
An Auction Mechanism for a Cloud Spot Market

Adel Nadjaran Toosi,
Kurt Van Mechelen, and

Rajkumar Buyya

December 2, 2014

Abstract

Dynamic forms of resource pricing have recently been introduced by
cloud providers that offer Infrastructure as a Service (IaaS) capabilities,
in order to maximize profit and balance resource supply and demand. The
design of a mechanism that efficiently prices perishable cloud resources in
line with a provider’s profit maximization goal remains an open research
challenge however. In this paper, we propose an adaptation of the Consen-
sus Revenue Estimate auction mechanism to the setting of a multi-unit
online auction for cloud resources. The mechanism is envy-free, has a
high probability of being truthful, and generates a near optimal profit for
the provider. We combine the proposed auction design with a scheme for
dynamically calculating reserve prices based on data center Power Usage
Effectiveness (PUE) and electricity costs. Our simulation-based evalua-
tion of the mechanism demonstrates its effectiveness under a broad variety
of market conditions. In particular, we show how it improves on the clas-
sical uniform price auction and investigate the value of prior knowledge
on the execution time of virtual machines, for maximizing profit.

1 Introduction

The increased adoption and maturity of cloud computing offerings has been
accompanied by a growing role and significance of pricing mechanisms for trad-
ing computational resources. Especially Infrastructure as a Service (IaaS) cloud
providers that offer computational services in the form of Virtual Machine (VM)
instances with specific resource characteristics, have gradually expanded their
pricing plans in order to maximize their profits and further attract demand.
Currently, the most widely used model remains a fixed pay-as-you-go pricing
plan wherein the consumer is charged the amount of time a VM instance was
used at a fixed rate. However, the fact that computational resources sold by a
cloud provider can be characterized as a non-storable or perishable commodity1,

1Note that resources tied to a VM are qualified as non-storable (perishable), as a non-used
hour of CPU time or memory space can never be reclaimed and therefore wastes data center
capacity.

1

combined with the fact that demand for computational resources is non-uniform
over time, motivates the use of dynamic forms of pricing in order to optimize
revenue [1]. Through price adjustment based on actual (and possibly forecasted)
supply and demand conditions, consumers can be incentivized to acquire spare
capacity or shift demand from on-peak to off-peak hours. Consequently, both
profit and consumer satisfaction can be increased.

Market-based pricing mechanisms that solicit reports (bids) from consumers
and subsequently use an allocation rule and pricing rule to compute the alloca-
tion of resources to consumers and their associated prices respectively, are well
fit to realize such dynamic forms of pricing. Recently, they have received sig-
nificant attention for selling underutilized capacity in cloud infrastructures [2].
Well-designed auction mechanisms can be particularly effective since they: 1)
incentivize users to bid in a truthful manner (i.e., report the price they are will-
ing to pay for resources), 2) ensure resources are allocated to those who value
them the most, and 3) correctly price resources in line with supply and demand
conditions by creating competition among buyers.

Amazon Web Services (AWS) has adopted an auction-like approach to ex-
pand its pricing plans with Spot Instances for the Amazon Elastic Compute
Cloud (EC2). In this scheme, consumers communicate their bids for a VM in-
stance hour to AWS. Subsequently, AWS reports a market-wide spot price at
which VM instance use is charged, while terminating any instances that are
executing under a bid price that is lower than the market price. Although
Amazon is not the only provider to offer dynamic pricing, it is currently the
only IaaS provider that publicly offers an auction-like mechanism for selling
IaaS resources. Nevertheless, attempts for creating such mechanisms have al-
ready been reported by other companies [3] and have also received attention by
academia [4–7].

AWS has revealed no detailed information regarding their auction mecha-
nism and the calculation of the spot price. At present, the design of an efficient,
fair, and profit-maximizing auction mechanism for pricing cloud computing re-
sources is an open research challenge, and of great interest to cloud providers.

In this chapter, we design such an auction mechanism aimed at generating
additional profit from the spare capacity of non-storable resources available in
cloud data centers. We refer to the marketplace in which this mechanism is
used to sell VMs as the cloud spot market (Fig. 1).

The spare capacity that can be offered by an IaaS cloud provider in the
spot market is usually much larger than the demand2. Therefore a provider is
potentially able to accept all consumer requests. In this context, popular auction
mechanisms such as the second-price Vickrey [10] auction may fail to generate a
reasonable revenue for the provider. In general, when supply exceeds demand,
bidders are less motivated to bid competitively, which can prevent providers to
collect an optimal revenue. Providers therefore require an auction mechanism
that can maximize revenue while incentivizing bidders to reveal their true value.

2This can be explained by the promise of Clouds providing infinite capacity of resources [8]
and recent reports that suggest the overall utilization in large data centers is lower than 30%
most of the time [9].

2

Capacity = C

Cloud Provider

Spot Market

(ri , bi)

n bidders

Figure 1: Spot market and auction mechanism

Hence, we restrict our focus to truthful auction designs. An auction mechanism
is truthful if for each bidder i and any choice of order values by all other bidders,
bidder i’s dominant strategy is to report her private information with respect
to her order truthfully. A strategy is dominant if a bidder cannot increase the
pay-off derived from participating in the mechanism, by diverging from it.

If perfect knowledge about the distribution from which the bidders valuations
are drawn is available, such a truthful auction mechanism can be designed [4].
Unfortunately, this is not always the case and pricing depends heavily on the
accuracy of the underlying market analysis. Such analysis also needs to be
updated frequently in order to adapt to changes in the market. Moreover, since
customers of cloud services are distributed globally and experience different
latency for the same service, assuming that the valuations for all bidders are
drawn i.i.d. might be invalid.

This chapter focuses on designing a truthful auction mechanism for a cloud
spot market aimed at maximizing the cloud provider’s profit. The cloud spot
market context influences our auction design in the sense that the design needs
to: support multi-unit bids, operate in an online recurrent manner, result in a
single market-wide price and fair outcomes, operate under a limitation of the
maximal quantity a consumer can request, operate without prior knowledge on
the distribution of bidders’ valuations, and finally, allow for reserve prices to be
set during oversupply conditions. The chapter’s key contributions are:

• The design and application of a multi-unit, online recurrent auction mech-
anism within the context of IaaS resource trading. The mechanism extends
the off-line single-round auction with a single-unit demand model of the
consensus revenue estimate (CORE) mechanism proposed by Goldberg
and Hartline [11], to a two-dimensional bid domain. The proposed auc-
tion mechanism is envy-free, truthful with high probability and generates
near optimal profit for the provider. It adopts a greedy approach for max-
imizing provider profits in the online setting. It is initially designed for
the unlimited supply case, and is subsequently extended to the limited
supply case.

• The evaluation of the proposed mechanism with respect to revenue genera-
tion, truthfulness, and bid rejection rates. Extensive simulation results are
presented that demonstrate that it achieves near optimality w.r.t. maxi-

3

mizing revenue without requiring prior knowledge on the order distribu-
tions. It is also shown to achieve low bid rejection rates, mitigating the
bidder drop problem in online mechanisms [1]. We compare the proposed
mechanism to a clairvoyant and non-clairvoyant variant of the Optimal
Single Price Auction and to the Uniform Price Auction.

• A clairvoyant optimal auction mechanism (HTA-OPT) that uses dynamic
programming to calculate the set of accepted bids. HTA-OPT serves as a
benchmark that is used to quantify the efficiency loss caused by the lack
of information on the amount of time a bidder wants to run a VM, when
applying the allocation rule in a single auction round.

• The presentation of a method for dynamically computing a reserve price,
based on a coarse grained data center power usage model that can be used
by the provider within the proposed auction mechanism. The resulting
prices are shown to correspond to actual minimal spot prices observed on
the EC2 spot market.

The remainder of this chapter is organized as follows: After reviewing related
work in Section 2, we introduce required terminology and notations in Section 3.
Sections 4, 5 and 6 discuss respectively the competitiveness, truthfulness and
envy-freeness properties for our auction design. Section 7 describes the pro-
posed auction mechanism, while Section 8 focuses on the limited supply setting
and the computation of the reserve price in that setting. Section 9 describes
the online version of the proposed auction mechanism and mechanisms used in
the comparative analysis. Our experimental evaluation of the mechanism can
be found in Section 10. We compare its performance to the Optimal Single
Price Auction and the Uniform Price Auction, and investigate the impact of
perfect knowledge on the execution time of a VM. We also provide simulation
results concerning the probability that any bidder can benefit from an untruth-
ful reporting of the number of VM instances required. Our conclusions follow
in Section 11.

2 Related Work

The use of an auction-like mechanism to sell spare capacity in cloud data centers
was pioneered in late 2009 by Amazon. In Amazon’s spot market, customers bid
the maximum hourly price they are willing to pay to obtain a VM instance3. All
instances incur a uniform charge, the spot market price. According to Amazon,
this price is set dynamically based on the relationship of supply and demand
over time. A unique feature of spot instances is that the provider has the right
to terminate them when their associated bid falls below the spot market price.
As a result, the resulting quality of service (QoS) may be lower compared to
on-demand and reserved instances, depending on the bid made. Current spot

3http://aws.amazon.com/ec2/spot-instances/

4

market data shows customers can acquire VMs at price reductions between 50%
to 93% compared to on-demand instances.

Amazon has revealed little information on the pricing and allocation rules
of their pricing mechanism. Ben-Yehuda et al. [5] examined the price history of
the EC2 spot market through a reverse engineering process, and found that the
mechanism was not completely driven by demand and supply. Their analysis
suggests that spot prices are usually drawn from a tight, fixed price interval,
and reflect a random non-disclosed reserve price. In this chapter, we propose an
auction mechanism with transparent allocation and pricing rules, while sharing
similar properties with the EC2 spot market.

