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Abstract

Data Grids are an emerging new technology for managing amgeunts of distributed
data. This technology is highly-anticipated by scientificnenunities, such as in the area
of astronomy, protein simulation and high energy physidss 15 because experiments in
these fields generate massive amount of data which need batedsand analysed. Since it
is not possible to test many different usage scenarios diDeda Grid testbeds, it is easier
to use simulation as a means of studying complex scenarios.

In this paper, we present our work on a Data Grid simulatidragtructure as an exten-
sion to GridSim, a well-known Computational Grid simulafbhe extension that we have
developed provides essential building blocks for simotbata Grid scenarios. It provides
the ability to define resources with heterogeneous storaggaonents, and the flexibility
to implement various data management strategies. It d@osbhuthorized users to share,
remove and copy files to resources. Moreover, users anddourmees are able to query to
a Replica Catalogue about the location of a particular firee Replica Catalogue (RC), a
core entity of Data Grids, is an information service whicbvides registry and look up
service. Therefore, our work provides the possibility tgamize RC entities in different
ways, such as in centralized or hierarchical model.
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1 Introduction

Grid computing is an emerging new technology, which focusesharing dis-
persed heterogeneous resources among their collabgrata®ggregating them
for solving large-scale parallel applications in scierrggineering and commerce [15].
Initially, the Grid community focused on compute-interesapplications that con-
tain many parallel and independent tasks. Projects sucbgiem.[19], Globus [14],
Nimrod-G [6], Apples [8], SETI@home [1], and Condor-G [18¢anainly concen-
trated on development of technologies for Computational$GHowever, in recent
years, applications are targeting on the use of shared atribdted data to be an-
alyzed among collaborators. In addition, these applioatican produce large data
sets in the order of Gigabytes (GB) and possibly TerabytB$ ¢F Petabytes (PB).
Many of these applications are in the area of astronomy [2}gn simulation [4],
and high energy physics [12]. Hence, Data Grids are becomangnportant re-
search area [22].

Data Grids are Grids that provide a scalable storage andsitcelata sets in dif-
ferent locations [9]. The data sets must eventually be etetband analyzed by
scientists and other collaborators from different resegroups, who may be lo-
cated around the globe. Hence, efficient, reliable and setgess to the data sets
and their replication across several sites are primaryamsdan Data Grids.

Different scenarios need to be evaluated to ensure thetigéaess of access and
replication strategies. Given the inherent heterogergityGrid environment, it is
difficult to produce performance evaluation imegpeatableandcontrolledmanner.
In addition, Grid testbeds are limited and creating an adedysized testbed is
expensive and time consuming. Therefore, itis easier tsmselation as a means
of studying complex scenarios.

To address the above issues, we have developed a Data Guldsan infrastruc-
ture, as an extension to GridSim [29]. We opted to work on &ind because it
has a complete set of features for simulating realistic @&stbeds. Such features
are modelling heterogeneous computational resourcegiablaperformance, dif-
ferentiated network service, and workload trace-basedlation from a real su-
percomputer. More importantly, GridSim allows the flexilyind extensibility to
incorporate new components into its existing infrastrretu

In this work, GridSim has been extended with the ability tadila: (1) replication
of data to several sites; (2) query for location of the regibd data; (3) access to
the replicated data; and (4) make complex queries abouadiaitautes. With these
new features, GridSim users will be able to do integratedistuof on demand
replication strategies with jobs scheduling on availabsources.

The rest of this paper is organized as follows: Section 2udises related work.
Section 3 mentions the GridSim architecture. Section 4rde=can overview of the



Table 1

Listing of functionalities and features for each grid siatat

Functionalities GridSim | OptorSim| Monarc | ChicSim | SimGrid | MicroGrid
data replication yes yes yes yes no no
disk I/0 overheads yes no yes no no yes
complex file filtering yes no no no no no
or data query

scheduling user jobs yes no yes yes yes yes
CPU reservation of yes no no no no no
aresource

workload trace-based yes no no yes no no
simulation

overall network features good simple good good good best
differentiated network Qo$ yes no no no no no
generate background yes yes no no yes yes
network traffic

model, whereas Section 5 explains some of the Data Grid tipesancorporated

into GridSim. Section 6 describes a construction of a compimulation using

the basic building blocks in GridSim. Finally, Section 7 cludes the paper and
suggests further work.

