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Abstract

This paper proposes and presents an autonomic Web Ser-
vice Resource Framework (WSRF) container that enables
self-configuration using IBM’s autonomic computing (AC)
architecture and resolves resource bottlenecks by service
migration. The migration manager bases its migration pol-
icy decision on an overall health status metric (H-metric)
of service containers. This light-weight migration protocol
permits scalability. A unified AC sensor/effector interface,
protocol, and metric summarization allows to build up hi-
erarchical WSRF container structures, a virtualized WSRF
container. The experimental results demonstrate that our
system scales across network of autonomic containers as
service demands increases at runtime.

1. Introduction

Service-Oriented Architectures (SOA) key concepts are
services, which are loosely coupled to support the require-
ments of business processes and software systems. SOA
does not prescribe a specific implementing technology, but
it is very often realized with Web services. Web services,
based on many standards, are by themselves stateless. Nev-
ertheless, workarounds like reading states from a database,
cookies or WS-Session exist. The Web Service Resource
Framework (WSRF) [23] standard specified by OASIS [22]
defines a set of standards that allow Web services to be-
come stateful. We believe that in the future most of the
services will follow the WSRF specification, that simplifies
the inter-operation and adds the possibility to use proper-
ties alongside its methods. Extending the WSRF function-
ality with Web Service Distributed Management (WSDM)
[20] is beneficiary for management tools, allowing them to

enumerate and view resources, even if they have no other
knowledge of them.

The distributed nature of SOA systems makes it neces-
sary for a good overall performance that the service con-
tainers are autonomic in respect of self-configuration, self-
optimizing, self-healing, and self-adapting [18],[19]. These
computing autonomic (AC) system features are imple-
mented based on the widely referenced architecture MAPE
(Monitor, Analyze, Plan, and Execute) [5] proposed by
IBM. The MAPE loop control is governed by policies stated
through SLAs and by performance metrics.

The proposed framework incorporates the AC features
of maintaining the given performance metrics by self-
managing dynamically the thread pool size (max, min spare,
max spare), cache size, thread priority, etc.

If the container is not able to adapt to the changing
environmental conditions and predicts a performance met-
ric violation that might occur in the future, the container
requests for service migration to solve resource bottle-
necks. The migration policy could clone or move a service
depending on the policy rules. In general with migration
the following problems can be addressed: performance
optimization, cost optimization, and fault tolerance (high
availability or shutdown for system maintenance).

Our contributions: In this work we have made the
following key contributions:

1. proposed and developed an autonomic container for
hosting WSRF-based Web services,

2. identified parameters that characterize the perfor-
mance of Web service containers and introduced mi-
gration techniques driven by them,

3. proposed a health status metric for simplifying evalua-
tion of container performance,



4. designed and implemented innovative components us-
ing a JSR-77 [15] compliant (Geronimo/Tomcat) host-
ing environment and

5. carried out experiments demonstrating the potential of
our work in scalable and dynamic network environ-
ments.

The rest of the paper is organized as follows: First, we
discuss related works, we follow this with a presentation
of the architecture of our autonomic container along with
detailed description of its components. Then, we present
migration capability supported in our system along with the
metrics used in evaluating the health status of our container
environment. Finally, we present experimental results fol-
lowed by concluding remarks and future direction.

2. Related Work

In Ying et. al service Ecosystem [16] analyses the system
under control and reconfigures the service-based system so
that they satisfy Service Level Agreements with minimal re-
source consumption. Migration is a heavy-weight process
and should be avoided whenever possible. Satisfying min-
imal resource consumption is a long term goal. Migrating
services to satisfy the minimal resource consumption level
can lead to unnecessary merging. The approach of this pa-
per is merging only when resource bottlenecks occur.

Mikic-Rakic et. al. [17] present an applied self-
reconfiguration approach to support disconnected opera-
tions for increasing the availability of a system during dis-
connection by allowing the system to monitor and automat-
ically redeploy itself.

Wei [12] carries out migration of weblets, specialized
Web services, which can be migrated, according to the
round trip time, message size, data location and load of the
weblet containers.

A game-theoretic mechanism is used to find a suitable
allocation. Each task is associated with a “selfish agent”,
and requires each agent to select a resource, with the cost of
a resource being the number of agents to select it. Agents
would then be expected to migrate from overloaded to under
loaded resources, until the allocation becomes balanced [6].