Several authors have presented strategies for customers to utilize Amazon
spot instances (cost-)effectively [12–16]. However, as of yet a limited amount
of work has been conducted that focuses on the design of auction mechanisms
to the benefit of cloud providers, and the associated algorithms for allocating
resources and capacity planning to maximize the provider’s revenue. The prob-
lem of dynamically allocating resources to different spot markets in order to
maximize a cloud provider’s revenue has been investigated by Zhang et al. [7].
Danak and Manno [6] present a uniform-price auction for resource allocation
that suits the dynamic nature of grid systems. Mihailescu and Teo [17] inves-
tigate Amazon EC2’s spot market as a case in a federated cloud environment.
They argue that spot pricing used by Amazon is truthful only in a market with
a single provider, and show that rational users can increase their utility by being
untruthful in a federated cloud environment. Recently, Zaman et al. have in-
vestigated the applicability of combinatorial auction mechanisms for allocation
and pricing of VM instances in cloud computing [18].

Wang et al. [4] proposed an optimal recurrent auction for a spot market
based on the seminal work of Myerson [19]. The mechanism was designed in the
context of optimally segmenting the provider’s data center capacity between on-
demand and spot market requests. Their work differs from ours since they adopt
a Bayesian approach wherein it is assumed that the customers’ private values
are drawn from a known distribution. They also propose a truthful dynamic
auction [20] that periodically computes the number of instances to be auctioned
off in order to maximize providers revenue. Unlike EC2 spot marketplace, their
approach offers guaranteed services (i.e., instances are never be terminated by
the provider) and constant price over time (i.e. as the price is set for the
user, it remains constant as long as the user holds the instance). Their auction
charges each user a different price and does not generate a market-wide single
price. Moreover, their auction mechanism requires a priori known distribution
of valuations and near future demand prediction.

In contrast, we propose an auction mechanism designed to maximize profit
based on a competitive auctioning framework proposed by Goldberg and Hart-
line [21]. The mechanism computes a uniform price outcome, and focuses on
maximizing profit when the seller knows very little about the bidders valua-
tions. In order to achieve truthfulness in this context, we rely on a consensus
estimation technique [11].

Our work differs from that of Goldberg et al., in several aspects. First,

5

their analysis relies on the assumption that each customer is restricted to for-
mulate unit demand, which is not the case for cloud consumers as they can ask
and bid for multiple VM instances. Consequently, we revisit the definition and
truthfulness analysis of the mechanism for the multi-unit case. Second, their
auction mechanism is designed for off-line single-round scenarios. The context of
a cloud spot market however requires an online auction where customers arrive
over time and resources allocated by VM instances can be released and subse-
quently reused by other consumers. We adopt a greedy approach in realizing
the online character of the auction, and investigate its performance compared to
a clairvoyant optimal mechanism that relies on dynamic programming. Finally,
the production cost of goods is not taken into account in their work. In the IaaS
setting, taking this cost into account is important as a seller has the option to
either shut down server capacity or sell the capacity at a given reserve price.
We add such reserve pricing to the mechanism and introduce a coarse-grained
cost model to determine that.

Lee and Szymanski [1] have proposed an auction mechanism for time sensi-
tive e-services where services must be resold for future time periods repeatedly.
They investigated the bidder drop problem in recurrent auctions that occurs
when the least wealthy bidders tend to withdraw from the future auction rounds
due to repeatedly losing the auction. Our proposed auction is not specifically
designed to address this issue, however our evaluation shows that it rejects a
lower number of requests compared to the Optimal Single Price auction while
generating near optimal revenue.

3 Preliminaries and Notation

Consider a cloud provider with capacity C for a specific type of VM. That is, at a
given time t up to C instances of the specific type can be hosted simultaneously.
The provider runs a sealed-bid auction, A, to sell this capacity. First, we assume
the case that the provider’s capacity far exceeds the total demand, in line with
the cloud’s promise of delivering an unlimited supply of resources. Subsequently,
we generalize the results to a scenario in which supply is limited and lower than
total demand.

Suppose there are n customers joining the auction at time t. Each bidder i
(1 ≤ i ≤ n) requires qi VM instances and has a private valuation vi, denoting
the maximum amount i is willing to pay for each VM instance per time slot
(e.g., 1 hour). Customers submit an order (request), (ri, bi), where ri represents
the number of required VM instances and bi the bid price. We denote by d
the vector of all submitted orders. The ith element of d, di, is the order by
customer i.

Given d, the provider (auctioneer) computes an allocation vector, x =
(x1, x2, ..., xn), and a price vector, p = (p1, p2, ..., pn). The ith component xi of
the allocation vector indicates whether bidder i receives the ri VMs requested
in its order (if xi = 1) or not (xi = 0). A bidder for which xi = 1 is called a
winner and pays the corresponding price pi, otherwise, the bidder is called a

6

loser and does not make any payment to the mechanism. As we focus on single
price auctions, all pi are equal for all winning bidders and we therefore refer to
the sale price as p. Partial fulfillment of requests, in which only a fraction of
the number of VM instances requested is allocated to a winning bidder, is only
considered in the case of limited supply and when bi = p. We allow for partial
fulfillment for those orders in line with the behavior of the EC2 spot market.

Note that bidders are individually rational users that try to maximize their
utility. Therefore, as long as it is deemed beneficial, a customer will strategically
misreport her bid or the required number of VMs i.e., bi 6= vi or ri 6= qi, where
vi and qi are private information known only to customer i. We define customer
i’s utility at time t for one time slot of VM usage as follows:

ui(ri, bi) =

{
(qivi − ripi)xi , if bi ≥ pi and ri ≥ qi;
0 , otherwise.

(1)

The values of ri and vi for each customer are drawn from distributions that
are unknown to the provider. Customer i’s optimal bidding strategy must be
defined so that it maximizes i’s utility over all time slots. However, assuming
that customers are not aware of the future and have no time-dependent valu-
ation for resources, we define the utility function in (1) based on a single time
slot. Winners in an auction round are awarded their requested VM instances
and automatically attend the next round of the auction until they cancel their
requests on their own account or they lose the auction. In the latter case, VMs
held by an outbid customer are terminated by the provider without any prior
notice.

The holding time of a VM is the specific amount of time a customer wants to
run the VM. The VM’s actual holding time might be smaller than the expected
time if it is terminated by the provider instead of the owner. The holding time
of a VM by the customer is not known to the provider (or to the mechanism)
in advance. Therefore, in our model, a provider acts in a greedy manner to
maximize revenue according to the arriving requests and the current existing
requests in each round of auction. This can be modeled as a single round auction
which is recurrently conducted by the provider as new requests arrive or current
requests are terminated. In section 10.4, we compare the performance of this
greedy strategy to the optimal strategy that has prior knowledge on the VM
holding time. From this point onwards, we limit our discussion only to a single
round of the auction. In Section 9, we introduce the recurrent version of the
mechanism.

4 Competitive Framework

The revenue generated by auction A in a time slot equals:

A(d) =
∑
i

ripi . (2)

7

The problem of maximizing revenue in an auction for cloud resources can
be solved optimally if the seller knows the distribution from which the bidders’
valuations are drawn i.i.d. [4]. In conventional economics this is called Bayesian
Optimal Mechanism Design [19,22]. However, we assume that the distributions
from which the bidder’s private information are drawn are unknown to the
provider. Therefore, we base our approach on the competitive mechanism design
proposed by Goldberg et al. [21]. We will compare the revenue attained by
our mechanism to that of the Optimal Single Price auction for the unlimited
capacity case.

Definition 1. The Optimal Single Price auction, F , is defined as follows: Let
d be an order vector. Without loss of generality, suppose the components of d
are sorted in descending order by bid values. So, (ri, bi) is the ith largest bid
in d regardless of ri. The auction F on input d determines the value k such
that bk

∑k
i=1 ri is maximized. We denote by σk(d) the sum of the number of

requested instances in the sorted vector of orders from the first order to kth
order (σk(d) =

∑k
i=1 ri). All bidders with bi ≥ bk win at price bk and all

remaining bidders lose. Thus, the revenue of F on input d is

F(d) = max
i

biσi(d) . (3)

If more than one value of i maximizes biσi(d), choosing the price point that
results in a lower transacted volume is preferable considering the cost of ac-
commodating VM instances (e.g., electricity cost). From this point forward, we
assume d is sorted decreasingly by bids values (bi), unless otherwise mentioned.

We are interested in an auction mechanism that is competitive with F on
every possible input; however, if a single bidder’s utility dominates the total
utility of the other bidders, no auction can compete with F as shown by Gold-
berg et al. [21]. We do not consider this to be an issue in our setting, because
the cloud environment can be viewed as a mass-market where the number of
winners of the optimal single price auction is typically large. In a mass-market,
removing one order does consequently not change the maximum extractable
profit significantly.

Definition 2. (Mass-market): Let F(d) be the revenue of F and hb(d) denote
the maximum value of b in d, then F(d) � hb(d) in mass-markets, which
implies that F sells m� 1 units.

We say that auction A is competitive if there exists a constant β such that
A(d) ≥ F(d)/β. For a randomized mechanism4, the previous equation for
competitiveness becomes:

E[A(d)] ≥ F(d)

β
.

Assuming the fact that F sells at leastm units, we define β(m)-competitiveness
for a mass-market as below:

4The mechanism’s allocation and/or pricing rule procedure has a randomized component.