2 Redated Work

There are some tools available, apart from GridSim, for iappbn scheduling
simulation in Grid computing environments, such as Optorfd], Monarc [11].
ChicSim [10], SimGrid [20], and MicroGrid [25]. We evaluatieese simulation
tools based on three criteria: (1) the ability to handle b&sta Grid functional-
ities; (2) the ability to schedule compute- and/or dataisive jobs; and (3) the
underlying network infrastructure. Differences amongstheimulators based on
these criteria are summarized in Table 1.

From Table 1, it is shown that SimGrid and MicroGrid are maitargeted as a
general-purpose grid simulator for Computational Gridsnég, they lack features
that are core to Data Grids, such as data replication andg doiethe location of a
replica.



OptorSim has been developed as part of the EU DataGrid pridj8t It aims to

study the effectiveness of data replication strategiesddition, it incorporates
some auction protocols and economic models for replicaropdtion. In Optor-

Sim, only data transfers are currently being simulated redee GridSim is able to
run both compute- and data-intensive jobs.

Monarc and ChicSim are grid simulators designed spec#idalistudy different
scheduling, replication and performance issues in Datd &rironment. Hence,
they provide a general and extensible framework, to impferaad evaluate these
issues. However, they lack one important feature, i.e. tiléyato generate back-
ground network traffic. This feature is important becauseat-life, networks are
shared among users and resources. Hence, congested reetaargreatly affect
the overall replication and performance issue.

Other features in GridSim that these grid simulators do @methare complex file
filtering or data query (will be discussed further in SecB)nCPU reservation and
differentiated network Quality of Service (Qo0S). With netk QoS, high priority

packets are transferred faster than normal ones under & foea/[17,29]. There-

fore, network QoS is well-suited for applications that reglow latency and faster
delivery of data generated by scientific instruments, sicimdire or earthquake
detection and brain activity analysis application.

3 GridSm Architecture

GridSim is based on SimJava2 [24], a general purpose desekant simulation
package implemented in Java. We designed GridSim as a layéi-architecture
for extensibility. This allows new components or layers ¢odolded and integrated
into GridSim easily. In addition, the GridSim layer archiict captures the model
of grid computing environment. The GridSim architecturéhwhe new DataGrid
layer can be shown in Figure 1.

The first layer at the bottom of Figure 1 is managed by SimJéwaandling the
interaction or events among GridSim components. The selayed is dealt with
the GridSim infrastructure components, such as networkrasdurce hardware.
The third and fourth layer are concerned with modelling antugtion of Com-
putational Grids and Data Grids respectively. GridSim conmgnts such as Grid
Information Service and Job Management are extended frerththd layer to in-
corporate new requirements of running Data Grids. The fiftth sixth layer are
allocated to users wanting to write their own code in GridSim
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4 Description of the DataGrid Model

A high-level overview of Data Grid is shown in Figure 2. A stiéic instrument

(a satellite dish in this example), generates large datavgieich are stored in the
Data Center. The Data Center then notifies a Replica Catalabgaut the list of

available data sets in the center. This approach allowsiress to request for file
copies of the data sets when a user submits his/her jobs.

To model realistic Data Grid scenarios like in the above dps8an, new compo-
nents such as Replica Catalogue, and concepts like datarsetile copies are



introduced into GridSim.

A data set is typically grouped into one or more files. Thamfave define a file
as a basic unit of information in GridSim. In addition, GriniSsupports a feature
calleddata replication With data replication, it is possible to make several cepie
of the same file on different resources. This approach emsdaalt tolerance char-
acteristics of the system and improves access to the file [27]

In GridSim, there are two types of file: master and replicamAster fileis an
original instance of the file, whereas all other copies offtleeare categorized as
replicafiles. This distinction is introduced to identify the purpax a file copy. The
master file is usually generated by a user’s program or byemsfic instrument,
hence it should not automatically be deleted by resourcesth® other hand, a
replica file can be created and removed dynamically by a resdiased on storage
constraints and/or access demands.

