
Classification of Gene Expression Data on Public Clouds

Christian Vecchiola1, Mani Abedini, Michael Kirley, Xingchen Chu1, and Rajkumar Buyya1

1Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne, Australia
{csve, mabedini, mkirley, xchu, raj}@csse.unimelb.edu.au

Abstract

Microarray technology allows for the simultaneous mon-
itoring of thousands of genes expressions per sample. Un-
fortunately, the classification of these samples into distinct
classes is often difficult as the number of genes (features)
greatly exceeds the number of samples. Consequently, there
is a need to investigate new, robust machine learning tech-
niques capable of accurately classifying microarray data.
In this paper, we present a coevolutionary learning clas-
sifier system based on feature set partitioning to classify
gene expression data. A distributed implementation, which
leverages Cloud computing technologies, is used to address
the inherent computational costs of our model. The devel-
opment and execution of this application was done using
the Aneka middleware on the public Cloud (Amazon EC2)
infrastructure. Experiments conducted using gene expres-
sion profiles show that the proposed implementation out-
performs other well-known classifiers in terms of accuracy.
Preliminary analysis into the impact of different Cloud se-
tups on the performance of the classifier are also reported.

1. Introduction

Gene expression technology using DNA microarrays, al-
lows for the monitoring of the expression levels of thou-
sands of genes at once. As a direct result of recent advances
in DNA microarray technology, it is now feasible to obtain
gene expression profiles of tissue samples at relatively low
costs. Gene expression profiles provide important insights
into, and further our understanding of, biological processes.
As such, they are key tools used in medical diagnosis, treat-
ment and drug design [22].

The classification of gene expression data samples into
distinct classes is a challenging task. The dimensionality of
typical gene expression data sets ranges from several thou-

sands to over ten thousands gene. However, only small sam-
ple sizes are typically available for analysis. [23]. The out-
comes from this classification process help domain experts
to identify the “informative features” embedded in the data
and the relationships between the data items. As such, they
can be used to generate hypotheses about the correlation be-
tween genes and their impact on a specific disease.

Learning classifier systems [12] are a widely used ma-
chine learning technique for classification problems. They
generate a population of condition-action rules, which are
easy to interpret. The eXtended Classifier system (XCS)
[20], a Michigan-style model, has been successfully tested
on a variety of data sets. However, the effectiveness of XCS
when confronted with high dimensional data sets (such as
gene expression) has not been explored in detail. The ar-
chitecture of XCS, like most other machine learning tech-
niques, is not suitable for high dimensional data sets. Theo-
retically, when the number of features of a data set isN , the
execution time of most common machine learning methods
is O(N2) [23].

A feature selection phase before the learning phase is
commonly used in machine learning to reduce the number
of features of interest and consequently the searching space
when tackling gene expression classification. An alternative
way to tackle high dimensional search problems is to adopt
a “divide-and-conquer” strategy. To the best of our knowl-
edge, decomposition approaches for XCS has been limited
to the models proposed by Gershoff [9] and Richter [16].
Significantly, both of these papers report improved perfor-
mance when the decomposition approach was used. A co-
operative coevolutionary framework [15] may also provide
a suitable approach for classification tasks. Zhu and Guan
[24] demonstrate competitive performance results using a
cooperative coevolution LCS.

Cloud Computing [7] presents a cost effective approach
for quickly harnessing the compute power required to carry
out classification tasks without having a large distributed



infrastructure in-house. It provides a wide collection of ser-
vices that cover the entire computing stack from the hard-
ware level to the software level, on a pay as you go ba-
sis. Users can elastically scale up and down their comput-
ing infrastructure and leverage the Cloud to conduct large
scale experiments and use these facilities only for the time
needed. These opportunities are definitely crucial either in
the business or in the academic world, since they provide a
way to cut down maintenance costs and to simplify capac-
ity planning. In particular, the need of large distributed in-
frastructures and their maintenance is a concern in research
laboratories and universities. Even though it is possible
to access distributed computing infrastructure for scientific
experiments such as EGEE and to various public comput-
ing platforms [13], the Cloud Computing model provides
a comprehensive offering able to address different scenar-
ios and completely customizable section to address the user
needs.

