2017). 

8.) The value 6 of one account for allocation is minimal. It is basically submerged into the 

baseline characteristics, in which all CSPs provide this feature without extra cost. 

9.) As Griliches indicated, the resulting regression is sometimes unstable. It could be varied, 

along with different circumstances. In the above case, if we change the configuration of the 

baseline extrinsic characteristics, the result will be entirely different. 

Table 3—11 Predicted Price Including Extrinsic Values 

With a 95% confidence 

interval Fitted Value Real 

price 
Price 

difference ∆  Accuracy Lower Upper 
Predicted Price with Ave 

Extrinsic Value $2.428 2.155 $0.273 87.32% 0.911 6.476 
Predicted Price with 

particular cloud extrinsic 

characteristic 
$2.245 2.155 $0.09 95.81% 0.842 5.988 

 

Now, we can answer the question that is raised before: “why cloud consumers are willing to 

pay nearly more than the predicted price.” If we use Table 3⎯9 to further revise our price 

prediction by taking consideration of cloud extrinsic variables, we can find the predicted price is 

very close to the real price (see Table 3⎯11). 

3.5.2.4 Predict Cloud Price for Different Instances 

Notice that we can generalize Equation 3-18 as Equation 3-19 for future price prediction.  
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𝑃̂𝑓(𝑋, 𝑌) = (1 + 𝐴𝐴𝐺𝑅)𝑌−𝑌0 × (𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

)

± 1.96√
𝑃̂𝑓(𝑋, 𝑌)(1 − 𝑃̂𝑓(𝑋, 𝑌))

𝑛
 

(3-19) 

where 𝑋 = 〈𝑥1⋯𝑥𝑘 , 𝑧1⋯𝑧𝑙 , 𝑌〉, Y= future year, 𝑌0 = current year or present year, n= size of 

population for a dataset. (We adopt 95% Wald confidence intervals or first approximation). 

Furthermore, if we take the semi-log form, the equation can be presented as follows: 

 

𝑙𝑛𝑃̂𝑓(𝑋, 𝑌) = (𝑌 − 𝑌0) × 𝑙𝑛(1 + 𝐴𝐴𝐺𝑅) + (𝛽0 +∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝜉𝑗𝑧𝑗

𝑙

𝑗=1

)

± 1.96√
𝑃̂𝑓(𝑋, 𝑌)(1 − 𝑃̂𝑓(𝑋, 𝑌))

𝑛
   

(3-20) 

We use this equation to estimate the future price of different cloud instances. The comparison 

of different AWS cloud instances produces the following prediction results (shown in Table 

3⎯12).  

We highlight three points for the prediction results: 

1) The predicted prices usually are less than the real price. It means that AWS holds the price 

reduction pace due to its extrinsic values of a cloud instance.   

2) For the standard instance, the predicted accuracy is approximately higher than 70% without 

consideration of extrinsic characteristics. (With one CSP, the extrinsic value cannot be 

compared) 

3) For the latest generation cluster, the prediction accuracy is below 70%. It might be due to 

more extrinsic values that AWS has built into its price catalog.  
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Table 3—12 Predicted AWS Cloud Prices with Different Instance 

Instance types API name Fitted Value with 95% 

CI Real price Price difference 
∆  Accuracy Lower Upper 

Standard m1.medium 0.0842 $0.120 -0.036 70.2% 0.031 0.225 

Standard m4.10xlarge $1.693 $2.155 -$0.462 78.6% 0.635 4.516 
3

rd
 Gen. Cluster i3.8xlarge $1.69 $2.496 -$0.808 67.6% 0.553 4.85 

4
th

  Gen. Cluster c4.8xlarge $0.979 $1.591 -$0.612 61.6% 0.252 3.197 

Overall, once the predicted cloud price emerges, it can underpin the CIO to make the right 

strategic investment decision for IT infrastructure. Of course, he or she has to take consideration 

of other factors, such as business risks, workload growth, and volume discount and workload 

portability issues (or cloud vendor lock-in syndrome: “free to come and pay to leave”).  

3.6 Analysis and Discussion 

We have illustrated how to use the hedonic analysis to predict the cloud instance price. From 

the unbalanced panel data, we can calculate the AWS’ AAGR is approximate -20.0% per annum. 

Statistically, the time dummy variable is the same as a fixed effect. The net effect is the hedonic 

function to be shifted downwards (see Figure 3⎯7) 

Figure 3—7 Impact of Time Dummy Variable on AWS Cloud Instance Price 

Cloud instance price 

=2.1550)

AAGR= -20.0%

Assume  Hedonic Function 
with single Intrinsic 

Characteristic

=0.819, ( = 2.2682)
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In comparison with Moore’s law prediction, the AWS price change rate (deflation) is at a much 

less slow pace than what Moore’s law has predicted (-50% per annum). The reason that AWS can 

move beyond the competition just on price is its extrinsic characteristics that AWS can 

differentiate its cloud service from its competitors. AWS has developed more than 1,000 different 

cloud characteristics or features since 2006. Although we would not be able to analyze all 

extrinsic characteristics here, we can highlight some of the extrinsic characteristics among 5 

leading CSPs (shown in Figure 3⎯8). The characteristic of a GPU instance is about 40.9% of 

cloud extrinsic value and data center global footprint (Australia) is 32.6% in comparison with the 

baseline configuration. 

Figure 3—8 Impact of Extrinsic Variables on AWS Cloud Instance Price 

Ultimately, the impact of the extrinsic variable is similar to the time dummy variable (or fixed 

effect). It only shifts the hedonic function either up or down. This means in order to avoid an 

estimated bias we should include the required cloud characteristics not only intrinsic variables 

If we just compare the cloud instance prices based on the intrinsic variables alone (for standard 

configuration), AWS price is not the cheapest in comparison with the top 30 global leading CSPs. 

Its price is just slightly above the median one (The market median price is $146 marked as a notch. 

Free Transfer to 
Dedicated Location 40.9%

Data Center Global 
Foot Print (AUS)32.6%

Cloud instance price 

Common Characteristics: 
API =0, PAYG=0, Web 

interface=0, Free Transfer In 
=0, 

Assume  Hedonic Function 
with single Intrinsic 
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AWS instance price is $149 is marked by a dashed line shown in a boxplot, Figure 3⎯9). 

However, AWS can still maintain over 31% of IaaS global market share and keep double digits 

revenue growth year on year (YoY). This is mainly due to the contribution of AWS extrinsic 

values of its cloud services, which cloud customers are willing to pay for.  

In this chapter, we introduce the new concept of intrinsic and extrinsic variables that have been 

applied to the hedonic analysis of cloud pricing model. Moreover, we have mathematically proved 

that the time dummy or AAGR is equivalent to Moore’s law impact if ceteris paribus. The AAGR 

plays a vital role in cloud price prediction.  

In contrast to the previous studies that ignored the extrinsic variables impact on the cloud prices, 

we have clearly demonstrated that many extrinsic variables have significant values or fixed effect 

on the cloud price. The effective combination (or bundle) of intrinsic and extrinsic values does 

not only allow CSPs to slow the price reduction pace but also underpin the cloud market 

leadership. 

Figure 3—9 Box plot of 30 CSPs 

Generally, the hedonic analysis is a practical or empirical approach to disclose the latent values 

of what customers are willing to pay for the quality changes. Ultimately, this research is to 

AWS Price

Linode

Joyent Cloud

Digital Ocean

Rackspace
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leverage the hedonic concept to discover homogeneous cloud pricing patterns that are closely 

associated with heterogeneous cloud service characteristics, which are often hidden behind the 

complicated cloud pricing structure. 

Our novel approach enables cloud customers to predict cloud service prices accurately based 

on their business application needs rather than purely on the cost of IaaS comparison. It means 

that cloud consumers can avoid many pricing estimation biases. 

Another important implication is that it allows many CSPs to establish the correct performance 

benchmark based on the real value proposition of cloud services to compete with their market 

leader, not only just on the price. 

3.7 Summary 

This chapter mainly focuses on themes of cloud pricing for the new features or characteristics. 

The idea to differentiate the new cloud features and baseline service is to introduce the new 

concept of intrinsic and extrinsic values, which is inspired by the English Philosopher, G.E. 

Moore’s influential work of Principia Ethica. 

By proposing the hedonic analysis, the chapter exhibits that the hedonic pricing model can 

extract the many implicit cloud values based on the cloud customers’ willingness to pay (W2P). 

This chapter demonstrated these implicit cloud values had become one of the competitive 

advantages for CSPs to lead the cloud market and increased the profit margin. The chapter shows 

that the model can capture the cloud value of non-marketable price, which is about 43.4% on 

average above the baseline. Unfortunately, this value is often ignored by many traditional cloud 

pricing models.  

In addition, this chapter provides that the Average Annual Growth Rate (AAGR) of Amazon 

Web Services’ (AWS) is about -20.0% per annum between 2008 and 2017, ceteris paribus. In 

comparison with Moore’s law (-50% per annum), this value is at a far slower pace. The chapter 

argues this value is Moore’s law equivalent in the cloud.  
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Chapter 415 

4 Cloud Computing Market 

Segmentation 

 

The topics of cloud pricing models and resource management have been receiving enormous 

attention recently. However, very few studies have considered the importance of cloud market 

segmentation. Moreover, there is no better, practical and quantifiable solution for cloud service 

providers (CSP) to the segment cloud market. This chapter proposes a novel solution that 

combines both hierarchical clustering and time series forecasting on the basis of the classical 

theory of market segmentation. In comparison with some traditional approaches, such as nested, 

analytic, Delphi, and strategy-based approaches, this method is much more effective, flexible, 

measurable and practical for CSPs to implement their cloud market strategies by rolling out 

different pricing models. The experimental results and empirical analysis show that this solution 

can efficiently segment cloud markets and also predict the market demands. The primary goal of 

this chapter is to offer a new solution so that CSPs can tail its limited cloud resources for its 

targeted market or cloud customers 

4.1 Introduction 

 

 he issue of cloud pricing models, revenue, and resources management (cloud economics) 

is one of the most critical topics in the cloud computing [54] [55] because it does not only become 

increasingly important for many CSPs to implement their cloud business strategy but also allow 

them to innovate their business processes and models [166]. However, many previous studies [55] 

[165] only focus on finding an optimal solution from a pure CSP perspective (internal rationality) 

and often ignore market impacts (external rationality). In this study, we concentrate on the 

problem of cloud market segmentation, especially for business to business (B2B) markets by 

taking into account both CSP’s resources and market factors[172]. 

 

 

This Chapter is derived from 

• Caesar Wu, Rajkumar Buyya and Kotagiri Ramamohanarao, Cloud Computing Market Segmentation, Proceedings of 

the 13th International Conference on Software Technologies (ICSOFT 2018), ISBN: 978-989-758-320-9, Porto, Portugal, 

July 26-28, 2018 

T 
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The B2B cloud market segmentation is believed to be a complex problem for many CSPs [187]. 

It is challenging because it involves many disciplines such as managerial decisions, market theory, 

price theory, cloud computing, and microeconomics. Moreover, it is often very subjective and 

arbitrarily.  

We restrict our current study to B2B because the B2B market is more significant than a business 

to consumers (B2C) and consumer to consumer (C2C), according to the US Census Bureau [167]. 

Statista reported [196] the size of the Global B2B e-commerce market ($7.7 Trillion) is about 

235% larger than B2C ($2.3 Trillion) in 2017. The cloud is a type of e-commerce as it shares the 

characteristic of online access [197]. Although the size of the B2B market is considerably large 

and it is crucial for CSP’s business strategy and pricing, as of now, to the best of our knowledge, 

no work has been done on this topic. Yet, many CSPs urgently need to understand how to serve 

their targeted customers well for limited resources. Hence, our goal is to find a better solution to 

the segment cloud market. 

To motivate the problem, we consider the following scenario. Suppose a local Internet Service 

Provider (ISP) has decided to expand its hosting business into the B2B cloud market with a limited 

investment budget. The CEO asks the management team to formulate a business strategy with 

different pricing models to grow both the cloud business revenue and profit. One of the most 

straightforward solutions is the “one-size fits all” or uniform pricing. It means that the ISP can set 

up a markup price for its desired profit margin while the customers have to decide either “take or 

leave it” regardless of what the customer’s needs are. The subsequent question is, would this 

business strategy work.  If not, what is an alternative solution that can be pursued? 

An intuitive answer could be to deliver cloud services or products with personalized pricing to 

suit each customer’s needs. However, it is impracticable for a CSP to offer personalized service 

and price because of the limited budget or resources. Fortunately, many individual customers have 

similar requirements, and their usage patterns may have some common characteristics, such as 

the size of computing (CPUs) and memory. It means that we can group these customers’ demands. 

This idea leads to group pricing, which is also called market segmentation. The original concept 

of the market segmentation was introduced by Smith [166]. He defined the term of the 

segmentation at a strategic level, which “is based upon developments on the demand side of the 

market and represents a rational and more precise adjustment of product and marketing effort to 
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consumer or user requirements.” He argued that proper market segmentation would lead to a 

successful business strategy.  

In fact, the uniform pricing and personalized pricing are two extreme ends of the group pricing 

(Figure 4⎯1). Belleflamme et al. [167] stated: “The better the information about consumers, the 

finer the partition of the consumers into groups and the larger the possibilities for firms to extract 

consumer surplus.” 

Therefore, the goal of the segmentation process is to extract customer information, such as 

usage patterns or behaviors and then to develop various pricing models and service configurations 

to meet their needs. In fact, Yankelovich et al. [169] argued the proper market segmentation 

should meet the following criteria:  

1) Align with the company’s strategy; 

2) Specify where the revenue and profit come from; 

3) Articulate cloud customers’ business values, attitudes, and beliefs, which are closely 

associated with the product or service (such as cloud instance) offerings; 

4) Focus on actual business customers’ behaviors; 

5) Make sense to the firm’s senior executive team and the broad; 

6) Flexible and quickly accommodate or anticipate changes in markets or consumer behaviors. 

Figure 4—1 Uniform, Group, and Personalized Pricing 

Personalized pricing

Uniform pricing Group Pricing

Classification

Clustering

Market Segmentation
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Based on these criteria, we develop a novel solution that allows CSPs to identify the B2B cloud 

market segment quickly. In comparison with other traditional methods, such as analytical[189], 

strategy-based[190], nested, survey, and Delphi methods [191], it is much more tangible, flexible, 

agile, and cost-effective for a CSP to roll out different cloud pricing models for its cloud business 

strategy [187]. It also enables CSP to respond to the ever-changing environment of the cloud 

market rapidly. The inputs and outputs of the process for our solution are illustrated in Figure 

4⎯2 

Figure 4—2 the Solution Process of Cloud Market Segmentation 

The solution is summarized in three steps:  

1) We use hierarchical clustering to segment cloud market;  

2) We apply time-series forecasting (TS) for the sales volume prediction;  

3) We combine both results for each market segment. We use both Google’s and local 

hosting datasets in our analysis to demonstrate our methodology. The final results are 

shown in Table 4 ⎯ 1. 

Table 4—1 The Expected Results of Segmentation 

Cloud Market 
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𝑘
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By doing so, we make three contributions: 

1) We demonstrate how to use hierarchical clustering (HC) algorithms to identify the optimal 

number of cloud market segments. 

2) We use TS forecasting to predict the local B2B market demand for virtual machines (VMs).  

3) Finally, we combine both results into the final cloud market segmentation table so that a local 

CSP can leverage it to build different cloud price models for its targeted market.  

The rest of the chapter is organized as follows. In Section 4.2, we provide a brief literature 

review of market segmentation. In Section 4.3, we describe the details of our solution of market 

segmentation, such as the fundamental principles of the experimental methods and some 

assumptions that we made. In Section 4.4, we illustrate how to use the HC to segment the cloud 

market and find the appropriate number of segments. In Section 4.5, we present how to forecast 

the quantity of VMs demands and then combine both results. In Section 4.6, we analyze and 

discuss our empirical results. Section 4.7 provides a summary of this chapter.  

4.2 Related Work 

Since Smith [168] first cast the term of market segment, the topic has been studied in great 

detail in terms of its theory, methodology [171], concept, foundation, and process [172]. Along 

with the consumer market, the B2B market theory [173] has also been developed due to its 

growing momentum and substantial market size and values. Due to the targeted value proposition 

of the B2B cloud market, namely product, price, place, and promotion (or Kotler’s four Ps), the 

related work consists of theory, analytic approach, and cloud pricing in term of the market 

segmentation.  

According to Wedel [171], the essence of the market segmentation is “a theoretical marketing 

concept involving artificial groupings of consumers constructed to help managers design and 

target their strategies.” In practice, it is an iterative process to assign a set of variables (e.g., four 

Ps) to many potential customers that help a firm to form homogenous groups. Under the Wedel’s 

concept, Thomas [202] gave a further clarification of the B2B market segmentation, which is “a 

dynamic business decision process driven by an (economic) theory of how market functions.” In 
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practice, it is a set of decision processes and activities that can be divided into two different 

approaches: One is the top-down approach, which is the process of splitting customers into 

different segments. Another is the bottom-up one, which is to agglomerate each customer into 

different groups. Claycamp et al. [170] claimed that although the top-down approach is appealing 

and straightforward, it is very challenging to implement because the splitting process is mainly to 

drive the potential value of customer surplus. Claycamp exhibited that market segmentation is 

ultimately a bottom-up process of aggregation in theory. However, the bottom-up approach is also 

facing challenges in practice because some parameters are very hard to estimate, such as marginal 

response or managerial requirements [193]. One of the solutions is to propose some controllable 

marketing variables in identifying marketing stimuli, which is down to only one “P” (Promotion). 

It is like an analytic approach. 

Ralph Oliva [201] indicated the B2B market “segmentation is an analytic discovery process for 

dividing a large group of customers or prospects into smaller groups.” Similarly, Seufert [192] 

presented an analytic approach to segment user groups for the freemium pricing model. Their 

approach focused on the core value of the business. If we compare the core value with the hedonic 

value analysis [138], we can draw an analogy between Irwin Gross’ core value, cost, and prices 

with the hedonic function 

 𝑝𝑗 =∑𝑝𝑙 +𝑚𝑐𝑗 +
𝑄𝑗

|𝜕𝑄𝑗/𝜕𝑝|

𝐿

𝑙=0

 (4-1) 

where pj is the price of the cloud VM instance “j.” mcj is the marginal cost, Qj is a quantity, 

|Qj/p|  is the partial derivative of the quantity taken in term of a price, and Qj /|Qj/p| is a 

markup price,  and pl is the CSP’s purchasing price from other vendors. Here, a potential value 

loss is defined by consumer surplus (CSi) [7]. The core value of B2B market segmentation is the 

economic driving force (Figure 4⎯3)  

However, Plank [194] criticized the analytic approaches because many methods are 

complicated to translate their analytic results into a business strategy. In order to improve the 

analytic approach, Verhallen et al. [190] proposed a strategy-based approach, which is to identify 

unobservable characteristics (e.g., firm’s goals, objectives, strategy types, and long-term plans) 

in contrast to observable traits (business size, location, and four Ps). Furthermore, in relation to 

different input variables, Shapiro et al. [186] proposed the nested- approach, which is to nest from 

demographics, operating, purchasing, and situational variables to personal characteristics, but the 
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author indicated their approach could not be generalized. Alternatively, Best [191] offered an 

expert solution that can become a prior probability of input variables for the market segmentation 

process.   

In contrast to the above methods, Balakrishna’s [195] focuses on a solution based on how to 

better use the industrial market concept for the B2B market segmentation. It is more like a 

generalized solution for the B2B market. Although these solutions are very persuasive, the main 

issue remains unsolved, which these solutions are unquantifiable for CSPs to implement their 

cloud business strategy by rolling out different cloud price models. As a consequence, many 

recent studies directly focus on cloud pricing models for CSPs to maximize their revenue.  

Figure 4—3 Analytic Method of the B2B Market Segmentation 

As early as in 2002, Buyya et al. [175] have proposed economic models or pricing schemes to 

regulate the grid computing resources, which can be considered as one of the prototypes of the 

cloud pricing model. Javadi et al. [176] developed a statistical model for Amazon Web Service 

(AWS) spot instance prices in public cloud environments. Although the model is valid, the spot 
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instance is not desirable for the mainstream of B2B cloud resources because many B2B 

applications require the mission-critical cloud infrastructure to support its business. 

Similarly, Xu et al. [56] proposed the alpha-fair utility function to quantify the applications’ 

needs for cloud users in terms of cloud resource allocation. Although the study is beneficial for a 

theoretical exploration, the model assumptions require further consolidation because the alpha-

fairness utility function is mainly applied to the issue of traffic congestion of communication 

networks [177] rather than cloud services. Practically, different cloud applications (such as web 

hosting, database, data storage, virtual desk infrastructure, and so forth) will have different 

requirements, which lead to different market segments. As respect to the word of segmentation, 

Wang et al. [165] investigate this problem from an aspect of segmenting cloud capacity, which is 

to formulate an optimal capacity segmentation strategy for revenue maximization to satisfy the 

random market demand.  

Overall, we can see that there is a gap, which is how to find a quantifiable solution to segment 

the B2B cloud market so that CSPs can build various optimal price models for their targeted 

market or customers in connection with both internal costs and external market demand. Our 

solution provides the answer to this gap. 

4.3 Preparation Tests 

As Claycamp et al. [170] stated in their theoretical study, the clustering analysis is one of the 

practical solutions for the market segmentation. However, there are many clustering methods of 

clustering methods, such as categorical (hard vs. soft), structure (flat vs. hierarchical), data type 

(model-based vs. cost-based), and regime methods (parametric vs. nonparametric). The question 

is which one is the right method for our problem.  

A good strategy is to explore the datasets in our hands. The first dataset is Google’s cloud trace 

[178], which consists of large cloud clusters for more than 12,500 VMs. It has six dimensions: 

timestamp, job ID, Task ID, and job type, normalized task cores, and normalized task memory. 

However, Google has obfuscated some information on the dataset, in which “certain values have 

been mapped onto a sorted series” for confidential reasons. Fortunately, the encryption schemes 

will not impact market segmentation because we are looking for underlying customer usage 

patterns.  
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The second dataset is collected by one of the leading Australian telco firms for its hosting 

business. The dataset has sales records of web servers for its business customers between 2003 

and 2009. The idea of the first experiment is to estimate the number of cloud market segments 

and the proportion of each segment. Google’s dataset would unveil cloud usage patterns. We 

assume that both global and local cloud customers have the same usage pattern in this case. The 

2nd experiment is to forecast the local B2B market demand because the B2B market demand is 

closely associated with a robust local B2B relationship [179]. 

 

4.3.1 Proposed Method of Segmenting 

On the base of the good criteria for the segmenting market [169] and the dimensions of Google’s 

dataset, we propose the HC method. The reasons are as follows: 

1) We do not know the exact number of cloud market segments in advance.  

2) Referring to Claycamp’s theory [170], it has to be an agglomerative process of fusion 

clustering, which is a bottom-up process of clustering. 

3) Furthermore, it would be preferable to leverage HC because we can form a dendrogram 

(tree diagram) that allows us to choose the dendrogram at any desired level. These 

analytics features allow CSPs to segment the B2B market at any granularity level so that 

a CSP can explore opportunities of any niche market.  

However, all methods have their disadvantages. One of the primary difficulties of HC is too 

sensitive to the number of clusters. One solution to solve this problem is to use Ward’s algorithm 

to minimize the variance of Sum Square of Errors (SSE) by consideration of all possible methods. 

Our overall strategy of the 1st experiment  is illustrated in Figure 4⎯4. The essence of the 

clustering algorithms is to calculate dissimilarity that is measured by the Euclidean distance of 

data points. For the Ward’s algorithm, the equations of SSE are as follows: 

 ∆𝐶𝑎∪𝐶𝑏= 𝑆𝑆𝐸𝐶𝑎∪𝐶𝑏 − (𝑆𝑆𝐸𝐶𝑎 + 𝑆𝑆𝐸𝐶𝑏) =
𝑛𝑎𝑛𝑏
𝑛𝑎 + 𝑛𝑏

(𝜇𝑎 + 𝜇𝑏)
2 (4-2) 

 𝑤ℎ𝑒𝑟𝑒 𝑆𝑆𝐸𝐶𝑎 =∑(𝑎𝑖 + 𝜇𝑎)
2

𝑛𝑎

𝑖=1

,  𝑆𝑆𝐸𝐶𝑏 =∑(𝑏𝑖 + 𝜇𝑏)
2

𝑛𝑏

𝑖=1

, 𝑛𝑑 𝑆𝑆𝐸𝐶𝑎∪𝐶𝑏 = ∑ (𝑐𝑖 + 𝜇𝑐)
2

𝑛𝑐=𝑛𝑎+𝑛𝑏

𝑖=1

  (4-3) 

where  CaCb is the cost function to combine two clusters Ca and Cb that have the number of 

observations na and nb, respectively. ai, bi, and ci are the ith observations in the cluster Ca and Cb, 
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and the merged cluster Ca Cb. Likewise, a, b, and 𝜇𝑐 are the centroid of these clusters. To 

update the Euclidean distance in Figure 4⎯4, we can use the Lance-Williams dissimilarity update 

formula [198].  

Figure 4—4  The Map of Hierarchical Clustering Method 

4.3.2 Proposed Method of Prediction 

The idea of the second test is to predict or forecast the B2B market demand in the next 12 

months so that we can build cloud infrastructure capacity to meet the local cloud market demand. 

Several techniques can be applied for prediction, such as linear and multiple regression, random 

forest, decision tree, ANN, and time series forecast. 

 In this study, we adopt the time series forecast model to predict the total volume of VM sales. 

The reasons are:  

1. Time series forecasting is simple. It would be easier to be presented to the firm’s 

executive team.  

2. We can estimate each sales volume for every month or year so that it would be convenient 

for cloud capacity planning.  

3. The forecasting result will tell the confidence interval.  

4. It can be updated very quickly.  
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We test Google’s dataset first and see whether the dataset has meaningful patterns or not. This 

process is called the “clustering tendency evaluation.” The reason to check the clustering tendency 

of the data is that a hierarchical clustering method can impose patterns or clusters onto a randomly 

distributed dataset even if there are no such definable or extractable clusters within the dataset. 

Liang and Kotagiri et al. [180], [181] did some studies regarding clustering tendency assessment. 