In GridSim,Fi | e class represents the physical (master or replica) file, ackl e

has &i | eAtt ri but e class representing the information regarding this file. The
information stored in th&i | eAt t ri but e class can be the owner name, check-
sum, file size and last modified time. The information coreeim theFi | eAtt ri but e
object is the one being sent by a resource to a Replica Catalog

4.1 Replica Catalogue

Replica Catalogue (RC) is a core component of every Datasystem. The func-
tion of a RC is to store the information (metadata) about filed to provide map-
ping between a filename and its physical location(s).

The RC does not have to be a single entity in a Data Grid sydteran also be
composed of several distributed components, which, bycemg the information
among them, provide a transparent service to the users aondroes. Currently,
GridSim allows two possible catalogue models as descrile&nhb

4.1.1 Centralized Model

This model is the most simple solution, as there is only onecB@ponent in a
Data Grid system that handles all registrations and qusegas by resources and
users. Hence, the RC maps a filename to a list of resourcesttiias this file. An
example of a system that follows this model is Napster [23]ear-to-peer (P2P)
music sharing program.

This model is typically used in smaller systems, where @seio the RC are lim-
ited. However, as the number of resources and users groazsR@hbecomes a
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bottleneck since there are too many queries to be proce2ggdi this case, dif-
ferent types of catalogue models are needed. One solutiornuise a hierarchical
model.

4.1.2 Hierarchical Model

The hierarchical RC model is constructed as a catalogugedeedepicted in Fig-
ure 3. In this model, some information are stored in the réohe catalogue tree,
and the rest in the leaves. This approach enables the leatdR@scess some of
the queries from users and resources, thus reducing thefdhd root RC.

In our implementation, we follow an approach described #j ghd used by the EU
DataGrid project [13]. In this model, the root RC only stottes mapping between
a filename and a list of leaf RCs. Each leaf RC in turn storesidygping between
the filename and a list of resources that store this file. TAleows an example of
how information are indexed for the hierarchical model igu¥e 3.

4.1.3 Implementing a New Model

The hierarchical model described previously deals withrowjmg the performance
issue of the RC. However, some issues are not considerddasueliability or fault
tolerance and availability. With the hierarchical modig toot RC can become a
single point of failure to the whole system.

As GridSim is designed to be a research tool, researchematysts wishing to
test new ideas can easily extend the current component goldriment more ad-
vanced RC models. By using this approach, new RC models, asi€t2P model
can be compared to the existing ones. The P2P model offetey beliability and

scalability than the hierarchical model as mentioned in [7]

In GridSim, common functionalities of a RC is encapsulatedhbst r act RC, an
abstract parent class for bolbpRegi onal RCandRegi onal RC. TheTopRegi onal RC



Table 2
An example of a filename mapping in a hierarchical model

‘ TopRegionalRC ‘
Filename Location
filel RegionalRC 1, LocalRC
file2 LocalRC, RegionalRC 2
file3 RegionalRC 1, RegionalRC 2
‘ LocalRC ‘
Filename | Location
filel Resource A
file2 Resource A
RegionalRC 1
Filename Location
filel Resource B, Resource C
file3 Resource B
RegionalRC 2
Filename Location
file2 Resource D
file3 Resource D

class acts as a centralized RC or a root RC in a hierarchicaéémim constrast, the
Regi onal RCclass represents alocal RC and/or a leaf RC in a hierarahicdél.
Therefore, creating a new RC model can be done by extendagjabit r act RC
class and implementing some core functionalities, such as

e adding / deleting a master file or replica(s);
e getting the location / attribute of a file; and
e filtering files based on certain criteria (described in Sech).

With the above approach, the RC model and its structure besdransparent to

users and resources. Hence, they are just aware of the Rigdaut not the type,
to which they communicate.

4.2 Resource

A resource for Data Grids enables users to run their jobs dsa®/é0 gain access
to available data sets.

A resource has the following components:

e Storage. A resource can have one or more different storage elemandb, &
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harddisks or tape drives. An individual storage is resgdagor storing, retriev-
ing and deleting files. GridSim models physical charadiesf a real storage
device, such as read and write access delays.

e Replica Manager. This component is responsible for handling and managing
incoming requests about data sets in a resource for one erstaage elements.