In this paper, we will describe a distributed implementa-
tion of the XCS classifier system – Cloud-CoXCS – and dis-
cuss how the system can be used to classify gene expression
datasets on Public Clouds. The contribution of the paper
is twofold. Firstly, we investigate how our model can im-
prove the accuracy of the classification for gene expression
datasets. Secondly, we discuss the advantages of leveraging
the Cloud, in particular the Amazon EC2 infrastructure, for
computation by comparing different setups of testbed for
our experiments.

The structure of the paper is as follows: Section 2,
provides background information on the problem of clas-
sifying gene expression datasets, and a brief overview of
Cloud Computing technologies. Section 3 describes Cloud-
CoXCS and the components that characterize it. Section
4 describes the experiments conducted to evaluate the per-
formance of Cloud-CoXCS and a discussion of the results
obtained on two real datasets with different Cloud setups.
Section 5 presents a brief overview of the related works and
conclusions follow.

2. Background

2.1. Classification for Gene Data Expressions

Gene-expression profiling using DNA microarrays can
analyze multiple gene markers simultaneously. Conse-
quently, it is widely used for cancer prediction. Informa-
tive genes can be extracted for predicting cancer/non-cancer
class or type of diagnosis. The former is more interesting
for biologists due to the fact that distinguishing sub category
of a cancer is a difficult task. Moreover, the accuracy of di-
agnosis at early stages is vital, while most cancer treatments
like chemotherapy kill both cancer and non cancer cells, and

seriously weaken the human defense system. And most of
these drugs have both long-term and short-term side effects.

Classification methods either result in the identification
of simple rules for class discovery or the identification of
highly related genes to a specific cancer. Recently, there
have been a number of investigations for class discovery
of gene expression data sets using machine learning tech-
niques: Decision Tree [3, 11], Support Vector Machines
(SVM) [4, 14] and k-Nearest Neighbor (k-NN) [2]. How-
ever, gene expression data sets have a unique characteristic:
they have high-dimensional features with few samples (also
known as ”the curse of dimensionality”). Typically, ma-
chine learning methods cannot avoid the over-fitting prob-
lem in this situation. Additionally, when the search space is
vast, most common machine learning techniques could not
find a suitable solution in a reasonable time frame [23].

2.2. XCS overview

The eXtended Classifier system (XCS) [20] is the most
successful learning classifier systems based on an accuracy
model. Figure 1, describes the general architecture of the
XCS model. XCS maintains a population of classifiers and
each classifier consist of a condition-action-prediction rule,
which maps input features to the output signal (or class).

A ternary representation of the form 0,1,# (where # is
don’t care) for the condition and 0,1 for the action can be
used. In addition, real encoding can also be used to accu-
rately describe the environment states [21]. Input, in the
form of data instances (a vector of features or genes), is

Figure 1. XCS model overview.



passed to the XCS. A match set [M ] is created consisting
of rules (classifiers) that can be “triggered” by the given
data instance. A covering operator is used to create new
matching classifiers when [M ] is empty. A prediction array
is calculated for [M ] that contains an estimation of the cor-
responding rewards for each of the possible actions. Based
on the values in the prediction array, an action, a (the out-
put signal), is selected. In response to a, the reinforcement
mechanism is invoked and the prediction, p, prediction er-
ror, ε, accuracy, k, and fitness, F , of the classifier are up-
dated [5].

2.3. Cloud Computing

Cloud Computing is a broad term that describes how IT
resources and software services are delivered to end users.
Even though there is no widely accepted definition, a Cloud
can be defined as a type of parallel and distributed sys-
tem consisting of a collection of interconnected and virtu-
alized computers that are dynamically provisioned and pre-
sented as one or more unified computing resources based
on service-level agreement [7].

