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Abstract

Simulation studies of Grid scheduling strategies require
representative workloads to produce dependable results.
Real production Grid workloads have shown diverse cor-
relation structures and scaling behavior, which are dif-
ferent than the characteristics of the available supercom-
puter workloads and cannot be captured by Poisson or sim-
ple distribution-based models. We present models that are
able to reproduce various correlation structures, including
pseudo-periodicity and long range dependence. By con-
ducting model-driven simulation, we quantitatively evalu-
ate the performance impacts of workload correlations in
Grid scheduling. The results indicate that autocorrelations
in workloads result in worse system performance, both at
the local and the Grid level. It is shown that realistic work-
load modeling is not only possible, but also necessary to
enable dependable Grid scheduling studies.

1 Introduction

Grid computing is rapidly evolving as the next-
generation platform for system-level sciences and beyond.
In such a dynamic and heterogeneous environment, good
scheduling mechanisms are needed to deliver nontrivial
quality-of-service. Understanding the workload character-
istics is crucial because not only workload is an indispens-
able part in scheduling evaluation but also a deep under-
standing will give us hints on how to improve the schedul-
ing heuristics.

A study of workload dynamics on clusters and Grids has
been conducted in [12]. It is shown that workload charac-
teristics on clusters and Grids, particularly in data-intensive
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environments, are significantly different than those on con-
ventional supercomputers. Job arrivals show a variety of
correlation structures, including short range dependence,
pseudo-periodicity, and long range dependence. “Bag-of-
tasks” behavior with a strong degree of temporal locality
is observed, which leads to the long autocorrelation lags in
workload attributes such as run time. Simple models such as
Poisson or distribution-based methods are not able to cap-
ture the second-order properties such as autocorrelation.

In this paper we present an overview of workload models
developed for Grid environments that are able to reproduce
the correlation structures as in the real traces. To show that
the models are not only possible but also practical, we con-
duct model-driven simulations of Grid scheduling strate-
gies. Experiments are designed to quantify the performance
impacts of workload correlations in Grid scheduling. The
impacts, as we will show later, are very large. Long range
dependence results in big performance degradation, which
effects should be taken into consideration in the scheduling
evaluation studies.

The rest of the paper is organized as follows. Section 2
provides a overview of some of the representative research
in Grid scheduling. The focuses are on how workloads
are treated and what is the simulation environment. Sec-
tion 3 discusses the workload models developed for captur-
ing the statistical properties of real Grid traces, including
short range dependence, pseudo-periodicity and long range
dependence. A comprehensive model is obtained by com-
bining job arrival process and series of job attributes such as
run time. Section 4 describes the simulation setup. We build
the simulation environment based on GridSim and develop
two cases for performance evaluation studies, namely Grid
resource case and Grid broker case. Section 5 presents the
experimental results for the two cases, namely, the perfor-
mance impacts of autocorrelations on one FCFS queue with
multiple servers, and on a Grid broker and multiple clusters
with background workload. Section 6 comes to the conclu-
sion that autocorrelations cause performance degradation in



Research Paper Scheduling Simulator Grid Workload Background Workload
Buyya’05 Deadline/Budget GridSim Bulk of 200 jobs None
Dumitrescu’06 uSLA allocation GangSim 500 jobs with fixed intervals None
Ranganathan’02 Data and Computation ChicSim 6000 jobs in sequence None
Venugopal’06 Set coverage with data GridSim Bulk of 1000 jobs Gaussian system load
Casanova’00 Max-min, Sufferage, etc Simgrid NWS traces, Random None
Song’05 Min-min with trust Custom NAS, PSA traces Poisson arrivals
Bucur’03 Co-allocation CSIM18 DAS traces None
Ranjan’06 SLA cooperative GridSim Parallel workload traces None
He’05 DAG-mapping Custom Random workflows Poisson/Exponential
Ramakrishnan’07 Data-intensive workflows GridSim LIGO workflows None

Table 1. Summary of representative scheduling research in Grid environments. The papers are
named after the first authors and the years of publication.

both cases and future work on how to improve scheduling
are discussed.

2 Evaluation of Scheduling Algorithms

Efficient and effective scheduling at a meta-level is very
important in a Grid computing environment. In order to
develop and evaluate new Grid scheduling algorithms, two
fundamental issues have to be addressed for performance
evaluation studies. On one hand, representative workload
traces are needed to produce dependable results. On the
other hand, a good testing environment should be set up,
most commonly through simulations. In this section we re-
view some of the current research in Grid scheduling, with
a special emphasis on the mentioned two issues.

