
A Negotiation Mechanism for Advance
Resource Reservation using the Alternate

Offers Protocol
Srikumar Venugopal, Xingchen Chu, and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
Email:{srikumar, xchu, raj}@csse.unimelb.edu.au

Abstract—Service Level Agreements (SLAs) between
grid users and providers have been proposed as mecha-
nisms for ensuring that the users’ Quality of Service (QoS)
requirements are met, and that the provider is able to
realise utility from its infrastructure. This paper presents
a bilateral protocol for SLA negotiation using the Alternate
Offers mechanism wherein a party is able to respond to an
offer by modifying some of its terms to generate a counter
offer. We apply this protocol to the negotiation between a
resource broker and a provider for advance reservation of
compute nodes, and implement and evaluate it on a real
grid system.

I. INTRODUCTION

Grids [1] are evolving from a collection of computing,
data and networking resources to systems of services that
are discovered and invoked by scientific and business
applications. These services interface with the physical
resources and may integrate different functions offered
by these to present unified capabilities required by the
applications. Users may have Quality-of-Service (QoS)
requirements covering metrics such as deadlines, fidelity,
security and budget associated with service invocation.
The user QoS requirements, as well as the rewards and
penalties for achieving and violating them respectively,
are encoded in Service Level Agreements (SLAs) that
are negotiated between the providers and the users [2].
Therefore, SLAs enable guaranteed provisioning of ser-
vice (or resource) capability.

This promise of SLA has motivated research and de-
velopment into formulating, negotiating and establishing
of such agreements between providers and users. Many
grid systems have also incorporated SLA specification,
exchange and monitoring for resource brokering and task
scheduling [3], [4], [5], and for resource provisioning [6],
[7]. The Open Grid Forum has also arrived at a stan-
dard for creation and specification of SLAs called WS-
Agreement [8]. WS-Agreement follows the well-known

Contract Net protocol [9] for exchange of SLAs between
the user and the provider.

In this paper, we introduce a protocol for negotiating
SLAs based on Rubinstein’s Alternating Offers proto-
col [10] for bargaining between agents. This protocol
allows either party to modify the proposal or to provide
counter proposals so that they can arrive at a mutually-
acceptable agreement. We illustrate its usage by imple-
menting it to enable a resource consumer to reserve
nodes on a shared computing resource in advance. The
consumer side of the protocol is implemented in the
Gridbus broker [11] and the provider side of the protocol
is implemented within a .NET-based enterprise grid sys-
tem called Aneka [12]. We experimentally evaluate this
system using reservation requests with a range of strict to
relaxed requirements, and present results. Thus, we pro-
pose, implement and evaluate a software infrastructure
necessary for enabling SLA-based resource allocation
and scheduling in a real grid resource management
system.

The next section presents an overview of the related
work. Then, the negotiation protocol is presented in
the succeeding section. Following that, we detail the
implementation of the advance reservation system on
both the provider and the consumer side. We then present
the results of experimental evaluation of the system and
finally, conclude the paper.

II. RELATED WORK

Negotiation has been employed in real-time systems
to manage tasks that have different levels of priority
and different QoS demands [13]. Negotiation and re-
source reservation has also been used in multimedia
systems [14] for processing media streams with different
levels of criticality and QoS requirements.



Czajkowski, et al. [6] introduced the Service Nego-
tiation and Allocation Protocol (SNAP) for managing
SLAs in distributed systems. In SNAP, task SLAs specify
the resource requirements of the tasks, resource SLAs
specify the amount of resources available for the user
and binding SLAs represent the allocation of resources
to tasks. Dumitrescu and Foster [4] present a distributed
brokering architecture that takes into account SLAs be-
tween resources and Virtual Organisations (VOs) while
selecting the best site to submit a job. Elmroth and
Tordsson [5] also describe a brokering architecture that
is able to make advance resource reservations and create
SLAs using the WS-Agreement standard. These systems
share a common feature – they follow the Contract Net
protocol for negotiating SLAs.