8

Definition 3. Auction A is β(m)-competitive for a mass-market if for all order
vectors d such that F sells at least m units, we have:

E[A(d)] ≥ F(d)

β(m)
. (4)

5 Truthfulness

Let d−i denote the vector of orders d with (ri, bi) removed that is:

d−i = ((r1, b1), ... , (ri−1, bi−1), (ri+1, bi+1), ... , (rn, bn)) ,

and further introduce the notation F((ri, bi) ,d−i) = F(d).

Proposition 1. F is not truthful.

Proof. Suppose F is truthful, then utility for each bidder i is maximized if
bi = vi and ri = qi for any choice of d−i.

Consider d as any arbitrary vector of orders, assume F(d) is the maximum
revenue by F and bk is the sale price. Suppose F2(d) is the second largest
revenue which can be obtained by F and we limit d to those vectors such that
F(d) > F2(d). Given a fixed d−k, rk, qk, bidder k is able to reduce her bid
from bk to b′k and still be the winner as long as F((rk, b

′
k) ,d−k) > F2(d). As a

result, fixing other variables and considering that bidder k is a winner (xk = 1),
bidder k is able to increase her utility from qkvk− rkbk to qkvk− rkb′k. So there
exists a d−i and a bidder i such that ui can be increased by misreporting i’s
true value, i.e., bi 6= vi. This contradicts the supposition that F is truthful. A
similar proof can be constructed for the number of requested instances, which
we omit here for space considerations.

In order to create a truthful auction, an intuitive idea is to design the mech-
anism in a way that a bidder believes that her own order does not affect the
price she pays. This is called an order-independent auction since the price the
bidder is offered in the auction is independent of the bidder’s bid value [21]. An
order-independent auction can be viewed as a function that maps d−i to a price
for each bidder.

Definition 4. The order-independent auction offers a price pi to bidder i com-
puted by the function f according to the order vector d−i, i.e., pi = f(d−i).
If bidder i’s bid is greater or equal to pi (bi ≥ pi), the bidder wins the auc-
tion (xi = 1) and pays pi; otherwise the bidder loses the auction (xi = 0) and
pays zero.

Lemma 1. The order-independent auction is truthful.

Proof. Following Definition 4, bidder i’s order does not affect the price she ends
up paying, so the bidder is not able to increase her utility by changing her order.
As a result, the bidder has no incentive to misreport her bid or quantity levels
as this does not change the amount she pays.

9

Following [21], we introduce the optimal order-independent auction. To de-
fine it, first we define the notion of the optimal single sale price for a set of
orders.

Definition 5. Let d be a sorted vector of orders by descending values of bids.
Denote opt(d) the optimal single sale price for d that maximizes the revenue
for the auctioneer, i.e.,

opt(d) = argmax
bi

biσi(d) . (5)

Now we can define the optimal order-independent auction, which is a truthful
auction, as follows:

Definition 6. The optimal order-independent auction is defined by the order-
independent function f such that f(d−i) = opt(d−i) .

Unfortunately, even though the optimal order-independent auction is truth-
ful, it has two main characteristics that make it unsuitable for our purposes.
Firstly, it is not single price and secondly, a bidder j might lose the auction while
bidder i with bi < bj wins and is charged pi < bj . In this case the auction’s
outcome is not fair and the losing bidder envies the winning bidder’s outcome.
This might happen as the sale price for bidder i is computed based on d−i
which is different for each bidder. Proof of Lemma 2 provides examples of these
outcomes.

6 Envy-freeness

In an envy-free auction no bidder can increase its utility by adopting another
bidder’s outcome. For our case, an envy-free auction requires a single sale price.
All bidders willing to pay this price are provided with VM instances and charged
at that price uniformly.

In this work, it will be irrelevant how bids that equal the sale price are
treated, however, we assume that they are always provided with VM instances if
the provider’s capacity allows for it. Note that, according to the utility function
in Equation 1, the utility value (ui) is always zero for those bidders with true
bid values (vi) equal to p, irrespective of them winning or losing. Therefore,
those bidders are assumed to have no preference over the two possible outcomes.

Lemma 2. The optimal order-independent auction is not envy-free.

Proof. It suffices to construct an example showing that the optimal order-
independent auction is not single price. Consider three bidders with the fol-
lowing orders d1 = (1, $8), d2 = (2, $7), and d3 = (4, $2). In order to calculate
the sale price for each bidder i, first we obtain d−i by removing bidder i’s or-
der from d. Then opt(d−i) is computed according to (5). Performing the above
process for all bidders, we obtain the outcome for each bidder as follows. Bidder
one and two win the auction and pay $7 and $2 respectively, while bidder three

10

loses the auction and pays zero. This shows that optimal order-independent
auction is not single price.

In addition, the order-independent auction is not fair as there are situations
in which a bidder might lose the auction while another bidder with a lower
bid price wins the auction. Consider four bidders with orders d1 = (2, $13),
d2 = (5, $3), d3 = (1, $2) and d4 = (20, $1). Bidder one and three win the
auction and both pay bidder four’s bid price, i.e., $1 per instance, while bidder
two with a bid price higher than bidder three ($3 > $2) loses the auction.

Goldberg and Hartline [23] showed that no truthful, envy-free auction can be
constant competitive and they provided the lower bound of log(n)/log (log(n))
with n the number of bidders. In order to obtain a constant competitive auction
mechanism, we relax the assumption of truthfulness and extend the proposed
Consensus Revenue Estimate (CORE) auction [23] for our case. The proposed
auction is envy-free but is only truthful with high probability.

Definition 7. An auction is truthful with probability 1 − ε if the probability
that any bidder can benefit from an untruthful bid is at most ε. If ε is inverse
polynomial in some specified parameters of the auction (such as the number of
items or bidders) then we say the mechanism is truthful with high probability.

In the following section, we show that the proposed auction mechanism is
truthful with high probability with respect to the bid price dimension. We also
provide simulation results concerning the probability that any bidder can benefit
from an untruthful reporting of the number of VM instances required.

7 Extended Consensus Revenue Estimate Auc-
tion

Recall that the optimal order-independent auction in Section 5 is truthful since
it is order-independent. Due to the fact that it is not single price, and therefore
not envy-free, it is not suitable for our problem context. The question therefore
arises as to how a single price can be computed for an order-independent auction
while attaining the revenue of the optimal auction, that is, F(d). It is clear
that F(d) cannot be computed from d−i and consequently, a function f that
generates the optimal sale price based on d−i cannot be built. Therefore, we are
interested in a mechanism that provides us with a sufficiently accurate estimate
of F(d) that is constant on d−i for all i (i.e., it achieves consensus). If F(d−i)
is limited by a constant fraction of F(d), it is possible to pick a good estimate of
F(d) such that it achieves consensus with high probability [23]. In the remainder
of this section, we will outline how this estimate is computed.

In mass-markets such as clouds, F(d) is much larger than the highest bid.
Let hb(d) denote the maximum bid value in d, then F(d) ≥ αhb(d) in mass-
markets, which implies that F sells at least α units.

Let m (m ≥ α) be the number of sold units in F . If m is sufficiently large
and the maximum number of units that can be requested by a customer is

11

limited, removing an order does not change F(d) considerably. We show this
in Lemma 3.

Enforcing a restriction on the maximum number of VM instances that can
be simultaneously acquired by a customer is reasonable and done by public
cloud providers such as Amazon5. Such restriction reduces the chance of system
stability being threatened by very large unpredicted requests. In addition, it
reduces the risk of starvation for customers with small requests in the presence
of wealthy customers.

Lemma 3. Let r denote the supremum of the number of requested units in d,
i.e., ri ≤ r for all bidders, 1 ≤ i ≤ n. If m, the number of sold units in F , is
sufficiently large, then for any i,

m− r
m
F(d) ≤ F(d−i) ≤ F(d) . (6)

Proof. Without loss of generality, suppose d is sorted in descending order of
bids (bi), i.e., b1 ≥ b2 ≥ ... ≥ bn. Suppose k is the rank of the bidder in d whose
bid maximizes biσi(d), i.e., F(d) = bkσk(d). By removing order i from d, the
maximum reduction in F(d) is ribk (when i ≤ k), and the minimum reduction
is zero (when i > k). Therefore,

F(d)− ribk ≤ F(d−i) ≤ F(d) .

m =

k∑
j=1

rj ⇒ bk =
F(d)

m
,

ri ≤ r ⇒ ribk ≤ r
F(d)

m
⇒

m− r
m
F(d) ≤ F(d−i) ≤ F(d) .

We introduce ρ for m
m−r . In mass-markets, 1

ρF(d) ≤ F(d−i) ≤ F(d), mean-

ing that F(d−i) is at least a constant fraction of F(d).
The Extended Consensus Revenue Estimate Auction (Ex-CORE) combines

two general ideas as its name implies: consensus estimation and revenue extrac-
tion. For consensus estimation, it picks a function that estimates F(.) with high
quality and achieves consensus with high probability. A function that works well
in our case is g, defined as:

g(F(.)) = F(.) rounded down to the nearest cl+u

where c > ρ is a constant chosen as to maximize the quality of the estimation,
u is a uniform random value on [0, 1], and l is the largest integer so that cl+u ≤
F(.).

5http://aws.amazon.com/ec2/faqs/\#How_many_Spot_Instances_can_I_request

12

Lemma 4. [11] For c > ρ and any d with 1
ρF(d) ≤ F(d−i) ≤ F(d), the

probability that g outputs a value which is constant on all d−i (i.e., achieves
consensus) is 1− logc ρ.

Lemma 5. [11] If payoff for g, γg, is defined as:

γg(F(.)) =

{
g(F(.)) , if g achieves consensus;
0 , otherwise.

