
A Self-Organising Federation of Alchemi Desktop Grids

Rajiv Ranjan, Xingchen Chu, Carlos A. Queiroz, Aaron Harwood, Rajkumar Buyya∗

GRIDS Lab and P2P Group
Department of Computer Science and Software Engineering

The University of Melbourne, Victoria, 3010, Australia

August 13, 2007

Abstract

Desktop grids presents a next generation platform for ag-
gregating the idle processing cycles of desktop computers.
However, in order to efficiently harness the power of mil-
lions of desktop computers, the systems or middlewares
that can support high level of efficiency, scalability, ro-
bustness and manageability are required.

In this paper, we propose a scalable and self-organising
desktop grid system, Alchemi-Federation, which uses a
Peer-to-Peer (P2P) network model for discovering and co-
ordinating the provisioning of distributed Alchemi grids.
Alchemi grids self-organise based on a structured P2P
routing overlay that maintains ad-dimensional index for
resource discovery. The unique features of Alchemi-
Federation are: (i) Internet-based federation of dis-
tributed Alchemi grids; (ii) implementation of a P2P pub-
lish/subscribe based resource indexing service that makes
the system highly scalable; and (iii) implementation of
a P2P tuple space-based distributed load-balancing algo-
rithm.

1 Introduction

Grids have emerged as the next generation platform for
sharing the topologically and administratively distributed
resources, services and scientific instruments. Recently,
desktop grids are progressively seen as an alternative or
a compatriot to the traditional dedicated grids. Tradition-
ally, Virtual Organisation (VO) based dedicated Grid re-
source sharing environment consists of few tens or hun-
dreds of resource sharing domains. In comparison to this,
desktop grids such as SETI@Home1, Folding@Home2

have demonstrated that millions of resources can be

∗Contact author: raj@csse.unimelb.edu.au
1‘SETI@Home’. http://setiathome.ssl.berkeley.edu/
2‘Folding@Home’.http://folding.stanford.edu/

aggregated together for extracting large computational
power (accounting to hundreds of Tera-Flops). Some of
the example applications that have been successfully exe-
cuted on desktop grid platform includes the Monte-Carlo
computation, virtual screening, protein sequence compar-
ison, climate prediction, gravitational wave detection and
cosmic rays study. The Internet-wide deployment and
adaption of these desktop grids systems clearly proves
their utility with respect to Grid resource sharing model.

Current implementation of desktop grid resource shar-
ing system such as SETI@Home, Folding@Home,
BOINC[1], Entropia[2] utilises centralised architecture
for resource discovery and application scheduling. In this
case, a central machine is responsible for managing the
system wide operation. If the central machine or the net-
work links leading to it fails then the whole desktop grid
system fails to operate hence leading to degraded resource
and scheduling performance. Further, they have been de-
signed to solve specific scientific problems (monolithic
design) i.e. these systems do not provide support for dif-
ferent kinds of application models. Finally, these desk-
top grid computing system provide minimum support for
efficient application load-balancing across the machines.
In other words, the scheduling methodology adopted by
these systems are trivial and employ random node selec-
tion strategy without taking into account the current load
or utilisation scenario. Considering the sheer scale and
dynamicity of desktop grid resources, existing systems
needs to be augmented with new generation resource dis-
covery and application scheduling techniques.

To overcome the above limitations in the current desk-
top grid systems we propose Alchemi-Federation sys-
tem. The Alchemi-Federation system logically connects
topologically and administratively distributed Alchemi
grids as part of a single cooperative system [9]. The
unique features of Alchemi-Federation includes: (i) it
is self-organising and scalable, (ii) implementation of
Distributed Hash Table (DHT) such as Pastry [10] or

1

Figure 1: Alchemi GFA and sites with their Grid peer service and some of the hashings to the Chord ring.

Chord [11] basedd-dimensional indexing for discovery
and monitoring of desktop grid resources, and (iii) im-
plementation of a novel resource provisioning technique
the allocates application to the best possible resource sets,
based on their current utilisation and availability in the
system.