Contract Net [9] is a popular protocol for agent
communication that has been employed for negotiating
SLAs for utility computing [15] and for grid resource
management. Contract Net also forms the basis for
the communication between the entities in the OGF
WS-Agreement Standard. In Contract Net, agents that
are contractors evaluate task announcements from other
agents acting as managers and bid for executing the
tasks that they are interested in. The bidding process
has only two outcomes: the bid is accepted or rejected
in its entirety. Therefore, Contract Net is suitable for
implementing multilateral processes such as auctions.
However, there is no feedback mechanism that allows
the SLA proposer or receiver to modify the terms of
the proposed SLA in order to converge to an agreement
acceptable to both parties. Therefore, the protocol is not
suitable for implementing a bilateral process such as one
presented in this paper. Recently, a concurrent bilateral
negotiation model, similar to the one followed in this
paper, was evaluated through simulation for grid resource
management by Li and Yahyapour [16]. They conclude
that this model is feasible for use in grids and enables
the user to obtain guaranteed QoS from grid resources.

The advent of grid computing introduced the need
for advance reservation mechanisms in order to co-
ordinate resource sharing between autonomous partners.
One of the first works in this regard was the Globus
Advance Reservation Architecture (GARA) [17], [18].
GARA provided a user with the capability to reserve
resources such as bandwidth and compute nodes in
advance. However, there was no negotiation capability
within this system. Also, in GARA, reservation was
separated from resource allocation and was enforced
only by a late binding of successful reservations to
resource objects. Another notable advance reservation
architecture is that of SHARP (Secure Highly Available

Fig. 1. Alternate Offers Protocol.

Resource Peering) [19] wherein cryptographically secure
tickets – representing the right to access the resource at
a specified future time – are generated by the resource
management system. These can be further subleased
to other consumers and are bound to actual resources
only when they are claimed. However, while the tickets
themselves can be bartered, it is not possible to directly
negotiate with the system for a lease at a particular time.

In contrast to these architectures, our system provides
the ability to conduct bilateral negotiations in order to
gain guaranteed reservations of resources in advance.
The resource management system has the ability to
generate alternate offers to consumers in case their
original request cannot be fulfilled. The broker, acting
as the resource consumer, has the ability to generate its
own counter proposals as well. To our knowledge, no
other real grid resource management system has these
capabilities in its implementation.

III. THE NEGOTIATION PROTOCOL

Figure 1 shows the alternating offers-based protocol
for SLA negotiation. It is a bilateral protocol consist-
ing of the proposer who initiates the process and the
responder who replies to the proposal. The proposer
starts the negotiation process by sending the INITIATE
message to which the responder replies with a unique
negotiation identifier (negotiationID). The initiate call

2



may be accompanied by an exchange of credentials
so that both parties are able to verify each other’s
identity. The proposer then presents a proposal using the
submitProposal message. The responder can accept
or reject the offer in its entirety by sending an ACCEPT
or a REJECT message as a reply. The responder can also
reply with a counter-offer by using the COUNTER reply
accompanied by the counter proposal. In this case, the
proposer has the same options and therefore can reply
with a counter proposal of its own. Either party can
signal its dissatisfaction and abort the negotiation session
by sending a REJECT message. In case either party
is satisfied with the proposal, it can send an ACCEPT
message to the other. To seal the agreement, the other
party has to send a CONFIRM message and receive a
CONFIRM-ACCEPTANCE message in reply.

IV. IMPLEMENTING RESOURCE RESERVATION

An advance reservation is a commitment made by a
resource provider to provide a guaranteed share of a
computing resource to a resource consumer at a definite
time in the future [17]. An advance reservation mecha-
nism therefore, allows a consumer to provision enough
resources to meet requirements such as deadlines, in
environments such as grids where availability of shared
resources varies from time to time. Since an advance
reservation is also a commitment by the provider, it may
be made in lieu of a reward or payment specified by the
provider. Failure to meet this commitment may result
in the provider having to pay a penalty. Therefore, a
reservation represents an instantiation of an SLA.

A provider with a profit motive would aim to max-
imise his revenue while minimising the risk of penal-
ties [20]. Likewise, a consumer would like to gain
the maximum amount of guarantees for meeting his
QoS requirements but at the lowest cost possible. A
number of strategies can be adopted by both the provider
and the consumer depending on their individual needs
and situations. As a result of these, a consumer’s plan
for resource usage may not be favored by a provider.
However, the provider can indicate its expectations by
changing the relevant parts of the proposal and returning
it to the consumer. In this manner, proposals can be
exchanged back and forth until both parties reach an
agreement or decide to part ways.