It also performs registrations of files stored in the resedoca designated RC.

e Local Replica Catalogue. This component is an optional part of a resource. The
Local RC is responsible for indexing available files on theorece only. It also
handles users’ queries. However, the Local RC does not sena catalogue
server to other resources. This should be done by a leaf mm@dRC.

e Allocation Policy. This component is responsible for executing user jobs to one
or more available nodes in a resource. GridSim currentlytivaspolicies, i.e.
Space-Shared using a First Come First Serve (FCFS) appnotgtvithout ad-
vanced reservation [28] and Time-Shared using a Round Ragdproach.

All the resource’s components can be extended to implengswmideas and features
of the grid. In the next section, we will focus on the extensab the RM, since it
is responsible for dealing with the most important funcaility of the Data Grid.

4.2.1 Extending Replica Manager

In GridSim, a Replica Manager (RM) is represented as anatistias®kepl i caManager .
Currently, a concrete implementation of the RM is capturgtiéSi npl eRepl i caManager
class, the functionality of which is described in more detaSection 5. However,

like the RC, the RM also can be extended to test new ideas gmdaghes to solv-

ing various problems that arise in Data Grids. In order tolenent a new resource
manager, the following user requests have to be handled:

e adding / deleting a master file and replica; and
¢ sending a file to the user.

Furthermore, the RM has to register and deregister files fr@RC when neces-
sary.



public class User extends DataGidUser {

public User(String nane, Link |I) throws Exception {
super (nane, 1);

}

public void body() {
/1 first get a location of a file
int loc = super.getReplicalLocation("testFilel");

/'l second, request the file fromthe specified

/1 location and make a replica to resource_1

if (loc!=-1) {
int resld = GidSimgetEntityld("resource_1");
File file = getFile("testFilel", loc);
super.replicateFile(file, resld);

}

/1 shut down |/O ports
super . shut downUser Entity();
super.termnatel CEntities();

} /1 end class

Fig. 5. A simple example on how to create a new data grid user

4.3 User

In GridSim, a user can be modelled as an application or a byodorming on
behalf of the user, by extending fronDat aG i dUser class. The user, then, can
guery and request files located on different resources. Memt® simulate various
user scenarios during an experiment, this class must bededeand its behaviour
must also be specified.

Figure 5 shows a simple implementation of a Data Grid useefthe simulation
starts, this user simply transfers the filest Fi | el, replicatesitto esour ce_1,
and then terminates. As it can be seen many different usagesos can easily be
implemented in this way.

5 Data Grid Operationsin GridSim

In the previous section, we defined the entities in GridSmthis section, we de-
scribe in more detail how the most common operations are@gtlyrimplemented.
We use a hierarchical RC model as an example for describasgtbperations.

10
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5.1 Adding a Master File

The operation for adding a master file in GridSim requiresia-feay approach
as summarized in Figure 6. PopRegi onal RCentity is responsible for generat-
ing a unique ID. This ID is created to ensure that two diffefdas with the same
name are treated differently. Then, the ID is appended arnbef the original file-
name, e.gf i | e with ID is 1 becomegi | el. This filename changing procedure
is reflected not only in th&opRegi onal RC, but also in theRegi onal RCand
Repl i caManager . Furthermore, a tuplefi | enanel D, Regi onal RC> is
saved to the mapping for future user requests inTineRegi onal RC.

The unique ID is incremented every time fhepRegi onal RCreceives a request
for a master file addition by its regional or leaf RCs. The coration of filename
and its unique ID is sometimes referred to aegical file name (Ifn)[27]. This
Ifn is a key to query thdopRegi onal RCand other regional RCs for other Data
Grid operations, such as adding a replica or getting lonatas a file.

5.2 Adding a Replica

The operation for adding a replica in GridSim is summarizedrigure 7. It is
important to note that a replica can only be registered wkemaster file has
already been mapped by thepRegi onal RC. Otherwise, the replica registration
would be denied by botfopRegi onal RCandRegi onal RCentities.