Alchemi-Federation realises the theoretical Grid re-
source sharing model called Grid-Federation [9]. Grid-
Federation system is defined as a large scale resource
sharing system that consists of a coordinated federation of
distributed Alchemi grids. Fig. 1 shows an abstract model
of our Alchemi-Federation over a P2P publish/subscribe
resource discovery service. To enable transparent re-
source sharing between these Alchemi grids, a new re-
source management system called Grid Federation Agent
(GFA) service is proposed. These GFAs coordinate re-
source discovery and job scheduling activity using P2P
based publish/subscribe resource discovery service.

We have also tested the performance of the proposed
software system in a resource sharing network that con-
sisted of federation of5 Alchemi desktop grids distributed
over three departmental laboratories. The test application
was a windows executable (source code written using c-
sharp) that computed whether a given number is prime or
not. In order to introduce processing delays, the process
was made to sleep for10 seconds before it could proceed

to check the prime condition.
The rest of this paper is organised as follows: we

start with brief description of background information
on the Alchemi desktop Grid computing system in Sec-
tion 2. Section 3 presents the overall software architec-
ture of Alchemi-Federation system; including details on
the individual components of Alchemi-Federation soft-
ware. Section 4 discusses the implementation of P2P pub-
lish/subscribe based resource discovery service and soft-
ware interfaces. Section 5 presents brief details on coor-
dinated resource provisioning technique that performs de-
centralised load-balancing across Alchemi grids. In Sec-
tion 6 we present details on service deployment and boot-
strap. Section 7 includes the discussion on the perfor-
mance evaluation. Finally, paper ends with a discussion
on conclusion and future work.

2 Alchemi: A Brief Introduction

Alchemi [6] is .NET based enterprise Grid computing
and runtime machinery for creating a high-throughput re-
source sharing environment. An Alchemi Manager log-
ically couples the Windows Desktop machines running
the instance of Alchemi Executor service. An Execu-
tor service can be configured to receive and execute jobs

2

e-Science
Application

e-Business
Application

e-Engineering
Application

e-Commerce
Application

Precompiled executables

 Alchemi Jobs
(XML representation)

Alchemi Console
Interface

Alchemi Cross
Platform Manager

Alchemi .Net API
(Object Oriented Grid Programming

Environment)

Grid Threads (.Net Objects)

Alchemi Manager

Alchemi
Executor

Alchemi
Executor

Alchemi
Executor

Windows based Machines with .Net Framework

Figure 2: Alchemi architecture.

both in voluntary and non-voluntary modes. Alchemi ex-
poses run-time machinery and a programming environ-
ment (API) required for constructing Desktop Grid ap-
plications. The core Alchemi middleware relies on the
master-worker model - a manager is responsible for coor-
dinating the execution of tasks sent to its executors (desk-
top machines). The layered architecture of the Alchemi
system is shown in Fig. 2.

2.1 Programming and Application Model

Alchemi has supporting APIs for following job execu-
tion models: Thread Model and Job model. The Thread
Model is used for applications developed natively using
the .NET Alchemi application programming framework.
This model defines two main classes including GThread
and GApplication. A GThread is the simplest unit of task
that can be submitted for execution. One or more GTh-
reads can be combined together to form a GApplication
such as executing parallel threads over Alchemi to do dis-
tributed image rendering. The Job Model has been de-
signed to support legacy tasks developed using different
programming platforms (such as C, C++, Java). These
legacy tasks can be submitted to the Alchemi through the
Cross Platform Manager. ASP.NET web service interface
hosts the Cross Platform Manager service which can be
invoked by generalised Grid schedulers such as GridBus
broker [12].

Alchemi Executors

Alchemi Manager distr ibutes
 job to Executors

User submits a job
to the Alchemi Manager

Figure 3: Job submission and execution on Alchemi.

Fig. 3 illustrates the job submission and execution pro-
cess involving Alchemi Manager, Executor and users.
Application users submit their job directly to the local
Alchemi Manager. This submission can be done either
through Alchemi’s API if invoked from .NET platform or
Cross Platform Manager’s web service interface. Once
the job is submitted, the Manager queues it for future
consideration by the scheduler. The Alchemi scheduler
queries the status of each executor and finally dispatches
the job to the available one. After processing, executors
send back back the job output to the owner via the central
Manager.