The research of Zeid and Gurguis [24] aims at proving
that with autonomic Web services, computing systems will
be able to manage themselves as well as their relationships
with each other. To achieve this objective, the research pro-
poses a system that implements the concept of autonomic
Web services without the possibility of merging.

3. Architecture Overview

This section describes the autonomic WSRF service con-
tainer (see Section 3.1 and 3.2) with the possibility of vir-

tualizing several containers to one virtual WSRF container
(section 3.3).

3.1. Web Service Resource Framework
(WSRF)

The Web Service Resource Framework (WSRF) stan-
dard [23] defined by OASIS [22] will be the basis for all
future stateful Web services. Presently there are differences
between the OGSI’s framework [9], implemented by the
Globus Toolkit (GT4) [7], and the WSRF, for example WS-
Addressing (see [8] for more details). But there are indica-
tions that the two frameworks converge. We belive that the
Grid community will move towards WSRF with the WS-
Addressing as an alternative grid service container, because
open source containers such as Apache Axis2 support com-
plete Web services standards along with WSRF. WSRF sub-
sumes several standards ([23]). Generally it defines how
Web service properties are retrieved, set, made persistent,
grouped together, and how to manage their lifetime in a
standard way. There are a few WSRF implementations (see
[13] for a detail comparison). This work is based on Muse
[3], a Java-based implementation of WSRF and extended by
specifications like: WS-Base Notification (WSN) [21], and
WS-Distributed Management (WSDM) [20].

3.2. Autonomic WSRF Service Container
Architecture

The WSRF services are deployed in Axis2 [1] running
in Tomcat [4] embedded into the application server Geron-
imo [2] (see Fig. 1). JSR-77 [15] provided by JMX [14] is
used to monitor the WSRF services inside the service con-
tainer (e.g. request counter, processing time, etc.). Remote
access is provided by a special management Web service
(see Section 3.3 and 4) or by the RMI remote adapter from
JMX, if there are no active firewalls. In general the remote
management interaction is done by the management Web
service. This management Web service contacts MBeans,
JMX’s management beans managed by the MBean server,
to get/set management information, or to define policies,
etc. The MAPE architecture is implemented by GBeans,
the fundamental entity in Geronimo [11]. GBeans automati-
cally generates MBeans, which are used by the management
Web service. Using GBeans provides access to Geronimo’s
Inversion-of-Control approach [10], wiring MBean connec-
tions at deploy time, having a central repository database,
and the ability to develop custom applications running as
GBeans inside the container.
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Figure 1. WSRF Service Container Architec-
ture

3.3. Virtual WSRF Service Container Ar-
chitecture

To virtualize several WSRF service containers a con-
tainer with a dispatcher service and the same management
Web service as before (see Section 3.2) is needed. Fig.
2 shows the virtualization of three WSRF service contain-
ers. The container that should be virtualized is provided by
configuration during the deployment process or by a SOAP
message to the management Web service. Fig. 3 shows the
virtual WSRF service container architecture with the dis-
patcher service and the management Web service. The ar-
chitecture is equal to the WSRF service container (see Sec-
tion 3.2), except with a dispatcher service and different poli-
cies, for the migration of WSRF services (see Section 4),
and a virtualization component to summerize the metrics of
all containers. The virtualization is a general approach
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and can be easily extended to a more complex structure as
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shown in Section 5 Figure 6.

4. Migration of WSRF Services

The approach of this framework is load balancing to
solve resource bottlenecks, based on measured performance
metrics and the defined policies. A WSRF service is moved
or cloned, when a performance metric violation is predicted
and the merging strategy, implemented by the virtual WSRF
service container, allows to migrate. Thus service contain-
ers can be unbalanced from the load point of view if the
specified performance metrics are satisfied.

4.1. WSRF Service Performance Metrics
and Policies

The deployer who wants to deploy a service has to pack-
age the service and describe it according to the necessity
of the service container. Additionally the deployer has to
define the desired performance metrics, stated as metric pa-
rameters, which could be of the following parameters:

metricspi Description ofpi

CPU Service has to have a specific
MIPS or completion time.

Memory The service needs a certain
amount of memory.

Response Time A service depends on
a certain response time.

<others> other metric parameter attributes
defined in the future

Important for this approach is to know a mini-
mum/maximum value of the specified metric parameter.