(7)

then for all F(.), we have:

E[γg(F(.))] =
F(.)

ln(c)

(
1

ρ
− 1

c

)
. (8)

Let us now discuss how to choose the value of c. We are interested in the
expected payoff to be large relative to F(.), i.e., E[γg(F(.))]/F(.) is large over
different values of F(.). For a fixed value of ρ, we can choose the value of c that

maximizes 1
ln(c)

(
1
ρ −

1
c

)
. This function is differentiable on c ∈ (1,∞) and it

has an absolute maximum on that interval. Therefore, by taking the derivative
of it w.r.t. c and setting it to zero, we have:

∂E[γg(F(.))]/F(.)

∂c
= 0⇒

ρ ln(c) + ρ− c
ρ c2 ln2(c)

= 0, ρ > 1, c > ρ⇒

ρ ln(c) + ρ− c = 0 (9)

Note that (9) does not have an exact solution and needs to be solved by
numerical methods.

The second component of Ex-CORE, a revenue extraction mechanism, ex-
tracts a target revenue from the set of bidders if this is possible. The algorithm
is based on the cost sharing mechanism proposed by Moulin and Shenkar [24].
Given an order vector d sorted in descending order of bids and a target rev-
enue R, the revenue extractor function eR(d) finds the largest k such that
R/σk(d) ≥ bk. In other words, it finds the k bidders with the highest bid values
that allow for the extraction of R. R is then shared among these k bidders
based on the number of requested instances by each bidder, that is, each of
these bidders are charged R/σk(d). If no subset of bidders can share R, the
auction has no winners.

Lemma 6. Given a target revenue R, the revenue extraction mechanism is
truthful for the price dimension but not for the quantity dimension.

Proof. Without loss of generality, we consider d as sorted. The revenue extrac-
tion mechanism is truthful if ui(qi, vi) ≥ ui(ri, bi) for all values of bi and ri and
for every bidder i, 1 ≤ i ≤ n. First, we show that given a fixed ri any untruthful
submission of the bid price, i.e., bi 6= vi decreases bidder’s i utility. It suffices
to consider the following two cases:

13

Bid price

Quantity

p
bi

vi

Quantity

p’

Bid price

(a) Reporting bi < vi increases the price to p′ > vi.

Bid price

vi

s

Bid price

Quantity

s’

Quantity

s’

bi p

p’

s’’

(b) Reporting bi > vi decreases the price to p′ > vi.

Figure 2: Effect of misreporting true value on the sale price. Truthful submission
leads to (a) winning and (b) losing.

Case 1 : Suppose the truthful submission (vi = bi) leads to bidder i winning
the auction, it is easy to verify that reporting bi > vi only decreases the rank
of bidder i in d, assuming d remains unchanged except for bidder i. Therefore,
it does not change the sale price and as a result, bidder i’s utility also remains
unchanged.

If bidder i reports bi < vi, as long as bi ≥ p (p is the sale price), p remains
unchanged. Hence, bidder i’s utility does not increase or decrease. However, as
soon as bi < p, bidder i loses the auction, the sale price rises, and the bidder’s
utility drops to zero. This is illustrated in Fig. 2(a). Consequently, submitting
bi < vi might not improve bidder i’s utility and might reduce it to zero.

Case 2 : Suppose the truthful submission (vi = bi) leads to the bidder losing
the auction, then reporting bi < vi would clearly not change the zero utility of
the bidder.

If reporting bi = vi leads to bidder i losing the auction, it follows that p > vi.
Assume p = R/s, where s is the sum of the number of requested units by largest
group of k bidders with highest bid values that can at least generate a revenue
of R. Consider s′ = σi(d), as a result s′ > s, since we know bi is a losing bid.

Suppose bidder i reports her bid bi > vi, we argue that new sale price p′ is
always larger than vi (p′ > vi). That is, increasing bi might increase s up to s′

at most. This is shown in Fig. 2(b).
Using reductio ad absurdum, assume by increasing bi, s can be increased to

a value s′′ > s′. Hence, we know that there is a bidder j whose bid price, bj ,
is larger than R/s′′ (R/s′′ ≤ bj). We know that i < j and bj ≤ vi, because
s′′ > s′ requires j to be placed after i in the sorted vector. If R ≤ s′′bj after

14

increasing bi, then R ≤ s′′bj before increasing as well, because bidder i is placed
in the lower rank either bidding at bi = vi or bi > vi in the sorted vector of
orders. That is, bidder i is a winner in either of cases. This contradicts our
initial assumption that reporting bi = vi leads to bidder i losing the auction.
So, s′′ ≤ s′ ⇒ p′ > vi.

Hence, bidding bi > vi leads to negative utility for bidder i and bidder i
would be worse off.

Second, we provide an example that demonstrates that the revenue extrac-
tion mechanism is not truthful for the quantity dimension. That is, bidders are
able to increase their utility by misreporting their required number of instances.
Assume R = $7 and an order vector d = {(1, $8), (5, $1)}. Bidder one is charged
7/1 = 7 and bidder two loses according to the revenue extraction mechanism.
The utility for bidder one is then computed as follows: 1× 8− 1× 7 = 1. Now,
consider that bidder one misreports 2 as the required number of instances. Then,
the largest group of bidders able to share R includes the orders of both bidders.
Therefore the price for bidder one is 7/7 = 1 and its utility is computed as:
1× 8− 2× 1 = 6.

Definition 8. Extended Consensus Revenue Estimate Auction (Ex-CORE): For
constant c, and a random value u, uniformly chosen from [0, 1], find g(.) as F(.)
rounded down to nearest cl+u for integer l. The sale price by Ex-CORE is then
defined as p = eR(d) where R = g(F(d)).

Lemma 7. For order vector d, constant c and a choice of u, if g(F(d−i)) = R
for all i, 1 ≤ i ≤ n, i.e., it is a consensus, then the Ex-CORE auction is truthful
with respect to bid prices.

Proof. It suffices to show that if g(F(d−i)) = R for all i, no bidder can increase
her utility by bidding any value other than their true bid value. Note that If
g(F(d−i)) = R for all i then g(F(d)) = R. Now consider that bidder i submits
an order (ri, bi) where bi 6= vi resulting in d′ (d′ is identical to d except for
bidder i’s bid price).

As long as g(F(d′)) = g(F(d)) = R, bidder i is not able to benefit out of
misreporting. Because the sale price p is computed as p = eR(d), and according
to Lemma 6, the revenue extraction mechanism is truthful. Therefore, bidder
i’s utility cannot be improved by misreporting vi; thus bidder i’s best strategy
is to bid at vi.

The proof is in fact very straightforward. For every user i, since F(d−i) =
F(d), changing bid bi to b′i will lead to a new order vector d′ the same as the
original d except component i. As a result, d′−i = d−i. Hence g(F(d′−i)) =
g(F(d−i)) = g(F(d)) = R. This essentially implies that user i will be given ex-
actly the same price as before. Consequently, the sale price cannot be decreased
and bidder i’s utility cannot be increased.

15

Proposition 2. The Extended Consensus Revenue Estimate Auction (Ex-
CORE) is envy-free, truthful with probability 1 − logc ρ for the bid price di-

mension, and 1
ln(c)

(
1
ρ −

1
c

)
-competitive for mass markets.

Proof. Definition 8 and Lemmas 4, 5 and 7 are enough to prove the proposition.

7.1 Discussion

The Ex-CORE auction is not two-dimensionally truthful because the revenue
extraction mechanism is not truthful for the quantity dimension (Lemma 6).
In the cloud spot market however, no customer has an incentive to request
fewer instances than needed (as ui(ri, bi) = 0 whenever ri < qi). Our detailed
investigation of the proposed mechanism shows that bidders are able to increase
their utility in some cases by requesting a higher number of instances than
what they actually require. Devising a two-dimensional truthful mechanism for
this highly complex strategy space remains as a future work. Nevertheless, we
believe that the proposed mechanism retains its practical value due to several
key reasons.

First, users who misreport the required number of instances end up paying
for a higher number of instances. In order to increase utility, the increment in
ri must cause a sufficient reduction in the market price to compensate for the
surplus cost a bidder pays for the additional instances. Considering that the
bidder is not aware of the other orders, there is always a risk of decrease in
utility by misreporting.

Second, F(d) is monotonically increasing w.r.t ri (the rationale is intuitive)
and Ex-CORE calculates the sale price based on the estimation of F(d). Given
that r (the maximum number of requested instances) is a constant and m→∞
in a cloud mass-market, in expectation R (the estimated value of F(d)) rises as
the bidder increases demand. The revenue extraction mechanism computes the
price by R/σk(d). Therefore the risk of increasing the market price increases by
misreporting the number of required instances, as the numerator of the fraction
(R) is increasing while there is no certainty about the decrease or increase in
the denominator (σk(d)).

Last but not the least, r is constrained by a limit. As the number of sold
instances in the cloud market is usually high, the effect on the market price
of a bidder misreporting demand is typically low given the assumption of non-
collusive behavior of bidders.

In Section 10, we demonstrate through simulation that in markets of suf-
ficient size, an individual bidder indeed has a very low probability of gaining
utility by misreporting VM demand.

16

C(t)

γ(t)

Bid price

Quantity

Figure 3: Supply limited by capacity and reserve price at time t

8 Limited Supply and Reserve Price

Up to this point, we have considered an unlimited capacity setting. In reality,
however, situations arise wherein a cloud provider needs to reject requests due
to lack of supply. We modify the auction mechanisms to take into account that
C(t), the number of VM instances available for sale at time t, can be lower than
the demand.