3 Alchemi-Federation System De-
sign

This section presents comprehensive details about the
software services that govern the overall Alchemi-
Federation system. Fig. 4 shows the layered architec-
ture of the proposed software system. We start with de-
scribing the Grid-Federation Agent Service, the core re-
source manager responsible for Alchemi-Federation wide
resource discovery and application scheduling.

3.1 Grid-Federation Agent Service

The GFA service is composed of three software entities
including a Grid Resource Manager (GRM), Local Re-
source Management System (LRMS) and Distributed In-
formation Manager (DIM) or Grid Peer.

3

3.1.1 Grid Resource Manager (GRM)

The GRM component of a GFA exports the local Alchemi
site to the federation and is responsible for coordinating
federation wide application scheduling and resource allo-
cation. The GRM is responsible for scheduling the locally
submitted jobs in the federation. Further, it also manages
the execution of remote jobs in conjunction with the lo-
cal resource management system. The finer details on
the general Alchemi-Federation resource sharing model
and GFA service can be found in the paper [9]. Here,
we only focus on the software implementation details of
the components. This software module is implemented in
C-sharp. As shown in Fig. 4, GRM interacts with other
software modules including LRMS and Grid peer. Both
LRMS and Grid peer software modules are implemented
in C-sharp so they have no inter-operational issues.

3.1.2 Local Resource Management System
(LRMS)

The LRMS software module extends the basic Alchemi
Manager module through object oriented software inheri-
tance. Additionally, we implemented the following meth-
ods for facilitating federation job submission and migra-
tion process: answering the GRM queries related to job
queue length, expected response time and current resource
utilization status. LRMS inherits the capability to submit
applications to Alchemi executors from the basic Alchemi
Manager module. The Alchemi executors register them-
selves with the Manager. This in turn keeps track of their
status and availability. In the Alchemi system, a job is
abstracted as a Thread object that requires a sequential
computation for a fixed duration of time. The executors
return the completed threads directly to the LRMS mod-
ule which in turn sends it to the GRM module. Finally,
the GRM module directly returns the thread output to the
responsible remote GRM in the federation. In case the
job thread was submitted by a user local to the Alchemi
cluster, then the LRMS directly returns the output without
GRM intervention.

3.1.3 Grid Peer or DIM

The Grid peer module in conjunction with pub-
lish/subscribe indexing service performs tasks related to
decentralised resource lookups and updates. The details
on how the GRM component encapsulates the Resource
Lookup Queries (RLQs) and Resource Update Queries
(RUQs) can be found in the paper [7]. Here we discuss
the details on interaction protocols between the software
modules including Grid peer and publish/subscribe ser-

Java Web
 Service

.Net Web
 Service

Alchemi Manager
 (LRMS)

Decentral ised Information Manager
 (Grid Peer)

Grid Resource Manager
 (GRM)

Publish/Subscribe Service

 FreePastry
(Common API)

DHT Service

Alchemi Executors

Windows based Desktop
 Machines

Figure 4: A block diagram of Alchemi GFA software in-
terfaces and their interactions.

vice. Grid peer module is implemented in C-sharp while
the publish/subscribe service is implemented using the
Java platform. To resolve the inter-operational issues be-
tween these two services we implemented web service in-
terfaces for both the modules. Publish/subscribe index
service exposes the method for invoking RLQ and RUQ
processes through a web service interface (refer to Fig. 4).

Apache Tomcat container hosts the publish/subscribe
application service. Apache Tomcat is the servlet con-
tainer that implements the Java Servlet and JavaServer
Pages technologies. The specifications for Java Servlet
and JavaServer Pages are developed by Sun under the
Java Community Process. We utilised the Apache Axis
1.4 SOAP (Simple Object Access Protocol) engine for
parsing the XML messages. SOAP is a communication
protocol put forward by W3C for exchanging structured
information among software entities running in different
hosting environment. It is an XML based protocol that is
based on three specifications: an envelope that defines a
framework for describing what is in a message and how
it should be processed, a set of encoding rules for ex-
pressing instances of application-defined data types and
methods, and a convention for representing remote pro-
cedure calls (RPCs) and responses. Similarly, Grid peer
implements a .NET web service for receiving the query
responses from the publish/subscribe index service. This
web service is implemented using ASP.NET and is hosted
by the Microsoft Internet Information Service 6.0 (IIS).