Figure 2, gives a layered architecture of the Cloud Com-
puting. The lowest layer is characterized by the physical
resources on top of which the infrastructure is deployed.
These can be clusters, datacenters, and spare desktop ma-
chines. This level provides the horse power of the Cloud.
The physical infrastructure is managed by the core middle-
ware layer whose objectives are to provide an appropriate
run time environment for applications and the maximum
utilization of the physical resources. In order to provide
advanced services, such as application isolation, quality of
service, and sandboxing, the core middleware can rely on
virtualization technologies. Together with the physical in-
frastructure the core middleware represents the platform on
top of which the applications are deployed in the Cloud.
This provides environments and tools simplifying the de-
velopment and the deployment of applications in the Cloud:
web 2.0 interfaces, command line tools, libraries, and pro-
gramming languages. The user level middleware constitutes
the access point of applications to the Cloud.

The commercial offerings for Cloud Computing are het-
erogeneous and address different customer needs. Among
the major players in the field we can mention Google
AppEngine, Microsoft Azure and Amazon EC2 and S3.
Google AppEngine, and Microsoft Azure are integrated
solutions providing both a computing infrastructure and a
platform for developing applications. Google AppEngine
is a platform for developing scalable web applications that
will be run on top of server infrastructure of Google. Azure
is a cloud services operating system that serves as the de-
velopment, run-time, and control environment for the Azure
platform. It also provides additional services such as work-

Figure 2. Cloud Computing Architecture.

flow execution and management, web services orchestration
and access to SQL data stores. Amazon Elastic Compute
Cloud (EC2) operates at the lower levels of the Cloud Com-
puting reference model. It provides a large computing in-
frastructure and a service based on hardware virtualization.
By using the Amazon Web Services users can create Ama-
zon Machine Images (AMIs) and save them as templates
from which multiple instances can be run. Amazon also
provides storage services with the Amazon Simple Storage
Service (S3), users can take advantage of Amazon S3 to
move large data files into the infrastructure and get access
to them from virtual machine instances.

The Cloud Computing model introduces several benefits
for applications and enterprises: applications can dynami-
cally acquire more resource to host their services in order
to handle peak workloads and release when the load de-
creases. Enterprises do not have to plan for the peak ca-
pacity anymore, but they can provision additional resources
on demand and for the time needed. Moreover, reduced ad-
ministration and maintenance costs are implied by moving
the IT infrastructure to the Cloud. On the other hand, the
Cloud model introduces new challenges for what concerns
the location of the information and the policies that are ap-
plied to maintain their confidentiality.

3. Cloud-CoXCS

Cloud-CoXCS, is a machine learning classification sys-
tem for gene expression datasets on the Cloud infrastruc-
ture. It is composed of three components: CoXCS, Aneka,
and Offspring. In the remainder of the section, a brief over-
look of all these three components will be provided.

3.1. CoXCS

CoXCS is a coevolutionary learning classifier based on
feature space partitioning. It extends the XCS model by in-



Figure 3. High level overview of feature pari-
tioning policy in the CoXCS model.

troducing a coevolutionary approach. Figure 3, provides a
schematic example of how different classifiers learn from
the feature space and interact with each other. The CoXCS
architecture is based on a collection of independent popula-
tions of classifiers that are trained using different partitions
of the feature space within the training dataset. The model
uses a modified covering operator and crossover operators,
which improves the generation of new classifiers during the
evolutionary process. After a fixed number of iterations, se-
lected classifiers from each of the independent populations
are transferred to a different population (a kin to a migration
process). The evolutionary cycle is then repeated. This pro-
cess continues until a specific accuracy threshold is reached.

3.2. Aneka

Aneka [18] is a platform for developing applications and
deploying them on Clouds. It provides a runtime environ-
ment and a set of APIs that allow developers to build .NET
applications that offload their computation on both public
and private clouds. One of the key features of Aneka is
the ability to support multiple programming models (ways
of expressing the execution logic of applications by using
specific abstractions). This is accomplished by creating a
customizable and extensible service oriented runtime en-
vironment represented by a collection of software contain-
ers connected together. By leveraging this architecture, ad-
vanced services including resource reservation, persistence,
storage management, security, and performance monitoring
have been implemented. On top of this infrastructure, dif-
ferent programming models can be plugged to provide sup-
port for different scenarios such as engineering, life science,
and business applications.