In the following subsections, we describe the im-
plementation of negotiation for advance reservation of
resources using Aneka and the Gridbus Grid resource
broker. Aneka is a .NET-based resource management
system for enterprise grids composed of computers run-
ning Microsoft Windows operating system. Therefore,
it acts as the resource provider in this implementation.

For a given user application, the Gridbus broker discov-
ers appropriate resources for executing the application,
schedules user jobs on the resources, monitors their
execution and retrieves the results once they are com-
pleted. Negotiation for advance reservations is therefore
performed by the Gridbus broker as a resource consumer
on behalf of the user. Currently, the only user QoS
requirement that this system aims to achieve is that of
the application execution meeting a certain deadline.

A. Aneka

Fig. 2. The Aneka resource reservation architecture.

In Aneka, the capabilities of each node in the sys-
tem are determined by the functionality offered by the
services hosted in a service container that provides
common security, message handling and communication
functions. For example, hosting a task executor service
in the container enables a node to execute independent
tasks. Any number of such services may be hosted
thereby, potentially allowing the same node to execute
applications implemented using different programming
models. A node functions as a scheduler for an applica-
tion if it hosts the scheduler service corresponding to the
application’s programming model (e.g., task scheduler
for the task farming model). Executors in a Aneka grid
register with or are discovered by a specific scheduler
service which then allocates work units across them.

Figure 2 shows the architecture for resource reser-
vation in Aneka. The advance reservation capability in
Aneka is enabled by two components, the Allocation
Manager at the executor end and the Reservation Man-
ager at the scheduler end. The Allocation Manager un-
derlies all the executor services on a node. It determines
which of the executors are allowed to run, and the share
of the node that is allowed for each. The Allocation
Manager therefore takes care of allocating and enforcing
reservations on a single node. The Allocation Manager

3



is associated with a policy object that encodes the utility
function of the node. For example, this may specify a
maximum duration that can be specified for a reservation
request at the node level.

The Reservation Manager is co-located with a sched-
uler and is able to perform reservations across the nodes
whose executors are registered with the scheduler. The
Reservation Manager determines which of the reser-
vation requests coming from users are to be accepted
based on factors such as feasibility, profitability or im-
provement in utilisation. For this reason, it is associated
with a QoS Policy object that represents the reservation
policy at the level of the entire system. For example, this
object may specify a minimum reward for considering
a reservation request. External applications interface
with Aneka’s resource reservation system through the
Negotiation Service. This web service implements the
negotiation protocol presented in Section III and inter-
faces with the Reservation Manager for realising the
reservation requests that arrive from external entities.
The web service was required in order for non-.NET
programs to interface with the Aneka system. The task
submission is also mediated by the resource reservation
architecture. Tasks that arrive with a valid reservation ID,
assigned in case of successful requests, are scheduled on
to the nodes that are associated with that ID.

<xml-fragment
xmlns:ws="http://www.gridbus.org/negotiation/">

<ws:Reward>1000.0</ws:Reward>
<ws:Penalty>0.0</ws:Penalty>
<ws:Requirements>
<ws:ReservationRecordType>

<ws:ReservationStartTime>
2007-11-17T18:24:37.078+11:00

</ws:ReservationStartTime>
<ws:Duration>150000.0</ws:Duration>
<ws:NodeRequirement>

<ws:Count>4</ws:Count>
</ws:NodeRequirement>
<ws:CpuRequirement>

<ws:Measure>Ghz</ws:Measure>
<ws:Speed>2.5</ws:Speed>

</ws:CpuRequirement>
</ws:ReservationRecordType>

</ws:Requirements>
</xml-fragment>

Fig. 3. The proposal document.

As per the protocol presented in Section III, when
the broker sends an initiate message, the Aneka Ne-
gotiation Service returns a globally unique identifier
for the session. The broker then submits a proposal
to the Negotiation Service in the XML format shown
in Figure 3. The proposal is parsed and converted to

a reservation requirement object that is sent to the
Reservation Manager.

At the Reservation Manager
for each incoming reservation request do1.

if (QoS Policy is violated) then2.
send(REJECT)3.

Get available nodes from Information Service4.
Filter the nodes as per requirements5.
if (requested nodes < available nodes) then6.

send(REJECT)7.