4

4 Resource Discovery Service

The resource discovery service organises data by main-
taining a logical d-dimensional publish/subscribe index
over a network of distributed Alchemi GFAs. Specifi-
cally, GFAs create a Pastry overlay, which collectively
maintains the logical publish/subscribe index to facilitate
a decentralised resource discovery process. We have pre-
sented the finer details about the resource discovery ser-
vice and spatial index in the paper [7]. Here, we only
focus on implementation details such as design methodol-
ogy, programming tools, libraries etc. The resource dis-
covery service was developed using the core Java pro-
gramming libraries and FreePastry3 P2P framework. We
utilised the Eclipse Integrated Development Environment
(IDE) for system implementation and testing.

Our resource discovery system implementation fol-
lowed a layered approach known as OPeN architecture.
The OPeN architecture consists of three layers; the Appli-
cation layer, Core Services layer and Connectivity layer.
The Application layer implements all the logic that en-
capsulates the query requirements of the underlying Al-
chemi Federation environment. The Core services layer
undertakes the consistency and management of virtual
d-dimensional indices. The Connectivity layer provides
services related to Key-based routing, overlay manage-
ment and replica placement. The Application service,
in conjunction with the Core services, undertakes the re-
source discovery tasks including distributed information
updates, lookups and virtual index consistency manage-
ment. While the maintenance of Connectivity layer is left
to the basic DHT implementations such as FreePastry, the
modules for Application and Core services layer is devel-
oped using the standard Java libraries. For Connectivity
layer services we utilised the FreePastry framework.

4.1 FreePastry

FreePastry is an open source implementation of well-
known Pastry routing substrate. Pastry protocol was pro-
posed by Microsoft’s systems research Group Cambridge,
United Kingdom and Rice University’s distributed system
group. Pastry offers a generic, scalable and efficient rout-
ing substrate for development of P2P applications. It ex-
poses a Key-based Routing (KBR) API and given the Key
K, Pastry routing algorithm can find the peer responsi-
ble for this key inlogb n messages, whereb is the base
andn is the number of peers in the network. Nodes in
a Pastry overlay form a decentralised, self-organising and
fault-tolerant circular network within the Internet. Both

3http://freepastry.rice.edu/FreePastry

data and peers in the Pastry overlay are assigned Ids from
160-bit unique identifier space. These identifiers are gen-
erated by hashing the object’s names, a peer’s IP ad-
dress or public key using the cryptographic hash functions
such as SHA-1/2. FreePastry is currently available under
BSD-like license. FreePastry framework supports the P2P
Common API specification proposed in the paper [3].

Common API abstracts the design of P2P applications
into three layers tier 0, tier 1 and tier 2. Key-based rout-
ing at tier 0 represents the basic capabilities that are com-
mon to all structured overlays. The Common API spec-
ification hides the complexity of the low level P2P pro-
tocol implementation by defining a common set of inter-
faces to be invoked by higher level application services.
These application services can invoke standard KBR pro-
cedures independent of the actual implementation. In
other words, a KBR implemented using the Chord, Pas-
try or CAN will not make any difference to the oper-
ation of the higher level application service. At tier 1
abstracts more higher level services built upon the basic
KBR or structured overlays. Examples include DHTs,
Decentralised Object Location and Routing (DOLR), and
group anycast/multicast (CAST). Application services at
tier 3 such as CFS, PAST, Scribe can utilise one or more
of the abstractions provided by tier 2.

5 Coordinated Scheduling

The resource discovery system is extended to provide
the abstraction/facility of a P2P tuple space for realis-
ing a decentralised coordination network. The P2P tuple
space can transparently support a decentralised coordina-
tion network for distributed Alchemi GFAs. The P2P tu-
ple space [5] provides a global virtual shared space that
can be concurrently and associatively accessed by all par-
ticipants in the system and the access is independent of
the actual physical or topological proximity of the tuples
or hosts. The Grid peers maintaining the tuple space un-
dertake activity related to job load-balancing across the
Alchemi grids. Alchemi GFAs on behalf of local users
inject Resource Claim object into the decentralised coor-
dination space, while Alchemi grids update their resource
status by injecting aResource Ticket. These objects are
mapped to the DHT-based coordination services using a
spatial hashing technique.