The minimum and maximum value is used in the H-metric
(Section 4.4). For “CPU”, “Memory”, and “Response
Time” special measurement instrumentation have been
developed, to get the minimum metric parameters. The
maximum metric parameters are given by the user. If other
metrics have to be defined one has to make sure to provide
the container with the minimum/maximum values. The
policy at the moment is to suggest the service that might
violate the performance measurement metric for merging.

4.2. WSRF Service Migration Management

Initially the WSRF service containers try to manage ev-
erything by themselves. When the MAPE components de-
tect a resource bottleneck, e.g. running out of heap size,
the service container has to decide by using it’s policies,
which of the services should be moved to somewhere else.
Therefore, the WSRF service container asks the migration
manager for help, given the following information:

• Endpoint Reference (EPR) of the service which has to
be moved

• the container’s health status metric (H-metric; see Sec-
tion 4.4)

• the H-metric for the metric value, that violated the
SLA, e.g. “out of Memory” and its characteristic H-
metric function parameters (x10, x90, etc.).

4.3. Migration Protocol
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Figure 4. Merging Sequence Diagram

Figure 4 is an example for the migration of a service X
from container B to A. The migration protocol is defined as
follows:

1. The service container B signals to the merging man-
ager that service X runs out of memory.

2. The merging manager asks all other service containers
(A and C) for the H-metric giving them the information
that the cause was the “out of memory”.

3. Each container calculates the H-metric considering the
memory problem and sends back it’s values: Container
A: H = 0.5 and Container B:H = 0.7.

4. Therefore, container A is chosen for migration and the
merging manager informs the dispatch to delete the
EPR for service X. Next the service X is moved from
container B to A.

5. Service X is deployed at container A.

6. The Properties of service X are retrieved.

7. The Properties to service X at container A are set.

8. The EPR for service X at the dispatcher is configured.

9. The service X is un-deployed from container B. It
might not be necessary; it depends on the policy. For a
CPU performance problem the solution could be load
balancing using round robin at the dispatch of the vir-
tual WSRF container (see 3.3)1.

4.4. Health Status Metric (H-metric) of a
WSRF Container

Each metric parameter value (see Table in Section 4.1) is
normalized (value∈ [0.0, 1.0]) and mapped to a piecewise
linear function (see Equations 1, 2,3,4,5).

Hmetric() = fmetric(x, x10, h10, x90, h90) (1)
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0.0, if x <= pmin

f10(), if pmin < x <=

pmin + x10 ∗ pmax

f10−90(), if pmin + x10 ∗ pmax < x <=

pmin + x90 ∗ pmax

f90(), x < pmin + x90 ∗ pmax

1.0, otherwise
(2)

p := metric parameter;x := measured metric value;x =∈

[pmin, pmax] x10 ∈ [0.1, x90] x10 := 10% metric default
value;h10 := 10% H default value;x90 ∈ [x10, 0.9] x90 :=
90% metric default value;h90 := 90% H default value;
The parameterx10 andx90 extreme values are:x10 = 0.1,
x90 = 0.9 (linear case) andx10 = 0.5, x90 = 0.5 (switch
case).

1There is no status synchronization between the services.



f10() =
h10x

x10pmax

−
h10pmin

x10pmax

(3)

f10−90() =
(h90 − h10)x

pmax(x90 − x10)
+ h10 −

(h90 − h10)(pmin + x10pmax)

pmax(x90 − x10)
(4)

f90() = −
(1.0 − h90)x

pmax − pmin − x90pmax

+ 1.0 +

(1.0 − h90)pmax

pmax − pmin − x90pmax

(5)

Figure 5 visualizes the normalizing H function for a
memory metric:pmin = 0MB; pmax = 300MB; h10 =
0.1; h90 = 0.9 and by sweepingx = [0, 300]MB and
x10 = [0.1, 0.5] with the constraint:x90 = 1.0 − x10.

 0  50  100 150 200 250 300
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

H metric
normalizeFunction

memory [MBytes]

x

H metric

Figure 5. Normalizing Function for the Policy
Parameters

To calculate the overall health status metric of a WSRF
container the normalized metric parameter values are accu-
mulated and normalized again (see Equation 6 by consid-
ering the maximum parameter of all service containers (see
Equation 7).

