
Scalable Text Clustering on Global Grids

YuZheng Zhai1, XingChen Chu2, Arthur Hsu1, Saman K Halgamuge1
and Rajkumar Buyya2

Dynamic System and Control Group1
Department of Mechanical and
Manufacturing Engineering

Grid Computing and Distributed
Systems (GRIDS) Laboratory2

Department of Computer Science and
Software Engineering

The University of Melbourne, Australia

y.zhai@pgrad.unimelb.edu.au, {xcchu, alhsu, saman, rbuyya}@unimelb.edu.au

Abstract. Processing the ever increasing amount of textual information is
beyond the capability of typical local computing resources. The emergence of
grid computing technology enables the sharing and aggregation of
computational resources, thus facilitates the rapid analysis of information. In this
paper we present the use of computational grids in the domain of clustering large
scale text collections. A novel two-level GSOM is used to parallelise the
clustering task. We observe a performance improvement of 10 times speedup
over the traditional method executed on a single computational node.

1 Introduction

The emergent technology of grid computing [3] enables the sharing of geographically
distributed heterogeneous resource to solve computationally intensive problems in
various disciplines. Many projects have already been developed using the grid in
areas such as weather forecasting, finical modeling and earthquake simulation, to
access computational resources, data collections and remote instrumentations. Grid
computing augments traditional research methodologies to advance to the next
generation e-Research, which encourages collaboration between complimentary
domains and enables researchers to perform more creatively and efficiently. It also

shows great promises as the platform for large-scale applications.
The ever increasing amount of textual information available on the internet has

made textual data clustering algorithms more appealing and promising. However, the
demand for enormous processing power and resources to deal with these billions of

documents is beyond the capability of typical local computing resources. Therefore,
scalability has become an important issue. Some works have been done in the natural
language processing domain that shows the benefit of using Grids in data-intensive
applications [12,13]. It is clear that text clustering applications can also benefit from
the grid to improve scalability, if we can parallelise the clustering task and execute
them on the Grid.

The motivation of this work arises from the Australian Research Council funded E-
Research project on “Collection, Sharing, Visualisation and Analysis of locally

gathered information from geographically remote areas vulnerable to tidal waves”,
where a proposed website will be open for public as a portal to collect substantiated
reports of strange behavior in animals. These reports will then been analyzed, in

conjunction with other source of information such as news articles, seismic data, etc
to flag alert for further attention. The number of reports and news articles will grow
larger as time passes. Therefore a scalable text mining technique combined with the
capability of taking advantage of the available grid resources will be very useful in

discovering valuable information from the rapidly expanding database.
In the previous studies [11], we proposed a document clustering approach based

on the WEBSOM method using the scalable two-level Growing Self-Organising
Maps (GSOM), which provides us the prospect of utilizing Grid resources to cluster
massive text data sets efficiently. Our simulation show potentially significant
improvement on the processing speed compare to the same process on a single
computational node. In this paper, we carry out the experiment using the Gridbus
Resource Broker [14] to execute the programs on heterogeneous grid resources to

further evaluate its performance.
The rest of the paper is organized as follows. Section 2 presents an overview of the

clustering algorithm and the grid middleware used. Section 3 describes the
architecture, data set and evaluation method employed in the experiment. Results and

comparisons are presented in Section 4. Conclusion and future research efforts are
given in Section 5.

2 Background

2.1 Scalable text mining with GSOM

Dynamic Self-Organising Maps is an unsupervised neural network model that maps
high dimensional input into a low dimensional topology such that similar clusters are
close to each other on the map [4, 8, 10]. It can grow into different shapes and sizes
corresponding to the input. GSOM starts with a small number of nodes and then goes
through one growing phase, a rough tuning phase and a fine tuning phase. The rate of
the growth and thus the final map size, is controlled by a Spread Factor (SF) that takes

value between 0 and 1 (1 gives maximum growth) [9]. A detailed explanation and
study of the choice of SF in textual clustering can be found in [11].

WEBSOM [5, 6] is an application of SOM that offers an alternative way to encode
the text document rather than the traditional “bag of words” approach [7]. It uses the

word category maps that utilize the contextual information to group similar words.
These word context vectors are mapped onto a two-dimensional grid using the GSOM
to form the word category map. Documents are then encoded as vectors of histogram
of the word clusters formed earlier. These vectors serve as input to another GSOM,
which produces the document map that enables the visualisation of clusters.