A coordination service on a DHT overlay is made re-
sponsible for matching the published resource tickets to
the subscribed resource claims such that the resource
ticket issuers are not overloaded. Every Coordination ser-
vice in the overlay owns a part of the spatial space gov-
erned by the overlay’s hashing function (such as SHA-1).

5

In this way, the responsibility of the load-distribution and
coordination is completely decentralised. Note that, both
resource claim and resource ticket objects have their ex-
tent in thed-dimensional space. The finer details on how
decentralised coordination is enabled among distributed
Alchemi grids can be found in the article [8].

6 Deployment and Bootstrap

6.1 ManagerContainer

The ManagerContainer Class loader is responsible for
instantiating the Classes that implement the GFA func-
tionality (such as the GRM, LRMS, Grid Peer, and Al-
chemi Executors) in the Alchemi-Federation system. Ad-
ditionally, ManagerContainer also initialises the Pub-
lish/Subscribe Index web service. The Index service ini-
tialisation process includes: (i) booting the node host-
ing the index service into the existing Pastry overlay if
one exists, otherwise start a new overlay; (ii) if this is
the first node in the overlay then also compute the divi-
sion of logical index space at the fmin level else send a
node.join(keys) message to the overlay to undertake the
ownership of Index keys. Note that FreePastry takes care
of the tasks related to routing table, leaf set and neigh-
bour set maintenance. Our Application service is only
concerned with coordinating proper distribution and mi-
gration of logical Index keys.

6.2 Tomcat Container

Tomcat servlet container hosts the Publish/Subscribe In-
dex service. It exposes an API called TriggerService
(int PortName, String BootStrapServerName, int Boot-
StrapPort) to the ManagerContainer service for invoking
the Index service. The values for API call parameters
PortName, BootStrapServerName and BootSTrapPort are
maintained in a configuration file accessible only to the
ManagerContainer. Other APIs that Tomcat container ex-
poses include SubmitRLQ(String Object) for submitting
RUQs, SubmitRUQ(String Object) for submitting RUQs
and SubmitURLQ(String Object) for unsubscribing from
the Index service once an application has been success-
fully scheduled. These methods are invoked by the Grid
peer service whenever an application is submitted to the
GRM for scheduling consideration.

7 Performance Evaluation

In this section, we evaluate the performance of the soft-
ware system in a resource sharing network that con-

Desktop
Grid - 1

Switch

Switch

Firewall Router

Masters Student Lab 1

Internet

Switch

Desktop
Grid - 2

Desktop
Grid - 5

Masters Student Lab 2

Microsoft .Net Lab

Desktop
Grid - 3

Desktop
Grid - 4

Figure 5: Alchemi-Federation testbed setup.

sisted of federation of5 Alchemi desktop grids as shown
in the Fig. 5. These desktop grids were created in
three different Laboratories (Labs) including Microsoft
.Net Lab, Masters student Lab1 and2 within the Com-
puter Science and Software Engineering department at the
University of Melbourne. The machines in these Labs
are connected through Local Area Network (LAN). The
LAN environment has a data transfer capability of100

MB/sec (megabytes per second). Ethernet switches of
these Labs inter-connect through the firewall router. Vari-
ous system parameters were configured as follows:

• Pastry network configuration: Both Grid peer
nodeIds and publish/subscribe object IDs were ran-
domly assigned and uniformly distributed in the160-
bit Pastry identifier space. Other network parameters
were configured to the default values as given in the
file freepastry.params. This file is provided with the
FreePastry distribution.

• Resource Configuration: Every Alchemi GFA was
configured to connect to different number of execu-
tors (refer to Fig. 5). The Alchemi manager period-
ically reports the resource status/configuration to the
GFA as given by the resource ticket publish interval.
The Alchemi grids running the GFA component had
Windows XP as the operating system running on In-
tel chips. The processor were allocated to the jobs in
the space-shared mode.

• Publish/Subscribe index space con-
figuration: The minimum division
fmin of logical d-dimensional publish/
subscribe index was set to2, while the maxi-
mum height of the index tree,fmax was constrained
to 5. The index space had provision for publishing
resource information in4-dimensions including

6

number of processors,pi their speed,µi, operating
system type,φi, and processor architecture,xi. This
index configuration resulted into 16 (24) Grid index
cells atfmin level. On an average,3 index cells
are hashed to a Grid peer’s publish/subscribe index
service in a network of5 Alchemi sites.