Figure 4, provides an overall view of the services and the
internal architecture of the Aneka Container. A container is
the building block of Aneka Clouds. It provides a collec-
tion of services that perform all the operations required by
the system: security, scheduling, job execution, and stor-
age. The container can be deployed on either physical ma-
chine or virtual resources that are dynamically provisioned
on demand by interacting virtual machine managers such as

Figure 4. Aneka Features Overview.

Amazon, VMWare, and Xen. On top of this architecture,
three programming models are supported: independent bag
of tasks (Task Model), distributed threads (Thread Model),
and mapreduce (MapReduce Model). Developers can de-
fine their own abstraction for programming distributed ap-
plications with Aneka and simply config the services re-
quired for the scheduling and the execution of the units of
work.

The setup prepared for Cloud-CoXCS has been config-
ured with the Task Model for the execution of the classifi-
cation jobs. The Task Model provides a very simple set of
abstractions that allows developers to define a sequence of
unrelated tasks that do not have precedence or sequencing
constraints. By using the Task Model it is possible to wrap
existing legacy applications or also implement new tasks
with any language supported by the .NET runtime. In the
case of Cloud-CoXCS the existing CoXCS application has
been packaged into a legacy task and remotely executed.

3.3. Offspring

Offspring [19] is a software tool that allows scientists
and developers to quickly prototype distributed applica-
tions. By using the APIs provided by Offspring, developers
can: i) define the concept of task that will be remotely exe-
cute; ii) define and implement the logic that coordinates the
distributed execution of tasks; and iii) offload the execution



of distributed applications on different distributed systems.
Offspring provides a simple model based on the indepen-
dent bag of tasks for structuring distributed applications. It
encapsulates the logic of creating and coordinating the exe-
cution of tasks into strategies.

Strategies are programmable client-side workflows that
developers can define and plug into the environment. By
defining a strategy, developers can coordinate the execu-
tion of existing legacy applications, as in the case of Cloud-
CoXCS, or implement more sophisticated models by im-
plementing their own tasks. A strategy is composed of a se-
quence of phases in which a collection of tasks is generated.
Each of these tasks are submitted through Offspring and
executed remotely. Their successful completion (or fail-
ure) can trigger the generation of additional tasks within the
same phase or move strategy to the next phase. It is possible
to model either simple parameter sweeping applications or
complex dynamic workflows.

In the case of Cloud-CoXCS, a multi-phase strategy has
been implemented. In each phase, a number of parallel
learning tasks are generated. The output of a learning task
is a population of classifiers that have been trained against
a given dataset. Once all the learning tasks complete, an
additional task that applies migration among the population
of classifiers will be submitted. It sets the completion of the
phase once its execution finishes. This process is repeated
for a specified number of iterations decided by the user. Al-
gorithm 1 describes in detail the strategy.

4. Experiments

In order to evaluate the performance of the Cloud-
CoXCS, a set of experiments have been conducted using
different gene expression datasets and Cloud setups.

4.1 Datasets

Two datasets were considered in this study: BRCA
(Breast Cancer gene profiles) data set contains BRCA (15
samples) and Sporadic (7 samples) which each sample is
described by 24,481 genes (features) [10, 11], and Prostate
that is collected from 21 prostate cancer patients with 12600
genes [11].

4.2 Methods

4.2.1 CoXCS parameters

CoXCS with a hybrid feature encoding scheme was imple-
mented and integrated in Aneka and Offspring frameworks.
The parameter settings for our modified XCS were based on
the default XCS settings recommended in [6]. The param-
eter values that were different include: population sizes of

Algorithm 1 XCSStrategy
Require: p: number of phases (migration stages)

e: number of parallel evaluations (XCS instances)
d: gene expression dataset
failed: list of failed executions
input: list of input populations
output: list of output populations
AvgAUC: average accuracy
MaxAUC: minimu accuracy
MaxAUC: max accuracy
best: best population