As the provider wishes to maximize revenue, it can select a set of high-value
bidders such that the total amount of requested VMs by this set is smaller
or equal to C(t). This set of bidders subsequently participates in the auction
mechanism for the unlimited supply case, while the remaining bids are rejected.
Fig. 3 depicts how supply is limited by C(t). This method allows us to extend
our discussion into the bounded supply case. In order to be envy-free in the
bounded supply case, we need to ensure that none of the bidders win at a price
lower than the highest losing bid. Therefore, we ensure that p = max(blost, p),
with blost the highest losing bid.

If a bidder accepts partial fulfillment of an order, the fraction of required
instances that fits in the provider’s available capacity can be allocated. When
multiple winning consumers are subject to such partial delivery, ties can be
broken randomly.

8.1 Reserve Price

If profit instead of revenue is of concern, the provider needs to take its costs
for delivering a VM instance into account. Let γ(t), the reserve price at time
t, be the lowest possible price that the provider accepts for one slot of usage of
a VM instance, at time t; orders with bids below this level are ignored by the
auction. In this section, we propose a method for a provider to compute γ(t).
Fig. 3 depicts how the order vector is shaped by γ(t).

The reserve price for most perishable goods and services is considerably low

17

at their expiration time. For instance, the reserve price for flight seats is theo-
retically negligible; as soon as boarding is closed on a particular flight, all the
unsold seats on that flight are completely wasted. Thus, selling a remaining
seat at a reasonable low price is often a better option compared to wasting the
seat capacity without generating any revenue. However, there is a fundamen-
tal difference between cloud resources and other perishable goods and services.
A significant part of the service cost in cloud data centers is related to power
consumption of physical servers. The cost of power drawn by servers and asso-
ciated cooling systems is comparable to the amortized capital investments for
purchasing the servers themselves [25]. Thus, when considering the perishable
nature of VM services, taking into account the marginal cost of instantiating a
VM is important in this case6.

The overall cost of the data center, Coverall, can be divided into capital
and operational costs, Coverall = Ccap + Copr. The parameter Ccap includes
upfront investments and all one-time expenses that are depreciated over the
lifetime of the data center, e.g., those related to the purchase of land, buildings,
construction, buying physical servers and software, installing power delivery and
cooling infrastructures etc. Copr includes electricity costs, staff salaries and ISP
costs. Operational costs can further be categorized as being fixed or variable,
Copr = Coprfixed

+ Coprvar
. The parameter Coprfixed

includes costs that remain
identical no matter the data center is operating at full capacity or not, e.g., staff
salaries. However, components of Coprvar

may increase or decrease depending
on data center utilization, e.g., electricity costs.

The provider is not able to avoid the incurrence of Ccap and Coprfixed
,

whereas Coprvar
can be avoided to a large extent. Coprvar

over any specific
time period is dominated by the cost of power consumption, Cpwr, and can be
strongly approximated by it (Coprvar

≈ Cpwr).
Cloud providers are able to measure instant power consumption in the data

center. Knowing the power consumption and electricity prices, Cpwr can be
easily calculated. We argue that the cloud provider should define the reserve
price in a way that accommodating a VM with a specific bid must at least
generate sufficient revenue to offset the contribution of VM to Coprvar

. Assuming
all VMs are of the same type, γ(t) can therefore be derived as follows:

γ(t) = Cpwr/VMn(t), (10)

where VMn(t) is the number of running VMs in the data center at time t, and
Cpwr is the cost of power consumption at that time. Knowing the electricity
price, ϕ, and total data center power consumption, Powertotal, Cpwr can be
computed as Cpwr = Powertotal × ϕ. As γ(t) is primarily affected by factors
such as IT load, electricity price, data center outside air temperature and hu-
midity [26], it should vary dynamically.

Because we resort to simulation for the experimental performance evaluation
of our proposed solution, we require a model for Cpwr. Detailed modeling of data

6In economics, the marginal cost is the change in total cost that arises as a result of one
additional unit of production.

18

center power usage however is difficult because of the complexity and diversity
of the infrastructure [26]. Consequently, we propose abstract model based on
the concept of Power Usage Effectiveness (PUE).

8.2 Power Usage Efficiency Model

PUE is a measure of how efficiently a data center consumes its power. It is
computed as the ratio of total data center power consumption, Powertotal, to
IT load power, PowerIT , i.e., power consumed by servers, storage and network
equipment:

PUE = Powertotal/PowerIT . (11)

PUE measures the power overhead consumed in supporting the IT load. The
overhead is caused by cooling and humidification systems (e.g., chiller), power
distribution (e.g., PDU), power conditioning system (e.g., UPS), and lighting.
Ideally PUE = 1. Inefficient data centers have a PUE of 2.0 to 3.0, while PUE
scores lower than 1.14 are advertised by leading companies such as Facebook
and Google [27]. PUE reported in this way is usually an average value over a
specific period of time (e.g., one year), whereas instant PUE is not a constant
value. The efficiency of the data center varies over time by changes in the data
center conditions.

One of the most important conditions is the outside ambient temperature [28],
as the energy required to remove heat generated within the data center grows
with it [26]. To some degree, outside air humidity affects cooling power as well,
but we do not consider it in this work in order to limit model complexity.

A second important condition that changes over time and affects PUE is
the IT load. This follows from the fact that the efficiency of power conditioning
system and cooling equipments increases under higher load [29]. We represent
IT load by the percentage of ON physical servers in the data center (referred
to as data center utilization). We model PUE as function of load and outside
ambient temperature, i.e., PUE = f(load, temp). In order to simplify the model,
we assume that every server in the data center consumes its peak load power
if it is ON; and none otherwise. PowerIT , is therefore computed according to
(12).

PowerIT = NSrv−ON × PowerSrv, (12)

where NSrv−ON is the number of non-idle servers in the data center, and
Powersrv is the peak power consumption by servers. The contribution of net-
working equipment in (12) is not taken into account as it is small and its power
draw does not vary significantly with data center load [26].

In this study, we assume that the provider commits to provide the actual
amount of resources required by a VM, regardless of the actual resource usage
pattern of the applications it executes. Moreover, we assume the cloud provider
periodically packs the data center’s workload into a minimum number of servers,
powering off any inactive ones.

19

Algorithm 1 The Online Ex-CORE Auction

Input: d, pcur, poptprv . d is the list of orders, sorted in descending order of
bids, pcur is current market price, poptprv is the optimal single price in the
previous round.

Output: p . Sale Price
1: popt ← opt(d)
2: if popt = poptprv then
3: return pcur
4: end if
5: r ← the largest ri in d
6: m← argmax

σi(d)

biσi(d)

7: if m ≤ r then
8: return popt . single optimal price
9: else

10: ρ← m
m−r

11: Find c in ρ ln(c) + ρ− c = 0
12: u← rnd(0, 1) . chosen uniformly random on [0,1]
13: l← blogc(F(d))− uc
14: R← c(l+u)

15: j ← the largest k such that R
σk(d)

≥ bk
16: return R

σj(d)

17: end if

9 Auction Mechanisms and Benchmarks

In this section we review the different auction mechanisms that are included in
our experimental evaluation.

Optimal Single Price Auction (OPT): The extractable revenue in a
single-round, single-price auction is at most F(d) which can be achieved by
an optimal price choice. Since we are interested in maximizing the provider’s
revenue, we use the Optimal Single Price Auction (OPT) described in Definition
1 as a benchmark. In the online version of OPT, the auction is executed upon
every arrival of an order or termination of an instance.

Online Extended Consensus Revenue Estimate Auction (Online
Ex-CORE): Details of the Ex-CORE auction can be found in Section 7. Our
online version of Ex-CORE (outlined in Algorithm 1) records the optimal sale
price computed by OPT in the previous round, and updates the sale price using
the Ex-CORE algorithm. Only when the optimal sale price calculated in the
current round differs from the one in the previous round of the auction, a new
price is computed (lines 1-4). This prevents the market to be exposed to a high
number of price fluctuations due to randomness in the Ex-CORE algorithm.
Note that it does not violate a possibly existing consensus established in the
previous round of the Ex-CORE auction, as arriving or leaving orders have not
changed the optimal price.

Lines 5 and 6 compute r, the maximum number of requested units in the

20

order list, andm, the maximum number of units sold by OPT. As our mechanism
is designed to work for mass-market scenarios it requires m to be larger than r
(m � r). In the rare event when this condition would not hold, the algorithm
returns the price computed by OPT.

On line 10, ρ is computed, followed by the computation of the optimal value
for c, for which we use Newton-Raphson. Subsequently, c is used to generate
an estimation of F(.) that achieves the consensus with high probability (lines
12-14). Finally, the estimated value is converted to the market clearing price
through the revenue extraction mechanism.

Holding Time Aware Optimal Auction (HTA-OPT): Due to a lack
of prior knowledge on the holding time of VMs, the online version of the Ex-
CORE auction operates in a greedy manner, as it attempts to maximize revenue
given the newly arriving order and the existing orders at a given time. In order
to quantify the efficiency loss caused by this lack of information, we use HTA-
OPT as a benchmark algorithm that uses prior knowledge on VM holding times.
HTA-OPT takes into account the fact that an order with a long holding time
and a low bid can potentially generate more revenue than a short order with a
high bid.

Algorithm 2 calculates the optimal sale price using dynamic programming.
The price is computed based on the maximum possible revenue that can be
generated by current orders in the system and the corresponding remaining
time of these orders. The main reasoning is that if the algorithm sets the price
at a specific bid price, all orders with bid prices lower than that price are not
available for the next time slot. Assuming bidders are charged on an hourly
basis of VM usage, we express duration similarly in an hourly basis. Each
partial hour is considered as a full hour (e.g., 2.5 hours is considered as 3 hours
of usage).