Table 1 shows a summary of representative scheduling
studies in Grid environments. Since the clusters/resources
participating in a Grid typically have their own local ac-
tivities, the workloads are further categorized into Grid-
level jobs (Grid workload) and locally generated jobs (back-
ground workload). Due to the lack of traces at the Grid
level, simplified assumptions on workloads are commonly
made in many scheduling studies. In [4] and [21] bulk
sizes of 200 to 1000 jobs are used to evaluate the pro-
posed “off-line” scheduling algorithms. For “on-line” mode
of scheduling, jobs either arrive in fixed intervals [6], or
strictly in sequence [16]. More realistic treatments include
the use of real workload traces. In [5] traces obtained from
Network Weather Service (NWS) are used to study a set of
heuristics for parameter sweep applications, including max-
min, min-min, Sufferage, and XSufferage. In [20] there
are two specific traces under study: one is obtained from
iPSC/860 parallel workload at NAS, the other consists of
parameter sweep applications (PSA). In [2] traces from a
multi-cluster environment (DAS) are utilized in the study
of processor co-allocation strategies. In [17] workloads

on parallel supercomputers available at the Parallel Work-
load Archive1 are used in evaluating a SLA-based coopera-
tive superscheduling algorithm. Work in [7] and [15] focus
on workflow scheduling, in which workflows are randomly
generated or based on real traces. Trace-based simulations
have the advantages of easy-to-use, and the results obtained
are reproducible and comparable. However, it is not as flex-
ible as models in case that many traces have to be gener-
ated to enable a Grid scheduling study. The traces available
from parallel workloads can also have significantly different
characteristics compared to Grid workloads, which has been
empirically proved [12]. Such differences, in turn, may lead
to considerably different performance evaluation results.

Background workload is another important issue to be
addressed in a heterogeneous and non-dedicated Grid envi-
ronment. Many previous work do not include background
load information because traces or characterization are not
widely available concerning the background workloads on
clusters. Some research employs models to generate local
jobs as background. In [21] the local system load is mod-
eled as a Gaussian distribution with predefined mean and
variance. In [20] and [7] background job arrivals are mod-
eled as a Poisson process and run times are drawn from an
exponential distribution in [7]. Although such models are
simple to use and analytically tractable, it might not reflect
the real job characteristics at the cluster level.

The third problem is how to set up a simulation envi-
ronment for performance evaluation. As we can see in Ta-
ble 1, GridSim is a popular choice to build Grid simula-
tions [4, 21, 17, 15, 19]. Other simulators developed spe-
cially for Grids include Simgrid [5], GangSim [6] and Chic-
Sim [16]. Some researchers build their own version of sim-
ulators to meet their research goals [7, 20]. Commercially
available product is also employed in conducting simula-
tions [2]. Although many simplifications and assumptions

1www.cs.huji.ac.il/labs/parallel/workload/.



are made in the simulations compared to real Grid environ-
ments, simulations are commonly considered a flexible and
tractable way of evaluating different Grid scheduling algo-
rithms as well as other design issues.

The main focus of this paper is on the workload traces.
Although far from an exhaustive list of Grid scheduling
literature, we can see that a large number of research
work such as the ones shown in Table 1 either use traces
not typically from real production Grids, or use simple
workload models (Poisson, fixed-interval arrivals, or Gaus-
sian system load). These traces or models, however, ex-
hibit significantly different characteristics than the traces
on production Grids. As has been studied and reported
in [12], pseudo-periodicity, long range dependence (LRD),
and “bag-of-tasks” behavior with strong temporal locality
are the main properties that characterize production Grid
workloads. Therefore, it is important that representative
models be developed to capture the salient properties of
Grid workloads. In the following sections we present an
overview of the recent work on workload modeling for clus-
ters and Grids. Moreover, by using the developed mod-
els we conduct model-driven simulation of Grid scheduling
strategies and quantify the performance impacts of various
correlation structures in workloads.

3 Workload Modeling in Grids

Based on workload traces from a large production Grid
and several participating clusters2, we developed models
that are able to reproduce the statistical properties of traces
at different levels. The following presentations are based
on research in [8, 9, 10, 11] and discuss job arrivals and job
attributes, respectively.

