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Abstract

Grid computing technologies are increasingly being used to aggregate computing resources that are geographically
distributed across different locations. Commercial networks are being used to connect these resources, and thus
serve as a fundamental component of grid computing. Since these grid resources are connected over a shared
infrastructure, it is essential that we consider their effect during simulation. In this paper, we discuss how new
additions to the GridSim simulation toolkit can be used to explore network effects in grids. We also investigate
techniques to incorporate differentiated service, background traffic and collecting information from the network
during runtime in GridSim. As a result, these features enable GridSim to realistically model grid computing
experiments.

Keywords: Grid computing; Grid simulation; Differentiated network service

1. Introduction

Grid computing has emerged as the next-
generation parallel and distributed computing
methodology that aggregates dispersed heteroge-
neous resources for solving various kinds of large-
scale parallel applications in science, engineering
and commerce [1]. In order to evaluate the per-
formance of a grid environment, we need to con-
duct repeatable and controlled experiments, which
are difficult due to grid’s inherent heterogene-
ity and its dynamic nature. Additionally, grid
testbeds are limited and creating an adequately-
sized testbed is expensive and time consuming.
Moreover, it needs to handle different adminis-
tration policies at each resource. Due to these
reasons, it is easier to use simulation as a means
of studying complex scenarios.

The GridSim toolkit [2] has been developed to
overcome the above problems. It is a Java-based
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discrete-event grid simulation package that pro-
vides features for application composition, infor-
mation services for resource discovery, and in-
terfaces for assigning applications to resources.
GridSim also has the ability to model hetero-
geneous computational resources of varied con-
figurations. The GridSim toolkit has been ap-
plied successfully to simulate a Nimrod-G [3] like
grid resource broker and to evaluate the perfor-
mance of deadline and budget constrained cost-
and time- optimization scheduling algorithms.

Communication networks serve as a fundamen-
tal component of grid computing. Resources, con-
nected over commercial networks, share band-
width with other users. A realistic simulation
of grid environments should include the effects
of sending data over shared communication lines.
Earlier versions of GridSim did not have the abil-
ity to specify a network topology, nor the func-
tionality to connect resources through network
links in the experiment. Resources and grid users
had all-to-all connections with specifiable band-
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width. Hence, the simulations did not capture
the entire details of an actual grid testbed.

In this work, GridSim has been extended to
address the above problems with the ability to
simulate realistic network models by: (1) allow-
ing users to create a network topology, (2) pack-
etizing a data into smaller chunks for sending it
over a network, (3) generating background traffic,
and (4) incorporating different level of services for
sending packets.

The rest of this paper is organized as follows:
Section 2 provides background on GridSim. Sec-
tion 3 presents the design and implementation of
GridSim network, while Section 4 illustrates the
use of GridSim for simulating a Grid computing
environment. Section 5 mentions related work.
Finally, Section 6 concludes the paper and sug-
gests some further work to be done on GridSim
network models.

2. Background

There has been a significant work in the past on
GridSim ver3.0 to incorporate more functional-
ity and extensibility into it, such as extending
the GridSim infrastructure to support advance
reservation as discussed in [4]. This allows re-
sources to have their own schedulers and policies
for reservation-based systems. However, no work
has been done into improving the existing net-
work model. Therefore, in the newer GridSim
release, a new package is incorporated to provide
better capabilities for the existing network model.
Inside this package, it contains core network com-
ponents, such as links and routers. Details of
these components will be discussed in Section 3.
Also, GridSim denotes the latest version of the
software throughout.

2.1. Overall GridSim Architecture

GridSim is based on SimJava [6], a general
purpose discrete-event simulation package imple-
mented in Java. We designed GridSim as a multi-
layer architecture for extensibility. This allows
new components or layers to be added and in-
tegrated into GridSim easily. In addition, the
GridSim layer archicture captures the model of
grid computing environment. The overall Grid-

Sim architecture can be shown in Figure 1.
The first layer at the bottom of Figure 1 is

managed by SimJava for handling the interaction
or events among GridSim components. The sec-
ond layer is dealt with the infrastructure com-
ponents, such as network and resource hardware.
The third and fourth layer are concerned with
modeling and simulation of Computational Grids
and Data Grids respectively. GridSim compo-
nents such as Grid Information Service (GIS) and
Job Description are extended from the third layer
to incorporate new requirements of running Data
Grids. The fifth and sixth layer are allocated to
users wanting to write their own code in GridSim.