Algorithm 2 has the following input arguments: the list of orders d, sorted in
descending order of bids, an order index i set to the number of orders in the first
call of the function, a time slot index t set to 1 for the first call, and a boolean
argument firstCall indicating that it is the first call to the function. Lines
5-15 initialize the revenue array rev such that each element in rev is set to the
revenue that can be generated in that time slot, provided that the price is set
to a corresponding bid price. Line 16 ends the recursion when the termination
conditions are reached.

In lines 24-29, the algorithm chooses the most profitable path given two
choices for dealing with order i at time t. This is done by recursively computing
the total revenue in case the market price is kept below the order’s bid at time
t (ans1), and computing the revenue in case the decision is made to let the
market price exceed the order’s bid at t (ans2).

The most profitable decision path is stored in the dp array with the ag-
gregated revenue for the checked paths. Finally, we find the highest possible
revenue within the first column of dp, and return the corresponding price. We
break ties by favoring the market price with the lowest transaction volume.

Uniform Price Auction: In the uniform price auction, the provider serves
the highest bidder first, allocating the requested number of instances. This is

21

followed by an allocation for the second highest bidder and so forth until supply
is exhausted or there are no more orders. All bidders are charged the lowest
winning bid.

10 Performance Evaluation

Our evaluation of the proposed auction framework includes three parts. In the
first, we simulate Ex-CORE in a single-round, unlimited supply setting using
several order distributions. In the second part, the impact of misreporting the
number of required instances on the utility obtained by an individual bidder
is explored. The last part evaluates the auction framework under bounded
supply. Auctions then occur recurrently by arriving and finishing orders, and
the marginal cost of VM production changes dynamically over time.

10.1 Order Generation

Due to the lack of real-world data on bidder valuations and order sizing, we
need to resort to a synthetic generation of orders. In line with [21], we adopt
the following four distributions for the generation of bids:

1. uniform (l, h): Bid prices are drawn from a uniform distribution bounded
by l and h.

2. normal (µ, σ): Bid prices are drawn from a normal distribution with
mean µ and standard deviation σ. Bids less than or equal to zero are
discarded and a new bid is drawn from the distribution. This causes the
normal distribution to be skewed as zero and negative bid values are not
permitted.

3. Zipf (h, θ): Bid prices are drawn from a Zipf distribution with param-
eters h as the highest bid price and parameter θ. This distribution is
a generalization of the Pareto principle that 80% of the total bid value
originates from 20% of the bidders.

4. bipolar (l, h): Bid prices are generated by randomly choosing either l
or h with equal probability.

For requested number of instances in each order, we consider three types of
distributions :

1. constant(ζ): The number of instances for all orders equal ζ ≤ r where r
is the supremum on the number of requested units.

2. uniform (l, h): The number of instances for an order is drawn from a
uniform distribution between l = 1 and h = r .

3. normal (µ, σ): The number of instances for an order is drawn from a
normal distribution as a discrete value with mean µ and standard deviation
σ. Values smaller than 1 or larger than r are discarded.

22

Algorithm 2 Holding Time-Aware Optimal Auction

Input: d, i, t, firstCall
Output: p . Sale Price

1: maxDuration← max
i

(duration(di)) . The duration function returns the

time remaining from the holding time of the orders in unit of hours.
2: dp[|d|][maxDuration]← {−1}
3: rev[|d|][maxDuration]← {0} . Create dp and rev arrays with |d| (size

of d) rows and maxDuration columns, and initialize all cells with −1 and
0 respectively.

4: function hta-opt(d, i, t, firstCall)
5: if firstCall then
6: for j ← 1 to maxDuration do
7: prvCount← 0
8: for k ← 1 to |d| do
9: if j ≤ duration(dk) then

10: rev[k][j] = dk × (rk + prvCount)
11: prvCount← prvCount+ rk
12: end if
13: end for
14: end for
15: end if
16: if i = 0 or t > duration(di) then
17: return 0;
18: end if
19: if dp[i][t] = −1 then
20: ans1← 0, ans2← 0
21: if t ≤ duration(di) then
22: ans1← hta-opt(d, i, t+ 1, false) + rev[i][t]
23: end if
24: if i ≥ 1 then
25: ans2← hta-opt(d, i− 1, t, false)
26: end if
27: if ans1 > ans2 then dp[i][t]← ans1
28: else dp[i][t]← ans2
29: end if
30: end if
31: if firstCall then
32: k ← argmax

i
(dp[i][0]) . In case of ties, pick lowest i, i.e., higher

price and selling less instances
33: return bk
34: end if
35: return dp[i][t]
36: end function

23

10.2 Single Round Evaluation

10000010000100010010

1.0

0.8

0.6

0.4

10000010000100010010

1.0

0.8

0.6

0.4

bipolar (1, 60)

Number of Orders

R
/F

normal (30, 30)

uniform (1, 60) zipf (50, 0.5)

constant (50)

normal (12.5, 12.5)

normal (25, 12.5)

uniform (1, 50)

Quantity distribution

r = 50

Panel variable: Bid distribution

Figure 4: Ratio of gained revenue by the Ex-CORE auction to optimal auction
under different distribution of orders.

We investigate the generated revenue for different combinations of distribu-
tions for the bid price and the number of requested units per order. The number
of orders varies between 10 and 100000 and the ratio of generated revenue by
Ex-CORE (R) to F is reported (R/F). Each experiment is carried out 30 times
and the mean value of R/F is reported. Fig. 4 shows the simulation results
when r = 50. As the number of orders increases, R/F approaches 1 regardless
of the distribution used for order generation as we expected. Although there
is a small difference between the revenue obtained by Ex-CORE for different
distributions as shown in Fig. 4, the distribution of orders does not have a sig-
nificant effect on the generated revenue, especially when the number of orders
in the market is large. Fig. 5 shows separate box plots of R/F for different
order distributions when the number of orders equals 100. Statistical analy-
sis certifies that the performance does not change significantly under different
order distributions. By design, Ex-CORE does not require a priori knowledge
about the order distribution. Therefore, the provider does not need to rely on
frequent investigation and monitoring of changes in the market conditions in
order to maximize its revenue.

A sensitivity analysis with respect to r showed that its value does signifi-
cantly impact the results, as long as r is sufficiently small compared to the total
demand volume, and the total supply volume in the market is sufficiently large.
This can be easily justified by Lemma 3. For brevity, we omit a discussion on

24

uniform (1, 50)

normal (2
5, 12.5)

normal (1
2.5, 12.5)

constant (5
0)

zipf (5
0, 0.5)

uniform (1, 60)

normal (3
0, 30)

bipolar (1
, 60)

zipf (5
0, 0.5)

uniform (1, 60)

normal (3
0, 30)

bipolar (1
, 60)

zipf (5
0, 0.5)

uniform (1, 60)

normal (3
0, 30)

bipolar (1
, 60)

zipf (5
0, 0.5)

uniform (1, 60)

normal (3
0, 30)

bipolar (1
, 60)

1.0

0.9

0.8

0.7

0.6

R
/F

Number of Orders = 100, r = 50

constant (50) normal (12.5, 12.5) normal(25, 12.5) uniform (1, 50)

Figure 5: Ratio of gained revenue by the Ex-CORE auction to optimal auction
under different distribution of orders when number of orders is 100.

these experiments.

10.3 Evaluation of Misreporting Quantity

As the Ex-CORE mechanism is not two-dimensionally truthful, we investigate
the potential for a bidder to gain utility by misreporting the number of required
units in her order. First, we generate list of orders with the same settings used
for experiment 1 and assume each generated order to be truthful. The utility
obtained by every bidder is subsequently calculated according to (1).

Assuming there is no collusion among bidders, we increase the requested
number of instances (ri) for an individual bidder i up to the maximum number
of instances that can be requested (r) by the step size of one, while keeping
the orders of the other bidders unchanged. For every stepwise increase, we
calculate the bidder’s utility and compare it with the utility attained under
a truthful report. We then compute the probability of a bidder increasing its
utility through a misreport of quantity, by dividing the number of cases in which
utility increased to the total number of steps.

The experiment is repeated for every bidder with the same random number
seed for each step and is subsequently carried out 30 times with different seeds.
Fig. 6 shows the mean and box plot of the mean probability of increase in the
utility by misreporting the quantity after 30 runs under different order distri-
butions. The constant distribution of the requested units is removed from the
set of quantity distributions, as there is no opportunity to change ri. As one
can observe in the figure, the probability of gaining utility through misreports
converges to zero as the market size grows under all order distributions. More-
over, there is no predictable pattern for the user to increase the utility value
due to the implicit random component of Ex-CORE and the lack of knowledge
about other bidders. Fig. 7 shows the maximum increase of the utility value
among all bidders, achieved through misreporting quantity. As can be seen in
the figure, the maximum possible gain in the utility value for all bidders through
misreporting number of instances converges to zero as the market size grows.