There are many techniques available for cluster tendency evaluation. One of the methods is 

Hopkins statistic [182] null hypothesis test. Hopkins’ test can be expressed using the following 

equation: 

 𝐻 =
∑ 𝑃𝑖

2𝑛
𝑖=1

∑ 𝐼𝑖
2 +∑ 𝑃𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

 (4-4) 

where Ii square is the distance between an observation xi and its nearest neighbor xj (xi, xj  D 

= dataset). Pi square is the distance between a random yi and its nearest neighbor yj (yi, yj Dr = 

random dataset). The null hypothesis test shows that if H value is equal or close to 0.5, the tested 

dataset D has no meaningful clusters so that we accept the null hypothesis. Otherwise, we reject 

the null hypothesis. Based on the above Hopkins’ equation, we calculate the Hopkins’ index value. 

It is equal to 0.064, which is approaching zero. We also use R command “fviz_dist” (display 

dissimilarity matrix) to visualize Google’s dataset with a comparison of a randomly generated 

dataset (Figure. 4-5 on the left) 

Figure 4—5 Assessing Clustering Tendency of Google’s Dataset 

The pink color indicates Ii square = 0, and the purple color means Ii square = 1. In 

contrast, the right diagram of Figure 4⎯5 shows that both values are randomly distributed 

 



 

120 

 

across the dissimilarity matrix. Hopkins null hypothesis test result tells us Google’s 

dataset has a clustering tendency. 

4.4.1 Extract Cloud Usage Patterns 

For the R system, the bottom-up and top-down are known as Agglomerative Nesting (or 

AGNES) and Divisive Analysis (or DIANA), respectively. The linkage algorithm is “Ward’ 

because we want to minimize the SSE variance. If we temporarily assume the number of segments 

is four (McDonald [172] suggested the number is between 5-10 and others suggestion is between 

4 and 5 [183]), we can plot out the dendrogram or segment (Figure 4⎯6).  

We can also cut the cluster dendrogram into seven segments by moving the vertical distance 

height around to height distance 10. Consequently, clusters 1 and 4 are split further, and 2 and 3 

remain the same (Figure.4-6). The number of clusters seems to be decided arbitrarily. Now, the 

issue is how we chose an optimal number of clusters, “k.” 

Figure 4—6 the Result of Cloud Market Segmentation  

1 23 4

1 23 5 6 74
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4.4.2 Deciding the Optimal Number 

This is a challenging question. If the number is predetermined, we can adopt other algorithms 

to do the clustering, such as k-means. However, this number is unknown. Fortunately, many 

existing schemes can help us to estimate this number, such as Dark Block Extraction (DBE) [184], 

hierarchical, partitioning, direct, statistical testing, density mode seeking, clumping, grid-based 

clustering, etc. R has more than 30 methods or indices to decide this optimal number. Charrad et 

al. [185] developed the “NbClust” package to decide the number of clustering. Our analysis of 

Google data shows the optimal number “k” is four (Figure 4⎯7). 

Figure 4—7 Optimal Number of Test Result by NbClust Package  

The index is shown in Figure 4⎯7 is the Dindex graphic to determine the optimal number of 

clusters. Dindex is to measure clustering gain on intra-cluster inertia [185], which is the degree 

of homogeneity between the data points in a cluster. The equation of Dindex can be presented as 

follows: 

 𝑤(𝑃𝑞) =
1

𝑞
∑

1

𝑛𝑘
∑ 𝑑(𝑥𝑖 , 𝑐𝑘) 

𝑥𝑖∈𝐶𝑘

𝑞

𝑘=1

 (4-5) 

 𝑔𝑎𝑖𝑛 = 𝑤(𝑃𝑞−1) − 𝑤(𝑃𝑞) (4-6) 

where Pq is the “q” number of partitions by imposing “k” number of clusters, “d” is the distance 

and “ck” is the center of a cluster, “nk” is the number of data points in a cluster. “xi” is any data 

point within a cluster. The clustering gain on intra-cluster inertia should be minimized. Ultimately, 

the Dindex is to measure “the degree of homogeneity of the data in a cluster.” [185] 
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4.5 Demand Prediction 

Oliva [201] indicated any B2B market strategy has to focus on the object of the Key Account 

Market (KAM). In this case, ISP has to predict its own local cloud market demand so that the ISP 

can achieve a realistic sales forecast. This target can be either arbitrarily or rational. If an executive 

team requires a making- sense sales target, the forecast demand has to come from a local dataset. 

For the local ISP firm, the natural extension of the cloud business is its existing web hosting 

business. It can leverage its previous sales records to estimate the cloud market demand. Our 

second dataset has 3,192 data points (Windows servers only) over 67 months (between Aug-2003 

and Feb-2009). We can plot the hosting server sales volume monthly (Figure.4-8). 

Figure 4—8 Local Hosting Service Monthly Dataset 

The red line in Figure 4⎯8 is to smooth the observation data points. As we can see it, the sales 

volume is quite low in the first 40 months but the movement of the next 27 months was very 

volatile.      

There are many different methods to estimate or predict the future sales volume, such as logistic 

regression, support vector machine (SVM), decision trees or Classification and Regression Tree 

(CART), random forests, and time series (TS). In comparison, TS [187] would be a better tool to 

estimate the sales volume because the dataset is collected in a time series. Moreover, it can give 

Aug-03 Feb-09
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us the monthly and yearly forecasting quantity or VM sales. This is what our goal of this 2nd test. 

It will also be valuable for cloud capacity planning and budgeting. 

Although the seasonal component is not apparent, we still set the “gamma” value equals to 

“False” to remove the seasonal components in the TS model. We then use the “forecast” package 

of R to plot the next 12 months (Figure 4⎯9, left) and eight years of trends (Figure.4-9, right). 

We can see there is a downward trend in sales volume for the monthly but upward trend for the 

yearly forecasts. 

Figure 4—9 VM Sales Prediction Results 

Now, the issue “Is the TS a valid model for the forecasting?” We can plot the model residual to 

visualize the error trend. If we find any pattern in the residual plot, it means the model is 

inadequate for prediction. Otherwise, it is a good TS model. Based on Figure 4⎯10, we can see 

the residuals are moving around zero.  

Figure 4—10 Residuals of TS model Sales Volume 
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To validate this TS model, we can use both the histogram plot and Auto-Correction Function 

(ACF) function (Figure 4⎯11). The histogram plot (left of Figure 4⎯11) shows a normal 

distribution and the ACF plot (right of Figure 4⎯11) shows there is only one line that exceeds 

the boundary limit lines. So, we can conclude the TS model is valid 

If we adopt recent Gartner’s reports to assume the average market share of Windows server is 

around 36.56%, we can estimate the final result of total VM quantity is 6,250 in 2009 (2,285 for 

Windows servers) as noted in Table 4⎯2 

Figure 4—11 TS Residuals Histogram and ACF plot 

Table 4—2 Yearly Forecasts VM SALEs 

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Win. Servers 2,285 3,241 4,197 5,153 6,109 7,065 8,021 8,977 9,933 10,889 

All VMs Qty. 6,250 8,865 11,480 14,095 16,710 19,324 21,939 24,554 27169 29,784 

 

As per the solution noted in Table 4⎯1, we combine two test results for the final market 

segmentation are shown in Table 4⎯3 

Table 4—3 Final Result of Market Segmentation 

Segment Seg. 1 Seg. 2 Seg. 3 Seg. 4 

Job Priority 2 1 0 3 

Cores 1 1 23 11 

Memory 6 5 6 99 

% 10.05% 56.46% 22.97% 10.53% 

Sales Vol. 593 3329 1354 620 

Possible Workload Static Dynamic High Availability Backend 
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4.6 Analysis and Discussion 

Our three-step process solution shows how to segment the B2B cloud market for the ISP to 

expand its existing business from hosting to the cloud. The novelty of our solution is that it can 

practically extract the cloud customer usage patterns from Google’s dataset. The job priority (as 

shown in Table 4⎯3) means the scheduling constraints on some jobs. The most substantial 

proportion of cloud usage (or workload) is segment 2, in which most customers were using only 

one core and a lower amount of memory. It is not surprising that Google indicates users often 

overestimate their resource consumption. In contrast, the lower priority jobs (or backend data 

processing) consume the most significant amount of memory capacity (Segment 4). Although the 

top priority job of segment 3 consumes a lot of computing power (23 cores), memory usage (6) 

is relatively less.  

Based on the limited parameters shown above Table 4⎯3, we can probably guess what type of 

workload is most likely even though Google data did not provide this information. Segment 1 is 

more like static web hosting workload; Segment 2 would be dynamic (because of job priority 

ranking is high than static). Segment 3 is more like a Highly Availability workload, such as 

customer relationship management (CRM) applications, and segment 4 is more like backend 

workloads, such as database backup or business analytics. One of the insights from Table 4⎯3 is 

the cloud infrastructure, or a server farm should be tailored into 12 units per cloud server cluster. 

A memory configuration should be built in 6 GB per slot.  

For the HC algorithm, it is essential to indicate that one of the influencing factors for the optimal 

number of the market segment is “seed,” However, it does not only impact on the clustering 

method but also other methods that require setting “seed.” In this study, we assume there are no 

differences regarding usage patterns between B2C and B2B for Google’s dataset. By using the 

HC algorithm, we can meet the good market segment criteria [169] 3, 4 and 6. However, the HC 

algorithm alone is not enough because the input dataset comes from global CSP. It only provides 

the cloud customer behaviors.  

The total cloud market demand estimation has to come from a local B2B dataset. Typically, the 

sales target often becomes the Key Performance Index (KPI) for a senior management team. It is 

desirable to use a TS model for the local market demand because the B2B  cloud market is often 

built upon the long-term B2B relationship. Furthermore, the purchasing decision is made by a 
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group of people rather than a single individual. The TS can deliver both monthly and yearly sales 

forecasts. By adopting the TS model, we can satisfy the criteria [169] of proper market 

segmentation 1, 2, and 5. In comparison with other solutions (Table 4⎯4), this solution has the 

following advantages:  

Table 4—4 Segmentation Solution Comparison 

Different Methods for 

Market Segmentation  

Customers’ 

Business Values 

Focus 

Usage 

pattern 

Flexible 

Align with 

business 

strategy 

Specify 

revenue and 

profit 

Make 

sense 

Analytic Method       

Nested Method       

Strategy-Based       

Delphi Method       

HC + TS       

 

• The solution is practicable and quantifiable, which has the input variables (Table 4⎯4) 

for the process of the B2B cloud market segmentation. 

• The solution can quickly be updated for the rapidly changing environment of the cloud 

market, such as customer behaviors shift, the internal investment budge variation, and the 

cloud technology eruption. 

• It can assist senior executives in a managerial decision to test different local niche markets 

that many global CSPs might not have a local B2B relationship.  

• The solution allows CSP to develop a pricing model based on both the market and 

customer-value, which emphasizes both the external rationality rather than internal 

rationality. 

In contrast, the analytic method cannot extract usage patterns, and the nested approach has to 

be case-by-case. The strategy-based method is often quite challenging to be translated into a 

practical solution. Survey and Delphi methods often take too long to be accomplished and often, 

it is indirect.   

To the best of our knowledge, it is the first kind of study on the B2B cloud market segment. 

Many existing and incoming CSPs require this kind of knowledge to assist their cloud business 

investment strategy in terms of budgeting and resource capacity planning. Market segmentation 

helps CSPs to find a better pricing strategy for maximizing their profits. 
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4.7 Summary 

This chapter shows how to segment the cloud market in three steps. In comparison with other 

the market segmentation approaches such as nested, analytic, Delphi, and strategy-based 

approaches, this method is tangible, quantifiable, and compelling, just as P. W. Bridgman 

philosophically argued if we don’t know how to measure it, we really don’t know what it 

means[203]. 

Overall, this chapter proposes a novel solution that combines both hierarchical clustering and 

time series forecasting on the basis of the classical theory of market segmentation. The tested 

results and empirical analysis show that this solution can efficiently segment cloud markets and 

also predict the market demands. It lays out the groundwork for value-based pricing of baseline 

cloud services 
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Chapter 516 

5 Modeling Cloud Customers’ Utility 

Functions 

Modeling cloud business customers’ utilities is one of the critical issues faced by many cloud 

service providers (CSPs). It concerns how to measure various subjective experiences of the 

business customers and how to translate their cloud service experiences into a quantifiable unit, 

which can be determined by a specified utility function for cloud resource consumption. The aim 

of this quantification is to set up a pricing foundation so that CSPs can capture a broader range 

of utilities from different market segments and identify the optimal price point of each pricing 

model to maximize the cloud business profits for its pricing strategy. Previous studies either 

focused on simple theoretical proof or drifted the meaning of utility between demand and supply 

or proposed a solution based on a single cloud market. This chapter proposes a novel and 

practical solution to model multiple utility functions for various business applications based on a 

scenario of six cloud market segments, which are analyzed by three analytic approaches, namely 

Highly Availability (HA) analyzed by Markov chains, online e-commerce analyzed by queueing 

theory, and backup and backend analyzed by risk assessment. This modeling method emphasizes 

the value of co-creation with cloud business customers. In comparison with other methods, such 

as calibrated, price-quality, resource-based, simple linear, and capacity-aware, this method 

provides both internal and external rationalities for CSP’s pricing strategy to gain more than 83% 

of cloud market shares while other methods can only achieve less than 17%. 

5.1 Introduction 

he goal of this research is to define various utility functions for different cloud business 

customers within different market segments so that a Cloud Service Provider (CSP) can capture 

a broad spectrum of cloud market share and revenues to maximize its profit. Moreover, the CSP 

can tailor its limited resources to serve its target customers more effectively.  
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The word “utility” is very ambiguous and often confusing. One of the primary reasons is it has 

many connotations[218]. The common sense of utility means “the usefulness of something, 

especially in a practical way.” For example, the utility of database means to implement various 

processes or functions of the database, such as batch update, rebuild, recovery, backup, etc. 

Another sense of utility is quite close to the meaning of the usefulness that often refers to the basic 

infrastructure of public services that are offered by incumbent service providers, which is called 

“public utility” or simply, “utility.” Buyya et al., [52] defined the infrastructure of “cloud 

computing” as the 5th utility. Still, another meaning is the utilization rate, which means the 

effective usage of something.       

Our definition of utility is in an economic sense, which is to focus on a particular consequence 

of an individual’s decision making. This consequence is measured by the individual’s subjective 

satisfaction, happiness, and worthiness for the goods and services to be consumed. These 

subjective measurements of the utility reflect on a price that the individual is willing to pay for 

[225]. The acceptable price leads to an idea of modeling various utility functions. It defines a 

relationship between a price to be paid and a number of goods and services (such as Virtual 

Machine or VM) to be acquired. According to Krugman and Wells [224], the different individuals 

would have different utility functions because different people would have different needs and 

preferences towards a certain amount of goods or services. 

The essence of a utility function is to describe how people consume various amounts of goods 

and services in term of their subjective preference, needs, and experiences in a less or more 

rational way that is measured by either cardinal or ordinal approaches (“cardinal” measurement 

means the utility value can be quantified by a marginal value (e.g., an additional subjective 

satisfaction for one more unit of cloud resources is acquired) and “ordinal” method can only be 

measured by a ranking or ordering approach). To the cloud computing services, we adopt a 

cardinal approach [218] to quantify the cloud utility values because the cloud utility measurement 

satisfies the criteria of cardinal analysis:  

1) The cloud business customers are rational,  

2) Utility value can be measured numerically in term of dollar value,  

3) The unit of Infrastructure as a Service (IaaS) is homogeneity.  

So, the focal point of this study is to model different types of utilities (value functions) for 

various cloud business applications that are classified into different market segments. In particular, 
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we target the applications of web hosting, content delivery, e-commerce (online check out system), 

database backup, disaster recovery (DR), virtual desktop infrastructure (VDI), backend, etc. 

If we assume that the measurement of the customer’s satisfaction (this metric is directly related 

to the business customer’s revenues in term of utilizing or running the business applications), then 

our modeling process is to estimate how much the customers are willing to pay for a given 

quantity of the cloud resources so that the customers can improve its business revenue. Figure.5-

1 highlights the entire framework of a value-based cloud pricing strategy and how the 2nd step of 

the modeling utility function is fit into a big picture to achieve the goal of value co-creation with 

cloud business customers [238].   

According to T. Nagle et al. [10], this is a challenging task because the issue requires 

multidisciplinary knowledge. Many previous works [206] [207] [208] [209] [210] [213] [214] 

[215] have made a lot of excellent progress for this problem. However, there is still a significant 

gap in how to apply some previous modeling methods in practice. The gap is often caused by an 

ambiguous definition of utility in the first place. Some modeling methods often mix a demand 

side’s utility value with a supplier side’s price or cost. Most importantly, utility models assume a 

single market only without consideration of market segmentation.  

To overcome these problems, this study will emphasize on the demand side of utility values 

and solve the problem by carving out the big problem of pricing into four smaller and manageable 

issues: cloud market segmentation (See Chapter 4), utility functions modeling for cloud business 

customers, cloud pricing modeling and cloud price optimization for CSP to achieve maximum 

profits (Figure 5⎯1). This chapter only deals with the issue of modeling multiple utility functions 

(Step 2) for cloud business customers (not for CSPs or end-users). The issue of cloud market 

segmentation (Step 1) has been discussed in early work in chapter 4. The other two issues (Step 

3 and 4) will be addressed separately in the following chapter. 
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Figure 5—1 Model Cloud Utility Functions and its Measurement 

According to the economic definition of utility, we can clarify the meaning of the utility for 

cloud services, which is a subjective measurement of the cloud customers’ values or satisfaction 

for the number of VMs to be consumed. We can also use the cloud customer’s experiences (CX) 

or key performance indicators (KPI) or cloud service metrics (CSM) to measure a customer’s 

subjective values. Both the National Institute of Standards and Technology (NIST) [205] and 

Oracle [227] have defined CX, KPI, and CSM along with three tangible business dimensions that 

consist of acquisition (increase in sales), retention (monetize relationships), and efficiency 

(leverage investments). All of the quantitative measurements for business dimensions can be 

translated into the cloud business customers’ revenue and profit improvement. To articulate our 

modeling process clearly, we consider a real scenario of how a CSP’s to develop its cloud pricing 

strategy in terms of developing its cloud business plan.  

5.1.1 Motivation Scenario 

 Suppose a board of directors of a hosting firm (supply side) decides to expand its traditional 

hosting market to the local cloud Business to Business (B2B or industrial) market (demand side) 
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for the goal of increasing both revenues and profit with a fixed amount investment budget. If the 

firm understands its own technical expertise (capability) well and identifies its targeted customers 

clearly, the subsequent issue is how to segment the B2B market for its addressable or potential 

market.  

5.1.2 Problem Definition and Solution 

The purpose of identifying the market segment is to find a solution on how to serve the targeted 

customers well for a limited resource or investment budget so that the firm can achieve sustainable 

business growth. Ideally, a CSP should make every customer pays a different price so that it can 

extract the maximum utility value from each customer [170]. This pricing strategy is the so-called 

price of perfect discrimination. However, it would be too costly to do so. The alternative way is 

to group targeted customers who have the same characteristics together. This idea leads to “market 

segmentation.” If we assume that the firm has completed the process of market segmentation and 

identified six segments as shown in Table 5⎯1 by leveraging Google’s public dataset [178], we 

can probably find there are six possible cloud market segments based on the various parameters 

or characteristics of cloud customers’ usage patterns. Figure. 5⎯1 shows the result of the market 

cloud segmentation (cluster dendrogram). The process of how to identify these market segments 

can be found in Chapter 4. The decision to adopt the scenario of six market segments can be 

justified as follows: 

Table 5—1 Defining Cloud Customer Utility Functions   

Segment Seg 1 𝑼𝟏(𝒒) Seg 2 𝑼𝟐(𝒒) Seg 3 𝑼𝟑(𝒒) Seg 4 𝑼𝟒(𝒒) Seg 5 𝑼𝟓(𝒒) Seg 6𝑼𝟔(𝒒) Total 

Average Job 

Priority 
1 0 2 0 3 3  

Average number 

of Cores 
2 23 1 1 13 3  

Average number 

of Memory 
7 6 6 3 102 86  

Perentage 30.1% 23.0% 10.0% 26.3% 9.1% 1.4% 100% 

Predicted Sales 

Vol 
269 205 90 235 81 13 893 
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In order to model a utility function, we begin to ask how to identify the optimal price point for 

CSP’s achieve profit maximization from a perspective of value co-creation. Figure 5⎯2 provides 

details of a processing solution for modeling multiple utility functions by various analytic 

approaches and business requirements for different business applications. In comparison with 

other modeling methods, such as empirically calibrated [251], price and capacity [231], resource 

optimization [209], response time, capacity-aware [229], utility-based-SLA [69], and Model-

Based [206], our modeling method has a number of advantages:  

Figure 5—2  The approach to Modeling Cloud Customer Utility Functions 

1. It is practical and quantifiable for real business applications,  

2. It can be implemented by any CSP for its targeted market,  

3. It is derived from the foundation of economics  

4. It is agile and flexible to cope with a CSP’s business strategy and market segment changes,  

5. These utility functions are defined for improving the cloud business customer’s revenue 

and profit.  

6. It is a process of value co-creation for both CSP and cloud customers.  

7. It gains more market share for CSPs to achieve more profits by optimizing different cloud 

price models.  
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We argue our solution is easy and practical for decision-makers to make a critical investment 

decision in terms of the cloud business. With the listed advantages of our modeling method, we 

make the following contributions to the cloud paradigm. 

5.1.3 Our Main Contributions of This Work 

To the best of our knowledge, this is the first such study to propose a solution of multiple utility 

functions under one framework of a segmented cloud market along with different cloud 

applications. It does not only focus on the modeling utility value of cloud business customers 

(demand side) but also emphasizes on value co-creation.  

Building on the previous result of cloud market segmentation, our novel solution enables CSPs 

to capture more market share than a single market solution. Consequently, it can deliver a much 

higher profit margin for CSPs.  

Although there are many different units of subjective measurements in terms of CX, KPI, and 

CSM, this solution is the first time to unify various subjective measurements into a single 

measurable unit – a dollar that represents customers’ revenue and profit improvement. It is a direct, 

tangible and practicable for cloud practitioners. This modeling solution allows CSP to build 

multiple utility functions in a single dependent variable with a single independent variable.   

Most importantly, this study lays out one of two cornerstones for CSP to define a better pricing 

strategy from a customer’s value proposition. It means that multiple utility functions can be 

quantified and validated by both internal and external rationalities for CSP to achieve profit 

maximization.  

The rest of the chapter is organized as follows: Section 2 presents how we model multiple utility 

functions based on the previous result of six market segments and how we make the assumptions 

and determine the scaling coefficient and other parameters for various utility functions. Section 3 

gives a brief review of related works regarding modeling methods for the utility functions. Section 

4 provides a detailed performance evaluation and validation for our modeling solution. Section 5 

offers the number of guidelines for how to select these utility functions. Section 6 makes our 

conclusions and outlines future work.    

5.2  Modeling Utility Functions 
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As Figure. 5-1 has illustrated, cloud market segmentation is another cornerstone for CSP to 

build its pricing strategy. In section 5.1.1, we have presented Table 5⎯1 for six market segments. 

The issue is how the cloud market segment has been defined? How are six cloud market segments 

determined? These are critical assumptions of modeling multiple utility functions that have to be 

clarified first. 

5.2.1 Key Assumptions of Cloud Market Segments 

If we apply a hierarchical clustering method to extract usage patterns from Google’s public 

dataset [178], we can identify there are six possible cloud market segments based on the various 

parameters or characteristics of cloud customers’ usage patterns [232][233]. Figure 5⎯3 shows 

the result of the cloud market segmentation (a clustering dendrogram). The process of how to 

identify these market segments has been discussed in our early chapter. The decision of six market 

segments scenario can be justified by the following criteria: 

Figure 5—3 Proposed Six Cloud Market Segments 

1.) The optimal number of segments is between 4 and 8 by a hierarchical clustering process 

in Chapter 4. 

2.) McDonald [172] suggested that the number of the market segment should be between 5 

and 10. 
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3.) We assume the firm is a traditional hosting company that wants to explore the cloud 

market, which means the firm is a newcomer to a cloud. The investment budget is limited. 

4.) The cloud business strategy is to avoid some higher risky niche market segments. 

If the firm’s cloud business strategy wants to meet all the above criteria, the number of market 

segments has to be six (Shown in Figure 5⎯3) because the above criteria 1 gave the value from 

4 to 8 and the criteria 2 suggested between 5 and 10, while the criteria 3 and 4 limited the value 

at the lower end (5 and 6). From Figure 5⎯3, the value of clusters is an even number by reducing 

the height of the cluster dendrogram. Therefore, we adopt six market segments in this scenario. 

If a firm is a current CSP that has more investment budget and attempts to explore more risky 

niche cloud market segments, it can determine to have more than six market segments. The bottom 

line is that the CSP should clarify its cloud business strategy and targeted customers first, and 

then the optimal number of cloud market segments can be determined. 

5.2.2 Assumptions of Business Applications 

Furthermore, we can also assume cloud customers’ resource consumption (e.g., a particular 

configuration of VM, workload priority, the number of cores and memory size) is closely 

associated with a particular business application (e.g., web hosting, e-commerce, database backup, 

backend processing, content delivery, etc.). Consequently, we approximately establish a 

corresponding relation between each cloud market segment and a particular cloud workload 

pattern (See Chapter 5).  

The assumption of the six market segments only gives one type of cloud business scenario. If a 

firm is one of the existing CSPs and attempts to explore more new niche market segments and 

has more investment budget, it can decide to have more market segments. The bottom line is that 

the CSP should clarify its cloud business strategy and targeted customers first, and then it can 

determine it is the optimal number of cloud market segments. 

The mapping process is mainly determined by job priority, an average number of cores, and 

memory size, which is shown in Table 5⎯1. AMD [276] , Young [233], Michalski and Demiliani 

[314] and Feitelson [315] have provided some basic principles or guidelines to identify some 

common cloud application workload patterns. We assume the higher job priority, the critical 

workload is, such as SLA driven applications. If a workload has a lower job priority and consumes 
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sizeable computational power and memory, we assume it is a backend type of workload, such as 

Big Data Analytics applications. 

   Notice that Google’s public dataset [178] only released the limited number of parameters for its 

cloud dataset so that the mapping of cloud applications is a rough estimation. If CSPs have their 

own operational datasets, the result should become more confident. As a result of market 

segmentation and business application identification, we can group the modeling process into 

three categories by three different analytic approaches. The roadmap of the modeling process is: 

1.  Define the utility functions of High Availability (HA) for segment 4 and Disaster Recovery 

(DR) for segment 5. This category is dependent on the specified SLA metric.  