H =

∑m=n

m=1 wm ∗
Hmetric()m

pMAX
m

n ∗

∑m=n

m=1
wm

pMAX
m

(6)

With m := machine with WSRF Container andw :=
weights (1.0, if equal machines).

pMAX = max(pm,max) (7)

m ∈ [1, number − of − machines]

pMAX is the maximum value of all given policy parameter
maximum values.pi are policy parameter values.wi are
weight values, to emphasize a particular parameter, such as
memory. By default allwis are set to1.0. If the overall
H metric has to be calculated for a specific problem, e.g.
response time, the weight valuewm for that Hmetric will
be doubled and the others adjusted accordingly.

If the virtual WSRF container has to inform another vir-
tual WSRF container about its health status it is reporting
the maximum value of H of the service containers under
control (see Equation 8).

H = max(Hi) with Hi ∈ [H1, H2, ..., Hn] (8)

n := number − of − machines

5. Experimental Evaluation

5.1. Implementation

As indicated earlier (Section 3.2) we have implemented
the autonomic container manager inside Geronimo with
GBeans using Java. For implementation of WSRF-based
services we used the libraries (muse-core, muse-wsrf,
muse-util, muse-wsdm, etc.) from Axis2 and Muse. For the
merging manger additional libraries for remote deploying
based on Geronimo are used (geronimo-kernel, geronimo-
util, geronimo-deployment, etc.). The status informationof
the WSRF-based services are retrieved by using the stan-
dard set/get-Property method calls, which are defined in the
WSDL document of the services. The dispatcher is imple-
mented as a servlet using the Tomcat servlet library.

5.2. Setup

The machines used for the evaluation have been set up
with a Intel Pentium 4 CPU with 2.66G-Hz, 1G-Byte mem-
ory. The measured MIPS value for this machines was:
276984. We used version 1.1.1 of the J2EE application
server Geronimo [2] with Tomcat [4] included. To real-
ize WSRF services we installed Axis2 [1] and used Muse
2.0 [3] to generate the subs, skeletons, and java interfaces.
Figure 6 shows the configuration setup of the machines. For
the experiments we used 3 different kind of services with
the following metric values defined:

• CPU-Service: CPU average load:pmin = 0.1,
pmax = 3.0

• Memory-Service: Memory: pmin = 10MByte,
pmax = 100MByte, and

• Counter-Service: Response Time for all services:
pmin = 6ms, pmax = 160ms.
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• Merging-Service: Response Time for all services:
pmin = 6ms, pmax = 160ms.

• Merging-Service SLA: The merging service should be
below 140ms average response time.

The parameters for theFmetric functions are chosen for the
linear case to have a better understanding of the simulation
results. Therefore they are for all metric parameters:x10 =
0.1, h10 = 0.1, x90 = 0.9, h90 = 0.9

5.3. Performance Results

Figure 7 shows the CPU average load, Figure 8 the heap
size and Figure 9 the health status metric of all 4 machines.
Figure 10 shows the average response time of the migrate
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that after about 5s the average response time is approach-
ing the 90% metric violation and that the merging is initi-
ated. Since the H-metric of the machines m201 and m201
are higher than that of the machine m202, it is not sensible
to migrate it to one of these machines. Therefore the virtual
WSRF container m102 tries to move the service somewhere
else and asks the virtual container m001 which now moves
the merging service to m101. This can be seen in Figure 10
at 20s, when the move of the service is finished.

6. Conclusion and Future Work

Reconfiguration of a set of server by migrating services
statefully is needed to solve resource bottlenecks that a sin-
gle WSRF container can no longer accommodate by itself.
The single overall health status metric (H-metric) of the ser-
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vice containers is enough to enable the migration manager
to migrate services based on its migration policy. The AC
sensor/effector interfaces are Web services, the unified man-
agement interface, and the single health status metric allows
for the build up of hierarchical WSRF container structures,
virtualizing it to one WSRF container. Our future work is
to extend the framework so that the WSDM standard can
be used at the virtual container, summarizing the meta in-
formation of all containers. Another goal is to integrate the
grid security environment with virtual organizations. In ad-
dition, we will explore suitable strategies, driven by busi-
ness goals and historical demand patterns, for initial deploy-
ment of WSRF-based Web services. If their are any changes
in the environmental conditions, it will be dynamically han-
dled at runtime as proposed in this paper.
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