1: for i = 0 to p do
2: clear output
3: create e instances of classifiers task cj
4: partition d into e sets and assigns each set to cj
5: if i > 0 then
6: for j = 0 to e do
7: configure cj with population pj in input
8: end for
9: end if

10: submit the list of classifiers to the cloud.
11: for j = 0 to e do
12: if cj.Success then
13: add output population pj to output
14: update AvgAUC, MaxAUC, MinAUC
15: if cj.AUC 6= MaxAUC then
16: best← pj
17: end if
18: else
19: add cj to failed
20: end if
21: end for
22: if i < p then
23: create mixer task mi that takes as input all the pj stored

in output.
24: submit the mixer task to the cloud
25: collect pj generated and add it to (or replace it into)

input
26: end if
27: end for
28: return best

5000; the exploration/exploitation rate was set to 0.3. The
partitioning scheme used was a simply equal linear division
of the feature space. In this study, we have employed 20
separate partitions (islands) for all data sets. The migration
ratio was set to 10% of the population size. Five separate
migration stages were used, where the number of iterations
between migration episodes was fixed at 100.

4.2.2 Cloud setup

The experiments have been carried out via distributed in-
frastructure managed by Aneka and deployed on Amazon
EC2 virtual instances. Two different Amazon images have
been used to configure the system: a master image and a



Experiment Image Type Cores EC2 Compute Units Memory Slave Instances Cost/Hour
Exp 1 m1.small 1 2.5 1.7 GB 20 0.10 USD
Exp 2 c1.medium 2 5 1.7 GB 10 0.20 USD

Table 1. Experiments setup. Virtual machine characteristics for slave nodes.

slave image. The master image features an instance of the
Aneka container hosting the scheduling and file staging ser-
vices for the Task Model on a Windows Server 2003 oper-
ating system, while the slave image hosts a container con-
figured with the corresponding execution services deployed
on a Red Hat Linux 4.1.2 (kernel: 2.6.1.7) .

The Aneka Cloud deployed for the experiments is com-
posed by one master node and multiple slave nodes that
have been added to the cloud on demand. Experiments have
been done to compare different cloud setups. In particu-
lar two different image types have been tested to deploy
slave instances: m1.small and c1.medium. For what con-
cerns the master node, the m1.small image has been used in
both cases.

Table 1 describes the characteristics of the two differ-
ent clouds used for the experiments. It can be noticed that
c1.medium instances provide a computational power that is
double compared with the one provided by m1.small and
exposed as a two core machine. The computing power is
expressed in EC2 Compute Units1. In both cases a com-
plete parallelism at each stage is obtained because Aneka
scheduler dispatches one task per core. Hence c1.medium
instances will receive two tasks to process each time.

4.2.3 Validation

Cross-validation is a standard approach when running ex-
periments for both bioinformatics and machine learning
tasks. For each fold, the area under the ROC curve (AUC) is
calculated (this is a well-known machine learning technique
used to compare the accuracy of different techniques). The
average across all trials for the AUC values in each scenario
is presented. In order to support cross validation the BRCA
dataset has been configured by 2 fold while the prostate
dataset by 4 fold cross validation.

We have also included results generated using other well-
known classifiers. There results were generated using the
Weka package [1].

4.3. Result and Analysis

Table 2, lists the accuracy results obtained for each of the
datasets examined. The results obtained using other well-

1An EC2 Compute Unit is a virtual metric that is used to express the
computational power of an instance. One EC2 Compute Unit (ECU) pro-
vides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor.

known classification methods are also listed. For each of
the classifiers, the average AUC value obtained against the
test data has been included. The relative performance of
the base-line XCS and the other classifiers were very simi-
lar. The accuracy performance of the CoXCS was generally
better than other classifiers. However, there is still room for
improvement.