10.4 Online Auction Framework Evaluation

We evaluate the profit of the online Ex-CORE auction through simulation. We
consider the case where capacity (C) is bounded fixed throughout the simulation

25

100000

10000

1000
100

10

0.4

0.2

0.0

0.4

0.2

0.0

0.4

0.2

0.0

100000

10000

1000
10010

0.4

0.2

0.0

100000

10000

1000
10010

bipolar (1, 60), normal (12.5, 12.5)

Number of Orders

M
e

a
n

 P
ro

b
a

b
il

it
y

 o
f

In
cr

e
a

se
 i

n
 t

h
e

 U
ti

li
ty

 V
a

lu
e

bipolar (1, 60), normal (25, 12.5) bipolar (1, 60), uniform (1, 50)

normal (30, 30), normal (12.5, 12.5) normal (30, 30), normal (25, 12.5) normal (30, 30), uniform (1, 50)

uniform (1, 60), normal (12.5, 12.5) uniform (1, 60), normal (25, 12.5) uniform (1, 60), uniform (1, 50)

zipf (50, 0.5), normal (12.5, 12.5) zipf (50, 0.5), normal (25, 12.5) zipf (50, 0.5), uniform (1, 50)

Panel variables: Bid Distribution, Quantity Distribution

Figure 6: Mean probability of increase in the utility value for bidders by Ex-
CORE under different distribution of orders when r = 50. A blue circle denotes
the mean value.

at C = 8 × 104. In real-world scenarios, a provider may offer several pricing
plans (e.g., on-demand, reserved pricing plans) or different types of VMs (e.g.,
small, medium, large). Under such circumstances, the capacity allocated for a
specific VM type in the auction market can be dynamically adjusted in order
to maximize profit [4, 7]. We consider the auction operates for just one type of
VM. Similar auctions can be run separately for the provider’s VM types.

We simulate the market for 24 hours. Customers submit their orders inde-
pendently following a Poisson process with λ set at the total number of requests
in the whole simulation divided by 24. As the distribution of the bid prices and
the quantity of requested units do not significantly impact the revenue results,
we use uniform distributions for both.

Bid prices in dollars are drawn from a uniform distribution on [0, 0.06]. The
maximum bid price is derived from the Amazon EC2 price of on-demand small
instances in the US east region7. Considering the lower QoS for VMs in the
spot market and the truthfulness properties of the mechanism, bidding higher

7http://aws.amazon.com/ec2/pricing/

26

2

1

0

10000010000100010010 10000010000100010010

2

1

0

10000010000100010010

2

1

0

10000010000100010010

normal (12.5, 12.5), bipolar (1, 60)

Number of Orders

M
a

x
im

u
m

 I
n

cr
e

a
se

 o
f

th
e

 U
ti

li
ty

 V
a

lu
e

 (
$

)
normal (12.5, 12.5), normal (30, 30) normal (12.5, 12.5), uniform (1, 60) normal (12.5, 12.5), zipf (50, 0.5)

normal (25, 12.5), bipolar (1, 60) normal (25, 12.5), normal (30, 30) normal (25, 12.5), uniform (1, 60) normal (25, 12.5), zipf (50, 0.5)

uniform (1, 50), bipolar (1, 60) uniform (1, 50), normal (30, 30) uniform (1, 50), uniform (1, 60) uniform (1, 50), zipf (50, 0.5)

Panel variables: Quantity Distribution, Bid Distribution

Figure 7: Maximum increase of the utility value among all bidders, achieved
through misreporting quantity in Ex-CORE auction under different distribution
of orders when r = 50. Mean value is denoted by blue disc.

than the on-demand price seems unreasonable. However, in real-world scenarios
there might be orders with a bid higher than the on-demand price, as observed
on the EC2 spot market. This is not of concern in our model.

The requested number of instances per order for each bidder is modeled by
i.i.d. random variables uniformly distributed on [1, 50]. Amazon EC2 similarly
imposes a limit of 100 VM instances per region that can be acquired by a
customer in the spot market8.

Following Mills et al. [30], the holding time of the VM instances by users is
modeled by i.i.d Pareto distributed random variables, with shape parameter 1
and location parameter 1. Each generated random value represents the time in
hours that VM instances remain in the system. If the order’s bid price is lower
than the current market price, the order remains in the queue for a maximum
time period of half an hour. The order is considered in every auction round
during this period. If the order is not serviced at the end of this period, it is
labeled as rejected. The VMs that are instantiated following the acceptance of
an order can be terminated at any time if the market price exceeds the order’s
bid. Upon termination, these VMs are not charged for their last partial hour.
VMs that are terminated by their owner are charged for a discrete number of
hours, with a partial hour of usage accounted for as a full hour.

To model the marginal cost of running VMs, we assume that the data center
is populated with BL460c G6 blade servers that host a quad-core Intel Xeon
E5504 2.0 GHz processor. The peak power usage per blade server is rated at 400

8http://aws.amazon.com/ec2/spot-instances/

27

W. Using the Amazon EC2 small instances type, each server is able to host up to
8 VMs. Two sets of electricity prices are considered for the data center, one for
“on-peak” hours from 7am to 9pm and another for “off-peak” hours from 9pm to
7am. Following work by [31], we adopt a peak price of 0.108$/KWh and an off-
peak price reduction of 50%. We compute PUE based on data center load and
outside air temperature. Taking models by Goiri et al. [9] and Rasmussen [28]
into account, Fig. 8 illustrates our modeling of the PUE as a function of outside
temperature. Drastic jumps in PUE occur due to chiller activation when outside
temperature crosses the 20◦C mark [9]. We consider a relatively warm day
with minimum temperature of 14◦C and maximum temperature of 33◦C. We
estimate hourly temperatures throughout the day based on a method by Gaylon
et al. [32].

−10
0

10
20

30
40

50

0

50

100

1

1.5

2

2.5

3

3.5

Data center utilization (%)

Outside Temperature (°C)

P
U

E

Figure 8: PUE as related to load and outside temperature.

The green dashed line in Fig. 10 depicts the reserve price generated based
on our model in a sample simulation run. Our investigation on the historical
price data of spot instances for the past 90 days prior to 14th of November
2013 shows that the spot market price never goes below $0.007 for the small
instances in the US-east region. The value complies with our computed reserve
price for that instance type when the physical server characteristics, as well
as the electricity prices and outside air temperature parameters are based on
realistic data for an Amazon data center in the US-East region. The same holds
true for the modeled and observed minimum spot price for the other instance
types in the m1 instance class, as they are based on hardware with similar power
draw characteristics.

10.4.1 Experimental Results

We evaluate the online Ex-CORE auction by comparing profit and number of
rejected VM requests to the other auction mechanisms outlined in Section 9.

28

7500650055004500350025001500500

8000

7000

6000

5000

4000

3000

2000

1000

0

-1000

7500650055004500350025001500500

Reserve Price Active

Number of orders

M
e

a
n

 o
f

P
ro

fi
t

($
)

Reserve Price Inactive

UNIFORM

Online Ex-CORE

OPT

HTA-OPT

Auction Mechanism

(a)

7500650055004500350025001500500

140000

120000

100000

80000

60000

40000

20000

0

7500650055004500350025001500500

Reserve Price Active

Number of orders

M
e

a
n

 o
f

N
u

m
b

e
r

o
f

re
je

ct
e

d
 V

M
s

Reserve Price Inactive

UNIFORM

Online Ex-CORE

OPT

HTA-OPT

Auction Mechanism

(b)

Figure 9: (a) Average profit gained and (b) number of rejected VM instances
with different auction mechanisms.

The computed profit is the total generated revenue minus the cost of electricity.
The capital cost and all other fixed cost are not considered, as they are identical
for all mechanisms. Each experiment is carried out 30 times and the mean value
is reported. The results are illustrated in Fig. 9(a) and Fig. 9(b), where the
number of orders in a 24-hour simulation is increased from 500 to 7500, and
scenarios with or without the adoption of a reserve price are shown.

Fig. 9(a) shows that gained profit by all mechanisms increases with the
number of orders. The OPT, HTA-OPT and online Ex-CORE auctions gener-
ate comparable profits, while there is a big gap between uniform price auction
and the other mechanisms. When supply is higher than demand and there is no
competition among bidders, all orders are accepted by the uniform price auc-
tion; and consequently the uniform price auction performs poorly under such
circumstances. This supports the idea that the traditional auction mechanisms
such as the Vickrey Auction [10] or Uniform price auction are not suitable for
the cloud spot market in which supply is often higher than demand.

29

The benefit of using the online Ex-CORE auction is that, in spite of a small
difference in generated profit compared to OPT and HTA-OPT (6% lower on
average), it accommodates a considerably higher number of VMs (17% and 14%
less rejections on average respectively). This reduces the impact of the bidder
drop problem, introduced by Lee and Szymanski [1] that can be caused by
frequent rejection of customers with low valuations.

As illustrated in Fig. 9(a) and Fig. 9(b), the reserve price only affects the out-
come of the uniform price auction. Considering the range and distribution of bid
values used in the simulation, the market price generated by online Ex-CORE,
OPT and HTA-OPT is always higher than the reserve price. To exemplify fur-
ther, Fig. 10 provides the reserve price and the market price generated by online
Ex-CORE in a sample simulation run. This, however, does not mean that the
reserve price is of no importance and can be ignored in real-world scenarios. In
order to show the impact of the reserve price, different highest submitted bid
prices are used to decrease the average market price as shown in Fig. 11. As can
be seen in the figure, when the highest submitted bid price is low and therefore
the market price is lower on average, the absence of reserve price can lead to
loss or lower profit due to execution of VMs at a price below their variable cost.

0 6 12 18 24
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
ar

ke
t

P
ri

ce
 (

$)

Time (Hour)

Figure 10: Reserve price (green dashed line) and spot market price generated by
online Ex-CORE (blue solid line) in a sample simulation run when the number
of orders is 1500.