Desktop Grid−1
Desktop Grid−4

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 0 5 10 15 20
 Job−ID

 c
o

o
rd

in
a

ti
o

n
 d

e
la

y
 (

s
e

c
s
)

(a) Job-ID vs average coordination delay (secs)

Desktop Grid−4
Desktop Grid−1

 15
 15.5

 16
 16.5

 17
 17.5

 18
 18.5

 19
 19.5

 20
 20.5

 21
 21.5

 0 5 10 15 20
 Job−ID

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

(b) Job-ID vs average response time (secs)

Figure 6: Job perspective.

• Workload configuration: The test application was a
windows executable (source code written using c-
sharp) that computed whether a given number is
prime or not. In order to introduce processing de-
lays, the process was made to sleep for10 seconds
before it could proceed to check the prime condition.
A simple brute force algorithm was implemented to
check the prime condition for an number. The brute
force algorithm consists of dividing the number by
every possible divisor, up to the number. If exactly2

factors are found, it’s prime. However, if more than
2 factors are found, then the number is not prime (it
is composite).

• Resource claim and resource ticket injection
rate: The GFAs inject resource claim and resource
ticket objects based on the exponential inter-arrival
time distribution. The value for resource claim inter-
arrival delay (1

λin

l

) was fixed to10 secs. While the

Desktop Grid−2
Desktop Grid−1

Desktop Grid−3
Desktop Grid−4
Desktop Grid−5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300
 time (secs)

 n
u

m
b

e
r

o
f
jo

b
s

(a) no. of jobs vs time (secs)

Job Count (Finished + In Execution)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 50 100 150 200 250
 time (secs)

 n
o

.
o

f
jo

b
s

(b) no. of jobs vs time (secs)

Figure 7: Resource perspective.

inter-arrival delay (1

λin
u

) of resource ticket object was
fixed to15 secs. The inter-arrival delay in ticket in-
jection is considered same for all the GFAs/Grids in
the system. We configured2 GFAs/Grids (Desktop
Grid-1 and Desktop Grid-4) to insert resource claim
objects into system with the delays as described. The
users in Desktop Grids -1 and4 submit25 resource
claim objects over the experiment run at an expo-
nential inter-arrival delay. While the injection of re-
source ticket object is done by all the GFAs/Grids in
the Alchemi-Federation system.

7.1 Discussion

The experiment measured the performance of the software
system with respect to the following metrics: average co-
ordination delay and average response time. The perfor-
mance metric coordination delay sums up the latencies
for: (i) resource claim to reach the index cell; (ii) wait-
ing time till a resource ticket matches with the claim; and
(iii) notification delay from coordination service to the rel-
evant GFA. While the average response time for a job is
the delay between the submission and arrival of execution
output.

7

Fig. 6(a) depicts results for the average coordination de-
lay in seconds for each job submitted during the exper-
iment period. We observed that jobs across the Desktop
Grids -1 and 4 experienced varying degree of coordination
delay. As described earlier the coordination delay directly
affects the overall response time for jobs which is evident
from the Fig. 6(b).

Fig. 7(a) shows how the job load was distributed over
the Alchemi grids. We observed that Desktop Grid -1 ex-
ecuted least number of jobs i.e.3 jobs, while Desktop
Grid -5 located in Master’s student Lab 1 executed high-
est number of jobs i.e.18 jobs over the experiment run.
Overall, the resources performed reasonably well as it is
seen in the Fig. 7(a). In Fig. 7(b), we show the details on
number of jobs finished and under execution across the
Alchemi-Federation over the experiment run time.

8 Conclusion

In this paper, we have described an Alchemi-Federation
software system. We have strictly followed an Object
Oriented Design (OOD) methodology in architecting and
implementing the Alchemi-Federation system. Our ex-
isting Alchemi-Federation testbed consisted of Alchemi
Grids distributed over three different Labs of the depart-
ment. These Labs are protected from the malicious users
by a firewall router that inhibits any connection from or to
the machines that do not belong to the domain. In future
work, we intend to overcome this limitation of Alchemi
GFA service by implementing the cross-firewall commu-
nication capability. Such extension to the Alchemi GFA
will support creation of Internet-based federation of Al-
chemi Grids that belong to different firewall control do-
mains.