Table 3, shows the average execution time comparison
over different Cloud setups. The CoXCS execution times
recorded for the Prostate dataset are approximately four
times longer than the execution time for the BRCA dataset.
This may be attributed to the different number of features
that characterize the two gene profiles, giving the approx-
imately equal number of samples . It is interesting to
note, that the setup using the dual core machines performs
slightly worse in the case of BRCA while it provides a sig-
nificant drawback in the case of the Prostate profile. As
the number of attributes per partition is approximately four
times larger in the second case, the single CoXCS task re-
quires more time to complete, and in the case of a dual core
machines, the presence of two learning tasks executing at
the same time implies a longer execution time for both of
them. This effect is not noticeable in the case of the BRCA
profile, where the single learning task is very quick. Since

Classifier Mode BRCA Prostate

j48 Train 0.92±0.06 1.00
Test 0.35±0.01 0.60±0.10

NBTree Train 1.00 1.00
Test 0.65±0.12 0.46±0.04

Random Forest Train 1.00 1.00
Test 0.51±0.01 0.60±0.09

Logistic Regression Train 1.00 0.50
Test 0.85±0.17 0.50

Naive Bayes Classifier Train 0.99±0.01 1.00
Test 0.90±0.05 0.35±0.04

SVM Train 1.00 1.00
Test 0.53±0.04 0.51±0.07

XCS Train 0.50 0.50
Test 0.50 0.50

Cloud-CoXCS Train 1.00 1.00
Test 0.98±0.02 0.70±0.02

Table 2. AUC results. Bold values indicate
the the Cloud-CoXCS model was significantly
better when compared to all of the other clas-
sifiers.



Setup BRCA Prostate
Fold 0 Fold 1 Fold 2 Fold 3 Fold 0 Fold 1

m1.small 08:26 10:00 10:00 09:00 35:13 40:44
c1.medium 10:42 10:04 15:17 11:42 52:48 53:48

Table 3. Experiments result. Execution time
(minutes).

the overall cost of the two setups is the same, it is possible to
conclude that in case of long running computing intensive
tasks, given the same number of cores, it is better to rely on
a setup that uses as many as m1.small instances rather than
half c1.medium instances.

5. Related Work

The reference context of this work is the field of multi-
population learning classifier system. In this domain, lim-
ited studies have been completed. Typically, the studies
have tackled the problem from a different perspective. In
this section we will briefly review the more relevant to
Cloud-CoXCS.

Dam, Abbass, and Lokan [8] proposed a distributed
client server XCS model for distributed data mining. In
their work the reason for providing a distributed implemen-
tation of XCS is because data is distributed: on each site
a different XCS is deployed and evolves a set of classifiers
using a local data repository. On a regular basis the pop-
ulations generated from each XCS are sent to the server
combines them in order to generate a more general clas-
sifier system. In a similar study, a multi-population parallel
XCS for classification of electroencephalographic signals
was introduced by Skinner et al. [17]. The specific focus of
that study was to investigate the effectiveness of migration
strategies between sub-populations mapped to ring topolo-
gies.

Gershoff et al.[9] attempted to improve global XCS per-
formance via a hierarchical partitioning scheme. An agent
containing a collection of homogeneous XCS classfiers was
assigned for each partition. The predicted output signal
(class) estimated from each agent is then passed up to a con-
trolling agent that decides the output of the final system by
using the combined output of each sub population is respon-
sible for. On the other approach, problem decomposition is
applied by Ritcher et al. [16] that investigate the perfor-
mance gain of decomposing the problem space in different
sub tasks and assigning them to different XCS instances. In
their work they compare the performance of a single XCS
model with a decomposition model based on two and three
parallel XCS instances mapped to different dimensions of
the problem.

Zhu and Guan [24] took the decomposition approach to

the extreme. In the proposed coevolutionary model, indi-
viduals in isolated sub-populations encode if–then rules for
each feature in the data set and are used to classify the par-
tially masked training data corresponding to the feature in
focus. This level of decomposition required then a two-step
process – a concurrent global and local evolutionary pro-
cess – in order to generate satisfactory accuracy levels and
becomes computational expensive for large dataset.