As we are interested in the importance of a priori knowledge on the holding
time of VMs by customers, the profit and the number of rejected VMs by OPT
and HTA-OPT are investigated further. The results of a paired T-Test compar-
ing the profit performance of OPT with HTA-OPT when the number of orders
is 4500 and the holding time of VMs is distributed i.i.d. based on a Pareto
distribution with both shape and location parameters equal to one are shown
in Table 1. Given a null hypothesis of no statistically significant difference in
mean profit by OPT and HTA-OPT, the p-value is relatively high (p-value =
0.846), suggesting that there is no strong evidence that the null hypothesis is
false, i.e. there is no credible evidence that OPT and HTA-OPT on average
generate different profit. However, there is a statistically significant difference
in the mean number of rejected VMs. HTA-OPT rejected 2152 less VMs on
average as it results in outcomes with a lower market price. Considering the

30

0
.0
3
8

0
.0
3
5

0
.0
3
2

0
.0
2
9

0
.0
2
6

0
.0
2
3

0
.0
2
0

0
.0
1
7

0
.0
1
4

0
.0
1
1

0
.0
0
8

0
.0
0
5

600

400

200

0

-200

-400

-600

-800

Highest Bid Price ($)

M
e

a
n

 o
f

P
ro

fi
t

($
)

Active

Inactive

Price

Reserve

Figure 11: Average profit gained by Ex-CORE when the number of orders is
1500.

Table 1: Paired T-Test with 95% Confidence Interval (CI) for comparison of
difference in mean of profit and number of rejected VMs generated by OPT and
HTA-OPT (OPT − HTA-OPT) when the number of orders is 4500.

OPT HTA-OPT Difference (95% CI) P-value

Profit 5358.7 5361.6 -2.9 (-33.6, 27.7) =0.846
Rejected 68575 66423 2152 (1192, 3111) <0.001

reported 95% Confidence Interval (CI), we can state that knowing the holding
time of VMs by itself does not change the amount of profit a provider generates
as it is not aware of upcoming orders’ bid prices.

11 Summary and Conclusion

With the rapid adoption of cloud computing environments, balancing supply
and demand for cloud resources through dynamic forms of pricing is quickly
gaining importance. In this chapter, we presented an envy-free auction that is
truthful with high probability and that generates a near optimal profit for the
cloud provider. The auction operates under conditions similar to the EC2 spot
market. The truthfulness of the mechanism frees bidders from understanding its
intricacies, thereby lowering the complexity of participation and the options for
strategic behavior. At the same time, the mechanism aims to achieve a maximal
profit for the provider, and achieves envy-freeness through the use of a uniform
price. The mechanism is a generalization and extension of the consensus revenue
estimate (CORE) auction that enables its application in the cloud computing
setting, which requires an online recurrent auction with multi-unit requests.
In order to incorporate marginal costs of production in the resource trading
process, we pair the auctioning scheme with a method that calculates dynamic
reserve prices based on a cost model that incorporates data center PUE, load,
and electricity cost.

31

An important benefit of the proposed auction design is that it achieves near
optimality w.r.t. maximizing revenue without requiring prior knowledge on the
bid distributions. Our evaluation demonstrates its performance in this regard
under a variety of order distributions. The proposed mechanism is shown to
significantly outperform the uniform price auction and to closely approximate
the profit outcome of the revenue maximizing, but non-truthful, optimal single
price auction in an online setting (within 6% in our experiments), while improv-
ing on the number of rejected VMs (up to 17% in our experiments). Finally, our
results show that the generated revenue does not differ significantly from the
revenue attained by a mechanism based on dynamic programming that relies
on prior knowledge regarding the holding time of VMs.

References

[1] J.-S. Lee and B. Szymanski, “A novel auction mechanism for selling time-
sensitive e-services,” in Proceedings of Seventh IEEE International Confer-
ence on E-Commerce Technology, (CEC’05), Hong Kong, Jul. 2005, pp.
75–82.

[2] M. Maćıas and J. Guitart, “A genetic model for pricing in cloud computing
markets,” in Proceedings of the 2011 ACM Symposium on Applied Com-
puting (SAC’11), Taichung, Taiwan, Mar. 2011, pp. 113–118.

[3] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken, “Using a mar-
ket economy to provision compute resources across planet-wide clusters,”
in Proceedings of IEEE International Symposium on Parallel Distributed
Processing (IPDPS’09), Rome, Italy, May 2009, pp. 1–8.

[4] W. Wang, B. Li, and B. Liang, “Towards optimal capacity segmentation
with hybrid cloud pricing,” in Proceedings of the 32nd IEEE International
Conference on Distributed Computing Systems (ICDCS’12), Macau, China,
Jun. 2012, pp. 425–434.

[5] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “Decon-
structing amazon ec2 spot instance pricing,” ACM Transaction Economy
Computing, vol. 1, no. 3, pp. 16:1–16:20, Sept. 2013.

[6] A. Danak and S. Mannor, “Resource allocation with supply adjustment in
distributed computing systems,” in Proceedings of the 30th International
Conference on Distributed Computing Systems (ICDCS’10), Genoa, Italy,
Jun. 2010, pp. 498–506.

[7] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allocation for spot
markets in cloud computing environments,” in Proceedings of the Fourth
IEEE International Conference on Utility and Cloud Computing (UCC’11),
Melbourne, Australia, Dec. 2011, pp. 178–185.

32

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[9] Í. Goiri, K. Le, J. Guitart, J. Torres, and R. Bianchini, “Intelligent place-
ment of datacenters for internet services,” in Proceedings of the 31st IEEE
International Conference on Distributed Computing Systems (ICDCS’11),
Minneapolis, Minnesota, USA, Jun. 2011, pp. 131–142.

[10] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” The Journal of finance, vol. 16, no. 1, pp. 8–37, 1961.

[11] A. V. Goldberg and J. D. Hartline, “Competitiveness via consensus,” in
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms (SODA’03), Baltimore, Maryland, USA, Jan. 2003, pp. 215–222.

[12] B. Javadi, R. K. Thulasiram, and R. Buyya, “Statistical modeling of spot
instance prices in public cloud environments,” in Proceedings of the Fourth
IEEE International Conference on Utility and Cloud Computing (UCC’11),
Melbourne, Dec. 2011, pp. 219–228.

[13] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of Spot instances via
checkpointing in the Amazon Elastic Compute Cloud,” in In Proceedings of
the 2010 IEEE 3rd International Conference on Cloud Computing (Cloud
’10), Washington, USA, 2010, pp. 236–243.

[14] W. Voorsluys and R. Buyya, “Reliable provisioning of spot instances for
compute-intensive applications,” in Proceedings of 26th International Con-
ference on Advanced Information Networking and Applications (AINA’12),
Fukuoka, Japan, Mar. 2012, pp. 542–549.

[15] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot instance
market,” in Proceedings of the 31st International Conference on Computer
Communications (INFOCOM’12), Orlando, Florida, USA, Mar. 2012, pp.
190–198.

[16] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and
C. Krintz, “See spot run: using spot instances for mapreduce workflows,”
in Proceedings of the 2nd USENIX conference on Hot topics in cloud com-
puting. USENIX Association, 2010.

[17] M. Mihailescu and Y.-M. Teo, “The impact of user rationality in federated
clouds,” in Proceedings of the 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid’12), Ottawa, Canada,
May 2012, pp. 620–627.

[18] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of virtual
machine instances in clouds,” Journal of Parallel and Distributed Comput-
ing, vol. 73, no. 4, pp. 495–508, 2013.

33

[19] R. B. Myerson, “Optimal auction design,” Mathematics of operations re-
search, vol. 6, no. 1, pp. 58–73, 1981.

[20] W. Wang, B. Liang, and B. Li, “Revenue maximization with dynamic auc-
tions in IaaS cloud markets,” in Proceedings of the 21st IEEE/ACM Inter-
national Symposium on Quality of Service (IWQoS’13), 2013, pp. 1–6.

[21] A. V. Goldberg, J. D. Hartline, A. R. Karlin, M. Saks, and A. Wright,
“Competitive auctions,” Games and Economic Behavior, vol. 55, no. 2,
pp. 242 – 269, 2006.

[22] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
game theory. Cambridge University Press, 2007.

[23] A. V. Goldberg and J. D. Hartline, “Envy-free auctions for digital
goods,” in Proceedings of the 4th ACM conference on Electronic Commerce
(EC’03), San Diego, CA, USA, Jun. 2003, pp. 29–35.

[24] H. Moulin and S. Shenker, “Strategyproof sharing of submodular costs:
budget balance versus efficiency,” Economic Theory, vol. 18, no. 3, pp.
511–533, 2001.

[25] M. K. Patterson, “The effect of data center temperature on energy effi-
ciency,” in Proceedings of 11th Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems (ITHERM’08), Or-
lando, Florida, USA, May 2008, pp. 1167–1174.

[26] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder, “Understanding
and abstracting total data center power,” in Workshop on Energy-Efficient
Design (WEED’09), 2009.

[27] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” SIGCOMM Computing
Communication Review, vol. 39, no. 1, pp. 68–73, 2008.

[28] N. Rasmussen, “Electrical efficiency measurement for data centers,” White
Paper by Schneider Electric - Data Center Science Center, vol. 154 revision
2, 2011.

[29] S. Greenberg, E. Mills, B. Tschudi, P. Rumsey, and B. Myat, “Best prac-
tices for data centers: Lessons learned from benchmarking 22 data centers,”
ACEEE Summer Study on Energy Efficiency in Buildings in Asilomar,
CA., vol. 3, pp. 76–87, 2006.

[30] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-placement al-
gorithms for on-demand clouds,” in Proceedings of Third International
Conference on Cloud Computing Technology and Science (CloudCom’12),
Taipei, Taiwan, Dec. 2011, pp. 91–98.

34

[31] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen,
“Reducing electricity cost through virtual machine placement in high per-
formance computing clouds,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis
(SC’11), Seattle, USA, Nov. 2011, pp. 22:1–22:12.

[32] G. S. Campbell and J. M. Norman, Introduction to Environmental Bio-
physics. Springer Verlag, 1998.

35