2.2. Features

Some of the GridSim features are:

• allowing modeling of different resource
characteristics and types;

• enabling simulation of workload traces
taken from real supercomputers;

• supporting a reservation-based mechanism
of a resource;

• allocating incoming jobs based on space- or
time-shared mode;

• has the ability to schedule compute- and/or
data-intensive jobs as discussed in [5];

• providing clear and well-defined interfaces
for implementing a different resource allo-
cation; and

• allowing modeling of several regional GIS
components.

2.3. Fundamental Concepts

In SimJava, each simulated system (e.g. re-
source and user), that interacts with others, is
referred to as an entity. An entity runs in paral-
lel in its own thread by inheriting from the class
Sim entity, while its desired behavior must be
implemented by overriding a body() method.

SimJava requires each entity to have two ports
for communication: one for sending events to
other entities, whereas the other port is used
for receiving incoming events. In GridSim, this
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Figure 2. A class diagram showing the relation-
ship between GridSim and SimJava entities

is done via classes Input and Output. Both
classes have their own body() method to handle
incoming and outgoing events respectively. Simi-
larly, GridSim entities must inherit from the class
GridSimCore and override a body()method. The
relationship between Sim entity and GridSim
classes is shown in Figure 2. In a class diagram,
attributes and methods are prefixed with charac-
ters + indicating access modifiers public. Note
that the class GridSimCore does not have the
body() method because it is not necessary since
its subclass will override the method.

3. Design and Implementation of GridSim

Network

The flow of information among GridSim enti-
ties happens via their Input and Output (I/O)
entities. Upon creating an entity with a specified
bandwidth, GridSim creates a new instance of the
Input and Output, and links them to the new en-
tity. Hence, data sent by an entity goes through
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its Output entity, and is received by other entities
via their Input entities

The use of separate entities for I/O provides a
simple mechanism for GridSim entities to com-
municate with each other, and allows modeling
of a communications delay [2]. In addition, this
existing design provides a clean interface between
the network entities and others. Therefore, most
of the changes were incorporated into class Input
and Output for transparent and minimal modifi-
cation to the existing code.

The addition to the existing network architec-
ture allows GridSim entities to be connected using
links and routers, with different packet schedul-
ing policies for realistic experiments as shown in
Figure 3. Detailed explanation of this figure will
be explained later in Section 3.4. The network
architecture has also been designed to be extensi-
ble and backwards compatible with existing codes
written on older GridSim releases.

3.1. Network Components

Important additions to the existing GridSim
network architecture are link, router, packet,
packet scheduler and background traffic genera-
tor components. The relationships among these
network components in Unified Modeling Lan-
guage (UML) notations [7] are depicted in Fig-
ure 4. Note that the background traffic generator
component will be discussed in Section 3.3.

3.1.1. Link

A link in GridSim is represented as an abstract
class Link for extensibility. SimpleLink, a sub-
class of Link as shown in Figure 4 (a), requires
information like the propagation delay, band-
width and Maximum Transmission Unit (MTU)
for packet delivery.

3.1.2. Input and Output

When Gridsim entities want to send or receive
data, they use the Input and Output entities at-
tached to them, as previously mentioned. The
Output entity is responsible for splitting the data
into MTU sized packets, whereas the Input entity
is accountable to collate the different packets in
a stream altogether, and send them as one piece
of data to the GridSim entity. In addition, these
I/O entities act as a buffer to hold the packets

until a link is free.

3.1.3. Router

A router in GridSim is represented as an ab-
stract class Router for flexibility as shown in Fig-
ure 4 (a). Therefore, this design allows a subclass
of Router in determining the forwarding table at
the start of the simulation, and implementing any
routing algorithms.