2. Build the utility functions for the data processing of Online Checkout (OC) and web hosting 

(WH) for segment 1, Virtual Desktop Infrastructure (VDI) for segment 3. This category is 

dependent on a response time  

3. Model the utility functions of dynamic data processing (DDP) – dynamic content delivery 

(DCD) for segment 2 and backend (BE) workloads for segment 6. This category is dependent 

on the decision of risk. 

5.2.3 Utility Function for High Availability and Disaster Recovery 

HA business applications require mission-critical infrastructure or cloud resources. If we 

assume the downtime should be less than 5 minutes / per annum, then the service level agreement 

(SLA) must be higher than five-9s (or 99.999%). If this SLA is required, it means any failure of 

cloud infrastructure would lead to a catastrophic impact on the business revenue [235] for running 

business applications. One of the examples would be a Customer Relation Management (CRM) 

system, (e.g., Seibel), financial system, (e.g., stock trading), online banking platform, fast delivery 

ordering system, etc.  
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Suppose a firm hosts one of the HA business applications on cloud infrastructure is offered by 

a CSP. The cloud architecture supports the mission-critical applications shown in Figure 5⎯4. It 

means if one of the VMs fails, the workloads that are running on the faulty VM can be 

automatically transferred to another VM or a VM cluster (See Figure 5⎯5) 

Figure 5—4   A Typical Web Hosting Architecture 

Figure 5—5  High Availability Cloud Infrastructure 
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If we assume the VM failure rate is  (assume each VM is allocated in the different physical 

machines), its restoration rate is ; the question is how many VMs (or a server farm) for CSP to 

support a mission-critical business application? Moreover, if we assume this server farm will 

impact on the business revenue for $ / per annum, how can we define the utility function for the 

cloud customer? 

Figure 5—6  Markov Chain Diagram for Required “k” of Physical Servers 

We can apply the Markov chain analysis to this problem. Assume we need “k” VMs to support 

the requirement of five 9s SLA. We can draw a diagram, as shown in Figure 5⎯6 based on the 

above assumptions. The k number of VMs can form a Markov chain system. This system is 

ergodic because we can verify the number of steps of the system would be exact “k+1” transitional 

states from any state to any other state. This means that the process can be characterized as a 

steady-state vector for a long run [219]. 

According to this Markov chain diagram shown in Figure 5⎯6, we should have a (𝑘 +

1) × (𝑘 + 1) Markov chain probability transitional matrix described in Figure 5⎯7. Based on 

this matrix, we can achieve a steady-state vector from Equation 5-1. 

 𝑉𝑠 = [𝑉1, 𝑉2, 𝑉3,⋯ , 𝑉𝑘−1, 𝑉𝑘] (5-1) 
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Figure 5—7 𝑚 ×𝑚  Markov Chain Matrix 

If we assume a failure probability  of a VM or physical server [221] is 0.004 to and a faulty 

restoration rate  is 0.2. Based on these assumptions, we can calculate the result of the steady-

state vector via a transition probability matrix (number of VM failed) shown as the following 

equation 5-2 

 𝑉 = [0.98, 0.0196, 0.000392, 7.84𝐸 − 06,    ] (5-2) 

The calculation result shows that the number of hot-standby VMs is at least three if we want 

the specified SLA is higher than seven 9s.  

To generalize this transitional matrix, we can define a function 𝑉𝑘 as a probability of 𝑘VMs is 

down. We want to find the minimum number of 𝑘 such that the probability of this downtime is 

less than a specified time 𝜖 (e.g., five minutes /per annum) 

 𝑉(𝑘−1) ∗  ≤ 𝜖 (5-3) 

Based on Figure 5⎯6 and Figure 5⎯7, if the system has a steady-state, we can derive an 

equation from 5-4 to 5-9 to calculate the 𝑘 value. 

 𝑉𝑖 = 𝑉0 (
𝜇

𝜆
)
𝑖

, 𝛼 =
𝜇

𝜆
< 1 (5-4) 

 𝑉𝑘 = 𝑉0𝛼
𝑘−1𝜇 ≤ 𝜖 (5-5) 

 𝑉0 =
1 − 𝛼

1 − 𝛼𝑘+1
,

1 − 𝛼

1 − 𝛼𝑘+1
𝛼𝑘−1𝜇 ≤ 𝜖 (5-6) 

 𝛼𝑘−1 ≤
𝜖

(1 − 𝛼)𝜇 + 𝜖𝛼2
 (5-7) 

0 1 2 k
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 (𝑘 − 1)𝑙𝑛𝛼 ≤ 𝑙𝑛 (
𝜖

(1 − 𝛼)𝜇 + 𝜖𝛼2
) (5-8) 

 𝑘 ≥ ⌈1 +
𝑙𝑛𝜖 − 𝑙𝑛[(1 − 𝛼)𝜇 + 𝜖𝛼2]

𝑙𝑛𝛼
⌉ (5-9) 

Where any 𝑉𝑖 is a probability distribution vector in the ergodic system, 𝑉0 is the initial state of 

the probability distribution vector. 𝑉𝑖 also indicates the probability that the system had i failures 

and now using the resource (i+1). 𝜖 = 1 − 0.99999 (Five-9s: a specified SLA).   

Note that equation 5-9 defines the probability transition from the 𝑘 − 1 state (the last VM) to 

the 𝑘 state (or all VMs failure). The 𝑘 value of equation 5-10 should be round up to the up ceiling 

that is not less than 𝑘. Once we have the result of 𝑘, we can define two customers’ utility functions 

for market segment 4 and segment 5. 

 𝑈4(𝑞) = { 
𝐾4,         1 ≤ 𝑞 ≤ 𝑘
0,       𝑘 < 𝑞 ≤ 𝑞𝑚

 (5-10) 

where “𝐾4” is a revenue coefficient value, “𝑞” is the variable of number of VMs, 𝑞m is the 

maximum number of VMs (Refer to section 1.1). The interpretation of  Equation 5-10 is that the 

cloud customers will purchase the maximum 𝑘 number of VMs in segment 4 to meet their SLA 

requirements. This means that the “k” number of VMs will contribute the customers’ business 

revenue together and each VM has the same utility value. For example, if one VM contributes 

business value is $1.0/per hour, then, the business customer has to purchase at least three VMs to 

run the business application, such as SQL database servers so that it can guarantee five 9s SLA 

delivery. 

If the number of VM is higher than the required number k, its value of the revenue contribution 

will be diminished to zero. Therefore, the utility value is equal to zero shown in Equation 5-10. 

If a CSP’s market strategy is to target Small Medium Enterprise (SME), then we can define the 

scaling coefficient 𝐾𝑖 values by Equation 5-11 

 𝐾𝑖 = 𝐵𝑖/( ∑ 𝑈𝑖[𝑞]

𝑞∈[1,𝑛]∶𝑈𝑖[𝑛]≥𝑝
∗

) ,     𝑖 = 1⋯𝑆 (5-11) 
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where 𝐵𝑖 is the annual revenue in each market segment of different categories of SME. 𝑝∗ is 

the optimal price that is offered by CSP. “S” the maximum number of market segments, and “i” 

is a variable of the market segment.  

For segment 5, it can also be considered as another type of mission-critical workload for 

business continuity because we have concluded this segment is to run DR or DR as a Service 

(DRaaS) applications. According to Luetkehoelter [316], the definition of DR is “the process of 

mitigating the likelihood of a disaster and the process of returning the system to a normal state in 

the event of a disaster.” It can be a part of the HA workload, which is similar to a database backup. 

The difference is that DR mirrors everything in different physical locations. Therefore, the DR 

solution often requires a more quantity of VMs than the database backup application, but this 

requirement is dependent on a “likelihood” of DR.  

Mathematically, this likelihood can be translated into a percentage of riskiness in terms of 

business impacts. This risk assessment [241] should be determined by a business continuity plan. 

We can formulate Equation 5-12 for the cloud customer’s utility value.   

 𝑈5(𝑞) = 𝜃𝐾5 1 ≤ 𝑞 ≤ 𝑞𝑚 (5-12) 

 where 𝜃 is a potential risk rate (a percentage) to impact the cloud customers’ revenue because 

a disaster occurs. It means that the cloud customers will only purchase the number of VMs when 

the price of VM (𝑝∗) is below the specified threshold level of their utility value. If the VM price 

is higher than their utility value of a likelihood disaster, they will stop to purchase any cloud 

resource from CSPs and build the on-premises infrastructure. In addition to the mission-critical 

applications, the utility function for e-commerce can also be modeled by a Markov chain process.  

5.2.4 Utility for Queueing and Static Data Process 

E-Commerce applications, such as shopping cart, electronic data interchange (EDI), online 

catalogs, consist of a business processing module [244], which can be characterized as a type of 

queueing workload pattern [245]. One of the typical examples is the online checkout (payment) 

processing system shown in Figure 5⎯8 for an example of a web hosting service. It merely means 

that the end-users are lining up a queue for checking out due to online purchasing or ordering. 
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Figure 5—8 Typical Architecture of Checkout Application 

Assume there is only one virtual machine (VM) that has been allocated to handle the end-users’ 

checkout requests (𝜆1) with a specified process capacity (𝜇1), we would like to know how long 

(𝑤1) the end-users have to wait to complete the checkout process? We can use the simple M/M/1[17] 

to model [221] this process, which we can calculate out the expected waiting time for the end-

users (online purchasers) from Equation 5-13. 

 𝑤1 = 𝐸[𝑇] =
𝜆1

𝜇1(𝜇1 − 𝜆1)
+
1

𝜇1
=

1

𝜇1 − 𝜆1
 (5-13) 

where T is the total expected time for an end-user within the checkout system, which includes 

the waiting time to be processed for checkout, this expected waiting time is critical for the cloud 

business customer who runs an e-commerce business (or an online shop). If the time is too long, 

the end-user will start to lose patience and just merely switch to another portal (online) shop at 

the click of a finger. In other words, the expected waiting time will impact the cloud customer’s 

 

 

17 Kendall’s Notation of a Queueing System, A/B/C, A indicates the inter-arrival time distribution, B indicates the service time 
distribution, and C indicates the number of servers. 
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e-commerce business revenue. On the other hand, if we allocate too many VMs resources to the 

checkout system, many VMs will stay idle. It will increase cloud customers’ operation 

expenditure (Opex). The issue for a CSP is how to establish an adequate utility function to model 

the hosting business value for its cloud customers. 

Taking an example, if we assume the average arrived rate of the end-user as 𝜆1 = 8 /per hour, 

and 𝜇1 = 10/per hour [241], the expected average waiting time will be 24 minutes in the queue. 

If we include the average 6 minutes of the processing time for checkout (payment), a random end 

user will spend a total of an average of 30 minutes in the system shown in Equation 5-14. 

 

 𝑤1 =
1

𝜇1 − 𝜆1
=

1

10 − 8
× 60 = 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 (5-14) 

Based on our own experiences, 24 minutes of queueing time would be unacceptable for an 

online business. To reduce this expected waiting time, we have two possible solutions: one is the 

vertical scaling, which is to increase the VM’s capacity 𝜇1 by selecting large capacity VM so that 

the time of the checkout process can be reduced. For example, if we double the VM capacity𝜇1= 

20/per hour, the waiting time 𝑤1 can be reduced to 5 minutes. The other solution is the horizontal 

scaling that is to add more VMs with the same capacity into the checkout system, which can also 

decrease the queueing time 𝑤𝑞. If this is a case, the problem of M/M/1 becomes an M/M/s [221] 

model, which can be described in Figure 5⎯9. 

If the workload of e-commerce application is highly fluctuant, then the horizontal scaling would 

be a preferred solution. It also adds a bonus of the high availability into the system, which we 

illustrated this point in the previous section. Moreover, the different end-user might have different 

lengths of responding time to the checkout system. For example, a new end-user may take more 

time to respond to the checkout system than a frequent user.  

If we select a horizontal scaling solution, then Erlang’s delay formula [221] can calculate both 

queueing and the total processing time ( 𝑤𝑞 𝑎𝑛𝑑 𝑤𝑠) for the number of VMs required. 

 𝑤𝑞 =
𝛼𝑠𝑝0

𝑠! 𝑠𝜇1(1 − 𝜌)2
 (5-15) 
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 𝑝0 = [∑
𝛼𝑘

𝑘!
+
(𝛼)𝑠

𝑠!
(1 −

𝛼

𝑠
)
−1

𝑠−1

𝑘=0

]

−1

 (5-16) 

 𝛼 =
𝜆𝑠
𝜇𝑠
< 1, 𝜌 =

𝛼

𝑠
=

λ𝑠
s𝜇𝑠

, 𝑤𝑠 = 𝑤𝑞 +
1

𝜇𝑠
 (5-17) 

where 𝑤𝑞is the queueing time for the end-users in the queue to be served. 𝑤𝑠 is the processing 

time in the checkout system. “𝑠” is the number of VMs required to reduce the queueing time for 

the end-users. “𝑘” is a variable of VM. 

Figure 5—9 M/M/s Queueing Model 

Using the same 𝜇1and 𝜆1 as the M/M/1 model, we should have the following calculation results 

in Table 5⎯2.  

Table 5—2 Calculation Results for M/M/S model 

No of 

VMs 
  𝟎 𝒘𝒒 (minutes) 1/𝝁𝟏 (second) 𝒘𝒔 (second) 

1 0.800 1 24 360 1,800 

2 0.400 0.4285714 1.142857 360 428.6 

3 0.267 0.4471545 0.141907 360 368.5 

4 0.200 0.5020080 0.02008 360 361.2 

5 0.160 0.5392432 0.002504 360 360.2 
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If we plot out the result of queueing time against the incremental number of VMs shown in 

Figure 5⎯10, we can have an approximate trend line in a power function. According to both 

Table 5⎯3 and Figure 5⎯10, we see that queueing time decreases sharply after the 2nd VM or 

3rd VM. Therefore, we can use quotation 5-18 to approximate a utility function for market segment 

1: 

 𝑈1(𝑞) = 𝐾1𝑞
−𝑐, 1 < 𝑞 < 𝑞𝑚 (5-18) 

where 𝐾1 is a scaling coefficient. “c” is a constant that is to determine the gradient of the power 

equation. 𝑞𝑚 is the maximum quantity of VM that the customers of segment-1 may purchase.  

Figure 5—10 M/M/s Queueing Model 

On the other hand, if the CSM needs reducing the overall processing time (both queueing and 

processing time), the cloud customer or the e-commerce business owner has to have a solution of 

combining both vertical and horizontal scaling. 

If the 𝜆𝑠 value is relatively small in comparison with 𝜇𝑠, the power function is sufficient to 

model the customer utility value. If the 𝜆𝑠 the value becomes larger, then adopting the discrete 

function (Equation 5-10) is a good idea to descript the cloud customer’s utility value because a 

guaranty to deliver SLA becomes a major issue when the average number of end-users increases.  

Alternatively, we can also use a linear function [236] to provide a solution when there is a 

constant rate of changing in terms of VM demand and utility value. This topic leads to our next 
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issue of how to model customer utility in the segment-3. The workload characteristics of this 

segment have been classified as “Virtual Desktop Infrastructure (VDI).” There are many VDI 

performance metrics of a hosting environment regarding users’ experiences, such as the peak of 

Input/Output Per Second (IOPS), storage capacity, response time, Read/Write ratio, future growth, 

etc. If we assume these metrics have been prefixed during the Proof of Concept (POC) period 

before VDI rollout, the additional VM will only add Opex and a burden to the cloud customers. 

So, we can use a linear model to measure the cloud customer utility value because an end user’s 

response time is calculated as a linear model based on the cloud resource request [245] [246].   

 𝑈3(𝑞) = 𝐾3(𝑟𝑞 + 𝑞𝑚), 𝑟 < 0 (5-19) 

where “r” is a constant, but it is negative to reflect the economic principle of the diminishing 

return. 

5.2.5 Utility Function for Backend and Dynamic Data Processing 

When we encounter backend and dynamic data processing types of workload, such as dynamic 

content (optimized dynamic content) delivery, clone server, Network File Sharing (NFS), and 

cache proxy, we should use different mathematical models to measure the cloud customer’s utility 

values in term of the end-users’ experiences. According to [80], we can use Equation 5-20 to 

model the customers’ utility value for the dynamic content workload for market segment 2. It 

measures the constant relative risk aversion (CRRA) when the cloud customer is facing some 

uncertainties.   

 𝑈(𝑞) = {
𝑞1−𝛼 − 1

1 − 𝛼
,         𝛼 ∈ (0,1)

𝑙𝑛(𝑞) ,                  𝛼 = 1

 (5-20) 

where “𝛼” is to measure the degree of relative risk aversion. Based on the Pratt-Arrow absolute 

risk aversion function (Equation 5-21 𝑅𝑟), we can measure the absolute value of risk aversion, 

which is to define the coefficient value at “𝑞.” 𝑅𝑟 is a negative exponential (or inverse) function 

at “𝑞” when 𝛼 is greater than one 

 𝑅𝑟 = −
𝑈2
"(𝑞)

𝑈2
′(𝑞)

=
𝑑𝑈2

′(𝑞)

𝑑𝑞

𝑞

𝑈2
′(𝑞)

=
%∆𝑈2

′(𝑞)

%∆𝑞
= (1 − 𝛼)𝑞−1 (5-21) 
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Practically, it means that if 𝑅𝑟  is decreasing with respect to VM quantity “𝑞 ,” the cloud 

customer will be less sensitive towards risk aversion when the number of VMs is increasing.  

We can also use the exponential utility function to model the backend type of workload for 

market segment 6. The exponential function gives us the value of constant absolute risk aversion 

(CARA) (Refer to Equation 5-22 and 5-23) 

 𝑈6(𝑞) = 𝐾2 {

(1 − 𝑒−𝛼𝑞)

𝛼
, 𝛼 ≠ 0 

 𝑞,                            𝛼 = 0 
 (5-22) 

 𝑅𝑎 = −
𝑈6
"(𝑞)

𝑈6
′(𝑞)

= 𝛼 (5-23) 

where 𝛼 represents the constant absolute risk aversion [222]. When 𝛼 = 0, it means risk neutral, 

and when 𝛼<0, it is risk-seeking. In this chapter, we set the value of 𝛼 < 0. 

The size of the backend workload is often quite large, and the processing environment is 

complicated because it involves different issues of cloud architecture, planning, and resources 

scaling, e.g., database replication (1:1 replication of both master and slave for zero-downtime), 

read replica (use the ave as a read-only instance), in-memory caches (Key-Value Store for the 

session and state data, across cloned instances), and etc. As a result, we can set the 𝛼 value either 

less than zero or equal to zero to estimate the customers’ utility values. In other words, we use the 

exponential function with α<0 to describe a customer’s utility values in terms of acquiring VM 

resource because the customers are sensitive towards a cloud price and the backend workload can 

be interruptible. 

5.2.6 Define the Coefficient Values 

The final issue is how to determine the value of 𝐾𝑖  and . The scaling coefficient of 𝐾𝑖  is 

dependent on the business revenue or profit that a particular type of VM instance (such as AWS’s 

extra-large instance) can help cloud customers to produce. For example, if we target the average 

profit of SME is around $48K-$110K/per annum [223], we can approximately estimate the profit 

for each VM to generate is between $0.95 and $1.9/per hour [249] for various cloud applications 

across six market segments. 
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It is challenging to determine the value of risk aversion  because it measures the cloud 

customers’ subjective feelings when they are facing uncertain outcomes [247]. Based on [246] 

and [249] recommendations, we set the value of risk aversion is equal to 0.4 in this research. 

Figure 5—11 Typical Architecture of Web Application Hosting 

 

According to all the above coefficient values, we can normalize the average utility value up to 

$1.50 (per/hour), and the minimum utility value is equal to $0.00 across all six market segments. 

The maximum number of VM is an arbitrary number. Here, we set to 𝑞𝑚=12. It is just a matter 

of a scale. Figure.5-11 illustrates the number of web applications may run on a single cloud 

platform. As a result, the quantity of 𝑞𝑚 could be various from one case to another. In other words, 
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if the solution architecture is changed, the value of 𝑞𝑚will also be changed. For example, if the 

business requires running different types of database, the solution architecture should be altered. 

Figure 5⎯11 also shows an example of an architecture solution for cloud resource scaling, 

which can be either horizontal or vertical. The decision of cloud resources, whether it should be 

vertical or horizontal scaling, depends on the definition of customers’ business requirements, such 

as CSM. 

Finally, the detail values of multiple utility functions can be constructed in Table 5⎯3, which 

is based on the segmented market. It provides a solution to the problem that is raised in section 1. 

Table 5⎯6 is a foundation to generate different cloud price models. CSP can leverage various 

price models to identify an optimal price point of each model for its profit maximization. 

Table 5—3 Cloud Customers’ Utility Table 

VM No. Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 

1 $1.50 $0.00 $1.50 $1.50 $0.75 $0.01 

2 $0.75 $0.23 $1.36 $1.50 $0.75 $0.02 

3 $0.50 $0.41 $1.23 $1.50 $0.75 $0.03 

4 $0.38 $0.57 $1.09 $1.50 $0.75 $0.05 

5 $0.30 $0.71 $0.95 $1.50 $0.75 $0.08 

6 $0.25 $0.84 $0.82 $1.50 $0.75 $0.13 

7 $0.21 $0.97 $0.68 $0.00 $0.75 $0.19 

8 $0.19 $1.08 $0.55 $0.00 $0.75 $0.29 

9 $0.17 $1.20 $0.41 $0.00 $0.75 $0.44 

10 $0.15 $1.30 $0.27 $0.00 $0.75 $0.67 

11 $0.14 $1.40 $0.14 $0.00 $0.75 $1.00 

12 $0.13 $1.50 $0.00 $0.00 $0.75 $1.50 

 

 

5.2.7 Summary of Modeling Multiple Utility Method 

Up to this point, we have generated all six utility functions along with six cloud market 

segments, which can be summarized in Table 5⎯4. This table covers multiple utility functions 

with different cloud customers’ preferences for various business applications. The pre-condition 

of the modeling utility function is the result of cloud market segments. The number of market 
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segments is derived from a CSP’s cloud business strategy and targeted cloud customers. These 

market segments can be analyzed by three types of analytic approaches. 

A CSP can also have more or less than 6 market segments. According to [238], the suggested 

number of the market segments is between 5 and10. Overall, the number is dependent on a 

portfolio analysis to meet the CSP’s business objectives by balancing sales growth, capital 

investment budget, cash flow, cloud technology expertise, and business risk. For example, if the 

CSP would like to explore a particular niche cloud market (e.g., cage-level physical security), a 

customer’s utility function may be defined differently. 

Table 5—4 Cloud Customers all Utility Functions 

Business Application 

workload 

Analytic 

Approach 

Market 

Segment 
Cloud Customers Utility Function 

Online Checkout 
Queuing 

Theory 

1 𝑈1(𝑞) = 𝐾1𝑞
−𝑐 

VDI 3 𝑈3(𝑞) = 𝐾3(𝑞𝑚 +  𝑟𝑞), 𝑟 < 0 

High Availability 

Data Markov 

Chain 

Analysis 

4 𝑈4(𝑞) = { 
𝐾4,                1 ≤ 𝑞 ≤ 𝑘
0,                𝑘 < 𝑞 ≤ 𝑞𝑚

 

Disaster Recovery 5 𝑈5(𝑞) = {
𝜃𝐾5 1 ≤ 𝑞 ≤ k
0     𝑘 ≤ 𝑞 ≤ 𝑞m

 

Dynamic Content 

Delivery 
Risk 

Assessment 

2 𝑈2(𝑞) = 𝐾2 {

𝑞1−𝛼 − 1

1 − 𝛼
,      𝛼 ∈ (0,1)

𝑙𝑛(𝑞) ,                  𝛼 = 1

 

Backend Data 

Processing 
6 𝑈6(𝑞) = 𝐾6 {

(1 − 𝑒−𝛼𝑞)

𝛼
, 𝛼 ≠ 0, 𝛼 < 0  

 𝑞,                            𝛼 = 0 
 

When we estimate 𝐾𝑖 coefficients, we balance the values of all the scaling coefficients to be 

equivalent by similar grouping revenue of SME together. If a gap of the coefficient value is too 

large, then the higher value of the coefficients would have more influence on the optimal price of 

a VM. To visualize all utility functions of Table 5⎯4, we can plot out all six cloud customer 

utility functions along with the number of VM variations in Figure 5⎯12. As we can see, the blue 

line represents the utility value, and the red line captures the marginal utility. 
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Figure 5—12 Six Cloud Utility Functions for Six Cloud Market Segments 

We argue our method of modeling multiple utility functions is dependent on both internal 

(strategic objectives, cost, expertise, cash flow, targeted customers, etc.) and external (CSM, 

cloud customers’ revenue or profits, and market segments) rationalities for a CSP to achieve the 

maximum profit by identifying the optimal price. Our basic idea of modeling the cloud customers’ 

utility functions is to assign SME customer’s revenue into each VM that can generate for the 

cloud customer, which is the concept of value co-creation [239] [10]. In order to compare with 

different modeling methods, the following section is going to survey previous different methods. 

5.3 Related Work 

-0.80

-0.30

0.20

0.70

1.20

1 2 3 4 5 6 7 8 9 10 11 12

C
lo

u
d

 C
u

st
o

m
e

r 
U

ti
lit

y

Quantity of Virtual Machine or Instance

Market Segment 1

Utility

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1 2 3 4 5 6 7 8 9 10 11 12

C
lo

u
d

 C
u

st
o

m
e

r 
U

ti
lit

y

Quantity of Virtual Machine or Instnace

Market Segment 3

Uitlity

-0.50

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8 9 10 11 12C
lo

u
d

 C
u

st
o

m
e

r 
U

ti
lit

y

Quantity of Virtual Machine or Instnace

Market Segment 4

Utility

Maringal Utility

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5 6 7 8 9 10 11 12

C
lo

u
d

 C
u

st
o

m
e

r 
U

ti
lit

y

Quantity of Virtual Machine or Instnace

Market Segment 5

Utility

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12

C
lo

u
d

 C
u

st
o

m
e

r 
U

ti
lit

y

Quantity of Virtual Machine or Instnace

Market Segment 6

Marginal Utility Utility

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1 2 3 4 5 6 7 8 9 10 11 12

C
lo

u
d

 C
u

st
o

m
e

r 
U

ti
lit

y

Quantity of Virtual Machine or Instnace

Market Segment 2

Utility

Marginal Utility



 
 

153 

 

The modeling customer utility functions for various hosting services can be traced back to the 

beginning of the dotcom-booming era. Doyle et al. [206] [232]proposed a model-based approach 

to optimize the hosting of hardware resources for the specified SLA. The goal of their work is to 

demonstrate how to provision the server resources for web hosting applications effectively. 