Our work is similar to the study proposed by Ritcher et
al. [16], since it uses distributed processing to address fea-
ture space partitioning. In a sense, this can be considered
as a sort of problem decomposition. While Ritcher inves-
tigated only two and three parallel XCS models, our work
adopts a larger degree of parallelism in that it is also fo-
cused on reducing the computation time, while considering
datasets with a huge number of features such as gene ex-
pression datasets. A similar study was proposed by Ger-
shoff et al. [9]. In this case, we use a heterogeneous XCS
instances rather than homogeneous classifiers for each of
the partition. Moreover, where the previous studies have
focused on the classification model used, our work places
more emphasis on the distribution infrastructure used, and
the leveraging of the Cloud Computing to provide the ex-
treme power required to address the classification problem
in a reduced time. Together with feature space partitioning
and composable strategies that coordinate the logic of dis-
tribution of the model, our model provides a better degree
of flexibility than other works discussed in this section.

6. Conclusions

In this paper, we have presented Cloud-CoXCS, a sys-
tem for performing gene expression dataset classification
on Public Clouds. Cloud-CoXCS is a system that provides
a distributed implementation of the CoXCS, coevolution-
ary learning classifier, based on feature space partitioning.
It relies on the Aneka Cloud Computing platform and the
Offspring environment in order to harness on demand the
computing power offered by Public Clouds. The Offspring
environment provides a mechanism to prototype distribu-
tion strategies, which coordinate the logic of the execution
and connect them with the selected distribution middleware.

A specific strategy for implementing the distributed co-
evolutionary learning classifier (CoXCS) has been pre-
sented and evaluated using gene expression datasets. The
experiments performed, using the Amazon Elastic Compute
Cloud (EC2) infrastructure, have demonstrated that by us-
ing Cloud-CoXCS it is possible to obtain improved accu-
racy levels as compared to the levels obtained using other
well-known classifiers.

In order to investigate the advantage of using a Comput-
ing Cloud, two different cloud setups have been deployed
for the experiments. Given a fixed number of cores, we



have investigated the performance on a cloud characterized
by the same number of m1.small instances, and on a cloud
of c1.medium instances whose number was half of the previ-
ous one. The experimental results have demonstrated that in
case of computationally intensive tasks, the execution time
plays a critical role in determining the performance of the
cloud. More precisely, for very short tasks there is no dif-
ferent between the two setups, but for long running tasks
the setup characterized by dual core machines is less per-
formant.

In future work, we will conduct more detailed ex-
periments investigating distributed classification based on
CoXCS by considering different Cloud computing resource
pools created using technologies such as Xen and VMWare,
and the integration as being supported by Aneka.

References

[1] Weka 3: Data Mining Software in Java.
http://www.cs.waikato.ac.nz/ml/weka/.

[2] D. W. Aha, D. F. Kibler, and M. K. Albert. Instance-Based
Learning Algorithms. Machine Learning, 6:37–66, 1991.

[3] M. Beibel. Selection of Informative Genes in Gene Expres-
sion Based Diagnosis: A Nonparametric Approach. In IS-
MDA ’00: Proceedings of the First International Symposium
on Medical Data Analysis, pages 300–307, London, UK,
2000. Springer-Verlag.

[4] M. P. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W.
Sugnet, T. S. Furey, M. Ares, and D. Haussler. Knowledge-
based analysis of microarray gene expression data by using
support vector machines. PNAS, 97(1):262–267, January
2000.

[5] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson. To-
ward a theory of generalization and learning in XCS. Evo-
lutionary Computation, IEEE Transactions on, 8(1):28–46,
2004.

[6] M. V. Butz and S. W. Wilson. An Algorithmic Descrip-
tion of XCS. In Advances in Learning Classifier Systems,
volume 1996/2001 of Lecture Notes in Computer Science,
pages 267–274. Springer Berlin / Heidelberg, 2001.

[7] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud Computing and emerging IT platforms:
vision, hype, and reality for delivering IT services as the 5th
utility. Future Generation of Computer Systems, 25:599–
616, 2009.

[8] H. H. Dam, H. A. Abbass, and C. Lokan. DXCS: an XCS
system for distributed data mining. In Genetic and Evo-
lutionary Computation Conference, GECCO 2005, pages
1883–1890, New York, NY, USA, June 2005. ACM.