Routing can be done using static tables or
dynamic methods, such as Routing Information
Protocol (RIP) [8] and Open Shortest Path First
(OSPF) [9]. An implementation of a router
in class FloodingRouter uses a flooding algo-
rithm to setup its forwarding tables automati-
cally. Since routers and other GridSim entities
can not be created and added after the simulation
has started, the flooding algorithm is a sufficient
method to setup a router’s forwarding tables.

3.1.4. Packet

A network packet in GridSim is represented
as an interface class Packet as shown in Fig-
ure 4 (b). Currently, there are two classes that
belongs to this category, i.e. NetPacket and
InfoPacket. A NetPacket class is used to encap-
sulate data passing through the network, whereas
class InfoPacket is devoted to gather network in-
formation during runtime which is equivalent to
Internet Control Message Protocol (ICMP) [10]
in physical networks.

3.1.5. Packet Scheduler

A packet scheduler is responsible for deciding
the order in which one or more packets will be
sent downlink. Implementing a packet scheduler
requires extending from class PacketScheduler

as depicted in Figure 4 (c).
In Gridsim, three implementations of

the packet scheduler are provided i.e.
class FIFOScheduler, SCFQScheduler and
RateControlledScheduler. The class
FIFOScheduler uses a simple First In
First Out (FIFO) policy, whereas the class
SCFQScheduler adopts a variation of Weighted
Fair Queuing (WFQ) [11], called Self Clocked
Fair Queuing (SCFQ) [12] policy. The
RateControlledScheduler is an implementa-
tion of a rate-jitter controlling regulator [32].
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3.2. Support for Network Quality of Ser-

vice & Runtime Information

Jobs on grids may have different requirements
with respect to bandwidth and latency. Systems
like fire or earthquake detection require low la-
tency and reliable delivery. Other jobs like pro-
tein folding experiments require high processing
power, and may tolerate some network errors.
Also, in some cases, grid resource providers may
wish to charge for priority access to their re-
sources. Thus grid resource providers need mech-
anisms to provide users with different Quality of
Service (QoS) for using their networks [13]. In
order to support this functionality, every packet
in GridSim contains a Type of Service (ToS) at-
tribute with a default value of zero weight. This
attribute will be used by routers or packet sched-
ulers to provide a differentiated service to hetero-
geneous links or connections for incoming packets.
In GridSim, class SCFQScheduler can be config-
ured with different weights. Packets belonging to
a class with higher weight receive higher prior-

ity according to the SCFQ algorithm. Similarly,
RateControlledScheduler can be used to con-
trol the bandwidth that is assigned to each class
of user at a Router. This is a non-work con-
serving algorithm, which means that the router
can remain idle even if there are packets in its
queue. Non-work-conserving policies have some
benefits like lower buffer space requirements and
smoothening of downstream traffic [33]. At a
RateControlledScheduler, each class of users is
assigned to a certain percentage of bandwidth,
and the scheduler makes sure that each class re-
mains constrained within its bandwidth limits at
all times.

GridSim also supports requesting network sta-
tus during runtime, such as number of hops to
destination, round trip time (RTT), bottleneck
bandwidth and all bandwidths that a packet has
traversed for current or future simulation time.
This feature is similar to an ICMP ping message.
The result is captured inside class InfoPacket.

To enable this functionality, a GridSim en-
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tity must use either blocking or non-blocking
method calls from class GridSimCore. A blocking
call requires to use only a pingBlockingCall()

method, where it waits for a result to come back
while preventing other entity’s activities. In con-
trast, a non-blocking call needs to use a combina-
tion of ping() and getPingResult() methods
while doing something else in between. Both
pingBlockingCall() and getPingResult()

method return an object of class InfoPacket.