Our scalable method splits the initial single growing phase in GSOM into two
separate growing phases. While the first growing phase is performed on a single
computational node, the outcome is used to initiate the second growing phase running

concurrently on different computational nodes, together with the remaining two

tuning phases. This is intended to first obtain an abstract and rapid grouping of the
entire input data during the first growing phase by using a low spread factor with
GSOM. It produces a feature map that has a few condensed nodes with high level

separation between them. The data obtained within each node will then be sent to
different computers and refined independently. They will be processed by another
GSOM with a slightly higher spread factor in order to achieve finer clustering and
follows the normal procedure of one growing and two tuning phases, as shown in

Figure 1. All the resulting outputs will be passed back to combined together for
further processing.

Figure 1. Two stages of scalable GSOM

3 Grid Architecture for scalable GSOM-based Analysis

The Grid environment addresses the problem of scalability for our GSOM based text

mining with massive data sets, which currently largely affects the performance and
productivity of the mining method. By targeting this research bottleneck, the mining
results which traditionally take hours of waiting time will be obtained quicker. In
order to build a Grid environment, middleware tools are needed to support various

services such as security, uniform access, resource management, job scheduling,
application composition and QoS. There are a lot of tools and software available to
help establishing computational Grids including Globus, Condor, and also some
resource management system such as Sun N1 Grid Engine (SGE) or Portable Batch

System (PBS). However, we do not need to care about the underlying Grid systems
been used when we dispatch our mining tasks to the resources, as the broker provides
plug-ins to take care of different middleware.

The Gridbus Resource Broker is a user-level middleware that simplifies and

optimizes the development and deployment of Grid applications. Moreover, it

provides a layer of abstraction by hiding the Grid resource specific details and
providing application programming interfaces (API) for most generic functions
needed by Grid applications. It can be used for composition and formulation of

textual mining tasks and for deployment them on heterogeneous platforms in Global
Grid.

The high-level system architecture used in this experiment is show in Figure 2
below. The documents are preprocessed and feed into the clustering program, which

groups the entire document collections into a number of segments. Then a parameter
sweep model is used which treats each segment as an input parameter to the clustering
program to generate the application description file. This is then provided to the
Gridbus Broker, which discovers available resources, composes the application,

creates jobs, transfers the input data and executes them the remote resources. The
results are retrieved after execution and combined together for post-processing to
obtain the final results.

Figure 2. System architecture

4. Application Composition and Analysis on Global Grids

4.1 Document Collections

The document collection is composed of a subset of the forum articles obtained from
the Usenet discussion group, which has been employed in WEBSOM studies in [1, 2],

as well as in our previous simulation [11]. This collection of documents is particularly
interesting not only because it closely resembles the texts of the intended application,
it is but also regarded as a challenging text collection since all the documents were

written in a very informal language that often hold all sorts of colloquial words and
produces an larger vocabulary than properly written news articles. The collection
contains 2,000 articles in total and serves as the benchmark for measuring the
execution time.

4.2 Preprocessing

The documents were preprocessed to remove any non-textual content such as HTML

tags, header information and user signatures, which results in an average text length
of 200 words for the second data set. After removing from a list of 385 stop words,
the vocabulary contains 26,869 words (both base and inflected forms). The words that
appear less than 5 times and more than 500 times, which are regarded as less useful in

distinguishing between clusters, were also removed and the final vocabulary consists
of 5707 words.

4.3 Application Composition

The GSOM clustering tasks were formulated as a parameter sweep application using
XPML (XML-based Parametric Modeling Language) provided by the Gridbus
Broker. The application processes each text cluster, which were generated in the first

run of GSOM and is represented by the parameter “id”. Figure 3 shows an example of
XPML file that describes the analysis operation. A total of 35 clusters in compressed
file format were processed in the experiment. The files were distributed into a
directory tree and a shell script linked the files into one directory with standardized

naming convention file[$id].tar.gz. The job tarball is transferred to the remote node
and uncompressed there. The clustering program is then executed on the remote nodes
and the results are transferred to the broker host on completion.

The four key parts of the entire XPML code shown in Figure 2 are discussed
below:

• The parameter element defines the parameter-sweep, a variable “id” that varies
from 0 to 34 steps. For each value, a new job will be created and assigned a task.

• The copy command with the data source labeled as “local” and destination
labeled as “node”; “local” refers to a resource from which the broker launches the
executions and “node” refers a remote resource selected by the broker’s
scheduling algorithm while job execution. This copy command is called stage-in

which effectively transfers the required data including the input data and
executable program to the Grid resources. The variable id is used with a $ prefix
which notifies the broker to substitute the variable with a value from 0 to 34.