Broadcast requested timeslot to all available8.
nodes
Wait for response9.
if (agreed nodes ≥ required nodes) then10.

send(ACCEPT)11.

else12.
Find the common timeslot among the largest13.
number of nodes ≥ number of required
nodes
if (timeslot is found) then14.

send(COUNTER,new_timeslot)15.

else16.
send(REJECT)17.

end18.

end19.
At the Allocation Manager
for each incoming request do20.

if (reservation policy is violated) then21.
send(REJECT)22.

else if (timeslot is available) then23.
send(ACCEPT)24.

else25.
send(COUNTER,new_timeslot)26.

end27.

Fig. 4: Handling resource reservation in Aneka.

The current algorithm for handling resource reserva-
tion requests in Aneka is shown in Figure 4. A timeslot
is the period for which the reservation is required. Lines
2-3 control the admission of requests as per the policy
specified in the QoS Policy object. Once the request is
approved, the request is broadcast to all the available
nodes in the grid. At the node, the Allocation Manager
checks if its reservation policy is violated. If not, and
the node is free for the requested timeslot, the request
is accepted. If the node is not free, then an alternate
time slot is provided to the Reservation Manager. If the
Reservation Manager is not able to find the required
number of nodes for the timeslot asked by the user, then
it tries to find a new timeslot of the same duration for
the same number of nodes requested by the user. This is
then sent as a counter proposal to the consumer.

When a proposal is finally accepted, the Reservation
Manager executes a two phase commit to finalise the

4



Fig. 5. Control flow for a successful resource reservation.

reservation . In the initial phase, it requests the respective
Allocation Managers to “soft” lock the time slot for that
particular request. A soft lock in this case is an entry
for the time-slot in the Allocation Manager database
which is removed if a confirmation is not received within
a certain time-interval. Once all the nodes successfully
acknowledge that this operation has been performed, the
reservation manager then sends an ACCEPT message to
the broker. If the broker then sends a CONFIRM mes-
sage, the Reservation Manager asks all of the Allocation
Managers to commit the reservation. On receiving their
acknowledgement, a CONFIRM ACCEPTANCE mes-
sage is returned to the broker. The negotiation session
identifier is then used as a reference for the resource
reservation by subsequent tasks. This process is shown
in Figure 5.

B. Gridbus Broker

The Gridbus broker has been used to realise economy-
based scheduling of computational and data-intensive
applications on grid resources [21]. Advance reservations
are a means for the broker to provide guarantees for
meeting the user’s QoS requirements for the execution,
such as deadline and budget. The required abilities for
negotiation within the broker are brought about by a
negotiation-aware scheduler and a negotiation client.

The negotiation client is the interface to the corre-
sponding service on the remote side (e.g. the Negotiation
Service of Aneka). It is not implementation-specific and
can support any other middleware that implements the
protocol. The scheduler is aware of the negotiation client
only as a medium for submitting proposals and receiv-
ing feedback from the remote side. However, separate

schedulers may be required for different SLA negotiation
protocols, as certain features (e.g., presence or absence
of a counter-proposal method) may impact negotiation
and scheduling strategies.

Fig. 6. Negotiation state machine.

The broker keeps track of the negotiation process
through a state machine detailed in Figure 6 and im-
plemented using the State software design pattern. The
actions are encoded in the State objects which prevents
the broker from performing invalid actions in certain
states, say for example, replying to a REJECT message
with a CONFIRM message. The transition between the
states is guided by the broker’s strategy and the responses

5



from the provider.

Get user’s QoS and application requirements1.

Nodes←
∑

Est(j)

f×(deadline−start time)2.
Create proposal for Nodes3.
Choose a provider based on attributes such as cost4.
repeat5.

Submit proposal to the provider6.
repeat7.

if (state is COUNTERED) then8.
if (counter proposal is within deadline)9.
then

send(ACCEPT)10.

else if (f < 1) then11.
Increase f12.
Recalculate Nodes13.
Create new proposal for Nodes14.
send(COUNTER,proposal)15.

else16.
send(REJECT)17.

end18.
if (state is ACCEPTED) then19.

send(CONFIRM)20.

end21.

until (a final state is reached)22.
//Final state is REJECTED or CONFIRMED or

FAILED
if (previous state was REJECTED or FAILED)23.
then

Find another provider to repeat the process24.

until (enough nodes are obtained)25.
Wait until reservation start time26.