Although the paper adopted the term “utility” and made good progress in hosting service 

modeling, the real meaning of utility is the usefulness of server functionality rather than an 

economic sense of subjective measurement for customer satisfaction. Similarly, Appleby et al. 

[207] proposed an SLA-based management system, which is named “Oceano” for e-business. It 

is based on a set of predefined metrics that consists of seven parameters. Their approaches can be 

considered as a policy-based scheme for computer resource allocation. The policy mainly reflects 

what a provider wants rather than the explicit measurement of the customer’s satisfaction and 

experiences.  

In contrast to Appleby, Walsh et al. [208] gave an explicit measurement for the customer’s 

utility functions in order to automate the computer resource distribution. The utility functions are 

an autonomic scheme to manage web hosting workloads running on a Linux cluster. They defined 

the utility 𝑈(𝑆, 𝐷)  as a function of two independent variables: service level (S) and current 

demand (D), which is measured by an average of forecast demand (𝐷′). S is a function of the 

other three independent variables that are control parameters (C), which is responsible for 

optimizing the utility 𝑈(𝑆, 𝐷), current resource level (R), and demand (D). Overall, the customer 

utility value can be estimated by variables of C, R, and 𝐷′ and defined as Equation 5-1 if the 

service performance (S) is specified. 

 
𝑈̂(𝑅) = max

𝑐
𝑈[𝑆(𝐶, 𝑅, 𝐷′), 𝐷′] 

(5-24) 

This service performance is designed to run the application of IBM WebSphere and DB2. The 

paper argued that the utility 𝑈̂(𝑅) is defined by a sigmoid function in terms of the average 

response time. They did some pioneer works regarding utility functions. However, the authors 

left the details of modeling the sigmoid function. In comparison, Bennani et al. [209] gave some 

details for their proposed utility function in the sigmoid form (Equation 5-25) regarding online 

application environments. 

 𝑈𝑖,𝑠(𝑅𝑖,𝑠, 𝛽𝑖,𝑠) =
𝐾𝑖,𝑠𝑒

−𝑅𝑖,𝑠+𝛽𝑖,𝑠

1 + 𝑒−𝑅𝑖,𝑠𝑡ℎ𝑒 +𝛽𝑖,𝑠
=
100𝑒−𝑅𝑖,𝑠(1 + 𝑒𝛽𝑖,𝑠)

1 + 𝑒−𝑅𝑖,𝑠+𝛽𝑖,𝑠
 (5-25) 
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where, 𝐾𝑖,𝑠 is a scaling coefficient. 𝑈𝑖,𝑠 is the function of 𝛽𝑖,𝑠, 𝑅𝑖,𝑠, 𝑅𝑖,𝑠 is the response time for 

“i” type of application environment (equivalent to a type of workload) with “s” type of classes of 

transactions (equivalent to a type of virtual machines), 𝛽𝑖,𝑠 is desired or targeted SLA (equivalent 

to the customer performance metrics). The goal of their paper is to come up with a solution (or 

global with controller) that can automatically assign different types of workloads to the adequate 

size of the server for the data center infrastructure. The value of their utility function varies 

between 0 and 1. Its scaling coefficient is corresponding to the upper bound of the throughput of 

the job or workload completion for a certain application. The authors assume the higher 

throughput, the higher utility value is. From this perspective, the meaning of utility has become 

“utilization” or “utilization” rate of IT resources. 

Following a similar line of reasoning, Kephart et al. [210] proposed a self-management system 

that is based on the utility framework in order to achieve resource efficiency in a prototype of a 

data center. The value of the utility function is between -1 and 1. The independent variables of 

the utility function can be either response time or the number of physical servers. Menache et al. 

[211] further developed this idea and proposed a long-term solution for cloud computing 

resources in terms of maximizing the social surplus, which is then aggregated individual user’s 

utility of executed jobs minus workload-dependent operation expenses (Opex). This social surplus 

is equivalent to Bennani’s [209], the global controller. The individual utility function (or local 

controller) of each user is presented in Equation 5-26. 

 𝑈𝑖(𝑧𝑖) = 𝑉𝑖(𝑧𝑖) − 𝑃𝑧𝑖𝑇𝑖(𝑧𝑖) (5-26) 

where, 𝑉𝑖(𝑧𝑖) is the value that user (i) assigns to executing job required zi amount of resource 

for P unit price for mean service time, 𝑇𝑖(𝑧𝑖). Although it was just a theoretical discussion, their 

work was the first time to define the utility in a microeconomics sense. The paper made a good 

contribution to the utility function definition. However, some assumptions need to be further 

consolidated. For example, the assumption of M/G/ model means no resource restriction. If this 

is a case, the optimal solution will become impracticable. Just as the authors highlighted, their 

analytic model only provided a convenient starting point for future research topics of cloud 

computing, such as revenue, profit, and pricing. Nevertheless, the paper indicated there is an 

optimal point by a linear usage based-tariff (or fixed price/per unit resource/ unit time).  

Weintraub et al. [212] presented a survey plus ranking (ordinal) model that is a conjoint analysis 

(ranking multiplied by the weighted coefficients) that shows how to maximize the user’s total 
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utility from a set of cloud services offered by CSPs. This utility model is the cloud feature or 

characteristics-based services for selecting a preferred CSP. It is a utility model in terms of 

customer preference choice. 

Regarding the preference choices, Burda et al. [213] examined consumer preferences for the 

cloud archiving services from a student’s perspective. Burda et al. adopt conjoint analysis (a 

survey-based statistical technique) to quantify customers’ utility levels in three market segments 

based on the customers’ demographic parameters, such as age and gender. Although the authors’ 

did not explicitly adopt the term of market segmentation, the paper was the first time to introduce 

the idea of market segmentation. Their study focused on business to consumer (B2C) market 

rather than business to business (B2B) market.      

Minarolli et al. [214]adopted a similar approach as Bennani et al. [209], which is to set up both 

local (like a transponder) and global controllers (or a central management system) to allocated 

cloud resources pool. They defined the utility function is a simple linear Equation 5-27, which is 

also the extension works of Walsh [208] and [215] 

 𝑈𝑖 = 𝛼𝑖 ∙ 𝑆𝑖 (5-27) 

where the amount of dollar 𝛼𝑖 is paid per unit of CPU resource, and 𝑆𝑖  is the located CPU 

resource to VMi or shared physical CPU utilization. However, this resource consumption model 

is just one of the utility functions if the cloud customers take a natural risk attitude. One of the 

critical issues of their work is the meaning of utility was not clearly defined in the economic sense 

from a customer’s perspective. The work described the term utility as optimizing the cloud 

resource pool. The unit of the utility measurement is switched between the quantity of VMs and 

the length of response time. 

Similarly, Garg et al. [216] [217] provided an admission control solution for a similar problem, 

but they described the term of utility as a resource scheduling rather than an economic sense of 

the utility function. The assumption of their application is the non-interactive or static workload. 

Their solution is to achieve the optimizing scheduling between the specified Quality of Service 

(QoS) requirements and resource provisioning. 

In comparison with others, Chen et al. [69] made some contributions to the utility function 

defined in terms of microeconomic sense. They presented scheduling solutions from a cloud 

customer’s utility perspective. They showed that cloud customers could effectively bid for 
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different types of VM spot instances under the conditional metrics of profits, customer satisfaction, 

and cloud resource utilization. The detail of the cloud customer utility function is shown as 

follows: 

 𝑈(𝑝, 𝑡) = 𝑈0 − 𝛼𝑝 − 𝛽𝑡 (5-28) 

where, 𝑈0is the maximum utility that the service delivery to the customers. It is proportional to 

the size of the service request. Both  and  is the coefficient of price “p” and response time “t.” 

Again, the cloud customer utility value is a linear function of price and response time. The 

application of their utility function is based on running the x264 application for video scripts’ 

encoding and decoding tasks. Overall, we can highlight the main contributions and gaps of each 

modeling method for the customers’ utility function over the last two decades in Table 5⎯5. 

Table 5—5 Summary of All Methods of modeling Utility Function 

Modeling 

Methods 
Solution Idea Pros Cons Application 

Model-based  

Slices of computer 

resources,  and time 

for resource 

management 

Enable a provision 

of multiple resources 

in an interactive way 

It only works for the 

prototype. The concept of 

utility is not the economic one 

Web-based service 

or Content 

Distribution Network 

SLA-based  
Leveraging SLA to 

allocate resources 

Dynamic, flexible, 

scalable resource 

allocation 

The resources assumption 

has no limit. It is not the real 

economic utility 

e-business hosting 

Resource-

based 

 

Utility function to 

allocate resource 

Self-optimization of 

computing capability 

A data center management 

system rather than a model for 

the utility function 

Data Center, CND, 

Video streams 

Social 

Surplus-based  

Adopting Social 

Welfare idea and 

leveraging queueing 

theory 

The social effects 

of using cloud 

resources 

Just a theoretical model. 

Similar to global and local 

controls 

Academic 

discussion to prove 

the convexity 

assumptions 

Empirically 

Calibrated 

Empirically 

calibrated model 

Provider an 

alternative way of 

utility modeling 

Limited applications remain 

empirical 

Intend to explain 

major cloud leaders’ 

market behaviors 

Price-Quality  
Single and multi-

tiered solution 

Define the price-

quality from NE 

perspective 

Only apply it for a special 

case under particular 

assumptions 

Theoretical 

interpretation 

Capacity-

Aware  

Non-additive utility 

function 
Dynamic 

Mixed with users and CSP 

utilities. Pre-negotiation of 

deliverable SLA 

Negotiable cloud 

resources or Grid 

computing 

Conjoint 

Analysis 

Three layers of 

customer utility 
Survey plus ranking 

Too arbitrary to build the 

utility function, not very 

explicit. 

Cloud Customers 

Survey data 

Framework-

based  

Utility function 

policies 

Two types of 

Integrated Utility 

values 

Prototype, impracticable 
Data Center 

Environment 

Simple Linear 
A two-tier resource 

management approach 

The balance 

between QoS and 

Operation Cost 

Confusing with CSP and 

Customers Utility 

VM resource 

Allocation 
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As Table 5⎯5 indicates, the majority of previous works are more like a resource management 

scheme with the aim of managing cloud resources. Strictly speaking, many models did not 

consider cloud market segmentation. The term “utility” was not defined as a subjective 

measurement unit from a cloud customer perspective. The meaning of utility was often swinging 

between the supply and demand sides.  

In contrast, our utility modeling process is driven from three aspects: define cloud business 

customers’ service metrics, model the utility functions based on the assumption of the cloud 

market segmentation theory and focus on customers’ revenue and profit contribution. The 

following section gives a full comparison of our modeling method and other methods. 

5.4  Performance Evaluation 

The performance evaluation is divided into two parts. The first part is to compare the market 

share value. The second part is to compare all economic values, which include revenue, profit, an 

optimal price, and a marginal cost based on the same price model of “on-demand.” 

5.4.1 Comparison of Cloud Market Share 

In comparison with some previous modeling methods of the utility functions (Refer to Table 

5⎯6 for details comparison), our modeling approach has the following advantages: First, the 

measurement unit of all the utility functions is unified under the customer’s revenue or profit 

(dollar). Second, this measurement is tangible and can be compared. Third, the different market 

segment has different types of utility functions. Fourth, each market segment is associated with 

one type of cloud business application. There are a total of six market segments. It avoids “one 

size fits all.” Fifth, we only model the cloud customers’ utility functions in this chapter. Sixth, In 

contrast to previous SLA studies, we clearly specified the number of VMs required generating 

cloud customer’s revenue. Seventh, we lay out a clear definition of utility in upfront to avoid any 

misinterpretation. 
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Table 5—6 Performance Evaluation of Different Methods of Utility Modeling  

Methods of 

Utility Modeling 
Utility Functions 

Cloud 

Market 

Share 

 Measurement of 

Utility Unit 

Ind. Variables of the 

Utility function 

Proposed Method 
𝑈𝑖(𝑞),   𝑖 = 1⋯𝑆 ,   

𝑞 = 1⋯𝑞𝑚 
83~ 100% 

Customer’s Revenue 

& profit 
VMs 

Model-based 𝑈(𝐻) =
1 −𝑀𝛼

1 − 𝑇𝛼
 

16%~17% 
Hit Rate 

Memory “M” & workload 

(object “T”)   

SLA metrics 𝑈(𝑅) = max
𝑐

𝑈[𝑆(𝐶, 𝑅,  𝐷′),  𝐷′] 
16%~17% 

Service Level 
Control “C” Resource “R”, 

Demand “D” 

Resource-Based 𝑈𝑖 = 𝛼𝑖𝑆𝑖 ,    16%~17% 

Performance metrics 

(e.g., response time) 

A throughput of response 

time 𝑅𝑖,𝑠, specified time 

𝛽𝑖,𝑠 

Social Surplus-

Based 
𝑈𝑖(𝑧𝑖) = 𝑉𝑖(𝑧𝑖) − 𝑃𝑧𝑖𝑇𝑖(𝑧𝑖) 16%~17% 

The expected resource 

within time and price 

limit 

Price 𝑃, resource  𝑧𝑖 

Execution Time 𝑇𝑖 

Expected Value 𝑉𝑖 

Empirically 

Calibrate 
𝑈𝑖𝑗𝑘 = 𝑤 (𝑣𝑖 −

𝑐𝑖 + 2𝑘−1𝑝𝑗1

2𝑘−1𝛼𝑗
𝑘−1𝑞𝑗1

) 
16%~17% 

Expected value 𝑣𝑖  

minus combination of 

three variables 

Price 𝑝𝑗1, delay time 

sensitivity 𝑐𝑖, quality level 

𝑞𝑗1, workload 𝑤   

Price-Quality 

𝑈(𝑝𝑟,  𝑠) = 𝑃𝑖(𝑝𝑟, 𝑠) = 𝜆𝑖(𝑝𝑟1 − 𝑐𝑖 − 𝜌𝑖)

−
𝜌𝑖

𝑟𝑡̅ − 𝑠𝑖
 16%~17% 

Payoff (resource 

request capacity) vs 

Price 

CSP Price 𝑝𝑟, response 

time 𝑠, unit Opex   𝑐𝑖 and  

unit Capex 𝜌𝑖  

Capacity Aware 𝑈(𝑃𝑁+1, 𝑇𝑁+1) = ∑𝑈𝑖
𝑄 −∑𝑈𝑖

𝑅={𝑆𝐿𝐴}

𝑁

𝑖=1

𝑁+1

𝑖=1

 
16%~17% 

CSP’s profit 

𝑈(𝑃𝑁+1, 𝑇𝑁+1)  

Service Price  𝑃𝑁+1 and 

response time 𝑇𝑁+1  

Conjoint 

Analysis 
𝑈(𝑅𝑖, 𝑝𝑖  ) =∑𝑅𝑖𝑝𝑖

𝑛

𝑖=1

 
16%~17% 

Preference ranking 
Attribute ranking 𝑅𝑖 & 

weight 𝑝𝑖  

Framework 

Based 
𝑈(𝑓) = −𝑒−5𝑒

−0.5∗𝑓(𝐴,𝐸,𝑅)
+ 1 

16%~17% 

Sigmoid function 

value 

Specified scenario 

parameters A, E, R  

Simple Linear 𝑈(𝑝, 𝑡) = 𝑈0 − 𝛼𝑝 − 𝛽𝑡 
16%~17% 

Service request 

satisfaction level 

VM price "𝑝" & response 

time "𝑡" 

The calculation of the market share is dependent on the assumptions of the number of market 

segments. If the model assumes the cloud market has a single market, the pricing model will 

address smaller proportional customers. For example, if AWS offers one price only for all its 

cloud customers, such as spot instance price, the majority of business customers will not purchase 

its cloud service because this cloud service cannot provide the service guarantee for some 

mission-critical applications. Therefore, a price model can only capture 16% ~ 17% (1/6) market 

shares in comparison with an assumption of six market segments. It is self-explanatory.  
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The value to capture more market shares only gives one indication for an addressable cloud 

market, but the ultimate purpose of market segmentation is to set up a pricing foundation for CSP 

to achieve profit maximization. Therefore, it is essential to validate our method through an 

experiment based on a particular price model –“on-demand.” 

5.4.2 Economic Values Comparison 

The full details of price modeling can be found in the subsequent research work (See the 

Following chapter), which has been highlighted in Figure.5-1 for steps 3 and 4. In this work, we 

only give brief information on how we implemented our experiment through a particular price 

model and then we demonstrate the experimental results with different methods. Finally, we 

provide a comparison for different modeling methods (Refer to Table 5⎯7) for the justification 

of our claims. 

5.4.2.1 Process of Evaluation 

As we indicated, we adopt the “on-demand” price model for cloud pricing to implement our 

experiment. This price model is offered by nearly every leading CSP. This price model reflects 

one of the cloud characteristics, pay as you go (PAYG). The price model is value-based (Customer 

Surplus value-based), the “on-demand price model can be defined as  

𝑞𝑖[𝑝] = 𝑞𝑖: max 𝐶𝑆𝑖[𝑝] = (∑𝑈𝑖[𝑗]

𝑞

𝑗=1

) − 𝑝𝑞 ≥ 0,     𝑄(𝑝) = ∑𝑞𝑖[𝑝]𝐷𝑖[𝑝]

𝑆

𝑖=1

,      𝑖 = 1,⋯ , 𝑆       (5-29) 

where 𝑆  is the number of market segments, which is equal to 6 from the above-market 

assumption. The 𝑞𝑖 is a number of VMs to be acquired by the cloud customers in the market 

segment “𝑖.” This acquired quantity is determined by the maximum customer’s surplus-value 

𝐶𝑆𝑖[𝑝] that is greater than zero for the given price 𝑝 which is offered by a CSP, based on a defined 

utility function 𝑈𝑖[𝑗] which represents the external rationality (Refer to both Table 5⎯3 and Table 

5⎯4.) for the “𝑖” market segment while 𝑗 is a variable of VM between 𝑖 and 𝑞. 𝑞𝑖 is a dependent 

variable of a price 𝑝. It means if the cloud price is changed, a quantity variation of each market 

segment will also follow (Table 5⎯7). 
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Table 5—7 Experiment Results of Comparison Uniform and Six Market Segment 

Comparison for 

“on-demand” price 

model 

Resource-Based 

With Single Market 

𝑈𝑖 = 𝛼𝑖𝑆𝑖 ,   
𝑖 = 𝑡𝑖𝑚𝑒 

Simple Linear with 

Single Market  
𝑼( , 𝒕) = 𝑼𝟎 − 𝜶 − 𝜷𝒕 

Proposed Method 

with six market 

segment 

𝑼𝒊(𝒒),  
𝒊 = 𝟏⋯𝟔 

∆ of 

Proposed 

Method and 

Resource-

Based 

∆ of Proposed 

Method and 

Simple Linear 

Optimal Price $0.751 0.955 $0.749 -0.27% -21.57% 

Unit Cost $0.554 0.942 $0.274 -50.54% -70.91% 

Total Sales Vol. 4,760 1,859 5,920 24.37% 218.45% 

Total Revenue $3,435 $1,775 $4,440 29.26% 150.14% 

Total Cost  $2,537 $1,751 $1,625 -35.95% -7.20% 

Total Profit  $898 $24 $2,815 213.47% 11,629.17% 

 

If the cloud customer’s surplus has been quantified, the maximum profit 𝜋[𝑝]  can also be 

achieved by identifying the optimal price 𝑝∗ (See Equation 5-30). Based on microeconomics, the 

profit equation can be easily defined as the total revenue 𝑝 ∗ 𝑄(𝑝) subtracts the total cost 𝐶[𝑄(𝑝)] 

shown as following Equation 5-31.  

 𝑝∗ = 𝑎𝑟𝑔max
𝑝

𝜋[𝑝] (5-30) 

 𝜋[𝑝] = 𝑝𝑄(𝑝) − 𝐶[𝑄(𝑝)],      𝑐𝑢[𝑄(𝑝)] ≤ 𝑝 ≤ 𝑀, 𝑐𝑢[𝑄(𝑝)] 𝑄(𝑝) = 𝐶[𝑄(𝑝)],    (5-31) 

where 𝑄(𝑝) is the summation of 𝑞𝑖[𝑝] of VMs multiplied by the estimated forecast for market 

demand (or predicted sales volume) 𝐷𝑖[𝑝]  (See Table 1) of each market segment. 𝑀  is the 

normalized maximum utility value. 𝑐𝑢[𝑄(𝑝)] is the unit cost, which represents CSP’s internal 

rationality.  

5.4.2.2 Dataset 

The experiment dataset has already been presented in Table 5⎯3. To optimize Equation 30, we 

adopt the genetic algorithm to run our experiment. There are a number of software applications 

that can be applied to implement a genetic algorithm, such as Matlab, R and even Microsoft Excel 

Solver. The R package has two convenient packages: GA and Genalg, that can deliver quick 

results. 

5.4.2.3 Experiment Results 

If a CSP assumes the cloud market has only a single market with one definable utility function 

(e.g., either resource-based or simple linear utility function), the price of “on-demand” can only 

achieve either $898 or $24 profit respectively (shown in Table 5⎯7). In comparison with six 
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market segments with multiple utility functions, the profit margin can reach $2,815. In other 

words, our method of defining utility function can achieve 213% more profit than the resource-

based method and 11,629% more profit than a simple linear while the unit cost drops 50% 

(resource-based) and 71% (simple linear) respectively.  

Notice that the optimal prices of resource-based and our multiple utility functions are not much 

different, but the profit margin is 213% apart. This is because not all customers’ utility functions 

are continuous. Some utility functions are discrete. If the evolution of different charging prices is 

plotted out for the on-demand price model, we can see there is a sharp drop in revenue and profit 

while the unit cost increases dramatically beyond the optimal price for the multiple-utility 

functions (more details in next chapter). This is similar to many retailers to adopt a psychological 

discounting price, such as $0.99 instead of $1 to boost sales volume or to increase their revenue 

in the retail industry. 

We have validated our proposed method of modeling multiple-utility function. The subsequent 

issue is how to apply it in practice. This question leads to simple guidelines for defining a utility 

function. 

5.5 Guidelines of Modeling Utility Functions 

Based on the clustering parameters of six cloud market segments, as shown in Table 5⎯1, the 

type of business application can be estimated, which is mapping to each corresponding cloud 

market segment (See Figure. 5-3). If an analyst has the real cloud operational dataset, this step 

will become much easier. The essential issue is how to define the utility function for different 

customers’ business applications? The basic guidelines can be summarized as follows:  

1. If the business customers host a web site or run e-commerce applications, such as online 

checkout, one of the major value propositions for a customer to purchase more VMs is to 

reduce the queuing time. The process of reducing queueing time has been demonstrated. 

The effective model to describe the cloud customers’ utility value is the power function 

for SME. However, the parameter of the exponent has to be negative to reflect the 

diminishing of return for the marginal utility. Figure.5-10 illustrated the value proposition 

for an e-commerce type of business application 

2.  When the exponent of the power function is equal to one, the power function becomes 

linear. To reflect the diminishing of return for the marginal utility, the coefficient value 
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of the linear variable is negative. The primary driver behind adopting a linear function 

for the VDI application is to increase storage performance and VDI scalability. According 

to [280][319], there are 19 performance metrics, such as “Copy Read Hits,” “Disk Time,” 

“Pool Paged Bytes,” “Network Interface Bandwidth,” etc. Different performance metrics 

might change the utility function parameters. It is dependent on CSP’s targeted customers. 

The best practice is to set up an initial model and then have a fine-tuning of the model 

based on the real operation dataset.  

3. If the exponent of the power function is set to zero, the function becomes a constant within 

the particular range of VM. This function can describe a cluster of VMs to support the 

specified SLA (e.g., 5 nines) for mission-critical business applications, such as CRM 

database backup. The utility function becomes a discrete function because the utility will 

diminish to zero after a certain quantity of VM. 

4. In comparison with the database backup, the DR application needs more VMs to mirror 

the production environment. From a utility function perspective, it means the number of 

VMs is more than the backup application. The above example assumes the maximum 

number of VM. However, the coefficient “” of the function is less than one to reflect the 

possibility of risky disaster that may occur.  

5. Regarding a risk assessment of a customer’s operational cost (e.g., CSP’s offering price 

for cloud resources) and a possibility of workload interruption (e.g., performance), we 

can use the isoelastic (power) utility function to model the business customers’ decision 

in term of acquiring the number of VMs. If the assumption is that the customers prefer to 

constant relative risk aversion (CRRA) for their dynamic content delivery, then the  

value is between 0 and 1. 

6. In contrast, if the customers prefer to take more risks for multiple interruptions of their 

computational process (such as MapReduce application) rather than pay a high price of 

cloud resources, the exponential utility function can be applied, and the value of  is less 

zero. Usually, the type of cloud application often requires massive computing power, and 

job priority is quite lower. 

Throughout this chapter, we mainly use analytic approaches to model multiple utility functions 

based on the scenario of six market segments so that CSP can explore a more addressable cloud 

market share. We can also combine this approach with a statistical approach to define the cloud 

customers’ utility functions if we can access a live operation dataset from a CSP. In comparison 
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with the statistical method, many assumptions of our model can be further consolidated. The 

advantages of combining various methods would provide a much balance view of cloud customers’ 

preference in terms of marginal VM demand because different cloud applications would have 

different utility values. Therefore, a combination of the statistical and analytic methods enables a 

CSP to know more about how much the customers are willing to pay for a particular type of cloud 

resource (e.g., VM instance). 

The idea of the modeling cloud utility function based on the segmented market is to measure 

cloud business customers’ preferences and tastes in terms of less or more VM resources to be 

purchased. In this study, the unit of subjective metrics can be interpreted as the cloud customer’s 

revenue or profit contribution. Practically, many factors may impact the business customers’ 

revenue and profits, such as end-user’ experiences, response time, latency, throughput, 

availability, market environment, etc. Different measurements of CSM may result in a shape 

variation of a utility function. However, the above six utility functions cover some basic cloud 

business applications. 

5.6 Summary 

The issue of how to define the cloud customers’ utility functions from the cloud customer’s 

perspective is vital to any CSP because it would help the CSP to generate adequate cloud price 

models to maximize the profits for its cloud business. Based on the intensive literature review for 

this topic, one way to improve CSP’s business revenue is to determine the cloud market segments 

first, and then to adopt the approach of customer value co-creation.     