3.3. Simulating with Background Traffic

In commercial or even academic networks,
users expect to experience network traffic that
does not belong to them. In order to cap-
ture this real world scenario into a simulation,
GridSim supports modeling of background traf-
fic. This can be done by creating an instance of
class TrafficGenerator, and storing it as a class
Output attribute. The class TrafficGenerator

generates inter-arrival time, packet size, and
number of packets for each interval according to
various distributions that are supported by Sim-
Java [6]. Some of the distributions are Bernoulli,
negative exponential, and binomial. Then, these
generated values are used by an Output entity to
send background traffic packets to one or all other
entities in the experiment.

3.4. Interaction among GridSim Network

Components

When a simulation starts, routers send out ad-
vertisement packets to all neighboring routers,
advertising any other GridSim entities they are
connected to. Later on, the neighboring routers
adjust their forwarding tables upon receiving
these packets. Then, they forward the packets
to all neighboring routers except the source. De-
pending on the complexity of a network topology
and number of GridSim entities created, this pro-
cess might take a while.

Once the forwarding tables have been com-
pleted, a GridSim entity, named User, as shown in
Figure 3, can start sending jobs to a GridResource
entity. Each GridSim entity has I/O entities at-
tached to it that act as a buffer. Therefore, when
a job is to be sent out by a User entity, it is
first buffered at the Output entity (step 1). Here,

the job is split into multiple packets if it is larger
than the MTU of a link connected to the Output
entity. The packets are then given sequence num-
bers, enqued in a buffer, and sent to link that con-
nects the entity to the neighbouring downstream
router. The link takes the packet, delays it by
the propagation delay specified, and dequeues it
at the other end (step 2).

Routers receive the packet from the link, and
decide the packet scheduler that the packet
should be sent to (step 3). If the outgoing inter-
face has a MTU less than the packet size, it splits
the packet into smaller ones, similar to what Out-
put entity does. Next, these packets are enqueued
at the packet scheduler. The packet scheduler
uses its own algorithm, such as FIFO or WFQ
to decide the order in which the packets should
be dequeued (step 4). When a link attached to
the packet scheduler is free, the router dequeues
one packet from the packet scheduler, and sends
it down the link (step 5). Similar approach is
required if the other end of the link is another
router entity (step 6–8).

When the final link is traversed and the packet
reaches the GridResource entity, all packets in
a sequence are collated back together into the
job (step 9). This is done by the Input entity.
The job is then passed to the GridResource en-
tity for processing. Once processing is complete,
the GridResource entity passes the completed job
to its Output entity, which follows a similar path
until it reaches the Input entity that created this
job.

The current protocol used for sending packets
is a datagram oriented protocol, which is simi-
lar to User Datagram Protocol (UDP). There is
no support for acknowledging each packets and
packet reordering. Since there is no support for
recovering lost packets, I/O buffers are considered
to be unlimited in order to ensure no packets are
lost.

4. Experiments and Results

4.1. Experiment Aim

The main aim of this experiment is to show
GridSim’s ability to simulate an adequate-size
grid testbed. Therefore, we create a network
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topology based on EU DataGrid TestBed I [22].
For this experiment, our main concern is the

network behavior in a grid environment. Hence,
we are trying to look at:

• how background traffic might affect net-
work loads and overall packets execution
time; and

• how differentiated QoS for packets might
help in a heavy load situation.

4.2. Experiment Setups

Table 1 summarizes all the resource relevant in-
formation. Each node of a resource is assumed to
be a 2Ghz AMD Opteron processor. We took the
data about the resources and scaled them down.
The number of nodes and its CPU rating were
scaled down by 10. The scaling was done primar-
ily to reduce the run time of the experiment and
the memory consumption. The complete simula-
tion would require more than 2GB of memory.