3.1 Job Arrivals

Job arrivals can be described as a point process and two
representations are commonly used, namely, interarrival
time process and count/rate process. The count process is
formed by dividing the time axis into equally spaced con-
tiguous intervals and counts the number of events within
each interval. Forming the sequence of counts generally
loses information but it allows the correlation in the counts
be readily associated with that in the point process [13]. The
rate process is basically the sequence of counts normalized
by the count interval.

In the following discussions, doubly stochastic models
are the so-called “full” models because they fit the interar-
rivals. Models for pseudo-periodicity and long range de-
pendence operate on the count processes, by which the cor-
relation structures can be reliably revealed. Algorithms are

2Grid Workload Archive. http://gwa.ewi.tudelft.nl/.

also proposed to convert rates back to interarrivals. Another
advantage of modeling the count process lies on its additive
nature: models for different VOs can be added together to
generate an aggregated trace in which the VO labels are pre-
served. This is useful for evaluating scheduling strategies in
which policies are based largely on VOs.

3.1.1 Doubly Stochastic Models

Homogeneous Poisson processes are well-known “zero-
memory” models, whose interarrivals and counts are inde-
pendently and identically distributed (I.I.D.) random vari-
ables. A generalization of the Poisson process is the so-
called doubly stochastic Poisson process (DSPP). Its rate
µ(t) is modulated by a positive-valued continuous-time
stochastic process rather than a fixed constant. The re-
sulting process is thus doubly random: one source of ran-
domness arises from the stochastic rate µ(t) while another
comes from the intrinsic Poisson events. A Markov mod-
ulated Poisson process (MMPP) is a DSPP whose rate is
controlled by a finite state continuous-time Markov chain.
MMPP models have several attractive properties, such as
being able to capture correlations between interarrival times
while still remaining analytically tractable. MMPPs are
suitable to generate processes that are short or middle range
dependent [10].

3.1.2 Pseudo-Periodicity

Pseudo-Periodicity is considered as one basic pattern that
originates from automated submission schemes, which is
present in large-scale data-intensive environments. Our
approach for modeling the pseudo-periodic pattern is in-
spired and adapted from a signal decomposition method-
ology called matching pursuit. It is a greedy, iterative algo-
rithm which searches a family of candidate functions (also
called “atoms”) for the element that best matches the sig-
nal and subtracts this function to form a residual signal to
be approximated in the next iteration. Sinusoidal and har-
monic models are used for fitting the job arrival count pro-
cesses, whose parameters are estimated via matching pur-
suit. Matching pursuit is also shown to be able to extract
patterns from signals and makes it possible to model pat-
terns individually. For example, some long range dependent
processes could be mixed with certain high-frequency peri-
odic components. Matching pursuit is able to separate these
two patterns so that suitable models can be applied individ-
ually. We refer to [9] for details about the matching pursuit
approach in modeling pseudo-periodic job arrivals.

3.1.3 Long Range Dependence

A process X(t) is said to be long range dependent (LRD) if
either its autocorrelation function (ACF) or power spectrum



satisfies the following conditions:

R(k) ∼ crk
α−1, k →∞, or S(f) ∼ cff−α, f → 0. (1)

The autocorrelation function R(k) decays so slowly that∑∞
k=−∞R(k) = ∞ and S(0) = ∞. LRD is one class

of the general scaling process [1]. Job arrival processes ex-
hibit long range dependence at many levels, including VO,
cluster, and the Grid [12]. LRD is closely related to tem-
poral burstiness, in which jobs tend to arrive within bursty
periods. This is in accordance with the “bag-of-tasks” ar-
rival behavior in data-intensive Grid environments. We ap-
ply the multifractal wavelet model (MWM) [18] to fit the
count/rate processes because it provides a coherent wavelet
framework for analysis and synthesis of the scaling behav-
ior. It is shown that second order properties such as the au-
tocorrelation function (ACF) and the scaling behavior can
be well reconstructed by MWM [8].