Throughout this chapter, we demonstrated how to construct different utility functions via value 

co-creation practice from a cloud customer perspective based on the segmented market. We also 

presented how to derive various utility functions from specified SLA, the response time of a 

checkout system, and degree of risk so that CSPs can build up various realistic customers’ utility 

functions for different market segments. 

To sum up, the modeling method can provide more realistic cloud customers utility functions, 

which is closely tied to the cloud customers’ business applications. In comparison with previous 

modeling methods, our method is based on both market and customer value orientation. It is 



 
 

164 

 

flexible and practical for many cloud practitioners because all utility functions are measured by 

cloud customer revenue or profit values in terms of cloud resource consumption.   
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Chapter 618 

6 Value-Based Cloud Price Modeling 

For Segmented Business to Business 

Market 

Cloud price modeling is a significant challenge for many cloud computing practitioners and 

researchers in the field of cloud economics because the pricing of cloud services is often 

subjective and arbitrary. Many previous attempts mainly focused on a uniform market and used 

existing price models to explain the issue of revenue maximization for cloud service providers 

(CSPs) from an internal rationality perspective but paid less attention to the cloud market 

segmentation for cloud business customers from an external rationality perspective. This study 

considers both aspects of the value propositions. Based on the assumptions of the customers’ 

utility values of different market segments, this research establishes a framework of value-based 

pricing strategy and demystifies the process of modeling and optimizing cloud prices for CSPs to 

maximize its profits. It shows how to create four cloud pricing models, namely: on-demand, bulk-

selling, reserved, and bulk + reserved. It also illustrates how to identify the optimal price point 

of each model to maximize CSP’s profit by genetic algorithm. This chapter demonstrates that bulk 

+ reserved, on-demand, bulk-selling, and reserved can deliver a profit margin of 219%, 173%, 

179%, and 213% for CSPs, respectively. Although bulk + reserved can achieve the highest profit 

margin, it does not mean that CSPs should adopt one model only because the cloud market is 

highly competitive. This chapter demonstrates a novel solution that CSPs can achieve the 

maximum profit with multiple pricing models that are offered to the segmented market 

simultaneously. This Chapter argues CSPs should capitalize on cloud pricing rather than price 
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to gain market competitive advantages. Thus, it provides state-of-the-art cloud pricing for 

segmented business to business market.  

6.1 Introduction 

 alue-based cloud price modeling for different cloud market segments [170] is vital to all 

Cloud Service Providers (CSPs) as it will not only impact on CSP’s profitability but also 

determine their business sustainability [10]. The goal of this study is to develop a comprehensive 

process framework of value-based price modeling that enables CSP to gain more cloud B2B 

market share for its profit maximization. Many previous studies can be considered as either cost-

based or cost-plus models [75], which they were dependent on an assumption of a uniform market 

and paid less attention to the segmented market that carries heterogeneous values of customers. 

Furthermore, their processes of modeling mainly explained how to leverage two or three existing 

models (e.g., on-demand, reserved and spot instance) for CSP to maximize its revenue, which 

was subjective to a cloud capacity constraint that is equivalent to a cost. Subsequently, those 

works can be categorized as “pricing for the internal rationality.” 

The term of “Rational” means a decision is made according to reason or logic. In economics, 

people are assumed to be rational because they will systematically and purposefully do the best 

they can do achieve their purposes, given the available choices [320]. “Internal rationality” 

implies that a decision-maker focuses on internal justification; for instance, a cloud price is 

determined by a capital cost. In contrast, “external rationality” suggests that a decision should be 

made by an explanation of external factors, in which pricing is dependent on customer willingness 

to pay. In economics, it is essential that the pricing model is built upon the assumption that the 

individual is rational because people can be irrational. 

 The questions of how to create a cloud price model based on the business customers’ value 

proposition and how to target the segmented market, especially, business to business (B2B) 

market, have remained either unanswered or incomplete. To overcome this gap, this chapter 

develops cloud price models that include both external and internal rationalities. For the external 

rationality, this model will include two essential external factors, namely, cloud customers’ utility 

values and B2B market segments. For the internal rationality, this model takes consideration of 

CSP’s cloud infrastructure cost. Based on the result of new price modeling, a genetic algorithm 

V 
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(GA) will be applied to identify the optimal price point of each price model for CSP’s profit 

maximization. One of the useful properties of GA is that it can solve a complex profit equation 

for intertwined variables without knowing the details of sub-functions. It is also convenient to 

upgrade the optimal price point of each model so that the process of price modeling can cope with 

the decision variation of cloud business strategy. 

To demonstrate the complete process of value-based cloud price modeling, this chapter exhibits 

and analyze different models, namely cost-plus, on-demand, bulk-selling, reserved (two-part 

tariff), and reserved plus bulk for profit margin comparison. The cost-plus pricing models are also 

known as cost-based pricing, which is often prevalent [10] because “they carry an aura of financial 

prudence… to yield a fair return on overall costs (or resources), fully and fairly allocated.” 

However, these models fail to capture the heterogeneous values of cloud business customers. In 

contrast, this chapter proposed four value-based models that can reflect the value proposition of 

both cloud customers and CSPs. Those models can be considered as “value co-creation” [271] 

[272] because CSPs are seeking a partnership with their cloud customers in the cloud market 

value chain. It shows these models allow CSPs not only to satisfy customers’ needs but also to 

achieve a better profit margin in comparison with the cost-based model. Overall, this chapter 

provides a process solution that can measure both CSPs’ profit and customers’ utility under a 

single currency, which is customers’ business revenue contribution.  This revenue contribution 

can be defined by different cloud customer service metrics (e.g., increase sales, customer retention, 

investment efficiency, maintain a specified SLA, reduce checkout queueing time, etc.). To better 

illustrate the entire process modeling, this chapter exploits the following business scenario to 

explain the details. 

6.1.1 Background 

Assume a group of decision-makers of a hosting firm decide to expand its hosting business into 

the cloud B2B market. It implies that the firm wants to become a new CSP to compete with other 

existing CSPs (either global or local CSPs). If the initial investment budget (both capital and 

operation expenditure) and business goals (targeted revenue, profit, and market) have been 

approximately identified, the decision-makers want to know how to achieve the business goals. 

There are two fundamental questions must be clarified: “How does the firm form the right pricing 

strategy for the identified business goal?” and “how does it decide the adequate cloud price 

models along with optimal price points, sales volumes, and unit cost to achieve the maximum 
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profit?” These questions will help the CSP to divert its limited resources (investment budget and 

expertise) to serve its targeted customers better so that it can maintain its cloud business 

profitability and sustainability. There are many possible pricing strategies to reach the business 

goal, namely cost-based, market-based, and value-based pricing. As Hinterhuber [36] indicated, 

both cost-based (37%) and market-based pricing (44%) are much popular than value-based 

pricing (17%) shown in Figure 2⎯5. T. Nagle [10] observed that historically, cost-based pricing 

is the most common pricing strategy in most industries because “in theory, it is a simple guide to 

profitability; in practice, it is a blueprint for mediocre financial performance.” Unfortunately, the 

issue with the cost-based pricing strategy is when there is strong market demand, the average unit 

cost will decline, and the price reduction should follow because the profit margin is determined 

by the unit cost (e.g., 30% ~100%). Conversely, when the market demand becomes weak, the 

average unit cost will go up, and the price should be raised. It contradicts a sensible pricing 

strategy in terms of market response. 

The alternative way of cost-based pricing is either market-based (or competition-based) or 

value-based (customer-driven) pricing. Market-based pricing is to set a cloud service price based 

on the current competition condition of supply and demand. However, competition-based pricing 

could mislead CSPs to see market-based pricing as a zero-sum game, which what the customers’ 

gain is the CSP’s loss [201]. They could believe they do not influence price because market-based 

pricing is a competitive behavior of the market. In contrast, value-based pricing can offer 

customer needs and create real value to satisfy those needs of business customers because it can 

accurately quantify the customers’ utility values. 

Nonetheless, the definition of value-based pricing can be subject to a wide range of 

interpretations. It is dependent on the context of the content. The term is often defined as a pricing 

process for an individual’s preference (ordinal utility [222]) that aims to the B2C market but,  this 

chapter of value-based pricing focuses on the marginal value (cardinal utility) that aims to the 

B2B market. It implies the process of capturing a portion of CSP’s economic impact on a target 

cloud customer’s business [201]. In other words, a CSP is to develop and deliver the cloud service 

values for the cloud customer’s business success and then seek a reward for the distributed 

services in the B2B market. 

In general, the B2B market emphasizes the entire value chain and partnership development. The 

purchasing decision is not made by single or few individuals, but by more than dozens of 
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stakeholders for the cloud business values that CSP can offer. Therefore, value-based pricing is 

one of the effective pricing strategies for the cloud B2B market. The cloud services can influence 

the customer’s business in terms of increasing their profit margin (cardinal utility), which is to 

achieve higher business revenue and lower the operation cost.  

Overall, the processing framework of value-based pricing strategy includes 1) identifying target 

customers and workload patterns that are related to each cloud market segment, 2) quantifying 

cloud customer utility functions that are associated with service values and cloud service metrics, 

3) establishing various cloud pricing models based on the specified customer’s utility functions, 

4) identifying the optimal price points for CSP to achieve the total maximization profit from all 

market segments. Figure 6⎯1 presents this processing framework of price modeling of all 

elements. 

Figure 6—1 The Scope of the Problem 

Due to the details that have been already included in chapters 4 and 5, this chapter will only 

focus on developing cloud pricing models (element 3) and determining the optimal price points 

(element 4). However, this chapter will include brief information on the cloud market 

segmentation (element 1, shown in chapter 4) and customer utility functions (element 2, shown 

in chapter 5).  

6.1.2 Cloud Market Segmentation  

The purpose of cloud market segmentation is to gather cloud customers’ usage patterns so that 

a CSP can work out a good pricing strategy to anticipate a rapidly changing cloud market with 
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enough resources to serve its targeted business customers well for its profit maximization. In fact, 

Yankelovich [169] articulated the detail objects of market segmentation: align with the company’s 

strategy, specify where the revenue and profit come from, articulate customer’s business values, 

Focus on actual business behaviors, make sense to the firm’s executive team and the board, and 

to be flexible to quickly accommodate or anticipate market changes. Based on these market 

segmentation criteria, chapter 4 has developed a novel solution that allows CSP to identify the 

cloud B2B market segment quickly. The solution is a combination of hierarchical clustering (HC) 

with time-serial (TS) methods based on two datasets, which one is downloaded from Google 

public dataset [178] and the other is extracted from a local hosting firm for its hosting services. 

From Google’s dataset, we can develop six potential cloud market segments based on the number 

of parameters of cloud customers’ usage patterns, such as job priority, number of cores, memory 

size, and AMD’s virtualization workload guidelines [276]. This number of cloud market segments 

is within the range of McDonald’s suggestion [172], in which the suggested number of the market 

segment is between 5 and 10. 

The results of cloud market segmentation are shown in both Figure.5⎯2 and Table 5⎯1. Once 

the cloud market segments have been quantified, the next issue is how to develop the cloud 

customers’ utility functions for the defined cloud market segments (Table 6⎯1) 

Table 6—1 CLOUD CUSTOMERS UTILITY FUNCTIONS AND MARKET SEGMENTS [19] 

Segment Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Total 

Average Job 

Priority [20] 
1 0 2 0 3 3  

Average number 

of Cores 
2 23 1 1 13 3  

Average number 

of Memory 
7 6 6 3 102 86  

Perentage 30.1% 23.0% 10.0% 26.3% 9.1% 1.4% 100% 

Predicted Sales 

Vol [21] 
269 205 90 235 81 13 893 

Estimated Possible 

Workload [22 ] 

Static or 

Dynamic 

Static or 

Dynamic 
Static HA HA Backend [23]  

Example of Apps 

Web Hosting 

Server & Online 

checkout 

Dynamic 

Content 

Delivery 

Virtualized 

Desktop 

Infrastructure 

Database 
Server 

Disaster 

Recovery & 

BI 

Backup, 

Logfile 

process 

 

 

 

19 HA = High Variability, DR= Disaster Recovery, VDI = Virtual Desktop Infrastructure 
20 In this case, “job priority” carriers more weight for the decision of cloud workload pattern[233] 
21 Sales Volume is estimated by time serial (TS) predication without consideration of probability, which will be done in separated 

research work.   
22 The possible workload estimation is based on the recommendation of AMD’s paper and cloud design patterns [264][233] [276]  
23 Backend type of workload patterns might also include business intelligent (BI) or log data analysis[276] 
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6.1.3 Modeling Cloud Customers Utility Functions 

The goal of modeling cloud customers’ utility function [261] is to quantify the cloud customers’ 

subjective preferences (or utility values) that are subject to the cloud resources acquired. 

Practically, the subjective preferences concern the customers’ business applications for the 

revenue contribution, which can be measured by the operational metrics [285]. 

The meaning of utility is quite ambiguous because it consists of different connotations. 

Historically, the implication of utility was derived from utilitarianism. It means a subjective 

experience and satisfaction. It is known as the utilitarian tradition. Later, this term has been 

extended to the contractarian tradition, which emphasized social welfare [321]. As a result, the 

contemporary meaning of utility has three connotations: 

1) The economic utility refers to subjective satisfaction and happiness. “It is an alternative way 

to describe preference and optimization [320]. The utility value in this context is measured 

by different preferences under information uncertainty in terms of risks and wealth. 

2) Another implication of utility is an essential infrastructure service for the public. Sometimes, 

it is also called as “public utility,” such as water, electricity, and telephone service that are 

supported by some incumbent providers. It is associated with the term of social welfare 

3) “Utility” also refers to the utilization rate. It is measured by a percentage value between 0 and 

1. For example, the utility of a network means its utilization rate. It is a concept of efficiency. 

It is different from the economic connotation of utility that is measured by preferences. 

However, there are many previous works that assume both economic utility and utilization rates 

are the same. The utilization rate can be included in a cloud service metric, but it is not the same 

as the utility value in an economic sense. Economically, a business customer’s utility represents 

the amount of business revenue or profit that is contributed by the number of VMs (e.g., wealth) 

that can support business application workloads. For example, the utility of mission-critical or 

high availability (HA) application workloads (e.g., sensitive data, liability if breaded or deleted) 

will be totally different from the utility of the backend type of workloads, such as MapReduce 

[285]. The end-users will pay a different price for different applications. For example, the 

MapReduce workload can be interpretable. The question is, how we can use a single currency to 

reflect various utility values and align with CSP’s profitability? To solve this issue is to unify all 
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customers’ utility values and CSP’s profit into a measurement unit, which is cloud customers’ 

business revenue or profit. This is also known as value co-creation. The benefits of value co-

creation are that CSPs can reduce investment risk and maintain cloud customer loyalty [303] and 

uphold CSP’s profitability and business sustainability. The modeling process of quantifying 

customers’ utilities is to establish a relationship between the customer’s business profit 

contribution (a dependent variable) and the number of VMs (independent variable) required.   

Based on different characteristics [288] of the cloud business applications, we organize these 

utility functions into three categories: 

• Utility functions (Segment 4 and 5) are defined by High Availability (HA) characteristics 

[220] [263] [291] 

• Utility functions (Segment 1 and 3) are determined by response time characteristics [286] 

• Utility functions (Segment 2 and 6) are identified by risk characteristics (risk-averse, risk-

seeking, and risk-neutral [285]) 

The process of how to quantify these utility functions has been presented in chapter 5. Table 

5⎯4 highlights the result of six utility functions (assumptions of utility functions presented in 

Section 6.3.2.1). Now, the subsequent questions are how we can generate various price models 

for a CSP to capture more cloud market share and how to identify the optimal price point of each 

model for profit maximization? These problems will be solved in this chapter. 

6.1.4 Problem Definition and Solution 

By microeconomics [7], the problem of cloud business profit can be formalized as the total 

business revenue minus the total cost (Equation 6-1 and 6-3). The total business revenue is 

dependent on a sales price, an average unit cost, and sales quantity (or market demand). Intricately, 

a sales quantity is a function of a price, and a price is an inverse function of the sales quantity. 

Mathematically, it can be presented in the interdependent relationship in Equation 6-2.  

 𝜋[𝑝] = 𝑅[𝑝] − 𝐶[𝑄(𝑝)] , 𝐶[𝑄(𝑝)] = 𝑐𝑢[𝑄(𝑝)] ∗ 𝑄(𝑝) (6 -1) 

 𝑅[𝑝] = 𝑝 ∗ 𝑄[𝑝];  𝑝 = 𝑄−1[𝑝] (6-2) 

 𝜋[𝑝] = 𝑄[𝑝] ∗ (𝑝 − 𝑐𝑢[𝑄[𝑝]]) (6-3) 
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where 𝜋[𝑝] is a cloud business profit for a CSP, 𝑅[𝑝] is a cloud revenue, 𝐶 [𝑄(𝑝)] is the total 

cost, p is a unit price and 𝑐𝑢[𝑄(𝑝)] is the average unit or marginal cost which is also a function 

of the total sales quantity 𝑄(𝑝).  

The issue is how to achieve the maximum profit by identifying the optimal price point (Equation 

6-4). While the equation appears evident and straightforward, it is difficult to find a clear solution 

because of both functions 𝑄(𝑝) and 𝑝 = 𝑄−1(𝑝) are generally unknown 

 𝑝∗ = argmax
𝑝

  𝜋[𝑝] (6-4) 

The primary challenge is that the relationship of 𝑝 = 𝑄−1(𝑝) , 𝑐𝑢[𝑄(𝑝)] , and 𝑄(𝑝)  is 

intertwined. Moreover, these equations will become progressively more complex if various 

pricing models are introduced. 

Previous works solve the problem by excluding the cost component from a profit equation 6⎯1 

[55] or by making some restricted assumptions [56] [252], or by assuming a uniform market that 

is derived from -fair utility [80]. Others assume a price is a simple linear equation based on the 

AWS’ historical data within a coefficient band [61]. Still, others concentrate on cloud spot 

instances [56]. Although their works have made excellent progress in the context of cloud price 

modeling for the B2C market, many critical aspects of modeling remain unanswered. This chapter 

provides the solution for the issues (elements) of 3 and 4 shown in Figure.6 -1, and the solutions 

to these issues encapsulate the complete process of value-based pricing strategy. 

6.1.5 Contributions 

By providing the above solutions, this chapter has made the following contributions: 

• To the best of my knowledge, it is the first time to create various cloud price 

models based on market segmentation theory and the number of utility functions 

that are defined by cloud customer business impacts. 

• This chapter has clearly illustrated how to establish four value-based price 

models according to the defined firm’s business strategy 

• By leveraging the existing retail pricing experiences (such as Costco), this study 

develops a bulk-selling+ reserved model for a CSP to achieve the highest profit 

margin. 
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• This chapter also illustrates the relationship between bulk-selling and bundle 

services. By developing various cloud pricing models, CSPs have more pricing 

options to capture more profit cross various market segments.   

• This chapter demonstrates how to apply GA to identify the optimal price point for 

each price model. 

• The price models are dependent on both internal (CSP’s cloud infrastructure costs) 

and external (cloud market segments and customer utilities) rationality.    

• This chapter presents a novel and practical solution with the framework of price 

modeling so that many practitioners can plug in their datasets and then build 

their price models based on the defined company’s business strategy. 

• Most importantly, this chapter shows how to calculate the total revenue and profit 

based on different pricing models that are offered to various customers 

spontaneously. 

6.1.6 Chapter Organization  

The rest of the chapter is organized as follows: Section 6.2 provides a brief overview of the 

literature regarding cloud price modeling. Section 6.3 formalizes four value-based pricing models 

with various assumptions and constraints. Section 6.4 presents concise information about genetic 

algorithms (GA) and how to determine the GA parameters for the experiments. Section 6.5 shows 

the experimental results. Section 6.6 offers a detailed analysis and discussion of cloud price 

modeling and optimizing. Section 6.7 provides a summary of this chapter. 

6.2 Related Work 

In light of the value theory or axiology [100], this chapter approximately classifies the cloud 

price models into three basic pricing categories, namely value-based pricing, market-based 

pricing, and cost-based pricing. The value-based pricing is often considered as a subjective view 

of the cloud pricing from a demand-side because it concerns the measurement of customers’ 

subjective experience or preferences. The cost-based pricing model is regarded as an objective 

view of cloud pricing from a supply-side because it is built on the physical quantity of unit cost. 

The market-based pricing is an interactive view of both value-based and cost-based pricing for 

the equilibrium of supply and demand in the marketplace. According to this classification, it is 
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easy to identify most of cloud pricing models can be considered as either market-based or cost-

based models [293]. 

For example, Macias et al. [250]used a genetic algorithm method determining a cloud price. 

Their model can be classified as market-based pricing. The study aims to offer a solution to a 

competitive price for the negotiation of the services market. However, they recognized their work 

has some limitations. They believe “it is difficult to establish a profitable pricing function.” This 

work shows how to overcome this limitation and bridge this gap in the later sections. Although 

Macias et al. [250] made some progress in term of modeling the cloud utility function for SLA 

metrics, one of the critical issues has remained unsolved, which is how to include the demand 

side’s utilities or cloud customers’ business values for CSPs to generate various cloud pricing 

models and to achieve a partnership with cloud customers [304]. 

Kilcioglu et al. [251]present a calibrated benchmark model for cloud pricing based on empirical 

data. Their model can also be categorized as one of the market-based pricing models. Kilcioglu 

et al. [251] explained the market trends of the cloud price and higher profit margin of AWS based 

on the quality competition assumptions under both monopoly and duopoly market environment. 

The chapter showed the utility function of the cloud customer consists of three elements, 

subjective values, delay sensitivity, and service quality. 

It was the first time that the demand side’s utility function had been defined as a function of 

both subjective values and objective costs [251]. The paper made a good contribution to the 

theoretical modeling of price-quality competition in both a monopoly and duopoly competition 

market. Nevertheless, many problems are still unanswered, such as the determination of 

subjective values of utility functions for the cloud B2B market. 

Aazam et al. [252] established a resource-based price model by cloud customer’s historical 

pricing record for digital media stream workload across an inter-cloud environment (via cloud 

brokers). Although the authors made a great effort to build a model equation for inter-cloud 

pricing, many critical values of the equations are restricted to some particular cases, such as a data 

stream type of workload. However, the authors provided a framework for modeling and analyzing 

AWS on-demand and reserved instance pricing based on historical observation. 

Yeo et al. [253] argued that automatic metered pricing model for a utility computing service 

(computing service as a commodity) could achieve a better revenue result in comparison with 
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fixed pricing, fixed-time, and Libra [255] plus dollars $ [256] (a pricing model based on the users’ 

requirements). The paper presented a compelling pricing model for self-justification, but more 

experiments are required, as the authors indicated. Xu et al. [80] presented a similar idea and 

developed various pricing models (such as the 1st order discrimination, resource throttling, energy 

(or cost) saving and SLA charge) to maximize CSP’s revenue that is subjective to CSPs cloud 

infrastructure capacity and customers’ surplus value. The authors argued that the usage price 

depends on the utility level distribution and the elasticity parameters  on the base of their 

theoretical proof for Theorem 1 (see Equation 6-5 by leveraging KKT condition[322]) Although 

their utility connotation was referred to economic utility, this  was derived from the -fair 

network utility rather than a customer’s preference. They concluded that pricing discrimination 

had no effect on CSP’s revenue maximization 

 𝑝𝑣 =
𝜆

1 − 𝛼
 (6-5) 

This conclusion contradicts Claycamp and Massy’s [170] theory of market segmentation and 

McDonald’s, the practical solution of market segmentation [172]. There are some gaps in terms 

of Xu’s work. 

1. The economic sense of isoelastic utility function has different meanings of -fair 

network utility because the earlier one is to measure a subjective experience and the 

latter one means the efficiency of utilization rate. 

2. The optimal price: 𝑝𝑣  is dependent on the variable of Lagrange multiplier λ, which is not 

defined.  

3. As a result, the -fair parameter is not inversely equal to price elasticity of demand of 

an isoelastic utility function. 

 𝐸𝑑 =
𝜕𝑄(∙)/𝑄(∙)

𝜕𝑝/𝑝
 (6-6) 

where 𝑄(∙) is the quantity of the demand good? The -fair utility means a priority of time 

scheduling while the  of isoelastic utility means the degree of risk. As Xu et al. [80] indicated, 

their work was an extension of Hande et al. [177] study of pricing access networks with capacity 

constraints for revenue maximization. 

Before Xu’s paper, Joe-Wong and Sen [113] had also proposed a similar solution to a cloud 

pricing strategy that is subjective to the cloud capacity. The root of their pricing strategy was also 
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derived from the access networks. The purpose of their research work was to develop an analytic 

framework to balance the fairness (welfare concept) of resource priority and CSP’s revenue 

maximization by various pricing models. Although there were some differences between them 

(e.g., Xu’s work included a probability of utility level distribution, and Joe-Wong discussed 

fairness), both studies assumed there was a uniform market and corresponded to a -fair utility 

function. All studies relied on the Lagrange multiplier or Karush -Kuhn-Tucker (KKT) conditions 

to identify the optimal price point, which is subjective to the specified limited capacity. Ultimately, 

these works used the analytic tool to prove there is an optimal price point. 

Recently, Shahrad et al. [118] proposed an incentive pricing solution by balancing limited cloud 

capacity and demand peak time. Shahrad’s core idea is to leverage the cloud price as an incentive 

to regulate the usage behavior of cloud business customers, which means they would allocate 

cloud resources by themselves according to CSP’s price variation. It is a self-regulate idea to 

eliminate its own demand during a peak time and fill its workloads during a valley time. The 

customers’ utility function is the same as -fair one. 

All these studies assumed one type of utility function that is -fair network utility for cloud 

customers. All papers assumed that economic utility and the utilization rate of a network are 

equivalent. In order to achieve maximum profit, the objective function must be differentiable. In 

contrast to the -fair network utility function, Chen et al. [69] proposed a utility function that is 

driven by the cloud customer’s satisfaction in term of price and response time shown as follows: 

 𝑈(𝑝, 𝑡) = 𝑈0 − 𝛼𝑝 − 𝛽𝑡 (6-7) 

where  𝑈0 is the maximum utility value and both 𝛼 and 𝛽 and constant coefficients. Price 𝑝 and 

response time 𝑡  are two independent variables to reflect different levels of utility value or 

customer satisfaction. If both 𝑝 and 𝑡 is equal to zero, it means the customer has maximum utility 

value. This is a linear utility function. The response time can be represented in price (or a cost) 𝑝 

because if CSP adds more resources, e.g., VMs for workload process, the response time 𝑡 can be 

reduced. In addition to this issue, the paper did not give the optimal price point between CSP’s 

profit margin and cloud customers’ surplus values (customer preferences). 