11
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5.4 Filtering a File

5.3 Getting Locations of a File

12

The operation for getting locations of a file in GridSim is suarized in Figure 8.
In this figure, we use two regional RCs as an example. When @o@s not exist
in Regi onal RC1, then this RC will contacTopRegi onal RCfor a list of RC

name that map this Ifn. This allows tliegi onal RC1 to request a file location
on other RCs, such &egi onal RC2.

File filtering is a mechanism that allows a user to perform plexdata queries to a
regional RC. This regional RC will then pass this requestédbpRegi onal RC.
Therefore, the user can find list of available files in the [ata system that match
certain criteria, such as a combination of filename, sizeawter name. This fil-
tering function can be done by extending-al t er class and implementing its



public interface Filter {
public bool ean match(FileAttribute attr);
} /1 end class

/] create a new customfilter

public class CustonFilter inplements Filter {
private int size;
private String nane;

public CustonFilter(int s, String Ifn) {
size = s;
name = | fn;

}

/] select a file based on its attributes
public bool ean match(FileAttribute attr) {
if (attr.getSize() >= size &&
attr.getNane().startsWth(nane))
{

}
el se {

return fal se;
}

} /1 end class

return true;

Fig. 9. A customized filter example

method, which evaluates &i | eAt t r i but e objects listed in th&opRegi onal RC.
An example on how to find files based on their file size and gditeaname is
demonstrated in Figure 9.

5.5 Deleting a Master File or Replica

The user sends a delete request to a resource. If the res@mstee specified file in
one of its storage elements, a request for file deregistratith be sent to the RC.

If the operation is successful, the file will then be deleteuif the storage and an
acknowledgment message will be sent to the user. Note thaistentile can only

be deleted if no replicas exist in the Grid.

6 Constructing a Complex Simulation

In this section, we demonstrate how to construct a data gndlation using the
building blocks described in the previous two sections. dditon, we show on
how to build complex scenarios and we illustrate the typesxpkeriments that can
be simulated on GridSim.

13



Fig. 10. The simulated topology of EU DataGrid TestBed 1

6.1 Simulation framework

In this simulation, we introduce data-intensive jobs inesritd show how a demand-
driven replication strategy works in a Data Grid. GridSimeably has the ability
to schedule compute-intensive jobs, which are represeéntealG i dl et class.
Therefore, we extended this class and implement@aitaaG i dl et class to rep-
resent a data-intensive job. As a result, each data-ives has a certain execu-
tion size (expressed in Millions Instructions — MI) and regs a list of files that
are needed for execution.

To handle the running of Bat aGi dl et on aresource, we modified a resource’s
RM to find and to transfer required files of the job before itsaxion. The follow-
ing section gives an explanation on how the RM provides thjeired files to the
Dat aGri dl et.

6.1.1 Managing a Data-intensive Job

After receiving an incoming job obat aG i dl et , the RM checks a list of re-
quired files for executing this job. If all the files are cutitgravailable on a re-
source’s local storage, thgat aG i dl et is sent to a resource’s scheduler (Allo-
cation Policy) for execution. Otherwise, the RM sends a estjfor obtaining the
needed files from other resources. When all the requestedhiflee been trans-
ferred and stored on the local storage, thenDhtaGr i dl et is executed by the
scheduler.

14



Table 3
Resource specifications

Resource Name (Location)Storage (TB)| # Nodes| CPU Rating Policy # Users
RAL (UK) 2.75 41 49,000 Space-Shared 24
Imperial College (UK) 1.80 52 62,000 Space-Shared 32
NorduGrid (Norway) 1.00 17 20,000 Space-Shared 8
NIKHEF (Netherlands) 0.50 18 21,000 Space-Shared 16
Lyon (France) 1.35 12 14,000 Space-Shared 24
CERN (Switzerland) 2.50 59 70,000 Space-Shared 48
Milano (ltaly) 0.35 5 7,000 Space-Shared 8
Torino (Italy) 0.10 2 3,000 Time-Shared 4
Rome (ltaly) 0.25 5 6,000 Space-Shared 8
Padova (ltaly) 0.05 1 1,000 Time-Shared 4
Bologna (ltaly) 5.00 67 80,000 Space-Shared 24

6.2 Simulation Aims

We created an experiment based on EU DataGrid TestBed 1vjh8jh has been
used for evaluation of various data replication stratemi¢3]. The network topol-
ogy of the testbed is shown in Figure 10. In the LHC experimfntvhich the EU
DataGrid has been constructed, most of the data is read-Tmyefore, to model a
realistic experiment, we make these files to be read-onlghEtmore, we assume
the atomicity of the files, i.e. a file is a non-splittble urfitrformation, to simulate
the already processed raw data of the LHC experiment.