• Part 3 consists of several execute commands inside the task element, which
describes the application execution workflow occurred on the Grid resources.

Those execute commands will executed sequentially to carry out the final result.
The execution occurred on each resource will firstly uncompress the input data

file, and then run a java program which is used to calculate the result. The
variable substitution has also been applied for each data clusters we generated.

• The last copy command inside the task element is called the stage-out which is
responsible for collecting results from various Grid resources and transferring

them back to the user’s workstation. The destination is not restricted to the local
node where the Gridbus broker is running; it can also be a third party node which
might to perform post-process against the result.

Figure 3. XPML application description file

4.4 Grid Testbeds

The resources used in our experiments consisted of both local resources at Melbourne
and oversea resources located at Japan and Spain. The resources locally are Belle

Grid Server at University of Melbourne which runs Globus toolkit 2.4 and ngdev
which is a gateway machine running Globus toolkit 4 maintained by VPAC. There are
4 machines at University of Electronic and Communication Tokyo Japan which runs

Globus Toolkit 4 and 2 clusters (a Torque cluster and a SGE cluster) and 2 machines

located in Spain which serve the Globus Toolkit 4. The broker is designed to support

management of job execution on remote resources using SSH-based connection and
Globus-based access. For clusters running SGE or PBS, we established a SSH
channel for staging the input data to a proper client node and ran the jobs submission
command.

To define the resources which can be used by the Gridbus Broker, the user is
required to give the information including the hostname and the platform

<xpml xmlns="http://schemas.gridbus.org/xpml/2006/01/xpml">
 <parameter domain="range" name="id" type="integer">
 <range from="0" interval="1" to="34" type="step"/>
 </parameter>
 <task>
 <copy>
 <source file="file$id.tar.gz" location="local"/>
 <destination file="file$id.tar.gz" location="node"/>
 </copy>
 <execute>
 <command value="gunzip file$id.tar.gz"/>
 </execute>
 <execute>
 <command value="tar -xvf file$id.tar"/>
 </execute>
 <execute>
 <command value="java -jar NNTool.jar wmap$id.tdd 0.3 $id.txt"/>
 </execute>
 <copy>
 <source file="$id.txt" location="node"/>
 <destination file="output.$jobname" location="local"/>
 </copy>
 </task>

</xpml>

configurations (e.g. middleware setting, queue setting, firewall…). All these
information is described using XGRL (XML-based Grid Resource Language)
provided by the Gridbus Broker. Once the resources definition is given by XGRL, the

broker is able to dispatch jobs at runtime to each of them depends on the availability
and the scheduling algorithm.

5 Evaluation

After the first run of GSOM, a rough word category map is generated, which contains
35 nodes. The size of the data for each node ranges from 747kB to 6,041kB. These
data are then bundled with the GSOM program and compressed to form the job
tarball, which ranges from 468kB to 2,645kB. Figure 4 demonstrates the total jobs
completed for each remote resource. Belle Grid Server (with 4 CPU) and Aquila SGE
cluster server (with a queue limit 4) finished most of jobs, which was 12 and 7

respectively. And ngdev also finished 4 jobs without any queue. The execution time
statistics for each job on the servers is shown in Figure 5. Some resources located in
Japan and Spain performed worse compared with the resources at Melbourne, it was

because that the network latency and broker overhead including stage-in and stage-out
were much higher than the local resources. The time spent on staging in this
experiment ranges from 2 to 20 seconds.

Figure 4. Jobs finished on each resource (generated by Gridbus Workbench).

Figure 5. Job execution time statistics

Table 1 below summarizes the results of using a single GSOM, the simulation
results from previous study and the ones from this experiment. Since the task of post
processing can not be realized without the results from all the nodes. Therefore, the
running time shown is the time taken to finish all the 35 jobs, plus the time spent in
generating the rough word map.

Table 1. Execution time for generating the word map for Usenet articles

method Total No. of nodes Time (second)

Single node 402 5407
Simulation 752 347

Grid Testbeds 752 568

It is clear that the execution time obtain in this experiment is about 10 times less
than the traditional way. The simulation takes the least time as expected, since we are
assuming the ideal case of 35 Grid resources with no network latencies. Whereas we
only use 9 resources in this experiment and there are other overheads such as the time
spent in file transfer and polling time of the scheduler. It can be expected that the
performance will improve further with more resources. Nonetheless, the scalable
GSOM clustering method shows a very promising performance and is more suitable

to process the huge amount of documents in large-scale applications.