Fig. 7: The broker’s negotiation strategy

A broker is associated with a single distributed bag-of-
tasks application. The deadline is provided for each ap-
plication as a whole. The expression in Line 2 calculates
the number of nodes that are required for executing the
distributed application within the deadline. The estimated
time for completing a job is provided by the user. The
broker adds to this an additional estimate for staging the
jobs on to the remote machine, invoking it and collecting
the results for the job. The total estimated time for each
job is added up to obtain the maximum time required to
execute the application (i.e. its sequential execution time
on a single remote processor). This is the numerator in
the expression in Line 2.

The denominator is the wallclock time available to
execute the application. This is time difference between
the deadline and the starting time for the reservation.
The starting time is estimated as the time when the
negotiations would have likely concluded and the job
scheduling can commence. Since the broker’s utility lies
in executing the users’ job as quickly as possible, the
time available is further reduced by multiplying against

an aggression factor, denoted by f , where 0 < f ≤ 1.
However, the smaller the time available, the larger is the
number of nodes required.

The broker creates a proposal and choses one out of
a list of resource providers – based on factors such as
resource price or capability – to initiate a negotiation
session and submit the proposal. If the proposal is
accepted straightaway, then a confirmation message is
returned to the provider. If a counter proposal is received,
then it is evaluated to see whether the counter reservation
is still within the deadline. If so, then it is accepted by
the broker. If not, then the aggression factor is increased
to reduce the number of nodes required. This is done
on the assumption that requests for smaller number of
nodes have better chances to be accepted or found more
acceptable (earlier) counter time slots. This continues
until the aggression factor is increased upto 1 which is
the maximum latitude available to broker. If the counter
proposal from the resource provider does not satisfy the
deadline requirements, the proposal is rejected and the
session closed.

V. EXPERIMENTAL EVALUATION

The negotiation architecture described previously was
evaluated using a grid testbed constructed by installing
Aneka on 13 desktop computers running Microsoft
Windows XP in a local area network. One instance of
Reservation Manager service was installed on the node
acting as the scheduler and the others ran the Allocation
Manager service. This means that upto 12 nodes could be
reserved by brokers by interacting with the sole Reser-
vation Manager using the negotiation protocol described
in previous sections.

In order to emulate multiple clients with different
applications that have different deadlines, a set of brokers
was created with different deadlines generated using a
uniform random distribution. The deadlines were chosen
so as to reflect different levels of urgency - from a
strict deadline for a high-urgency application to a relaxed
deadline for a low-urgency application. The urgency was
calculated from the following ratio

r =
deadline− start time

max execution time

where start time is the estimated start time for the
reservation and max execution time is the maximum
time estimated for executing the complete application. In
this evaluation, the sequential execution time is consid-
ered as the maximum execution time for the application.
The deadline is considered very strict when r < 0.25,
moderately strict when 0.25 < r < 0.5, relaxed when
0.5 < r < 0.75, and very relaxed when r > 0.75.

6



The maximum execution time was same for all the
applications in this evaluation.

According to the algorithm in Figure 4, when the
broker makes a request and Aneka is not able to provide
the required number of nodes at the requested start time,
the latter finds an alternative start time when the nodes
can be provided. The difference between the alternative
start time and that requested originally is termed as the
slack. The slack allowed for reservation start time is a
function of the urgency of the deadline, and indicates
the relaxation allowed in the broker’s requirements.

The brokers were launched at closely-spaced intervals
from two computers that were part of the same local area
network but separate from the grid nodes. This created
the effect of different requests with different deadlines
arriving simultaneously at the Reservation Manager. The
objectives of this exercise are to measure the impact of
deadlines on the responses adopted by both the broker
and the Reservation Manager.