In this experiment, we are trying to look at:

e how a hierarchical RC model can reduce the load of a singlar@ezed) RC;

e how data replication improves the execution time of datarsive jobs; and

e how existing GridSim features, such as job allocation yodicd the simulation
of realistic workloads can be utilized to make this experitmaore comprehen-
sive.

6.3 Simulation Setups

6.3.0.1 Resource Setups. Table 3 summarizes all the resource relevant infor-
mation. In GridSim, total processing capability of a rese’s CPU is modelled in
the form of MIPS (Million Instructions Per Second) as dedibg Standard Perfor-

15



mance Evaluation Corporation (SPEC) [26].

The resource settings were obtained from the current cteistics of the real
LHC testbed [21]. We took the data about the resources arelsiteem down. The
computing capacities were scaled down by 10 and the stoequgeities by 20. The
scaling was done primarily for two reasons:

e real storage capacities are very big, hence these resaauglekstore all replicas
of files that the jobs require. Since we are trying to demamstnow a replication
strategy works, which deletes some files to make space foronew, we made
the storage capacities smaller;

¢ the simulation of the real computing capacities is not gmediecause of mem-
ory limitation of the computer we ran the simulation on. Thenplete simulation
would require more than 2GB of memory.

Some parameters are identical for all network links, i.e. Maximum Transmis-
sion Unit (MTU) is 1,500 bytes and the latency of links is 10lis¢conds.

6.3.0.2 Files Setups. For this experiment we defined 2000 files. The average
file size is 1GB and the file size follows a power-law (Paretsjrdbution, which is
reported to model a realistic file size distribution [18].

At the beginning of the experiment all master files are plamethe CERN storage.
Then copies of the files will be replicated among resources@sred during run-
time.

6.3.0.3 Data-intensiveJobs. For this experiment, we created 500 types of data-
intensive jobs. Each job requires between 2 and 9 files to beutad. To model a
realistic access the required files are chosen with anotiveeplaw distribution, a
Zipf-like distribution [5]. This means that theth most popular file is chosen with
a probability of

1

i’
in our casex = 0.6. The execution size for each job is approximately 84000 kMl
+ 30%, which is around 20 minutes if it is run on the CERN reseurc

6.3.0.4 Replication Strategy. In this simulation, each Replica Manager (RM)
of a resource uses the same strategy, i.e. to delete thdreqsently used replicas
when the storage limit capacity for storing new ones is fdbwever, master files
on CERN can not be deleted nor modified during the experin¥éms is due to
insufficient storage size in other resources to store ahese replicas.

16
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6.3.0.5 Users. We simulated 200 users in total, where each resource isreskig
a certain number of users as depicted in Table 3. The uséve anth a Poisson
distribution; four random users start to submit their jolasrg approx. 5 minutes.
Each user has between 20 and 40 jobs.

6.3.0.6 Realistic Workload ssmulation Grid resources are shared by other (i.e.
non-grid) types of application and jobs. To include thigdaénto our simulation,
we added a simulation of a realistic workload on a subset sburces. Grid-
Sim makes it possible to simulate realistic workloads, Whace given as input
in Standard Workload format. We took 3 workload logs from Baallel Work-
load Archive [30] of the DAS2 5-Cluster Grid. Since the warkdl logs are several
months long, we took only one day from each log and simuldted CERN, RAL
and Bologna.

6.4 Simulation Results

6.4.0.7 Replica Catalogue Model Test. In this test, we compare how well a
centralized RC model performs in comparison to a hieraattooe. We use the
same configuration as mentioned earlier with the only défiee is the RC model.