3.2 Job Attributes

For data-intensive workloads running on production
clusters and Grids, it has been pointed out that strong tem-
poral locality and “bag-of-tasks” behavior lead to long cor-
relation lags in job attributes such as run time and memory
consumption [12]. We have proposed a model for workload
attributes that can capture not only the marginal distribution
but also the second order statistics such as the autocorrela-
tion function (ACF) [11]. This is fulfilled by a two-stage
approach: Firstly, a mixture of Gaussians model is used to
fit the probability density function (PDF), whose parame-
ters are estimated via a framework called model based clus-
tering (MBC). The MBC framework can further cluster the
data according to the Gaussian components, which plays
an important role in creating correlations in the next stage.
Secondly, a novel localized sampling algorithm is proposed
to generate correlations in the synthetic data series. It is dis-
covered that the number of repetitions of cluster labels ob-
tained via MBC empirically follow a Zipf-like (power law)
distribution. Sampling repeatedly from a certain cluster ac-
cording to the Zipf law is able to create correlations in the
series. Furthermore, a cluster permutation procedure is in-
troduced so that the autocorrelations in the synthetic data
can be controlled to match those in the real trace via a sin-
gle parameter. Experimental results have shown that the
proposed model can fit the marginal distribution well at the
same time match the autocorrelation function of the origi-
nal trace [11]. This model is referred as MBC-LSP in the
context of this paper.

3.3 A Comprehensive Model

Although correlations and the scaling behavior can be
reliably revealed using the count/rate process, it is nec-

View Mean CV Distribution ACF
local 0.04/s 9.9 Long tail SRD

RAL05 grid 0.02/s 2.1 Short tail MRD
all 0.06/s 6.3 Long tail SRD
local 0.002/s 8.7 Long tail P.P.

NIK05 grid 0.005/s 4.1 Long tail MRD
all 0.006/s 4.4 Long tail MRD

LPC05 all 0.01/s 2.2 Short tail LRD

Table 2. Statistics for job rate processes on
clusters (s - seconds, P.P. - Pseudo Periodic).

View Mean CV Distribution ACF
local 10401 1.9 Long tail LRD

RAL05 grid 13973 1.7 Long tail LRD
all 11727 1.9 Long tail LRD
local 14584 1.9 Long tail MRD

NIK05 grid 16934 1.9 Long tail LRD
all 16336 1.9 Long tail LRD

LPC05 all 4585 3.7 Long tail LRD

Table 3. Statistics for job run times on clus-
ters (the unit of run time is seconds).

essary to generate a point process in the form of interar-
rival times so that a full description can be obtained. A
so-called controlled-variability integrate-and-fire (CV-InF)
algorithm can be used for such conversion [8]. Since the
rates are additive, it is possible to add up several rate pro-
cesses with different patterns to form an aggregated pro-
cess, and convert it into interarrivals. By combining job
arrival process and series of job attributes such run time,
we obtain a comprehensive model for independent tasks in
data-intensive Grids. Parallelism is not taken into account
here because there are not enough parallel jobs available for
study in the production Grid traces, which mostly consist of
sequential jobs such as those from high energy physics and
biomedical sciences.

Our goal is to demonstrate the feasibility and advantages
of using workload models to drive simulations. The exam-
ple is to investigate the performance impacts of workload
correlations in Grid scheduling. For this purpose we gener-
ate synthetic traces with different correlation structures. Job
arrival processes can be not dependent (NoD), short range
dependent (SRD), and long range dependent (LRD), which
can be modeled by a Poisson process, a 2-state Markov
modulated Poisson process (MMPP2), and a multifractal
wavelet model with CV-InF conversion (MWM). Job run
times have the same three correlation structures and they
can be modeled by MBC-LSP with different permutation
window sizes. Experimental results of using these models



Site Location Cluster OS #CPUs Downscale SpecINT2k BG workload
CERN-PROD CERN, Switzerland Sci. Linux 3 3534 354 970 0.05/s
FZK-LCG2 FZK, Germany Sci. Linux 3 2662 266 1289 0.04/s
USCMS-FNAL FNAL, USA Sci. Linux 4 1925 193 1600 0.033/s
UKI-QMUL QMUL, UK Sci. Linux 4 1644 164 1381 0.033/s
IN2P3-CC IN2P3, France Sci. Linux 3 1454 145 892 0.025/s
SARA-LISA SARA, Netherlands Debian 3 1352 135 1636 0.025/s
RAL-LCG2 RAL, UK Sci. Linux 3 1266 127 1000 0.02/s
INFN-T1 INFN, Italy Sci. Linux 3 1238 124 747 0.02/s
Top 8 out of 237 sites in total (0.034%), 15075 out of 36126 CPUs in total (41.7%).