 0

 5

 10

 15

 20

 25

 30

 35

 40

<0.25 (38) .25-0.5 (54) 0.5-0.75 (27) 0.75+ (19)

N
um

be
r 

of
 r

eq
ue

st
s

Ratio of deadline to maximum execution time (r)

Accepts
Rejects

Fig. 8. Distribution of decisions against deadline urgency

Figure 8-10 shows the results of an evaluation that
involved 138 advance reservation requests arriving at the
Aneka Reservation Manager in the space of 4 hours.
The numbers in parantheses against a point on the x-
axis show the total number of requests corresponding
to that data point. Nearly 17% of the total requests
were decided in the first round itself (i.e., a straightaway
accept or reject decision from Aneka) while the rest were
decided after multiple rounds of negotiation between the
broker and the Manager. In all, 35% of the requests were
accepted while 65% of the requests were rejected. Since
the evaluation covered a scenario where the demand for
computing nodes would exceed their supply, it is only
to be expected that a majority of the requests will be
rejected. However, the system was still able to generate
alternatives for 83% of the requests.

Figure 8 shows the distribution of the accepted and
rejected requests against the urgency of application dead-
lines. It can be seen that the proportion of accepted
requests increases when the deadlines progress from
very strict to very relaxed. When normalised against the
number of requests for each data point, the percentage of
accepted requests increases from 8% for strict deadlines
to 74% in the case of very relaxed deadlines. This is
because the broker is more willing to accept a delayed
reservation when the deadlines allow more slack. Also,
due to the strategy adopted by the broker (Figure 7),
applications with urgent deadlines require more nodes
for a shorter duration than those with relaxed deadlines.
Aneka was therefore able to generate better counter
offers for requests involving lesser number of nodes,
even if their duration is longer.

 0

 20

 40

 60

 80

 100

 120

<20% 20%-40% 40%-60% 60%-80% 80%+

D
ec

is
io

ns

Slack as a percentage of time available

Accepts(%)
Rejects(%)

Fig. 9. Distribution of decisions according to delay in reservation
start time.

This inference is supported by the graphs in Figure 9
which show the percentage of accept and reject decisions
according to the slack allowed in the reservation start
time. The slack is indicated as a percentage of the time
available (i.e. deadline minus original start time) for
the broker to execute the application. It can be seen
here that the broker is willing to accept counter-offers
with up to 60% slack in reservation start time. Indeed,
90% of the counter-offers with up to 40% slack are
accepted by the broker. However, counter-offers with
more than 60% slack are unacceptable. A significant
amount of proposals are rejected by the Reservation
Manager without counter-offers (zero slack time) as they
require more nodes than what is available. These are
included in the data point corresponding to offers with
<20% slack at the far left of Figure 9.

A request-response pair between the broker and the
Aneka Reservation Manager is termed as a round of

7



 0

 1

 2

 3

 4

 5

<0.25 (38) .25-0.5 (54) 0.5-0.75 (27) 0.75+ (19)

A
ve

ra
ge

 n
um

be
r 

of
 r

ou
nd

s

Ratio of deadline to maximum execution time (r)

Accepts
Rejects


Fig. 10. Number of rounds against urgency of deadlines.

negotiation. Figure 10 shows the average number of ne-
gotiation rounds taken to obtain a result for requests with
different deadlines. For this evaluation, the aggression
factor was set to 0.5 and then increased by 0.25 for every
round. Therefore, including the submission request, a
maximum of 4 rounds (3 offers each and a final decision)
was possible for this evaluation. For very strict deadlines,
many of the offers were rejected or accepted in the first
round itself. Therefore, the average number of rounds is
the least in this case. For more relaxed deadlines, the
broker is willing to negotiate for the maximum number
of rounds before the request is rejected.

A. Discussion

The important result here is that the broker was able
to fulfil its QoS requirement without having to reveal
its deadline preference to the provider by choosing an
acceptable counter proposal whenever possible. There-
fore, by modifying the proposal suitably, both parties
were able to convey feedback without revealing their
preferences. This prevents providers from taking undue
advantage or playing consumers against each other in
scenarios where different brokers may be competing for
access to the same set of resources.

The implementation involved tackling some signifi-
cant challenges. In the first iteration, synchronous web
service calls were used between the broker and Aneka.
However, this was replaced with asynchronous calls to
increase the request handling ability of Aneka Negoti-
ation Service. Another significant problem encountered
was the clock skew between Aneka nodes. This acutely
affected the performance of the reservation system which
was based on the assumption of a globally synchronised
clock mechanism to guarantee a particular timeslot.
While the current solution is to ensure that the nodes

are synchronised through Network Time Protocol, it is
still a challenge to detect clock skew.