In comparison with creating a new pricing model, other research works [55] [63] [61] intended 

to extend the current cloud pricing models offered by different CSPs for profit maximization. Xu 

et al. [56] combined both reserved and spot instance prices that allow a CSP to maximize its 
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revenue and profit through a dynamic cloud pricing model. The work was derived from empirical 

observation of the historical price of Amazon Web Services (AWS). The paper made 

contributions to an alternative pricing model for a spot pricing scheme. Following a similar line 

of reasoning, Alzhouri F. and Agarwal A. [275] constructed a theoretical or dynamic pricing 

scheme for CSPs to maximize their revenue via a solution of a dynamic programming approach. 

The potential issue of their revenue maximization without consideration of the average unit or 

marginal cost would become economically unsustainable. Toosi et al. [55] consider all three types 

of pricing models, namely on-demand, upfront reserved, and a spot for CSP’s profit maximization, 

but the unit cost of cloud resource remains untouched [254]. Brynjolfsson et al. [305] argued that 

this kind of cloud pricing could be “overly simplistic … blinding us to the real opportunities and 

challenges of cloud computing.”  

On the other hand, Ben-Yehuda et al. [61] suggested the price of AWS spot instance is not 

driven by some market mechanism or an auction approach rather than it is randomly generated 

from a tight price range that has a dynamic hidden reserved price mechanism. This indicates that 

the price mechanism of AWS spot instance (2 minutes notification) is similar to Google’s 

preemptible VM instance (80% discount but terminated after 24 hour execution time with 30-

second notification), and Azure low-priority VM or eviction instance (with 60% (for Windows)-

80% (other OS) discount, excluding B-Series VMs, 30-second notification), which means the spot 

price has either implicit or explicit bottom-line. The problem with these instances (or VMs) is that 

both service availability and capacity cannot be guaranteed. Moreover, many new service features 

are excluded. Perhaps, MOZ’s [73] business experiences [24] in 26-Sep-2011 provided a good 

lesson for many cloud business customers. The incident suggests that the spot instance could be 

an unreliable cloud resource for some mission-critical applications. Overall, the previous works 

can be summarized in Table 6⎯2  in terms of main contributions, advantages, and gaps  

  

 

 

24 MOZ reserved bid for AWS spot instance was $2/per instance for more than 3 years 
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Table 6—2 SUMMARY OF SOME PREVIOUS WORKS 

Category of Pricing 

Models 
Main Contribution Advantages Potential Gaps 

Toosi et al.’s Heuristic 

Algorithm of pricing model 

[55] (2014) 

It combined three different pricing 

models for profit maximization for CSP 

profit maximization 

Consider all 

available pricing 

models at that time 

Excluded cost 

component.   

Ben-Yehuda, et al. 

Statistical regression 

(2013)[61] 

It provided a rough estimation of the 

AWS pricing model for spot instance 

Proposed alternative 

solution for the pricing 

model 

Observation of 

historical records. Lack of 

rationality 

Hande et al. -fair utility 

model [177] (2010) 
It introduced one of the utility 

functions for the pricing model 

Highlight price 

elasticity and utility 

function 

Ambiguity definition of 

Utility and pricing 

Elasticity 

Xu, Hong, and Baochun Li 

[80] -fair utility model  

(2013) 

It introduced the probability density 

function for cloud customer demands 
Show KKT Proof 

Contradict to Market 

segmentation theory 

Joe-Wong et al. -fair utility 

model [113] (2012) 
It offered a mathematics framework 

for cloud pricing 

Introduced multiple 

pricing models for 

cloud pricing 

The only proof of the 

optimal price without 

consideration of market 

Shahrad et al. [118], 

Cobb-Douglas → -fair 

utility  model (2017) 

It proposed a novel idea of increasing 

cloud data center capacity utilization 

rate while to maximize CSP’ profit 

Show Euler 

homogeneous proof 

Utility function has to 

be differentiable 

Chen et al.Customers’ 

Satisfaction linear Utility 

model [69] (2011) 

It introduced a linear utility function 

for cloud pricing 

It included both 

price and SLA level 

into the utility function 

Not clear in term of the 

optimal solution for CSP’s 

profit maximization  

 

As Kash, I A. and Key P. B. suggested [306], the spot instance price model has been attracted 

much attention in the academic world for cost-saving. Despite that, “the right answer remains 

unclear” [306]. One of the reasons is many price schemes are restricted to a particular case or 

application — for example, Jain et al. [88] suggested a value-based price model by leveraging the 

spot instance discount, but the model is only designed for batch workloads. In other words, 

different models could have different purposes with different functions. To visualize all pricing 

models with different purposes and functions, Table 6⎯3 highlights these differences among 

different models proposed by previous studies. 
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Table 6—3 DIFFERENT PRICING MODELS COMPARISON 
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Macias et al. 

[250] 
√   √  √   √ √ 

Kilcoglu et 

al.[251]  
√ √ √ √   √ √ √ √ 

Aazam et al. 

[252] 
√       √   

Yeo CS. et 

al.[253]  
 √  √  √ √ √ √  

Xu et al.[80]  √ √   √   √  

Hande et 

al[177]  
√ √ √   √   √ √ 

Joe-Wong et 

al. Error! R

eference source 

not found. 

√ √ √   √ √ √ √  

Shahrad et al. 

[118]  
√ √ √   √ √ √ √ √ 

Chen et al.[69]  √ √ √   √ √ √   

Toosi et al. 

[55]Xu et al. [56] 
√     √   √  

Alzhouri et al. 
[275]    

√  √   √   √ √ 

Ben-Yeuda et 
al. [61] 

√   √   √  √  

Kash et al. 
[306]  

√ √       √  

Jain N [88]  √  √     √  

This model √ √ √ √ √ √ √ √ √ √ 

 

Although many researchers in this field have made excellent contributions to cloud economics, 

there are still many questions remaining unanswered: such as How to generate more price models 

for various cloud applications that can capture more business market share? How to practically 

identify the optimal price point for each model? How to translate multiple dimensions [306] of 

cloud service metrics (utility values) into a single currency between cloud customers and CSPs? 

How to address CSP’s concerns about the cloud B2B market?  How to create a value co-creation 

solution for both cloud customers and CSPs? How to determine the maximum profit with multiple 

pricing models in the segmented market? This chapter, together with chapter 4 and 5, provide a 

completed solution to these questions. 

6.3 Cloud Price Modeling and Model Assumptions 
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6.3.1 Market Assumptions 

According to the theory of the B2B market [273], the cloud B2B market is a relational business 

market because it emphasizes building a mutual value-generation relationship or a partnership 

with business customers. It requires long-term relationship development. In contrast, business to 

consumer (B2C) market mainly is focusing on the final transaction between the firm and end-user 

[273]. From this perspective, this chapter will first consider the cloud price models based on the 

assumption of a monopoly market [7] because the B2B market is much challenging for other 

market competitors to access the existing market [274]. Furthermore, many innovative 

characteristics of cloud services are often new to the current market. Chapter 3 provides a solution 

for establishing a cloud price model for innovative cloud service characteristics, which have no 

existing market. This is not a prohibitive assumption.  

In addition to the monopoly assumption, this chapter also assumes the cloud market is not a 

single and integrated market rather than the segmented market because cloud customers have 

heterogeneous cloud applications. This assumption allows CSP to capture more cloud market 

share. Cloud market segmentation is to group personalized prices for heterogeneous demands so 

that the CSP can achieve the best profit margin within its resource capacity [170]. One of the 

typical examples of market segmentation in the service industry is the airline ticket price. The 

airline companies often classify their market into three or four segments, that is the 1st class, 

business class, economy, and cheap flights with different airfare prices and service conditions. 

Similarly, the cloud market can be grouped into different segments based on the different 

characteristics of cloud services. 

6.3.2 Assumptions of Quantifying VM Resources 

Following the segmentation result and the virtual server workload guidelines [276] [277], this 

work can approximately estimate the workload pattern of each cloud market segment, such as 

web hosting, high availability, backend data process, disaster recovery, content delivery, etc. [309] 

as shown in Figure 6⎯2. The number of VM quantity for one type of VM is equal to 𝑞 , such as 

Amazon Web Service’s instance of m4 extra-large or Google’s ni-highmem-16. This quantity 

may vary from customer to customer. It is dependent on a type of VM instance and cloud business 

application. Based on consideration of all these factors, this chapter sets this maximum number 

is equal to 12 (𝑞𝑚 = 12) because we mainly focus on the small and medium enterprise (SME) 
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customers so that this maximum quantity is justified for a typical SME’s application. This number 

can be either increased or reduced. It is just a matter of a scale. 

6.3.2.1 Pricing Models Assumptions 

6.3.2.1.1 Cost Assumptions 

Along with the cloud market assumptions, this chapter also assumes the initial investment budget 

or Capex for one type of VM. The Capex and Opex ratio is 1:4. This ratio is based on local 

empirical data. The Capex is estimated by the latest average price of server hardware that is 

offered by major vendors, such as HP (HP Enterprise DL380, 2RU), Dell (PowerEdge R730), 

IBM (8203-E4A5634), and Cisco server (UCS M5). This study also includes some cloud data 

center installation costs [75] , which are shown in Table 6⎯4. 

Figure 6—2 A Typical Architecture of Web Application Hosting 
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Table 6—4 Cost Assumptions 

Capex/per 

hour 

Opex /per 

hour 

Capex & 

Opex Ration 

Number of 

Physical Servers 
Configuration 

Number of 

VMs Capacity 

$325 $1,300 1:4 500 - 600 
8 or16 

cores/per server 

9,000 – 

12,000 

Note:  

• Assumptions of investment Budget  or Capex C = $3 million 

• The number of physical servers 500 – 600 

• The configuration per server is either 8 – 16 cors/ per server 

6.3.2.1.2 Utility Function Assumptions 

Table 6⎯1 provided the cloud market segment and predicted sales quantity, but they do not tell 

the cloud customer utility function of each market segment. To optimize the cloud pricing models, 

the cloud customer utility function for each cloud market segment should be defined. According 

to Krugman and Wells [224], different individuals would have different utility functions because 

different people would have different tastes and preferences. The essence of a utility function is 

to describe how people consume various quantities of goods in terms of their subjective 

preference and tastes (or utility) in a less or more rational way.    

If the assumption is for CSPs to target the SME customers and focus on building mutual value 

generation, the modeling process is to define how their cloud resource (VM) can create SME’s 

business profits. The effective modeling is that CSP should translate various cloud service metrics 

(Response time, SLA, end-users retention, and leverage investment) into a single currency 

(business profit), which is also in line with CSP’s business value proposition. As a result, the 

cloud customer utility function is defined by the business customers’ profit gain (surplus value) 

and cloud resources. The following equations are described their relation: 

 𝐵𝑖 = 𝐾𝑖 (∑𝑢𝑖[𝑞]

𝑞𝑚

𝑞=1

) ,       𝑖 = 1⋯𝑆 (6-8) 

   

 𝐾𝑖 = 𝐵𝑖/(∑𝑢𝑖[𝑞]

𝑞𝑚

𝑞=1

) ,     𝑖 = 1⋯𝑆 (6-9) 

where 𝐵𝑖  is a yearly data. It represents customer business revenue or profit. If the Australian 

Bureau of Statistics (ABS) data for small businesses [237] is applied, a certain profit range for 

the targeted SME can be specified. For example, if the average net profit is approximately $39,000 

and $90,000, the values of 𝐵𝑖 across all segments can be calculated, as shown in Table 6⎯5. 
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𝑈𝑖[𝑞]  is a customer’s utility function for the “i” market segment. “q” is the quantity that the 

customer will purchase. 𝐾𝑖 is the scaling coefficient that reflects the utility level that is associated 

with a cloud customer’s business profit. Further details will be illustrated in Figure 6⎯3. 

Table 6—5 Cloud Customer Surplus Values in Six Market Segments When  ∗=$1 

Customer’s Proft or Surplus 𝑩𝒊 41,000 90,000 80,000 80,000 80,000 39,000 Total 

Utility Functions  𝑼𝒊(𝒒) 𝑼𝟏(𝒒) 𝑼𝟐(𝒒) 𝑈3(𝑞) 𝑈4(𝑞) 𝑈5(𝑞) 𝑈6(𝑞)  

𝑞 = 1 $1.50 $0.00 $1.50 $1.50 $0.75 $0.01  

𝑞 = 2 $0.75 $0.21 $1.36 $1.50 $0.75 $0.03  

𝑞 = 3 $0.50 $.38 $1.22 $1.50 $0.75 $0.05  

𝑞 = 4 $0.38 $0.54 $1.09 $1.50 $0.75 $0.08  

𝑞 = 5 $0.30       

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

𝑞 = 11 $0.14 $1.39 $0.14 $0.00 $0.75 $1.07  

𝑞𝑚=12 $0.13 $1.50 $0.00 $0.00 $0.75 $1.50  

Customers Market Demand 𝐷𝑖 269 205 90 235 81 13 893 

Cloud Workload Patterns 

Web 

Hosting 

Server 

Content 

Delivery 

Virtualized 

Desktop 
HA 

Disaster 

Recovery  

Log 

processing 
 

6.3.2.1.3 Risk Assessments 

Risk assessments refer to a utility function is defined by cloud customers’ preference for 

different levels of satisfaction for their business profit gain in terms of their attitude towards risk 

to vary with the amount of VM resource. For example, according to the cloud customers’ usage 

pattern, the 2nd market segment is for the cloud customers to deploy the web content. It is a 

network-oriented utility function. According to [80] [177] [279] [292], the iso-elastic utility 

function can describe the customers’ utility in term of the cloud resources requirement (Equation 

6-10 and Equation 6-11):  

 𝑈2[𝑞] = 𝐾2𝑢2[𝑞] , 𝑢2[𝑞] =
𝑞1−𝛼 − 1

1 − 𝛼
 α ∈ (0,1) (6-10) 

 𝐾2 = 𝐵2/(∑𝑢𝑖[𝑞]

𝑞𝑚

𝑞=1

) = 𝐵2/(∑
𝑞1−𝛼 − 1

1 − 𝛼

𝑞𝑚

𝑞=1

) , α ∈ (0,1) (6-11) 

where “q” is the number of VMs, and  is the constant coefficient, which is set to be 1/3 [80]. 

The coefficient  is also to measure the degree of relative risk aversion. In this case, the cloud 

customers’ utility value is assumed to be dependent on the measurement of constant relative risk 

aversion (CRRA) [283] for content delivery applications workload. Along the same line of 
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reasoning, the customers’ utility function in the 6th market segment can also be created as an 

exponential function [222]. 

 𝑈6(𝑞) = 𝐾6
(1 − 𝑒−𝛼𝑞)

𝛼
, 𝛼 ≠ 0  (6-12) 

Here, the assumption is that the customers of this segment become risk-taking because the 

application (e.g., MapReduce) workload can be interrupted. The reliability and capacity guarantee 

of a cloud resource is not a significant issue. Cost-saving becomes the main priority. Therefore, 

the coefficient  is negative. 

6.3.2.1.4 Utility Functions Based on High Availability 

The high availability (HA) business applications require the mission-critical cloud 

infrastructure. If the assumption of the downtime is less than 5 minutes / per annum, then the 

service level agreement (SLA) must be higher than five-9s (or 99.999%). Based on Markov Chain 

analysis [310], the number of VMs to delivery the HA cloud application can be specified. If the 

VM quantity is more than this specified number, the utility value will be diminished to zero. 

Moreover, all VMs have the same utility value because these VMs guarantee SLA delivery 

together. Consequently, the utility function of the 4th segment can be defined as follows: 

 𝑈4(𝑞) = { 
𝐾4,         1 ≤ 𝑞 ≤ 𝑘
0,          𝑘 < 𝑞 ≤ 𝑞𝑚

  (6-13) 

where 𝑘 is the specified quantity of VM to guarantee cloud applications’ SLA. 𝑞𝑚 is the largest 

quantity that customers will purchase [284]. Similarly, the utility function of the 5th market 

segment can also be created. The difference between the 4th and 5th segments is the customers of 

the 5th segment might have its own existing cloud infrastructure. They only purchase specific 

cloud capacity if the price is below a specified threshold level 𝜃 in comparison with their own 

infrastructure costs. 

 𝑈5(𝑞) = 𝜃𝐾5, 1 < 𝑞 ≤ 𝑞𝑚 (6-14) 

6.3.2.1.5 Utility Functions Based on Queueing Time 

In addition to the mission-critical workload applications, the utility function for the e-

Commerce can also be modeled by a Markov Chain process. The basic idea of modeling the utility 

function for the 1st segment is to reduce queueing time [221] [264] [287]. The following equation 

can estimate the utility function. 
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 𝑈1(𝑞) = 𝐾1𝑞
−𝑐,   (6-15) 

where 𝑐 is a constant value, this study sets the “c” is equal to 1 in this case because of the pattern 

of e-Commerce (e.g., checkout). Alternatively, a linear function can be adopted as a solution to 

describe the customer utility function for the 3rd market segment or VDI. There are many VDI 

performance metrics of a hosting environment regarding users’ experiences, such as the peak of 

Input/Output Per Second (IOPS), storage capacity, response time, Read/Write ratio, future growth, 

etc. If these metrics have been prefixed during the Proof of Concept (PoC) period before VDI 

rollout, the additional VM will only add Opex and a burden to the cloud customers. So, we can 

use a linear model [311] [282] to approximate the cloud customers’ utility values. 

 𝑈3[𝑞] = 𝐾3(𝑟𝑞 + 𝑞𝑚), 𝑟 < 0 (6-16) 

where “𝑟” is a constant, but it is negative, which reflects the diminishing return. 

6.3.3 Finding Optimal Price Point for Profit Maximization 

Once all utility functions have been established, the next step is to create different price models 

for CSPs to maximize their profits. The following example illustrates an overview of the process 

to identify the optimal price point of price model for CSP to maximize its profit (See in Figure. 

6⎯3)  
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Figure 6—3 Overview of Optimizing Price When CSP Offer  ∗=$1 

Suppose a CSP offers $1/per VM as its optimal price point (this price point is randomly selected. 

It could be the optimal price point for the CSP’s profit maximization, but we don’t know yet at 

this stage), we can calculate the cloud customer surplus values and a quantity of VM sales in each 

segment and the total market demand. Based on the defined utility function of the 1st segment, the 

cloud customers will purchase 1 VM, but not buy 2 VMs because 2 VMs would cost $2, and the 

net surplus utility value of 2 VMs is only $0.25 ($1.5+$0.75-$2 =$0.25), which is less than $0.5 

($1.5-$1=$0.5) for 1VM. In other words, if each customer of the 1st market segment buys 1 VMs 

and the total number of cloud customers is 269, then the total sales volume of VM is 269. Likewise, 

the customer of the 2nd market will not purchase any VM, but the 3rd segment will acquire 4 VMs. 

If we sum up all the VMs of all market segments, we can find the total volume of VM sales 𝑄. 

As a result, we can calculate all the variables, including unit cost, profit margin, and total sales 

revenue. However, if this price point is not optimal, the question is how to identify the optimal 

price point for profit maximization across all market segments? Before answering this question, 

let us think about “are there different pricing models to achieve a better profit margin?” This 

question takes us to the topic of building various cloud pricing models in comparison with cost-

based pricing. 

6.3.4 Mark-up Pricing Model 
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As Hinterhuber indicated [36], the cost-based pricing is still prevalent in most industries, which 

is over 37% of pricing models. If the assumption of the mark-up price is 100% of the average unit 

cost or marginal cost, the expected profit margin would be 100% (Equation 6-17). The process of 

determining a price is very straightforward. On the flip side, this pricing model could be either 

overshot or undershot due to the pricing without external rationality. 

 𝑝[𝑄] = 𝑚𝑐[𝑄] +
𝑄

|𝜕𝑄/𝜕𝑝|
 (6-17) 

where 𝑝[𝑄]  is the price, 𝑚𝑐[𝑄]   is the marginal cost, 𝑄  is the total demand quantity, 

𝑄/|𝜕𝑄/𝜕𝑝| is the markup price or profit margin. The price point is determined by the internal 

rationality or a CSP’s desired profit margin or mark-up price 𝑄/|𝜕𝑄/𝜕𝑝| = 100%. 

6.3.5 On-demand Pricing Model 

Alternatively, a CSP can build an “on-demand” price model [225] that is determined by both 

external and internal rationality. Many leading CSPs offer this price scheme. It is also known as 

Pay as You Go (PAYG). Usually, CSPs would charge at an hourly unit-based price. While both 

Google Cloud Platform (GCP) and Microsoft Azure use a sub-hour rate. Azure is 1/60th hour or 

per minute base, and GCP is a 1/6th hour or per 10 minutes base [258]. The sub-hour price should 

give cloud customers more flexibility and scalability to run various types of cloud workloads for 

“on-demand.” In this chapter, the model adopts the hourly base unit. Based on the example of 

both Figure 6⎯4 and utility functions are shown in Table 6⎯5, the following equations can 

calculate the cloud customer surplus values (external rationality) 6-18. 

 𝑞𝑖[𝑝] = 𝑞𝑖: max(∑𝑈𝑖[𝑗]

𝑞

𝑗=1

) − 𝑝𝑞 ≥ 0,        𝑄(𝑝) = ∑𝑞𝑖[𝑝]𝐷𝑖[𝑝]

𝑆

𝑖=1

,      𝑖 = 1⋯ , 𝑆 (6-18) 

where 𝑆 is the number of market segments, which is equal to six in this case. The 𝑞𝑖 is the 

number of VM to be acquired by the customers in the market segment “𝑖.” This quantity is decided 

by the customers’ maximum surplus value that is greater than zero for the given price, 𝑝, which 

is offered by a CSP. 𝑞𝑖 is a function of a price 𝑝.  

 𝜋[𝑝] = 𝑝𝑄(𝑝) − 𝐶[𝑄(𝑝)],      𝑐𝑢[𝑄(𝑝)] ≤ 𝑝 ≤ 𝑀, 𝑐𝑢[𝑄(𝑝)] 𝑄(𝑝) = 𝐶[𝑄(𝑝)], (6-19) 

 𝑝∗ = 𝑎𝑟𝑔max
𝑝

𝜋[𝑝] (6-20) 
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where 𝑄(𝑝) is the summation of 𝑞𝑖[𝑝] of VMs multiplied by the estimated market demand 

𝐷𝑖[𝑝] of each market segment. 𝑀 is the normalized maximum utility value in Table 6⎯5. This 

study generalizes this value, which is to make it the same across all the segments ($1.5). 𝐶[𝑄(𝑝)] 

is the total cost based on the cost assumption of Table 6⎯4 (internal rationality). In summary, 

Equation 6-18 is to determine the quantity 𝑞𝑖[𝑝] of VM in each market segment when customer 

surplus-value is maximum and the total volume 𝑄(𝑝) of VM sales for all market segments. 

Equation 6-19 is the same as Equation 6-3 with some boundary conditions of price and unit cost. 

Equation 6-20 is to identify the optimal price for the profit maximization, which is the same as 

Equation 6-4. 

According to customer surplus values, some customers will buy VM others might not buy any 

for a given price per VM. It is dependent on the type of utility function 𝑈𝑖  [𝑗] or customers’ utility 

(external rationality) and CSP’s offering price 𝑝 and 𝑐𝑢[𝑄(𝑝)] per VM (internal rationality), 

which has been illustrated in Section 6.3.3. The question is, “would it be possible to generate 

different types of pricing models so that the customers of both the 1st and the 2nd market segments 

will make a purchasing decision?” For example, if a CSP can offer a specific percentage discount 

on VM price but customers must purchase VMs in a bulk size? This question leads to creating the 

bulk-selling pricing model. 

6.3.6 Bulk-Selling Pricing Model 

 In comparison with on-demand, a CSP can generate a bulk-selling or services-bundle pricing 

model. The goal of the bulk-selling is to encourage cloud customers to buy more for a better 

pricing deal. There are many examples of the bulk-selling price model, such as one of the retail 

giants, Costco Wholesale. The telco industry often uses service-bundle for different market 

segments. Service-bundling means bundling different types of services into one package and bulk-

selling is to group different sizes of the same product or service into one package. Two models 

are closely related.  
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Figure 6—4 Cloud Service Bundle Vs. Bulk-selling Pricing Model 

For example, one large and one extra-large size instances can be formed as one package, which 

is equivalent to 12 small VMs for bulk-selling (see Figure 6—4). According to [117] observations, 

the AWS price of the current size of the VM is equal to 2 power of “k” minus 1 and multiply by 

the price of the smallest or baseline VM size (where 𝑘 = 1,2,⋯,  the current size of VM) 

Mathematically, and it can be written as 𝑝𝑘 = 2𝑘−1𝑝0 and 𝑝0 is the price of the smallest VM size, 

𝑝𝑘 is the current size of VM. Such a prices scheme is adopted by many CSPs for their majority 

types of VMs. The distinct advantage of adopting this pricing scheme is that the CSP can increase 

capacity flexibility by building a large VM resource pool with finer granularity and minimize a 

footprint of cloud infrastructure in a cloud data center. The advantage of the service bundle is that 

it can reduce the investment budget, increase sales, and meet the fluctuation demand for cloud 

resources. 

Both bulk and bundle type of pricing scheme can be tailed for a particular business application, 

such as mission-critical workload, virtual data center, DR, and collocation, which the CSP will 

only sell for a fixed number of VMs as a bulk or a clustering package. The cloud customers will 

decide whether to buy or not, based on their maximum utility (surplus) values. This bulk-selling 

model can be built equations from 6-21 to 6-26. If the assumption of the bulk-selling size is “b,” 

the “mod” function “B” can be adopted to test whether any requested quantity matches the bulk-

selling size or not. If it does not match, then a negative value (for example, -200) is set artificially 

to reflect a customer surplus value, which means to reject the customer’s purchasing request 

(Equation 6-21). Otherwise, the customer’s surplus-value will be calculated (Equation 6-22), but 

it should be greater than zero (Equation 6-23). 