Table 4. Characteristics of the largest eight clusters in the LCG Grid (data obtained in April, 2007)
and corresponding parameters used in the simulation. BG workload shows the local job arrival rate
on the cluster. Run times of the local jobs are scaled to obtain different utilizations.

to generate Grid-level and background workloads are pre-
sented in Section 5.

4 Grid Simulation

We build the simulation environment based on Grid-
Sim [3]. GridSim provides a discrete-event framework for
simulating core Grid entities such as jobs, resources, and in-
formation services. For the performance evaluation of Grid
scheduling under correlated workloads we implement two
case studies, which are elaborated in the following sections.

4.1 Grid Resource Case

The first case is a computing cluster with one FCFS
queue. The simulated cluster is space-shared and has 100
CPUs. In order to understand what are the workload charac-
teristics we analyze the traces on three representative data-
intensive clusters3. For RAL05 and NIK05 we are able to
roughly distinguish the Grid jobs and the locally generated
jobs. By examining the “user name” field in the traces,
jobs from “pool account” (usually a VO name plus a unique
number) are considered Grid jobs while jobs from a “real”
user name are seen as local jobs. As is shown in Table 2,
different clusters have different job arrival rates and auto-
correlation structures. The arrival ratio and patterns of local
jobs versus Grid jobs are also highly diversified. The job run
times, on the other hand, have relatively smaller variances
and are almost all long range dependent. These statistics
give us a good reference on how to adjust the model param-
eters for synthetic workload generation.

3RAL05, NIK05, and LPC05 are traces collected from clusters in high
energy physics institutes in UK, Netherlands, and France, respectively. See
descriptions in [12] about resource details.

Model Parameters
Poisson µ = 10
MMPP2 σ1 = 0.04, σ2 = 0.01,

λ1 = 8.0, λ2 = 1.0
MWM p = [3.3, 5.3, 6.6, 7.5, 6.7, 7.1, 4.8,

3.0, 2.2, 1.4], µc = 0.28, σc = 0.33
MBC-LSP α = 1.79, N = 1262, W = 1, 500

Table 5. Model parameters used in the experi-
mental study. MWM parameters are fitted us-
ing biomed, LPC05. MBC-LSP parameters are
fitted for hep1, RAL05 (parameters for Gaus-
sian mixtures are not shown).

4.2 Grid Broker Case

The second case naturally extends to the Grid level. In
our environment we simulate 8 space-shared clusters whose
properties resemble those of the eight largest clusters in the
LHC production Grid (LCG)4. These properties are shown
in Table 4. Each cluster has its own local background work-
load, in which the job arrival rate scale with the capacity
of the resource. The chosen algorithm for the Grid bro-
ker case is called MCT (Minimum Completion Time) [14].
MCT assigns each incoming job to the cluster with the mini-
mum expected completion time for that job. Clusters are as-
sumed to be FCFS-based so the minimum completion time
can be estimated by simulating FCFS scheduling for the lo-
cal queue. The estimated minimum completion times are
published to the Information Service and can be used by
the broker for making a scheduling decision. The job flow
at the Grid level is sent to the broker and has an average

4LCG is a data storage and computing infrastructure for the high en-
ergy physics community that will use the Large Hadron Collider (LHC) at
CERN. http://lcg.web.cern.ch/LCG/.
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Figure 1. Synthetic workload traces with different correlation structures. For job arrival rate pro-
cesses, NoD - a Poisson process, SRD - a MMPP2 process, LRD - a MWM process with CV-InF con-
version. For job run times, NoD - MBC with random sampling, SRD - MBC with localized sampling
(W = 1), LRD - MBC with localized sampling (W = 500).

arrival rate of 0.1/seconds. The workload models generate
synthetic traces with different structures and are stored in
text files. GridSim reads the workloads from the files and
carries out the simulation.

5 Experimental Studies

In previous sections we discussed the workload models
and the simulation environment setup. In this section we
present the evaluation results that quantify the performance
impacts of workload correlations in Grid scheduling. Ta-
ble 5 shows the model parameters used to generate synthetic
workload traces. For the interpretation of these parameters
we refer to the corresponding papers. In terms of parameter
space, the tradeoff is that we need more complex models to
generate processes with longer range dependence. Differ-
ent correlation structures and associated models are shown
in Figure 1. For all generated processes the means and stan-
dard deviations remain unchanged, only the dependencies
in the series are different. This is the basis of the compari-
son studies presented as follows.