VI. CONCLUSION AND FUTURE WORK

This paper presented a bilateral negotiation mecha-
nism based on the Alternate Offers Protocol in which
each party has the opportunity to submit a counter
proposal so that a mutually acceptable agreement can be
arrived at. The protocol was used to enable the advance
reservation of nodes in an enterprise grid system called
Aneka, by the Gridbus grid resource broker. The results
of the evaluation show that brokers with relaxed require-
ments benefited from the counter proposals as they were
able to accommodate delays in starting reservations.
Thus, this shows the potential of the system to facilitate
the implementation of SLA-based resource allocation
and scheduling strategies.

The system currently supports only the negotiation
for timeslots and number of resources. Therefore, more
sophisticated strategies that take into account other at-
tributes such as rewards and penalties are planned in
the future for both the broker and Aneka Reservation
Manager. In addition, we would also like to explore
malleable reservations wherein both the timeslots and
the number of nodes are changed simultaneously. In
this respect, we would like to realise some of the ideas
that have been explored in this space in the recent
past [22], [23]. Also, at present, the broker depends on
user estimates of application execution times to compute
the number of nodes required. It is well-known that such
estimates are inherently inaccurate [24]. In the future,
we would like to explore scheduling strategies that can
hedge against errors in estimates by overprovisioning
nodes or by continually re-evaluating the requirement for
computing nodes as the application execution proceeds.

ACKNOWLEDGEMENTS

We thank Chee Shin Yeo for creating Figure 5. We
would also like to thank Marco Assuncao for his com-
ments on the paper. This project was funded by Aus-
tralian Research Council and Dept. of Education, Science
and Training under Discovery Project and International
Science Linkage grants respectively.

REFERENCES

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a Future
Computing Infrastructure. San Francisco, USA: Morgan Kauf-
mann Publishers, 1999.

[2] R. J. Al-Ali, K. Amin, G. von Laszewski, O. F. Rana, D. W.
Walker, M. Hategan, and N. Zaluzec, “Analysis and provision of
qos for distributed grid applications,” Journal of Grid Computing,
vol. 2, no. 2, pp. 163–182, June 2004.

8



[3] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and
K. Krishnakumar, “A multi-agent infrastructure and a service
level agreement negotiation protocol for robust scheduling
in grid computing.” in Proceedings of the 2005 European
Grid Computing Conference (EGC 2005), 2005, pp. 651–660.
[Online]. Available: http://dx.doi.org/10.1007/11508380 66

[4] C. L. Dumitrescu and I. Foster, “Gruber: A grid resource usage
sla broker,” in Proceedings of the 11th International Euro-Par
Conference on Parallel Processing, Lisbon, Portugal, ser. LNCS,
no. 3648. Springer-Verlag, Berlin, Germany, August 2005.

[5] E. Elmroth and J. Tordsson, “A grid resource broker supporting
advance reservations and benchmark-based resource selection.” in
State-of-the-art in Scientific Computing, ser. LNCS. Springer-
Verlag, Berlin, Germany, 2006, vol. 3732, pp. 1061–1070.

[6] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke,
“Snap: A protocol for negotiating service level agreements and
coordinating resource management in distributed systems,”
in Proceedings of the 8th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP 2002),
Edinburgh, Scotland. Springer-Verlag, Berlin, Germany, 2002,
pp. 153–183. [Online]. Available: http://www.springerlink.com/
content/1e8rjyg17bep4nvc

[7] R. Ranjan, A. Harwood, and R. Buyya, “Sla-based coordinated
superscheduling scheme for computational grids,” in Proceedings
of the 8th IEEE International Conference on Cluster Computing
(Cluster 2006), Barcelona, Spain. IEEE CS Press, Los Alamitos,
CA, USA, 2006.

[8] A. Andrieux et al., “Web services agreement specification (ws-
agreement),” Open Grid Forum, Tech. Rep. GFD.107, 2007.

[9] R. Smith, “The contract net protocol: High-level communication
and control in a distributed problem solver,” IEEE Transactions
on Computers, vol. C-29, no. 12, pp. 1104–1113, 1980.