Small VM
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 𝐼𝐹 𝐵 = 𝑞 − 𝑏 ⌊
𝑞

𝑏
⌋ > 0 →  𝐶𝑆𝑖 = −200,         ∀𝑏 ∈ 𝑞 = {1,2,⋯ , 𝑞𝑚} (6-21) 

 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

𝐶𝑆𝑖[𝑝, 𝑞(𝑏)] = ((∑𝑈𝑖[𝑗]

𝑞

𝑗=1

) − 𝑝𝑞(𝑏)) ,      𝑞(𝑏) = 𝑛𝑏, 𝑛 = 1,2,⋯ 
(6-22) 

Then, comparing values in the market segment 𝑖 and find the maximum surplus-value. Based 

on this maximum surplus-value, the VM quantity  𝑞𝑖 can be identified in the market segment 𝑖. 

 𝑞𝑖[𝑝, 𝑏] = 𝑞𝑖 : max(𝐶𝑆𝑖[𝑝, 𝑞(𝑏)]) > 0 (6-23) 

Multiple market demand 𝐷𝑖 with 𝑞𝑖 in the market segment 𝑖 (Equation 6-24) and sum up all 

quantities of market segments, then we can optimize both price 𝑝 and 𝑏 to find the maximum 

profit value (Equation 6-25 and Equation 6-26) 

 𝑄(𝑝, 𝑏) =∑𝑞𝑖[𝑝, 𝑏]𝐷𝑖[𝑝] 

𝑆

𝑖=1

 (6-24) 

 
𝜋[𝑝, 𝑏] = 𝑝𝑄(𝑝, 𝑏) − 𝐶[𝑄(𝑝)],    𝑐𝑢[𝑄(𝑝, 𝑏)] ≤ 𝑝 ≤ 𝑀,   

𝐶[𝑄(𝑝)] = 𝑐𝑢[𝑄(𝑝, 𝑏)] 𝑄(𝑝, 𝑏) 
(6-25) 

 [𝑝∗, 𝑏∗] = argmax
𝑝,   𝑏

𝜋[𝑝, 𝑏]  (6-26) 

For example, if a CSP offer the bulk size 𝑏 is 4 and the VM price is $0.5, the surplus values are 

set to negative (𝐶𝑆𝑖 = −200) for all quantities of 𝑞 that is not divisible by a package size (𝑏 =

4). Otherwise, the customer surplus value will be calculated. The maximum surplus-value of the 

1st market segment is 1.125, which is corresponding to the VM quantity of 4. There are other VM 

quantities (8 and 12) that can be divisible by the package size, but the surplus-value is either 

0.0076786 or -1.34518. In comparison, purchasing 4 VMs has the maximum surplus values for 

cloud customers. Base on a similar line of reasoning, the total sales volume for segments can be 

found, which is equal to 𝑄(𝑝, 𝑏) = 7,108 (Equation 6-24). From Equation 6-25 and Equation 6-

26, the optimal price point 𝑝∗ and package size 𝑏∗ can be found (More details will be covered in 

the following sections). 
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The bulk-selling pricing model is just one of the retail pricing strategies. Is it possible to 

introduce an upfront fee for further VM price reduction? The question leads to a “two-part tariff” 

pricing model, which is also called the reserved pricing model. 

6.3.7 Reserved Pricing Model 

The reserved (or two-part tariff) pricing model can be considered a price mixing strategy. It 

consists of two parts of pricing. This model is widely adopted by many service industries, such 

as retail, entertainment, airline, and telco. The purpose of this model is to give CSPs more 

flexibility to target various market segments. The model can be defined as following Equations 

from 6-27 to 6-32. 

 𝐶𝑆𝑖[𝑞, 𝑝, 𝐹] =(∑𝑈𝑖[𝑗]

𝑞

𝑗=1

)− 𝑞𝑝 − 𝐹 ,    0 < 𝐹 ≤ 𝐹𝑚 (6-27) 

 𝑞𝑖(𝑝, 𝐹) = 𝑞𝑖:  𝑚𝑎𝑥(𝐶𝑆𝑖[𝑞, 𝑝, 𝐹]) > 0  (6-28) 

 𝐼𝐹 𝐶𝑆𝑖[𝑞, 𝑝, 𝐹] > 0,              𝑐𝑞𝑖[𝑝, 𝐹] = 1,        𝐸𝐿𝑆𝐸  𝑐𝑞𝑖[𝑝, 𝐹] = 0 (6-29) 

 𝑄(𝑝, 𝐹) =∑𝑞𝑖(𝑝, 𝐹)𝐷𝑖

𝑆

𝑖=1

[𝑝], 𝐶[𝑄(𝑝)] = 𝑐𝑢[𝑄(𝑝, 𝐹)]𝑄(𝑝, 𝐹) (6-30) 

 
𝜋[𝑝, 𝐹] = 𝑝𝑄(𝑝, 𝐹) − 𝐶[𝑄(𝑝)] + 𝐹∑𝑐𝑞𝑖[𝑝, 𝐹]𝐷𝑖[𝑝]

𝑆

𝑖=1

 

 𝑐𝑢[𝑄(𝑝, 𝑏)] ≤ 𝑝 ≤ 𝑀,     

(6-31) 

 [𝑝∗, 𝐹∗] = argmax
𝑝,   𝐹 

𝜋[𝑝, 𝐹] (6-32) 

where 𝑝∗, 𝐹∗are the optimal price for usage charge and optimal reserved fee respectively and 𝐹𝑚 

is the maximum fee can be estimated. In this chapter, we can set to $100. 𝑐𝑞𝑖[𝑝, 𝐹], it represents 

the reserved account for targeted customers in the market segment “𝑖.” If the customers’ surplus 

value is less than and equal to zero, it means customers will not pay upfront fee 𝐹 (𝑐𝑞𝑖[𝑝, 𝐹] =

0). 

In comparison with bulk-selling, reserved pricing also has two variables. It means that the cloud 

customers must pay the upfront reserved fee and then they can purchase VM. In return, CSPs 

offer a significant discount on the usage charge to encourage cloud customers to buy more. The 
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benefit of this model can boost sales and increase the profit margin. If a CSP would like to increase 

the profit margin further, the next logical step is to combine both bulk-selling and reserved 

together. 

6.3.8 Bulk-Selling plus Reserved Pricing 

This model is to leverage both bulk-selling and two-part tariff models' advantages. However, 

the benefits of the two models do not have an additive effect. The net profit increase is not bulk 

selling plus reserved. Very often, the value of the profit margin increases very small because the 

cloud customer surplus-value may approach its bounded limit in the separated models. The 

following Equations from 6-33 to 6-39 represent this model. 

 
𝐼𝐹 𝐵 = 𝑞 − 𝑏 ⌊

𝑞

𝑏
⌋ > 0 →  𝐶𝑆𝑖 = −200,    

∀𝑏 ∈ 𝑞 = {1,2,⋯ , 𝑞𝑚}, 𝑞(𝑏) = 𝑛𝑏, 𝑛 = 1,2,⋯ 

(6-33) 

 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

𝐶𝑆𝑖[𝑝, 𝑞(𝑏), 𝐹] = ((∑𝑈𝑖[𝑗]

𝑞

𝑗=1

) − 𝑝𝑞(𝑏) − 𝐹) , 0 < 𝐹 ≤ 𝐹𝑚 
(6-34) 

 𝑞𝑖[𝑝, 𝑏, 𝐹] = 𝑞𝑖 : max(𝐶𝑆𝑖[𝑝, 𝑞(𝑏), 𝐹]) > 0 (6-35) 

 𝑄(∙) = 𝑄(𝑝, 𝑏, 𝐹) =∑𝑞𝑖(𝑝, 𝑏, 𝐹)𝐷𝑖

𝑆

𝑖=1

[𝑝] (6-36) 

 𝐼𝐹 𝐶𝑆𝑖[𝑝, 𝑞(𝑏), 𝐹] > 0,    𝑐𝑞𝑖[𝑝, 𝑏, 𝐹] = 1,     𝐸𝐿𝑆𝐸   𝑐𝑞𝑖[𝑝, 𝑏, 𝐹] = 0 (6-37) 

 
𝜋[𝑝, 𝑏, 𝐹] = 𝑝𝑄(𝑝) − 𝐶[𝑄(𝑝)] + 𝐹∑𝑐𝑞𝑖[𝑝, 𝑏, 𝐹]𝐷𝑖

𝑆

𝑖=1

[𝑝] 

𝑐𝑢(𝑄(𝑝)) ≤ 𝑝 ≤ 𝑀 , 𝐶[𝑄(𝑝)] = 𝑐𝑢(𝑄(𝑝))𝑄(𝑝)   

(6-38) 

 

 

 

[𝑝∗, 𝑏∗, 𝐹∗] = argmax
𝑝,𝑏,𝐹

𝜋[𝑝, 𝑏, 𝐹] (6-39) 

The goal of this model is to maximize the profit margin by bulk-selling to encourage the 

customers to buy more VMs and by the upfront reserved fee to motivate the cloud customers to 

consume more for less unit cost per VM. In comparison with other models, this model has three 
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variables to be optimized. Now, the question is how to optimize these pricing variables for profit 

maximization, in which the question has been left unanswered in Section 6.3.3. 

6.4 Genetic Algorithm and GA Parameters Setting 

6.4.1 Proposed Methods 

There are many possible optimization methodologies or techniques that can be applied for the 

optimizing problem, such as gradient descent, Genetic Algorithm (GA), and simulated annealing. 

Gradient descent cannot be applied because the profit equation is non-contiguous. Simulated 

Annealing could be one of the potential methods for this solution because it usually is better than 

greedy algorithms, but the technique can be slow, especially if the cost function is expensive to 

compute. Subsequently, this study adopts GA to solve this problem. It can be solved very quickly 

(30 seconds/per each iteration if without further improvement). 

6.4.2 Genetic Algorithm 

The useful properties of GA are 1.) It does not require specifying an objective function, 2.) The 

objective function does not have to be either continuous or linear, 3.) It takes less computational 

memory, 4.) It can optimize multiple variables in parallel, and 5.) Some local optimal solution 

could bring some insights as to potential price options to form a pricing strategy. The basic idea 

of evolution computation strategy is “trial and error” is shown in Figure 6⎯5 and Figure 6⎯6. 

The principle of this method is based on the underlying microevolution of both mutation and 

natural selection [266], which is to mimic the biological process that is searching for an optimal 

solution in a problem domain.  

Based on Equation 6-3 and 6-4, the goal of this research is to find the maximum value of the 

profit “” by searching for the optimal price point “𝑝.” We know that price, cost, and sales 

quantity are interdependent. It is challenging to define some precise sub-functions for the solution. 

However, we can set up price 𝑝 as “genes” and let a set of price, quantity, and unit cost to be a 

chromosome (a set of parameters for the solution). A string of chromosomes is called the genome. 

The entire combination of prices (genes) is called genotype, and the corresponding profits are 

called phenotype, as shown in Figure 6⎯5. Note that the optimal variables can be extended to 

bulk-selling size “𝑏” or upfront fee “𝐹.” In Figure. 6⎯5 and Figure 6⎯6, we only show the 

optimal price and bulk size.  
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Figure 6—5 Details of GA Calculation for Maximum Profit 𝜋 for On-demand 

 

Figure 6—6 Performance Function and Criteria of the GA Solution 

In the following example of the on-demand pricing model, this chapter assumes the price value 

in the range [0, $1.5] because no customers will expect to buy the VM more than the maximum 

amount of their utility value. If we first trial the initial price value or a gene as 𝑝 = $0.265, we 

should have the profit 𝜋[𝑝] = $4, unit cost 𝑐𝑢[𝑄[0.265]] = 0.264, and the total sales quantity Q 

=7,243. Clearly, it is not an optimal price. So, we let GA compute Equation 6-4.  

For each of 100 population size (A “standard GA” parameter of the population size can be set 

up between 100 and 200 [312]), the best 7.5% of prices 𝑝 or genes will be kept and discard 92.5% 

in term of better profit values because we set up the mutation rate is 7.5% in this experiment 

process. After “y” times of this iteration, we can find the maximum value of profit based on the 

performance  of the convergence resolution or stopping condition for GA is either 𝑟𝑐𝑜𝑛= 0.01% 
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(Equation 6-40) or time out = 30 seconds (roughly between 280-350 GA iterations) (See Figure 

6⎯6). 

 𝑟𝑐𝑜𝑛 = |
𝜋[𝑝𝑚+1] − 𝜋[𝑝𝑚]

𝜋[𝑝𝑚]
| < 0.01%, 𝑚 = 1 ,⋯ ,𝑁 (6-40) 

where 𝜋[𝑝𝑚] is profit estimated at iteration 𝑚 with price  𝑝𝑚. 

6.3.3 Experiment Implementation and A Pseudocode 

. A Pseudocode is presented to articulate this genetic algorithm process as Algorithm 1. To carry 

out this iterative process, we can adopt different software applications to implement our 

experiments, such as Matlab, R and even Microsoft Excel Solver. R has two convenient packages: 

GA and Genalg, which can quickly run our tests. The input data for the tests are sourced from 

Table 6⎯5 as initialized parameters. The outputs are the optimal values of four pricing models 

for on-demand, bulk-selling, reserved, and bulk + reserved. To simplify the experiment, the 

variation of the market demands is excluded in terms of price variation in each market segment.  
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Algorithm 1:  Pseudocode of Cloud Pricing Models 
PROGRAM: Genetic Algorithm for CloudPricingModel 

Input: PopulationSize 𝑁(𝑚 ← 1⋯100) , PriceRange 𝑅 ∈ [0, 𝐾𝑖], CrossoverRate  𝐶𝑟 ← 0.6, MutationRate 𝑚𝑟 ← 0.075 // 

Initalize Parameters; 

Output: 𝑝∗ ← 𝑎𝑟𝑔max
𝑝

𝜋[𝑝] // Find the Optimal Price p for Cloud Business Profit Maximization; 

 

𝑃0{𝑝𝑚} ← {𝑝1, 𝑝2⋯𝑝𝑚} ∈ [0,  𝐾𝑖] InitalizePopulation  // Randomly Select 𝑝𝑚 : Population size, Problem Size; 

𝜋[𝑝] ← 𝑄[𝑝] ∗ (𝑝 − 𝑐𝑢) Objective Function // Calculate Objective Function; 

𝜋[𝑝𝑚+1]−𝜋[𝑝𝑚]

𝜋[𝑝𝑚]
  EvaluationPopulation  // Use Fitness Function for Evolution Initial Population 𝑃0{𝑝𝑚}; 

𝜋[𝑝] ←  𝑝 GetBestSolution // Assign the Best Price to the Object Function from Initial Population 𝑃0{𝑝𝑚}; 

While != StopCondition (Time  30 sec without improvement) OR (𝑟𝑐𝑜𝑛 < 0.01%) DO // either Time Less Than  30 secs or  

𝜋[𝑝] Convergence 

           𝑃𝑔{𝑝𝑚} ← 𝑃0{𝑝𝑚}  SelectParents // 𝑃𝑔{𝑝𝑚} // Select Parents Population; 

           𝑐𝑔 ← 0  SetToZero // Sign Children Generation to Zero; 

           FOREACH  𝑃𝑔1, 𝑃𝑔2 ∈  𝑃𝑔 DO // Iteration Process 

                    𝑃𝑐𝑔1, 𝑃𝑐𝑔2 ← Crossover(𝑃𝑔1, 𝑃𝑔2,   𝐶𝑟) //Perform Crossover and Sign to Children Population; 

                    𝑃𝑐𝑔  ←  Mutation (𝑃𝑐𝑔1, 𝑚𝑟) //Perform Mutation;   

                    𝑃𝑐𝑔 ←  Mutation (𝑃𝑐𝑔2, 𝑚𝑟) //Perform Mutation; 

          ENDFOR 

           EvaluatePopulation (𝑃𝑐𝑔) // Use Fitness Function to Evaluate Children Population 𝑃𝑐𝑔; 

           𝜋[𝑝] ←  𝑝 GetBestSolution (𝑃𝑐𝑔) // Assign the Best Price to the Object Function from Children Population 𝑃𝑐𝑔; 

           𝑃𝑐𝑔 ← 𝑃𝑐𝑔 Replace (Population, 𝑃𝑐𝑔) //Insert Offspring; 

           𝑐𝑔 ← 𝑐𝑔 + 1 // Create New Generation; 

ENDWHILE 

Return 𝑝∗ ← 𝑎𝑟𝑔max
𝑝

𝜋[𝑝]; 

6.5 Experiment Results 

6.5.1 On-Demand Pricing Model Results 

Table 6⎯6 shows the final results for all pricing models, including on-demand, which CSPs 

should charge $0.749 per VM instance/hour for the maximum profit of $2,815. The average unit 

cost is about $0.269. In comparison with cost-based pricing, the on-demand price can boost a 73% 

profit margin if we take account of the external rationality. Although the profit margin (100%) of 

the cost-based pricing looks very attractive, it is not optimal. The result of this comparison means 

the cost-based price is significantly underestimated the unit price of cloud customers’ willingness 

to pay. 
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Figure 6—7 On-Demand Price Model of Price Change 

In Figure 6⎯7, this chapter shows how the profit is evolving in terms of offering prices. There 

are a few local-optimal prices, such as $1.225 $1.450. To overcome these local-optimal values, 

different initial values of prices can be tested. As section 6.3.4 indicated, the on-demand pricing 

model is just one of the price models for various market segments. Other models, such as bulk-

sell, are possible for CSPs to gain a higher profit margin. 

Table 6—6  The Result of On-Demand Pricing Model 

 

Pricing Models 

Type of 

Pricing 

Models 

Optimal 

price: p 

Optimal 

Bulk Size 

Reserved 

Fee 𝐹 

Unit 

Cost: 

𝑐𝑢 

Total 

Cost 

C 

Total Sales 

Quantity: q 

Total 

Revenue: 

R 

Maximum 

Profit:  

Profit 

Margin 

Markup Cost-based $0.533 NA NA $0.266 $1,625 6,100 $3,250 $1,625 100% 

On-demand Value-based $0.749 NA NA $0.274 $1,625 5,920 $4,440 $2,815 173% 

Bulk-Selling Value-Based $0.675 4 NA $0.265 $1,886 7,108 $4,798 $2,912 179% 

Reserved Fee Value-based $0.279 0 $5.572 $0.277 $1,566 5,652 $5,019 $3,465 213% 

Bulk+Reserved Value-based $0.587 12 $1.958 $0.264 $1,935 7,332 $5,499 $3,564 219% 

Note: Bulk-Selling Price is not based on the maximum profit but a 10% discount on the on-

demand price. 

6.5.2 Bulk-Selling Model Results 
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The bulk-selling price model requires optimizing two variables. One is the selling price, and 

the other is the bulk-selling size. Based on Equations from 6⎯18 to 6⎯23, the cloud customers 

will only make a purchase decision when their surplus values are higher than their cost. The 

experiment results show that the package size is 12 and the optimal price is just slightly below 

the on-demand price or $0.7452 for CSP to achieve the maximum profit margin of 217%. This 

price will not attract customers to buy in bulk. Subsequently, CSP can give a 10% discount off 

the on-demand price, which is to set the selling price at $0.675 and reduce the package size from 

12 to 4. Even so, the CSP can still achieve a 179% profit margin. If we keep the package size is 

4 and give a 10% discount off the on-demand VM, we can plot out the profit evolution along with 

the price changing, as shown in Figure 6⎯8.  

Figure 6—8 Bulk-Selling of Price Change For All Optimized Parameters (BulkSize@4) 

If we keep the 10% discount price unchanged and make the variation of the bulk-size from 1 to 

12, we can find bulk-size-4 is the local optimal and bulk-size 12 is the global optimal value. These 

optimal price points (as shown in Figure 6⎯9) provide more options for CSPs’ pricing strategy 
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Figure 6—9 Bulk-Selling Package Size Evolution 

Intuitively, the downside of the bulk-selling is that some cloud customers do not want to scarify 

their flexibility of Pay as You Go (PAYG) and still demand a competitive price because their 

business might not require the bulk-size of VMs. As a result, customers might switch to other 

cloud competitors. Adopting one price model could cause a CSP to lose its market share if the 

CSP insists on the bulk-selling model. If a CSP would like to keep both higher profit margin and 

market share, what is an alternative?  

6.5.3 Reserved Price Model Results 

The possible solution is a reserved pricing model. The experiment result shows that the reserved 

price model can achieve a profit margin of 213%. The primary profit contribution is due to the 

reserved fee, which is $5.572 per account or $3,456. The VM price is $0.279, which is very close 

to the unit cost, which $0.277. If CSPs keep the reserved fees the same ($5.572) and changing the 

VM price, we can see the cloud price evolution (See in Figure 6⎯10). 
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Figure 6—10 Reserved Model of Price Change for All Optimized Parameters @ F=$5.57  

Again, if the VM price is kept the same (at $0.279 per VM) and the reserved fee is changed, 

there will be two local-optimal prices at $1.96 and $6.00 shown in Figure 6⎯11 

Figure 6—11 Reserved Fee Changing at Price@$0.279 

6.5.4 Results of Bulk plus Reserved Pricing 

If CSPs would like to increase profit margin further, they can combine both bulk-selling and 

reserved models. In comparison with a pure reserved model, “bulk + reserved” can grow about 

7% profit margin. This model offers different alternatives for CSPs to form a pricing strategy to 

meet various requirements in different market segments, in which a CSP can increase the usage 
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charge and decrease the reserved fee or vise verse. The plot of profit, sales’ volume and unit cost 

along with VM price change can be considered as a combined effect of bulk-selling plus reserved 

as observed in Figure 6⎯12 

Figure 6—12 Bulk-selling Plus Reserved of Price Change (Fee@$1.958 Bulk Size@12) 

Following a similar principle, we can also plot the fee change while the unit price ($0.587) and 

bulk size (12) are kept the same. The result is shown in Figure 6⎯13. As we should see, the 

shapes of the two plots are very similar except the sales volume. There are a few local optimal 

price points. Again, these price points provide different price options for CSPs to articulate 

different price strategies. 

Figure 6—13 Fee Changing of Bulk + Reserved (Price @$0.587, Bulk size @12) 
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Overall, the experimental results show that the on-demand pricing model can significantly 

increase CSPs' profit margin if the cloud customers’ utility values are included in comparison 

with the cost-based pricing. The bulk-selling price model is aiming to encourage customers to 

buy more for fewer usage charges. The reserved pricing model is to decrease more usage charges 

with the upfront reserved fee. This flexible option can help CSP to maintain a healthy profit 

margin while the usage price is very competitive. The bulk + reserved model is to provide 

different options for cloud pricing strategies to maximize the CSP’s profit while they can target 

cloud market segments. 

6.6 Analysis and Discussion 

This chapter demonstrates a comprehensive framework of how to formulate four value-based 

cloud pricing models from a value co-creation perspective. In contrast to previous researches that 

assumed a uniform market with only one utility function, this solution of cloud pricing is much 

realistic and practical because market segmentation practice has been widely applied to many 

service industries. The cloud industry is not exceptional. AWS has up to seven different types of 

pricing models (spot, on-demand, reserved, bare-metal, dedicated host, and Code on Demand) for 

different market segments. Based on multiple market segments, the GA can find the optimal 

pricing solution for each model. 

6.6.1. GA Performance Evaluation 

 In comparison with other optimal solutions, the GA process requires less computing memory 

and power and does not need to specify sub-functions. The object function does not have to be 

differentiable. It can be either a continuous function or a discrete one. Many software packages 

can implement the GA process. Even MS Excel Solver can implement it, which is very handy for 

many practitioners to generate pricing options and form a better and competitive pricing strategy. 

The GA process can also be updated quickly if the cloud market environment has been changed. 

To evaluate the performance of the GA process for the optimal pricing value, we tune one of 

the GA’s parameters: mutation rate into different values and to see which we can achieve a better 

performance result quickly. According to [323] [324], we applied the mutation rates between 

0.001 and 0.5. Our result shows when the mutation rate is equal to 0.075, the profit margin of 

reserved pricing models can be quickly converged to the maximum value (as shown in Figure 
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6⎯14) within the specified timeframe of 30 seconds with 100 population size and converged rate 

of 0.01%. 

Figure 6—14 GA Performance Evaluation for Different Mutation Rate 

6.6.2. Comparison with Created Pricing Models 

From the above experiment results, this chapter illustrated that cost-based pricing has the lowest 

profit margin ($1,625). As Nagle et al. [10] indicated, although the model carries a financial 

legitimacy, it only provides “mediocre financial performance.” Although a 100% profit margin 

seems to be very attractive, it is “mediocre.” The critical issue of cost-based pricing is that it does 

not include external rationality 

On the other hand, on-demand can achieve a higher profit margin and higher sales volume in 

comparing with cost-based pricing. However, the on-demand model might work well with one 

business application (or one market segment), but not fit with others. To solve this issue, this 

study adds more pricing options in a decision-makers’ toolbox, both bulk-selling and reserved 

pricing model can also play their roles in the segmented market. One of the advantages of bulk-

selling and reserved models is that they can provide business certainty for cloud resource capacity. 

The downside is that cloud customers could lose some flexibility. If we compare all four cloud 

pricing models, the reserved + bulk-selling pricing model can achieve the highest profit margin 

for CSPs, as shown in Figure. 6⎯15 
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In order to gain a higher profit margin, the bulk-selling price model is one of the good pricing 

strategies, which have been observed in the cloud pricing practice. In fact, bulk-selling is 

equivalent to AWS, Azure, IBM Cloud, and Google Cloud Platform’s reserved instance (without 

an upfront fee). The only difference is time. With bulk-selling, cloud customers must consume all 

purchased resources at once. In contrast, AWS, Azure, IBM cloud, or GCP’s reserved instances 

can be consumed from one or three years. The longer the time of cloud resource reservations, the 

cheaper the unit price is. The reservation time is equivalent to a bulk-size. If we put time and 

cloud assets depreciation factors aside, the currently reserved instances offered by major CSPs 

are similar to the bulk-selling or bundle pricing model. As this chapter shown in the experiments, 

the bulk-selling price model can improve CSP’s profit margin by 6% even with a 10% price 

discount in comparison with the on-demand price. (See Table 6⎯6 and Figure 6⎯15). That is 

why many CSPs encourage cloud customers to adopt reserved (or bulk-selling) instances with a 

discount price. 

Figure 6—15 Comparison of Different Pricing Models with Six Market Segments 

If CSPs would like to make further improvements in their profit margin, they can introduce the 

upfront reserved fee (two-part tariff) and reduce the usage charge of VM unit price in return. With 

the upfront reserved fee, the CSPs can reduce VM usage charges as low as the production cost 

and still maintain a healthy profit margin, which is around 213%. Comparing with the “on-

demand” model, the usage charge (or unit price of VM) drops nearly 63%.  Now, the upfront 
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reserved fee becomes the major profit contributor to CSP's profit. If the cloud customers are not 

willing to pay a higher upfront reserved fee, CSPs can adopt the mixing model of bulk + reserved 

fee. The above experiment result shows that by a combination of the bulk and upfront reserved 

fee, CSPs can lift profit margin by 219% and reduce the upfront fee by 65% (in comparison with 

pure reserved model) and decrease VM price by 22% (in comparison with on-demand).  