[9] M. Gershoff and S. Schulenburg. Collective behavior based
hierarchical XCS. In Genetic and Evolutionary Computa-
tion Conference, GECCO 2007, volume ACM, pages 2695–
2700, New York, NY, USA, 2007. ACM.

[10] I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bit-
tner, R. Simon, P. Meltzer, B. Gusterson, M. Esteller, O. P.

Kallioniemi, B. Wilfond, A. Borg, and J. Trent. Gene-
Expression profiles in hereditary breast cancer. N Engl J
Med, 344(8):539–548, February 2001.

[11] M. M. Hossain, M. R. Hassan, and J. Bailey. ROC-tree:
A Novel Decision Tree Induction Algorithm Based on Re-
ceiver Operating Characteristics to Classify Gene Expres-
sion Data. In Proceedings of the SIAM International Con-
ference on Data Mining, pages 455–465, Atlanta, Georgia,
USA, April 2008. SIAM International Conference on Data
Mining, SIAM Publications(Pennsylvania).

[12] P. L. Lanzi. Learning classifier systems: then and now. Evo-
lutionary Intelligence, 1(1):63–82, March 2008.

[13] Y. Pan. Scientific computing on public computing platforms
- practices and experiences. In IPDPS, page 1, 2008.

[14] J. C. Platt. Fast training of support vector machines using
sequential minimal optimization. pages 185–208, 1999.

[15] M. A. Potter and K. A. D. Jong. Cooperative Coevolution:
An Architecture for Evolving Coadapted Subcomponents.
Evolutionary Computation, 8(1):1–29, 2000.

[16] U. Richter, H. Prothmann, and H. Schmeck. Improving XCS
Performance by Distribution. In X. Li, M. Kirley, M. Zhang,
D. G. Green, V. Ciesielski, H. A. Abbass, Z. Michalewicz,
T. Hendtlass, K. Deb, K. C. Tan, J. Branke, and Y. Shi, ed-
itors, Simulated Evolution and Learning, 7th International
Conference, SEAL 2008, volume 5361 of Lecture Notes in
Computer Science, pages 111–120, December 2008.

[17] B. Skinner, H. Nguyen, and D. Liu. Distributed classifier mi-
gration in XCS for classification of electroencephalographic
signals. In Proceedings of the IEEE Congress on Evolu-
tionary Computation, CEC 2007, pages 2829–2836. IEEE,
September 2007.

[18] C. Vecchiola, X. Chu, and R. Buyya. High Performance &
Large Scale Computing, chapter Aneka: A Software Plat-
form for .NET-based Cloud Computing. IOS Press, 2009.

[19] C. Vecchiola, M. Kirley, and R. Buyya. Multi-Objective
Problem Solving With Offspring on Enterprise Clouds. In
Proc. of the 10th International Conf. on High-Performance
Computing in Asia-Pacific Region (HPC Asia’09), 2009.

[20] S. W. Wilson. Classifier Fitness Based on Accuracy. Evolu-
tionary Computation, 3(2):149–175, 1995. http://prediction-
dynamics.com/.

[21] S. W. Wilson. Get Real! XCS with Continuous-Valued In-
puts. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, edi-
tors, Learning Classifier Systems, From Foundations to Ap-
plications, volume 1813 of Lecture Notes in Computer Sci-
ence, pages 209–222. Springer, 1999.

[22] F.-X. Wu, W. Zhang, and A. Kusalik. On Determination of
Minimum Sample Size for Discovery of Temporal Gene Ex-
pression Patterns. In First International Multi-Symposiums
on Computer and Computational Sciences, pages 96–103,
June 2006.

[23] Y. Zhang and J. C. Rajapakse. Machine Learning in Bioin-
formatics. Wiley Series in Bioinformatics. 1’st edition,
2008.

[24] F. Zhu and S. Guan. Cooperative co-evolution of GA-based
classifiers based on input decomposition. Engineering Ap-
plications of Artificial Intelligence, 21:1360–1369, 2008.