[10] A. Rubinstein, “Perfect equilibrium in a bargaining model,”
Econometrica, vol. 50, no. 1, pp. 97–109, January 1982.

[11] S. Venugopal, R. Buyya, and L. Winton, “A grid service broker
for scheduling e-science applications on global data grids,”
Concurrency and Computation: Practice and Experience, vol. 18,
no. 6, pp. 685–699, May 2006.

[12] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya,
“Aneka: Next-Generation Enterprise Grid Platform for e-Science
and e-Business Applications,” in Proceedings of the 3rd IEEE
International Conference on e-Science and Grid Computing (e-
Science 2007), Bangalore, India. IEEE CS Press, Los Alamitos,
CA, USA., Dec. 2007.

[13] T. Abdelzaher, E. Atkins, and K. Shin, “Qos negotiation in real-
time systems and its application to automated flight control,”
Transactions on Computers, vol. 49, no. 11, pp. 1170–1183,
2000.

[14] J. Huang, P.-J. Wan, and D.-Z. Du, “Criticality- and qos-based
multiresource negotiation and adaptation,” Real-Time Systems,
vol. 15, no. 3, pp. 249–273, Nov. 1998. [Online]. Available:
http://dx.doi.org/10.1023/A:1008044430932

[15] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and
P. S. Yu, “Utility computing sla management based upon business
objectives,” IBM System Journal, vol. 43, no. 1, pp. 159–178,
2004.

[16] J.Li and R.Yahyapour, “Learning-based negotiation strategies for
grid scheduling,” in Proceedings of the 6th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2006),
Singapore. IEEE CS Press, Los Alamitos, CA, USA, May 2006.

[17] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and
A. Roy, “A distributed resource management architecture that
supports advance reservations and co-allocation,” in Proceedings
of the 7th International Workshop on Quality of Service (IWQoS
’99). London, UK: IEEE CS Press, Los Alamitos, CA, USA,
Mar. 1999.

[18] I. Foster, A. Roy, and V. Sander, “A quality of service architecture
that combines resource reservation and application adaptation,”

in Proceedings of Eight International Workshop on Quality of
Service (IWQoS ’00), Pittsburgh, PA, USA. IEEE CS Press,
Los Alamitos, CA, USA, June 2000, pp. 181–188.

[19] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat, “Sharp:
an architecture for secure resource peering,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, pp. 133–148, 2003.

[20] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing Risk and
Reward in a Market-based Task Service,” in Proceedings of
the 13th IEEE international Symposium on High Performance
Distributed Computing(HPDC-13). Honlulu, USA: IEEE CS
Press, Los Alamitos, CA, USA, June 2004.

[21] S. Venugopal and R. Buyya, “A Deadline and Budget Constrained
Scheduling Algorithm for e-Science Applications on Data Grids,”
in Proceedings of the 6th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP-2005), ser.
Lecture Notes in Computer Science, vol. 3719. Melbourne,
Australia.: Springer-Verlag, Berlin, Germany, Oct. 2005.

[22] M. A. Netto, K. Bubendorfer, and R. Buyya, “Sla-based advance
reservations with flexible and adaptive time qos parameters,”
in Proceedings of the 5th International Conference on Service-
Oriented Computing (ICSOC 2007), Vienna, Austria. Springer-
Verlag, Berlin, Germany, Sept 2007.

[23] J.Li and R.Yahyapour, “A negotiation model supporting co-
allocation for grid scheduling,” in Proc. of 7th IEEE/ACM Inter-
national Conference on Grid Computing (Grid 2006), Barcelona,
Spain. IEEE CS Press, Los Alamitos, CA, USA, Sept 2006.

[24] A. Mu’alem and D. Feitelson, “Utilization, predictability, work-
loads, and user runtime estimates in scheduling the ibm sp2 with
backfilling,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 6,
pp. 529–543, 2001.

9

http://dx.doi.org/10.1007/11508380_66
http://www.springerlink.com/content/1e8rjyg17bep4nvc
http://www.springerlink.com/content/1e8rjyg17bep4nvc
http://dx.doi.org/10.1023/A:1008044430932

	Introduction
	Related Work
	The Negotiation Protocol
	Implementing Resource Reservation
	Aneka
	Gridbus Broker

	Experimental Evaluation
	Discussion

	Conclusion and Future Work
	References