In a case of a hierarchical RC model, three regional RC estire introduced,
i.e.RegionalRC1, RegionalRCa@ndRegionalRC3RegionalRC1s responsible for
mapping master file locations and communicating with CERpLand NIKHEF.
RegionalRC32s responsible for NorduGrid, RAL and Imperial College, dre-
gionalRC3is responsible for Padova, Bologna, Rome, Torino and Mil&iaally,
TopRCoversees all three regional RCs.

Figure 11 shows the number of requests that have to be seyvealch RC entity.
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We can see that there is a significant reduction in requestsir{d 60%), when
comparingTopRCto CentralRCfrom a centralized model.

Therefore, the hierarchical model decreases the load afthiealized Replica Cat-
alogue and it is a good solution for grids with many queriesweer, further im-

provements can be made, such as periodically update ané ocaglica locations
from other regional RCs or increase the number of regiona R(roportion to

number of resources and users.

6.4.0.8 Execution Time Test The average execution time for jobs on each re-
source is depicted in Figure 12. Because of the Time-shdi@zhton policy, low
bandwidth and low CPU power, Padova and Torino have a suisbtatarger av-
erage execution time (80 and 15 hours respectively) anceéredt of this figure.

Since the simulated jobs are data-intensive, but they atpaire a lot of computing
power, many parameters influence the speed of job execMiercan see that Im-
perial has the fastest job execution, since it has a lot ofozdimg power and also a
large bandwidth to CERN where it gets the needed files. The soogrising result

is that CERN has a very high computing power and all the daadadle, but the

average execution time is very high. The reason for thisas @ERN is running

many compute-intensive jobs (defined by the realistic wia#t) so the jobs have
to wait for the execution.

6.4.0.9 DataAvailability Test To demonstrate how the availability of data can
be monitored on each resource we measured how much time golesexqjuire to
obtain a unit of data when getting the needed files. This nreasill tell us how
“close” the resource is to the required data. More precjsiéyavailability of data
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for job i on resourcg is computed as

d_i’

avail;; =

whered; is the amount of data required by jélte.g. in MB) andt;; is the time
needed for joh to get all data on the resourgde.g. in seconds).

The “quality” of a resource to execute data-intensive joas be defined as the
average availability over all jobs that were executed onréseurce. This can be
written as
ZiEJoij availij

|Jobs;|
whereJobs; is the set of jobs executed on resoujce

avgAvail; =

However, because of data replication and different comaiétiof the network, data
availability changes over time. Figure 13 shows the avditglthange during the

simulation on three different resources: Lyon, NIKHEF, &ulogna. Because the
behaviour is similar on other resources we omitted them fiefigure. In the first

minutes we have no information about the data availab#ityce it is calculated

when a job retrieves all the required files. The availabdjéts initially worse on

some nodes, since the jobs that finish first have obviouslhttarteccess to data.
After this increase, the availability starts to improversigantly because of the
replication strategy.

7 Conclusion and Further Work

In this work, we present a Data Grid simulation infrastruetas an extension to
GridSim, a well-known Computational Grid simulator. Withet addition of this
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extension, GridSim has the ability to handle core Data Guictfionalities, such as
replication of data to several sites, query for locationhef teplicated data, access
to the replicated data and make complex queries about detasds.

Furthermore, we demonstrate how these building blocks eamskbd to construct
complex simulation scenarios, such as the simulation cd-gdensive jobs and
evaluation of demand-driven replication strategies.

We also show how GridSim can be used to simulate a comprefeeDsita Grid
platform. The conducted experiment has shown how a hiecaiainodel for Replica
Catalogue (RC) provides a better scalability than a canédlone. In addition, we
tested the average execution times on different resourcshe data availability
which improved substantially because of a simple datacafitin strategy.

The results shown in these experiments are not very surgribut the described
simulation was used as an example of different functioealiof the our simula-

tor. We believe this simulation infrastructure can helgesrshers make important
findings and help resolve problems arising in Data Grids.

In the future, we are planning to incorporate new functitiesl of Data Grids, such
as reservation of storage to store future data requestswachatic synchroniza-
tion of data sets among resources. We also intend to addugaréplica catalogue
models into the framework.
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