Checking the sales volume of VM across all segments, the customers in segment 6 would not 

purchase any number of VM for proposed price models, as shown in Table 6⎯7. This is because 

their utility function is risk-taking. The shape of the utility function is concave. None of the 

proposed pricing models would capture customers’ surplus values in segment 6 unless a CSP can 

offer a substantial discount, such as a 60% - 80% price reduction of the on-demand.  

Having a considerable price discount for one market segment alone and scarifying other markets’ 

values is not a good pricing strategy because the cloud business profit will decline significantly. 

For example, if the price is dropped by 60% across all market segments, the profit margin will be 

reduced by about 84%. Selling cloud resources with a substantial discount price is not a 

sustainable business practice for CSPs.  

Table 6—7 Sales Volume of VM for Each Model/per Cloud Customer 

Pricing Models Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Total 

Cost-based 2 12 8 6 12 0 40 

On-Demand 2 12 6 6 12 0 38 

Bulk-Selling 4 12 8 8 12 0 44 

Reserved Fee 0 12 9 6 12 0 39 

Bulk + Reserved 0 12 12 12 12 0 48 

Combine Revenue $402.96 $1,660.50 $486.00 $1715.50 $656.10 0 $4921.06 

Combine Cost $147.41 $651.90 $190.80 $390.57 $257.58 0 $1638.26 

Combine Profit $255.55 $1,008.60 $295.20 $1,324.93 $398.52 0 $3,282.80 

Preferred Price 

models 

On-

demand 
Bulk Bulk 

Reserved 

Fee 
Bulk 

Discount Pricing 

Model 
 

 

However, what this study has observed is that many leading CSPs still offer a discount price, 

such as spot instance, preemptible and low priority, for risk-taking customers. The reason that 

CSPs can offer a massive discount without cannibalizing the profits from other market segments 

is that the cloud service with a discount price has many restricted conditions, such as preemptible, 

time limit, limited availability zone, etc. 
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From a marketing perspective, the spot or preemptible instance is more like the “Razor-and-

Blades” pricing strategy [313], which is to use a lower price to simulate customer’s demand. 

Practically, it would not be a good idea for business customers to rely on spot or preemptible 

instances (VMs) alone for a mission-critical application, although the price of spot instance is 

very competitive.  

Table 6⎯7 shows that the customers in segment 4 will purchase more than what they need if a 

CSP offers bulk-selling price models only. However, if all price models are released 

spontaneously in a cloud market, customers of segment 1 will acquire VM according to the on-

demand price model because it has the highest surplus value and the lowest cost, which we assume 

the lowest unit price as a measurement. Customers of segment 2 will adopt the bulk-selling model. 

Customers of segment 3 will also select the bulk-selling model. Customers of segment 4 will 

choose the reserved fee price model. Customers of segment 5 will be the same as the segment 2. 

Customers of segment 6 will not buy any VM resources. The sum of six market segments for all 

value-based price models is also 40, which is the same quantity as the cost-based pricing model. 

However, the average profit margin is over 200%, and the total cost is just slightly increasing by 

0.8% in comparison with cost-based pricing.  

These value-based price models provide a wide range of pricing options for CSP to achieve the 

maximum profit by capturing more customers’ surplus values from various market segments. 

Based on the market segmentation theory [170], the ideal strategy for CSPs is to have personalized 

pricing because the better the information about the customers, the fine partition of the customers 

into a group and the larger the possibilities for CSP to extract customer surplus.” In other words, 

the one-price model is dedicated to one customer, which is also known as the 1st order price 

discrimination. However, it would be impossible for CSP to implement a personalized pricing 

strategy because it requires a lot of managerial and sales resources. The alternative solution is 

“market segmentation.” Naturally, different market segments will lead to different utility values. 

It results in various price models with multiple optimal price points to meet different preferences. 

Table 6⎯8 provides summary information of all models that we have proposed in this work in 

terms of different application scenarios, advantages, and disadvantages.  
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Table 6—8 Summary of All Pricing Models 

Pricing 

Strategy 
Pricing Models Application Scenarios Advantages Disadvantages 

Cost-Based 
Cost-Based 
Pricing 

Enterprise internal cost modeling 
Recover the cost 
bottom line 

Arbitrary 

Value-Based 

On-Demand 
Application develop, solution 

architecture 
Flexible High Cost 

Bulk-Selling 
Long-term Web hosting required 

large server clusters, Deliver SLA App. 

Having a certain % 

price discount 

Have to buy in a bulk 

size 

Reserved Having cloud resource certainty Relative lower cost Lack of flexibility 

Bulk + Reserved 
Large server clustering & resource 

certainty 
Min. cost Lowest flexibility 

 

6.6.3. Comparison with Other Works 

To the best of knowledge, there has been no research work that has been done to assume multiple 

market segments for Cloudonomics. Although some previous works [80] claimed that the uniform 

price would not suffer any revenue loss in comparison with the 1st order price discrimination, this 

chapter illustrated this claim was contradicting the theory of market segmentation [170] [172]. 

Based on the simulation result, this chapter has demonstrated that if there is only one market 

segment defined by one utility function that is assumed to be an iso-elasticity or linear or 

exponential utility, the profit loss will be from 12.15% up to 84.51% and the revenue loss will be 

from 14.30% up to 79.93% as shown in Table 6⎯9.   
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Table 6—9 Profit, Revenue and Optimal Price Comparison with Other Works 

Sources Six Segments 

Uniform 

Market[113][118] 
[80] 

Uniform 

Market [55] 

Uniform Market 

[275] 

Uniform Market 

[69] 

Uniform Market 

[252] 

Utility 
Six Utility 

Functions 

Iso-Elastic Utility, 

<1 

Iso-Elastic 

Utility, =1 

Iso-Elastic Utility, 

>1 

Linear by 

Diminish Return 

Exponential 

Utility 

Equivlent 

Utility Function 
𝑈𝑖(𝑞), 𝑖 = 1⋯6 𝑈(𝑞) = 𝐾

𝑞1−𝛼 − 1

1 − 𝛼
 𝑈(𝑞) = 𝐾 𝑈(𝑞) = 𝐾

𝑞1−𝛼 − 1

1 − 𝛼
 𝑈(𝑞) = 𝑈0 − 𝛼𝑝 

𝑈(𝑞)
= 𝐾(1 − 𝑒−𝛼𝑞) 

Optimal Cost $0.27 $0.29 $0.35 $0.27 $0.37 $0.77 

Optimal 

Price 
$0.75 $0.83 $0.81 $0.41 $0.96 $1.50 

Max.Profit $2,815 $2,473 $2,449 $939 $1,240 $436 

Max. 

Revenue 
$4,440 $3,805 $3,802 $2,697 $2,033 $891 

Profit loss 0% 12.15% 13.00% 66.64% 55.95% 84.51% 

Revenue loss 0% 14.30% 14.37% 39.26% 54.21% 79.93% 

Sales Vol. 5,920 4,589 4,679 6,525 2,039 594 

 

In summary, the value-based price modeling, together with the comprehensive pricing framework, 

is better than the current state of the art of cloud price modeling, which has been highlighted in 

Table 6⎯3. 

6.7 Summary 

This chapter has demonstrated the way how to formalize four value-based cloud pricing models 

based on both internal rationalities of CSP’s costs and external rationality of customers’ utility 

values and market segmentation. In comparison with pure internal rationality of resource or cost-

based pricing models, this approach to cloud price modeling is practical and straightforward if 

customers’ utility functions and market segments have been defined. Moreover, optimizing GA 

requires less computing memory and power and does not need to specify sub-functions in 

comparison with other methods. With GA, these pricing models can also be updated quickly. The 

significance of this work is to establish a comprehensive framework for practical solutions to 

estimate and estimate optimal cloud prices. 
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Chapter 725 

Conclusions, Discussion and Future 

Directions 

This final chapter provides the conclusions of this thesis, which are underpinned by the key 

findings and main contributions. Moreover, it discusses many open challenges and future 

directions in cloud price modeling due to the rapid development of the cloud business and cloud 

engineering ecosystem, which is beyond the reach of this thesis.  

7.1  Conclusions and Discussion 

Cloud pricing is moving away from a physical box-oriented model to a virtual machine-based 

model, and then to an abstract sandbox-based model. Many CSPs are starting to offer cloud 

pricing based on an abstract level of software. To some extent, the pricing of the serverless 

sandbox can be considered as modeling No Operation Systems (No OS or NoOps), which is an 

evolutionary direction from a pure development environment to an integrated environment of 

both development and operation or DevOps. 

However, this does not mean that cloud users can ignore the underlying cloud infrastructure, 

such as cloud security, workload balancing, horizontal or vertical scaling, auto-failover or high 

availability, and disaster recovery. All these cloud features will be part of a CSP’s responsibility. 

They become a part of SLA measurement or service-based pricing. Cloud users do not have to 

 

 

This chapter is mainly derived from: 

• Caesar Wu, Rajkumar Buyya, and Kotagiri Ramamohanarao, “Cloud Pricing Models: Taxonomy, Survey and 

Interdisciplinary Challenges,” ACM Computing Surveys, Volume 52, No. 6, Article No. 108, Pages: 1-36, ISSN 0360-0300, 

ACM Press, New York, USA, October 2019 
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get their hands dirty to tune these cloud features directly. They only need to automate and monitor 

them and make sure they can be delivered. This is why Kubernetes, Apache Mesos and Docker 

Swarm have emerged as essential tools behind the transformation of cloud pricing.  

As a result of this evolution, we can see that each CSP often leverages its business application 

strengths to optimize its cloud pricing model. Based on our simple observation, we conclude that 

AWS can be seen as providing online retail-oriented pricing for its cloud services. Azure is 

software-oriented pricing, and GCP is search engine optimization (SEO) oriented pricing.  Other 

CSP competitors can leverage different application strength for their cloud pricing, such as e-

commerce, utility services, healthcare, cyber-security, and Supervisory Control and Data 

Acquisition (SCADA). The details of the cloud price modeling problem and objectives were 

discussed in Chapter 1. 

Chapter 2 gave a full description of taxonomy and a comprehensive survey of cloud price 

modeling in terms of cost-based, market-based, and value-based pricing strategies. It also 

provided the detail categories for 60 pricing models. Based on that classification, Chapter 2 

reviewed 10 of the current state-of-the-art models regarding their pros and cons. 

Chapter 3 discussed one of the two themes of this thesis. It addressed the issue of how to price 

new cloud service features or characteristics. It covered two topics. One is how to price the ever-

growing new features of cloud service. The other is how to calculate the depreciation rate of cloud 

computing due to Moore’s law. The novel solution is to introduce the concept of G.E. Moore’s 

intrinsic and extrinsic values of cloud services. With the hedonic analysis, these two issues can 

be quickly resolved, with the extrinsic value of cloud service being about 43% above the baseline 

service price. In addition, if we adopt AWS’s panel data, this chapter showed that the cloud 

service pricing deprecation rate is 20%, which is at a far slower pace than computer hardware. 

This is due to the new and innovative cloud service features. 

Chapter 4 introduced another theme of cloud service pricing, which is to focus on the baseline 

service pricing. It begins with the theory of market segmentation. Based on the classical 

segmentation theory, this chapter discussed a hierarchical clustering method to extract the cloud 

business customer usage patterns from Google’s public dataset. With these usage parameters and 

AMD’s virtual machine guidelines, the chapter aligned the usage patterns with a particular 

business application.  Then it used the Time Series method to predict market demand. The final 

step of the cloud market segmentation is to combine the extract usage patterns with predicted 
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cloud market demand. Ultimately, Chapter 4 built one of the foundations for value-based cloud 

price modeling. 

Chapter 5 focused on how to establish various cloud customers’ utility functions for their 

business applications in terms of their resource consumption, in which a number of virtual 

machines are required. The chapter articulated six types of cloud utility functions for six types of 

market segments that are aligned with various cloud business applications, being web hosting or 

content delivery, virtual desktop infrastructure (VDI), mission-critical workload, e-commerce 

online checkout system, disaster recovery (DR) and backend data process workloads. 

In particular, the utility functions of cloud customers are built upon Markov analysis, queueing 

theory, alpha-fair utility network utility, risk-averse, risk-taker, and an additive relationship. This 

chapter created another cornerstone for the next chapter of value-based cloud price modeling.  

Chapter 6 discussed the final step of value-based cloud price modeling for baseline cloud 

services. It provided four types of cloud price models that are very common across many retail 

and service industries. These pricing models are on-demand, bulk-selling, reserved (two-part 

tariff) and bulk + reserved. In comparison with the cost-based pricing model, these models allow 

CSPs to maximize their cloud business revenue and profits. Moreover, CSPs can work with their 

cloud customers to build a value co-reaction relationship in a service-dominant logic domain. 

The experimental results showed that bulk + reserved could increase a CSP’s profit margin by 

219% in comparison with the cost-based model, while on-demand can lift profit margins by 173%, 

bulk-selling can quickly achieve a 30% profit margin and lower the sales price by 30%, while the 

reserved model can reach 213% over the cost-based one.  

7.2   Future Directions 

In light of the above taxonomy and survey, we predict that cloud pricing is moving further away 

from a physical box-oriented model to an abstract sandbox-based model. Many CSPs start to offer 

cloud pricing based on an abstract layer of cloud resources. To some extent, the pricing of the 
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serverless[26] sandbox can be regarded as modeling No Operation Systems [27] (No OS or NoOps), 

which is an evolutionary direction from an isolated development environment to an integrated 

environment of both development and operation or DevOps [28]. 

However, it does not mean that cloud users can ignore the underlying cloud infrastructure, such 

as cloud security, workload balancing, horizontal or vertical scaling, auto-failover or high 

availability, and disaster recovery. All these cloud features will be a part of a CSP’s responsibility. 

They become a part of performance measurements or service-based pricing. Cloud customers do 

not have to get their hands dirty to tune these cloud features directly. They only need to automate 

and monitor them and ensure they can be delivered. This is why Kubernetes, Apache Mesos, 

OpenStack, and Docker [29] Swarm have emerged as essential tools for cloud transformation.  

As a result of this transformation, we can observe that each CSP often leverages its business 

and technology strengths to offer its unique cloud services with innovative pricing models. Based 

on cloud service delivery models, we argue that AWS can be regarded as online retail-oriented 

pricing for its IaaS delivery. In other words, “AWS brought the Amazon experience to computing 

resource delivery.” [197]   Azure is software application-oriented pricing for its SaaS delivery, 

and GCP is search engine optimization (SEO) oriented pricing for its PasS. The other CSPs can 

leverage their own cloud expertise to deliver XaaS, such as e-healthcare, cyber-security, 

Supervisory Control and Data Acquisition (SCADA), Internet of Things (IoTs) and Business 

Intelligence Analytics.  

Overall, the cloud computing technologies and cloud pricing have four possible development 

trends: computational resources have moved from statefulness to stateless; IT infrastructure has 

been transferred from dedicated to a shared base; software development has been gradually shifted 

from mutability to immutability, and cloud pricing is moving from cost-based to value-based 

pricing strategy. These trends are leading towards a hyper-converged resource pool for the 

 

 

26 Serverless – a cloud computing execution model without a defined server – event driven application deployed 

model. 
27 NoOps – A programming development approach that allows developers to focus on application development and 

leave activities of interactions with operation system administrations to a software automation process. It means to 

take advantage of Platform as a Service (PaaS) to automate application deployment process.  
28  DevOps – means an integrated process to streamline software planning, building, programming, testing, 

releasing, deploying, operating, monitoring and lifecycle.    
29 Docker – a platform to pack an application with all the dependencies it needs into a single standard  unit for 

the deployment 
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delivery of cloud services. We can further elaborate on these trends (shown in Figure 7⎯1) from 

three perspectives: 

Figure 7—1 Future Trends in Cloud Technologies and Cloud Pricing Strategies [30] 

• From an infrastructure or hardware perspective, there is a trend towards sharing, which 

aims to maximize the utilization of cloud resources. Until now, all cloud infrastructures 

that are built by either CSPs or large enterprises are supported by the physical data 

centers and communication networks. If the running business applications require 

mission-critical infrastructure and satisfy peak demands, the amount of upfront capital 

and operational expenditures are significant. Yet a large portion (or 90% [60]) of cloud 

data center capacity might be left idle. Moreover, the value of proportional data center 

 

 

30 Microservices – is a software architecture style, which is an evolution of service-oriented architecture (SOA). 

Function – is a bunch of Lines of Code or sources code to implement a function. Container – an abstraction of 

operation system (file size in tens of MB Vs VM file size in tens of GB), which is to contain an application only 

and its environment. 
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assets is depreciated sharply due to Moore’s law. Consequently, sharing infrastructure 

is an inevitable step to improve the utilization rate of cloud resources. The key 

difference between cloud resource and traditional infrastructure is that cloud resource 

is measured by time while the traditional infrastructure refers to a physical object. This 

leads to a cloud pricing model and its service value being measured by units of time 

rather than as a physical object. 

• From a software perspective, there is a trend towards immutable [ 31 ] objects. 

Traditionally, a software system, such as an operating system, is treated as a mutable 

object, which is frequently reconfigured and incrementally updated or patched from 

time to time. For any mutable system, the existing state of software is not cut by one-

off but by multiple times on top of older binaries. In comparison, immutable software 

is a new object. A direct replacement does away with the need for an incremental 

upgrade. For example, if an old container server needs to upgrade, the fresh new 

container image will be created and the old one can be thrown away: then the new 

container is executed. The benefits of immutable software are: 1) the upgrade is 

traceable if something is going wrong, and 2) it can be rolled back. By moving from 

mutability to immutability, many software developers can save not only time but also 

computer resources. 

• From a resource perspective, there is a trend towards a stateless architecture that 

enables customers to scale a resource pool quickly. There are two meanings of stateless. 

One is a “thin server with the thick client,” where a server does not have a memory 

state of the past and only the client remembers every transaction. Another connotation 

of stateless is that a workload to be implemented does not need a server that 

traditionally needs defined memory, network bandwidth, storage, or an operating 

system. In simple terms, the cloud customer does not need a specified or fixed server 

box, whether physical or virtual. The workload or application only requires a resource 

boundary to run or execute functional codes. This temporary resource boundary is also 

called a container. In comparison with the traditional definition of server resources, the 

 

 

31 It is a programming term, which means the value of some objects (e.g. variable, data structure, a function, or a 

method) can be altered or updated while the term of immutable means the value of the object cannot be changed.  
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ephemeral nature of the computational requirement can save a lot of cloud resources. 

This type of computational resource is also considered to be serverless.   

All the above three cloud developments not only emphasize the value of hardware but also 

underscore the value of running business applications. 451 Research estimated that the market 

revenue of Docker would grow more than 35-fold from $761m in 2016 to $27billion in 2020 [96]. 

The fundamental reason behind this growth is the efficiency improvement of cloud resources. The 

initial phase of a cloud transformation from physical to virtual can improve efficiency up to about 

4-5 times by reducing cloud infrastructure or cloud data center idle time. The following phase of 

cloud transformation can increase efficiency by up to 4-6 times by leveraging a server’s 

lightweight (as shown in Figure 7⎯1)  

Figure 7⎯1 also indicates that Serverless, Docker container, Open API, DevOps, Desktop Grid 

and Microservices will underpin new cloud pricing models innovation. From a CSP’s perspective, 

the implication of the new cloud technologies allows CSPs to meet the challenge of demand 

fluctuation and maximize their revenues and profits with a finite amount of cloud resources. From 

a cloud consumer’s perspective, it means cloud vendor-free, flexibility, scalability and Opex 

minimization. On the basis of this evolutionary trend, we can identify four potential challenges 

of future cloud price modeling: 

• How to drive value-based pricing from a customer’s value proposition. 

• How to price cloud resources from statefulness to stateless. 

• How to price software from mutable to immutable. 

• How to price both intrinsic to extrinsic cloud features from a cloud infrastructure 

lifecycle perspective. 

T. Nagle’s seminal book [10] provides some clues on how to deal with these challenges. One 

of the proposals is to establish or consolidate a value-based metric from a cloud business 

customer’s perspective, which is to create a proactive pricing strategy to understand how and 

when to satisfy the customers' application and meet all its expectations while a CSP can maximize 

its cloud profit. 

 

7.2.1 Hedonic Pricing for Cloud Computing Services 
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The conclusion of the hedonic pricing model is that the cloud instance price cannot be just 

examined by its intrinsic characteristics (mainly cost components, such as RAM, CPU, network 

performance and storage) alone. It will inevitably lead to a pricing estimation bias because the 

cloud price prediction is ultimately determined by three key factors or variables, namely, intrinsic, 

extrinsic and time dummy. Many traditional cloud pricing models cannot reflect cloud extrinsic 

values (such as burstable CPU, dedicated server, or data center global footprint). However, it does 

not mean we can ignore these extrinsic characteristics. In fact, they have a substantial influence 

on the cloud service price. In this thesis, we have shown the process of how to calculate and 

predict the cloud price accurately and how to avoid a price estimation bias. The novelty of our 

work is that we present and prove that the value of the Average Annual Growth Rate (AAGR) is 

equivalent to Moore’s law in cloud services. 

Chapter 3 argues that the hedonic pricing model is a better approach to estimate the cloud price 

accurately - if we can establish an adequate hedonic function form based on the available dataset 

to hand. Furthermore, we exhibit the AWS cloud price has been declining over the last 10 years, 

but at a much slower pace in comparison with Moore’s law prediction. One of the significant 

influenced factors of this decline is the cloud of extrinsic values or characteristics. They have 

become AWS's competitive advantages to lead in the cloud (IaaS) market.  

Some of the model assumptions can impact the accuracy of cloud price prediction. However, if 

many CSPs’ datasets are opened, this research can improve the prediction results. In the future, 

any follow-up to this chapter will focus on the combination of both panel and cross-sectional 

datasets for all leading global CSPs. 

7.2.2 Cloud Computing Market Segmentation 

Chapter 4 demonstrates how to combine both Hieratical Clustering (HC) and Time Series (TS) 

forecast to segment the cloud market and predict market demands. In summary, we show HC + 

TS is a better method to understand the market potential. It is also convenient for any CSP to 

implement its cloud market strategy by rolling out different pricing models for various market 

segments. Our approach allows CSPs to tailor their limited cloud resources for the targeted 

customers. Moreover, CSPs can optimize its cloud pricing beyond the reach of traditional cost-

based cloud pricing. It creates opportunities for the CSP to maximize the revenue and profits 

based on the various cloud customers’ utility and surplus. The details of how to define the 

customer surplus or cloud customer utility functions and how to establish and optimize different 
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cloud pricing models are among our future work. We will explore these two topics in future 

studies. 

7.2.3 Modeling Cloud Customer Utility Functions 

The idea of the modeling cloud utility function is to measure cloud customers’ preferences and 

tastes in terms of less or more VM resources consumed. In our case, the unit of this measurement 

can be interpreted as a revenue contribution to a cloud business application. There are many 

factors that can impact overall business revenue, such as responses to time, latency, throughput, 

cost, SLA guarantee, availability, scalability, capacity and security. These measurements are also 

called cloud customer metrics. They lead to different utility functions or customer preferences. 

So, to model multiple utility functions is essential to be successful in cloud pricing.  

Chapter 5 demonstrated how to construct different utility functions by the “linked-in” modeling 

method. We also illustrated how to derive various utility functions in a practical way so that the 

audiences can build their own utility functions based on different business strategies. 

Consequently, Chapter 5 lays out the foundation of cloud price modeling. Our conclusion is 

that the linked-in modeling method can explicitly model the cloud utility function in each cloud 

market segment. In comparison with other methods, our modeling method is compelling, 

comprehensive, flexible and practical for many cloud practitioners. 

Practically, the modeling utility function is just one of the process steps for CSPs to create a 

value-based pricing strategy. There are two more steps: they are to build various value-based price 

models (Step 3) and identify the optimal price point for each price model so that both CSPs and 

cloud business customers can achieve the goal of value co-creation (Step 4) as shown in Figure 

5⎯1. In the future, we will complete these two steps of the process based on the results of utility 

function modeling and provide a comprehensive framework of pricing strategy for CSPs to 

generate multiple value-based price models from end to end.    

7.2.4 Value-Based Cloud Price Modelling For a Segmented B2B Market 

Chapter 6 developed an overall framework of the pricing process; that is, how to generate 

various price models and how to find these optimal price points of each model for a CSP to 

maximize its profit. These are two elements of pricing strategy (shown in Figure 6⎯1) that have 
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been demystified in this paper. The significance of this study is that it presents the complete 

process of value-based pricing from end to end (E2E). 

It demonstrates how to establish four types of practice price models, namely: on-demand, bulk-

selling, reserved, and bulk-selling + reserved pricing models. While the modeling process appears 

to maximize CSP’s profit, it is a value co-creation because the process is to generate a partnership 

between cloud business customers and CSPs. This process becomes a practical tool for any CSP 

to construct their cloud price models based on the defined business strategy, cloud market 

environment, own datasets and their expertise.  

Chapter 6 shows how to use a Genetic Algorithm (GA) to find the optimal price points by 

maximizing CSP’s profit. Our experimental results demonstrate that the bulk + reserved pricing 

model can achieve the best profit margin, which is about 219%, while the bulk-selling is the most 

pervasive model for three market segments in terms of the customers’ value propositions. It 

implies that the single pricing model with an assumption of an integrated market does not 

necessarily mean it can achieve the maximum profit for CSPs because the cloud market is 

segmented.  Our experimental results reiterate the importance of cloud market segmentation, 

which has often been ignored by previous studies.    

The results also illustrate that the proposed models for most market segments are not able to 

capture the value of risk-taking (or niche) market segments. The only large discount price model 

can satisfy the customers who are willing to take high risks for their business application 

workloads. If a CSP wants to capture the value of a niche market, it should carefully design a 

particular price model not only to target that niche market segment but also to isolate the model 

and avoid cannibalizing the higher profit margin from other cloud market segments. On the other 

hand, the price model that can generate the highest profit margin potential does not necessarily 

mean that a CSP should adopt it as the only model because there are many CSP competitors on 

the market. Consequently, our future work will extend from a monopoly market assumption to 

oligopolies or competitive cloud market environments and from a fixed demand to a price-

sensitive demand with a probability distribution. 
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