1. What is the performance impacts of autocorrelations
on one FCFS queue with multiple servers?

We study the Grid resource case first. Performance is
measured by the average job slowdown5 as a function of

5Slowdown is defined as the average job response time (run time plus
queue wait time) divided by the average job run time.

system utilization6, which is shown in Figure 2. We can see
that the impacts of autocorrelations is very large: the bigger
the ACF, the worse the performance. Similar results have
been reported in a clustered web server environment [22].
The cause of such performance degradation is the high de-
gree of temporal burstiness in a LRD process. Bursty ar-
rivals, which is the opposite of smoothness (e.g. Poisson),
result in a long queue of waiting jobs. Consequently it leads
to much longer queueing delays (bigger slowdown for jobs)
and overall lower system utilization.

2. What is the performance impacts of autocorrelations
on a Grid broker and multiple clusters with background
workload?

In the Grid broker case, at the cluster level the resource
generates its own local background workload. At the Grid
level one stream of jobs flow into the broker. Therefore
there are two levels of freedom in combining the autocor-
relation structures, with each level having two attributes -
job arrival and job run time. In this case the performance is
measured by the average job slowdown for Grid-level jobs
as a function of the run time scaling ratio on resources. The
run time scaling ratio is the job MIPS rating versus resource
MIPS rating and a higher ratio indicates a larger average run
time. By varying the run time scaling ratio we get the results
as shown in Figure 3. Firstly we investigate the impacts of
Grid-level autocorrelations by setting the local background
workloads to be not dependent (Figure 3 left). Although

6Utilization means the average system utilization and it is calculated as
the proportion of system’s resources which are busy.
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Figure 2. Performance impacts of autocorrelations on a cluster with one FCFS queue. Workload
structure is denoted as “arrival” “run time”.
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Figure 3. Performance impacts of autocorrelations in Grid scheduling. Workload structure is denoted
as “Grid arrival”“Grid run time” “local arrival”“local run time” “scheduling algorithm”. Run time
scaling ratio is defined as the job MIPS rating versus resource MIPS rating.

not as big as in the Grid resource case, performance degra-
dation is observed for larger autocorrelations in the lower
range of the scaling ratios. Secondly we study the impli-
cations of different autocorrelation structures in the local
background workloads (Figure 3 middle). Interestingly we
can see that Grid-level jobs actually perform better when the
background workloads have stronger autocorrelations. This
is explained by the lower system utilization resulted by the
stronger temporal locality in more autocorrelated processes
at the cluster level. If we set the local background work-
loads to be long range dependent and vary the correlation
structures at the Grid level, we can see the big performance
degradation by long autocorrelations. By combining these
effects we can conclude that autocorrelations in the work-
loads result in worse system performance, both at the local
and the Grid level.

6 Conclusions

In this paper we propose the use of workload models to
drive simulations of Grid scheduling strategies. Real pro-
duction Grid workloads have shown rich correlation and

scaling behavior, which are different than conventional par-
allel workloads and cannot be captured using simple models
like Poisson or distribution-based methods. The introduced
models are able to reproduce a variety of correlation struc-
tures, including pseudo-periodicity, short range dependence
(SRD), and long range dependence (LRD), for job arrivals
and job attributes such as run time. The practical use of
these models are also demonstrated by the simulation stud-
ies. By using the synthetic traces we are able to quantify
the performance impacts of workload correlations in Grid
scheduling. The results indicate that autocorrelations in
workload attributes can cause performance degradation, in
many situations this effect is huge. We can see that the de-
velopment of good workload models are not only possible,
but also necessary for dependable performance evaluation
studies of scheduling strategies.

Further research includes how to improve scheduling un-
der autocorrelations. In a two-level Grid scheduling sce-
nario, long range dependence is not necessarily a bad situa-
tion. For instance, Figure 3 (middle) shows that better per-
formance is obtained for Grid-level jobs under LRD back-
ground workloads on clusters. Temporal burstiness, the op-



posite of smoothness, implies that the system have more
idle periods or “holes” in the time line. This provides op-
portunities for the broker to do some smart load balancing
at the Grid level. For supporting scheduling studies we have
made the workload models publicly available7. We believe
that realistic workload models play an important role in fu-
ture Grid scheduling studies.
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