In GridSim, total processing capability of a
resource’s CPU is modelled in the form of Mil-
lion Instructions Per Second (MIPS) rating as per
SPEC (Standard Performance Evaluation Corpo-
ration) CPU (INT) 2000 [16] benchmarks. A
space shared policy or First Come First Served

Table 1
EU DataGrid testbed simulated using GridSim
Resource Name (Location) # Nodes CPU Rating

RAL (UK) 41 49,000

Imperial College (UK) 52 62,000

NorduGrid (Norway) 17 20,000

NIKHEF (Netherlands) 18 21,000

Lyon (France) 12 14,000

CERN (Switzerland) 59 70,000

Milano (Italy) 5 7,000

Torino (Italy) 2 3,000

Rome (Italy) 5 6,000

Padova (Italy) 1 1,000

Bologna (Italy) 67 80,000

(FCFS) algorithm is used to compute incoming
jobs in all resources. In addition, all links share
same characteristics, i.e. MTU size of 1,500 bytes
and latency of 10 milliseconds.

There are four users located on each of the re-
source (with a total of 44 users), sharing the same
characteristics:

• bandwidth: 100 Mbps connected to a router

• total number of jobs: 30 each

• job length: approximately 42000k Million
Instructions (MI) ± 30%, which is around
10 minutes if it is run on the CERN resource

• job data size: 15 MB each

• job submission: 20 jobs are submitted to
CERN, while the rest are uniformly dis-
tributed among other resources as men-
tioned in Table 1

• arrival time: uses a Poisson distribution,
with four random users submit all their jobs
every approximately 5 minutes

To incorporate a background traffic functional-
ity into this experiment, selected users are cho-
sen as the source to generate these background
packets. A Poisson distribution is used with an
inter-arrival time of 1 minute. In addition, total
number of packets for each interval is uniformly
distributed in [500...1000], with the size of each
packet is 1,500 bytes.
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To investigate the advantage of having network
QoS, two users from each site are chosen with a
higher ToS weight or rate. For the experiment us-
ing a SCFQ packet scheduler, high priority users’
jobs are assigned a weight of 2 and normal users’
jobs are assigned a weight of 1. Background traf-
fic receives a weight of 0. For the experiment us-
ing a Rate Controlled scheduler, high and normal
priority jobs are assigned 55

4.3. Building an Experiment with GridSim

Creating an experiment in GridSim always re-
quires the following steps:

1. Initialize the GridSim package by using a
GridSim.init() method. This should be
done before creating any GridSim entities in
order to start the SimJava simulation ker-
nel.

2. Create one or more grid resource entities.
Each resource must have number of proces-
sors, speed of processing and internal pro-
cess scheduling policy. Currently, two im-
plementations of scheduling policy are pro-
vided, i.e. time-shared and space-shared.
However, a user can implement a different
scheduling policy easily as described in [4]
because of well-defined interfaces between
grid resource and its scheduling policy en-
tity.

3. Create one or more grid user entities. A grid
user is responsible for sending jobs to one or
more resources. Other complex functional-
ities are open for implementation based on
user’s needs and requirements. This can be
done by extending GridSimCore class and
write the necessary code inside a body()

method.

4. Build a network topology by connecting
grid user and resource entities. At the
moment, connecting those entities need to
be done manually by first creating net-
work objects such as Router and Link.
Then, connect the entities to a Router ob-
ject using an attachHost() method. An
attachRouter() method can be used to
link one or more routers.

For experiments with a large network topol-
ogy, this process can be tedious and error-
prone. Hence, building a network topology
automatically from a file is also supported
in GridSim.

5. Finally, run the experiment by call-
ing a GridSim.startGridSimulation()

method.

The GridSim toolkit contains documentation
and few simple tutorial examples that illustrate
the above steps.

4.4. Analysis

The results displayed in Figure 6 show the av-
erage amount of time spent by each packet in a
router’s queue, in this case the router located in
CERN. This router is chosen because the resource
at CERN receives many jobs for execution, hence
it routes a substantial amount of incoming and
outgoing traffic.

As mentioned previously, we compare two type
of users, one of whom has been set to a high pri-
ority, while the other sends packets at a normal
priority. It can be seen that high priority packets
are dequeued faster than normal packets, except
for the FIFO experiment, thus providing better
QoS to high priority users.