6 Conclusion

In this paper, we have shown an implementation of a scalable GSOM text clustering
method which takes the advantage of the Grid Computing technology. By splitting the
workloads onto geographically distributed resources, the results indicate that there is a
clear performance speedup in execution time on a computational grid compare to the
traditional single-process approach. As a future development, it will be desirable to
further integrating the grid broker within the clustering program. This can be achieved

Avergae Execution Time on each server (second)

0

50

100

150

200

250

300

be
lle

ng
de
v

lo
ki

uu
uu

he
rm
es

w
al
ku
re

aq
ui
lia

dr
ac
o

hy
dr
us

Job Execution Time per server (second)

0

50

100

150

200

250

300

b
e
lle

b
e
lle

b
e
lle

b
e
lle

n
g
d
e
v

lo
k
i

u
u
u
u

h
e
rm
e
s

w
a
lk
u
re

a
q
u
ila

a
q
u
ila

a
q
u
ila

a
q
u
ila

d
ra
c
o

h
y
d
u
rs

w
a
lk
u
re

b
e
lle

b
e
lle

b
e
lle

b
e
lle

n
g
d
e
v

lo
k
i

h
e
rm
e
s

h
y
d
u
rs

b
e
lle

n
g
d
e
v

u
u
u
u

a
q
u
ila

b
e
lle

b
e
lle

w
a
lk
u
re

a
q
u
ila

a
q
u
ila

b
e
lle

n
g
d
e
v

0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334

by utilizing the APIs provided by the broker’s library to invoke the services at
runtime.

Acknowledgments. The work presented in this article was funded by Australian
Research Council.

Reference

1. Honkela, T., Kaski, S., Lagus, K., Kohonen, T.: Newsgroup Exploration with WEBSOM
Method and Browsing Interface, Tech. Rep. A32, Helsinki University of Technology,
Laboratory of Computer and Information Science, Espoo, Finland (1996).

2. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: WEBSOM—Self-Organizing Maps of
Document Collections, Neurocomputing 21 (1998) 101–117.

3. Foster, I., Kesselman, C. (eds.): The grid : blueprint for a new computing infrastructure,
Amsterdam, Boston , Elsevier, 2004

4. Alahakoon. D., Halgamuge, S.K., Srinivasan, B.: Dynamic Self-Organising Maps with
Controlled Growth for Knowledge Discovery, IEEE Transactions on Neural Networks,
Special Issue on Knowledge Discovery and Data Mining, vol. 11, no. 3, 2000.

5. Lagus, K., Kaski, S., Kohonen, T.: Mining Massive Document Collections by the
WEBSOM Method, Information Sciences, Vol 163/1-3, pp. 135-156, 2004.

6. Honkela, T.: Self-Organizing Maps in Natural Language Processing, Ph.D. thesis,
Helsinki University of Technology, Neural Networks Research Center, Espoo, Finland,
1997.

7. Salton G.: Developments in Automatic Kohonen, T.: self-organizing maps, Springer-
Verlag, Berlin, 1995

8. Hsu, A., Halgamuge, S.K.: Enhancement of Topology Preservation and Hierarchical
Dynamic Self-Rrganising Maps for Data Visualisation, International Journal of
Approximate Reasoning, vol. 32/2-3 pp. 259-279, Feb 2003.

9. Alahakoon, D.: Controlling the Spread of Dynamic Self Organising Maps, Neural
Computing and Applications, 13(2), pp 168-174, Springer Verlag, 2004

10. Wickramasinghe, L.K., Alahakoon, L.D.: Dynamic Self Organizing Maps for Discovery
and Sharing of Knowledge in Multi Agent Systems in Web Intelligence and Agent
Systems: An International Journal, (IOS Press), Vol.3, No.1, 2005.

11. Zhai, YZ., Hsu, A., Halgamuge, S.K.: Scalable Dynamic Self-Organising Maps for
Mining Massive Textual Data, 13th International Conference, ICONIP 2006, Hong
Kong, China

12. Hughes, B., Bird, S., Lee, H., Klein, E., Experiments with data intensive NLP on a
Computational Grid, Proceedings of the International Workshop on Human Language
Technology, Hong Kong, 2004.

13. Hughes, B., Venugopal, S., Buyya, R., Grid-based Indexing of a Newswire Corpus,
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, IEEE
Computer Society Press, Los Alnmitos, CA, USA, 2004

14. The Gridbus project, http://www.gridbus.org/