Our software platform can be utilised to develop other
distributed applications such as P2P auction and dis-
tributed storage framework. Currently, our platform pro-
vides services for aggregating the distributed computa-
tional resources. We also intend to study the query load-
imbalance issues at the peers in a windows-based Grid
computing environment where the resource attribute dis-
tribution tends to be skewed. In future work, we intend to
incorporate decentralised reputation management frame-
works such as PeerReview [4] and JXTA Poblano [13] in
the Alchemi-Federation system. These reputation man-
agement systems will aid in facilitating a secure and trust-
worthy system for the participants to interact. Further,
we are also considering integrating the PeerMint credit
management system. PeerMint is a decentralised credit
management application that has been developed using
the FreePastry platform.

References
[1] D. P. Anderson. BOINC: A system for public-resource

computing and storage. InGRID ’04: Proceedings of the
Fifth IEEE/ACM International Workshop on Grid Comput-
ing, pages 4–10. IEEE Computer Society, Los Alamitos,
CA, USA, 2004.

[2] A. Chien, B. Calder, S. Elbert, and K. Bhatia. En-
tropia: architecture and performance of an enterprise desk-
top grid system.Journal of Parallel Distributed Comput-
ing, 63(5):597–610, 2003.

[3] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-
ica. Towards a common api for structured peer-to-peer
overlays. InProceedings of the 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS03), Berkeley, CA,
February 2003.

[4] P. Durschel. The Renaissance of Decentralized Systems,
Keynote talk at the 15th IEEE International Symposium on
High Performance Distributed Computing, Paris, France.
2006.

[5] Z. Li and M. Parashar. Comet: A scalable coordination
space for decentralized distributed environments. InHOT-
P2P ’05: Proceedings of the Second International Work-
shop on Hot Topics in Peer-to-Peer Systems, pages 104–
112. IEEE Computer Society, Los Alamitos, CA, USA,
2005.

[6] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal.
Peer-to-Peer Grid Computing and a .NET-based Alchemi
Framework, High Performance Computing: Paradigm and
Infrastructure. Laurence Yang and Minyi Guo (editors),
Wiley Press, New Jersey, USA. Fall 2004., 2004.

[7] R. Ranjan, L. Chan, A. Harwood, R. Buyya, and
S. Karunasekera. A scalable, robust, and decentralised re-
source discovery service for large scale federated grids.
Technical Report GRIDS-TR-2007-6, Grids Laboratory,
CSSE Department, The University of Melbourne, Aus-
tralia, 2007.

[8] R. Ranjan, A. Harwood, and R. Buyya. Peer-to-peer tuple
space: a novel protocol for coordinated resource provision-
ing. Technical Report GRIDS-TR-2007-14, Grids Labo-
ratory, CSSE Department, The University of Melbourne,
Australia, 2007.

[9] R. Ranjan, A. Harwood, and R. Buyya. A case for cooper-
ative and incentive based coupling of distributed clusters.
Future Generation Computer Systems, In Press, Accepted
Manuscript, Elsevier Science, The Netherlands, Available
online 15 June 2007.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale
peer-to-peer systems. InMiddleware’01: Proceedings of
IFIP/ACM International Conference on Distributed Sys-
tems Platforms, pages 329–359. SpringerLink, Heidelberg,
Germany, 2001.

8

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. InSIGCOMM ’01: Pro-
ceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer com-
munications, San Diego, California, USA, pages 149–160.
ACM Press, New York, NY, USA, 2001.

[12] S. Venugopal, R. Buyya, and L. Winton. A Grid Service
Broker for Scheduling distributed e-Science Applications
on Global Data Grids. Concurrency and Computation:
Practice and Experience, Wiley Press, New York, NY, USA,
18(6):685–699, 2006.

[13] W. Yeager and J. Williams. Secure peer-to-peer network-
ing: The JXTA example. IT Professional, IEEE Ed-
ucational Activities Department, Piscataway, NJ, USA,
4(2):53–57, 2002.

9