For the FIFO experiment shown in Figure 6,
all packets are treated based on the arrival time.
Hence, there are no prioritization for these pack-
ets. On the other hand, for the SCFQ experiment
as shown in Figure 6, high priority packets are de-
queued faster than normal packets by more than
2%. An interesting observation in the SCFQ ex-
periment of Figure 6(b) is that the background
packets are dequeued faster than other packets.
This is because these packets are being sent at
a continuous rate, while other packets are sent
in an interval or burst mode. As a result, the
background packets utilized the whole bandwidth
during times at which other packets are not there.

For the Rate Controlled experiment displayed
in Figure 6, high priority packets are dequeued
faster than normal packets by approximately
36%. The main reason is because, as mentioned
earlier, each class of users is assigned to a certain
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percentage of bandwidth, and each class does not
use more than the allocated percentage. Hence,
there is not much of a difference for the experi-
ment with and without background traffic stated
in Figure 6(a) and Figure 6(b) respectively.

As expected, high priority packets spent less
time using the SCFQ scheduler rather than the
FIFO one. However, it is also interesting to
note that the Rate Controlled scheduler dequeued
these packets the slowest of all schedulers as
shown in Figure 6. This is because, as stated ear-
lier, the Rate Controlled scheduler does not uti-
lize the whole bandwidth in comparison to other
schedulers.

In the real world, Rate Controlled scheduling
is useful when absolute guarantees are required
from the network sub-system. For example, Voice
over Internet Protocol (VoIP) or Internet Proto-
col Television (IPTV) applications might require
a certain minimum bandwidth in order to per-
form well. The drawback of using Rate Con-
trolled scheduling is that it can lead to wastage of
bandwidth. If 10% of the bandwidth is reserved
for a certain application, and the application is
well below its limit, then the additional band-
width is being wasted. It is possible to imple-
ment schedulers which detect this wastage, and
send other kinds of traffic in its place, but this
adds to the complexity of the implementation.
Higher complexity leads to increase in memory
and processing requirements, hence higher costs.
When prioritization rather than guarantees are
required, SCFQ should be used. SCFQ is also a
simpler algorithm to implement than Rate Con-
trolled schedulers.

The effect of the background traffic in the ex-
periment is shown in Figure 7. In the beginning
of the Rate Controlled experiment, as shown in
Figure 7(a), there are many (high/normal) prior-
ity packets entering the router heading towards
the CERN resource for job submission. However,
as the experiment progresses, only few completed
jobs are being sent back to users. Hence, there
are times where background packets have a higher
number than priority packets as shown in Fig-
ure 7(b). On average, the background packets
accounted for 36% of total packets passed by the
CERN router as shown in Figure 8.
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5. Related Work

Simulation is very much used in the network-
ing research area. Examples of such simulators
include NS–2 [18], DaSSF [19], OMNET++ [20]
and J–Sim [21]. Though their support for net-
work protocols is extensive, they are not tar-
geted at studying grid computing. This is be-
cause simulating grids requires modeling the ef-
fects of scheduling algorithms on grid resources
and investigating user’s QoS requirements for ap-
plication processes. In addition, we believe simu-
lating TCP and UDP connections are sufficient
to model a real world behaviour, because grid
users are mostly interested in finding out RTT
and available bandwidth of a host. Therefore,
these network simulators perform other complex
functionalities which are not needed in simulating
a grid computing environment.

There are some tools available, apart from
GridSim, for application scheduling simula-
tion in Grid computing environments, such as
Bricks [23], MicroGrid [24] [25], SimGrid [26] [27],
and OptorSim [28]. All of these simulators also
have an underlying network infrastructure, with
the ability to simulate realistic experiments by
using background traffic. Differences among the
grid simulators, except for Bricks, in terms of net-
work functionalities and features are highlighted
in Table 2. Note that for Routing Table En-
try column, an automatic entry means filling in
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Table 2
Listing of network functionalities and features for each grid simulator

Functionalities GridSim MicroGrid SimGrid OptorSim

Routing Table Entry Automatic Automatic Manual Manual

Type of Transport a datagram oriented pro- TCP TCP Not supported

Protocol tocol similar to UDP and UDP

Data Packetization Supported Supported Not supported Not supported

Runtime Network Status Supported Supported Supported Not supported

Network QoS Supported Not supported Not supported Not supported

a router’s forwarding table automatically during
runtime. In contrast, a manual entry means fill-
ing in the forwarding table by reading from an ex-
ternal file that defines a router’s connection with
others, or by manually entering the information
into the table.

Bricks [23] is able to specify a network topol-
ogy, bandwidth, throughput and variance of the
throughput over time. The background traffic
functionality is modeled by using a probabilistic
distribution, which is similar to GridSim. How-
ever, at the time this article is being written, this
package is not available to download from its web-
site [29]. As a result, we are not able to compare
it with our work in more details. Therefore, it is
not included in Table 2.

MicroGrid [24] [25] allows complex network
modeling, such as transport and routing proto-
cols, and large-scale experiments since it is based
on DaSSF [19]. Hence, in terms of network capa-
bilities, MicroGrid is the most complete of all grid
simulators. However, it is actually an emulator,
meaning that actual application code is executed
on the virtual grid modeled after Globus [30].

SimGrid [26] [27] has a good network infras-
tructure that supports Transmission Control Pro-
tocol (TCP) transport protocol for a reliable ser-
vice. It also models background traffic by reading
from a trace file generated by Network Weather
Service (NWS) [31]. NWS is used to monitor cur-
rent available bandwidth between two machines
over the network. However, SimGrid does not
make any distinction between a job computation
and a data transfer, since they are modeled as
a resource performing a specific task. Therefore,

it does not support data packetization. In ad-
dition, requesting network status functionalities
during runtime in SimGrid are limited to latency
and bandwidth of a link. In contrast, GridSim
reports more network information than SimGrid,
such as number of hops to a destination and RTT
as mentioned in Section 3.2.

OptorSim [28] has a very simple network in-
frastructure compared to other simulation tools,
since it does not support routing and transport
protocol nor data packetization. The background
traffic functionality is modeled by using a Lan-
dau distribution only. In addition, simulating
with background traffic requires a configuration
file that describes a network topology in a matrix
format.

From the above discussion and Table 2, Grid-
Sim incorporated QoS into a network for schedul-
ing packets, which are not supported by other
grid simulators. In addition, GridSim provides a
good set of network functionalities and features,
which some of them are not supported in the
other grid simulators.

6. Conclusion and Further Work

Network serves as a fundamental component
in grid computing since resources and users are
connected over a network topology with shared
bandwidth. Previously, GridSim does not have
the ability to specify a network topology nor the
functionality to connect resources through net-
work links in the experiment. In this work, mod-
ifications into an existing network architecture
have been incorporated into GridSim to address
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the above problems.
With the addition of this network functionality,

users can study the effects that both the network
topology and grid resources can have on their
jobs. This paper explores the various types of
network elements in GridSim like routers, links,
packet schedulers; and how they can be extended
to add more functionalities. Moreover, GridSim
has new exciting features such as generating back-
ground traffic during an experiment, requesting
network information during runtime and provid-
ing differentiated service for packets based on
users’ Quality of Service (QoS) requirements. We
believe these features help make GridSim a com-
prehensive package to simulate a realistic grid en-
vironment.

Our experiment has shown how GridSim can be
used to simulate a medium-sized grid testbed. It
has shown how schedulers, which provide differen-
tiated service, can help high priority users achieve
better QoS than normal users. However, provid-
ing differentiated service at the network level only
may not be enough. Grid resources will also be
required to support it in order to achieve end-to-
end QoS.

In the future, we are planning to incorporate
additional features into GridSim, such as having
different types of routing algorithms, schedulers
and reservation of network resources. We are
also planning to add other type of network build-
ing blocks like switches and domain gateways.
Support will be added for non work-conserving
routers.
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Software Availability

The latest GridSim toolkit with source code and
examples can be downloaded from the following
website:

http://www.gridbus.org/gridsim/
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