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Abstract—Over the last few years, Grid technologies have 

been enhanced towards a service-oriented paradigm that enables 
a new way of service provision based on utility computing 
models, which users consume based on their QoS (Quality of 
Service) requirements. In such “pay-per-use” service Grids, 
issues such as resource management and scheduling based on 
users’ QoS constraints are yet to be addressed especially in the 
context of workflow management systems. In this paper, we 
propose a QoS-based workflow management system and 
scheduling algorithm that minimizes execution cost workflow 
application while meeting timeframe for delivering results. We 
also attempt to optimally solve the task scheduling problem in 
branches with several sequential tasks by modeling the branch as 
a Markov Decision Process and using the value iteration method. 

I. INTRODUCTION 

Utility computing [13] has emerged as a new service 
provision model and its services [7] are capable of supporting 
diverse applications including e-Business and e-Science over 
a global network. The users utilize the services when they 
need to, and pay only for what they use. In the recent past, 
providing utility computing services has been reinforced by 
service-oriented Grid computing [9] by providing an 
infrastructure that enables users to consume utility services 
transparently over a secure, shared, scalable and standard 
world-wide network environment. 

Many Grid applications such as bioinformatics and 
astronomy require workflow processing in which tasks are 
executed based on their control or data dependencies. As a 
result, a number of Grid workflow management systems with 
scheduling algorithms have been developed by several 
projects (e.g. Condor DAGMan [16], Askalon [8], GrADS [5], 
ICENI [10], APST [18], and Pegasus [6][17]). They facilitate 
workflow application execution on Grids and minimize 
execution time. However, scheduling workflows based on 
users’ QoS (Quality of Service) requirements (e.g. deadline 
and budget) has not been addressed in these existing Grid 
workflow management systems. For a utility service, pricing 
is dependent on the level of QoS offered. Typically service 
providers charge higher prices for higher QoS. Therefore, 
users may not always need to complete workflows earlier than 
they require. Instead, they prefer to use cheaper services with 
lower QoS that are sufficient to meet their requirements. 
Given this motivation, we focus on QoS-based workflow 

management which attempts to minimize execution cost while 
satisfying users’ QoS requirements.  

In this paper, we discuss basic QoS-based workflow 
management requirements for service Grids and present a 
novel workflow scheduling method. The objective function of 
the proposed scheduling algorithm is to develop workflow 
schedule such that it minimizes the execution cost and yet 
meet the time constraints imposed by the user. In order to 
solve scheduling problems efficiently for large-scale 
workflows, we partition workflow tasks and generate the 
workflow execution schedule based on the optimal schedules 
of task partitions. A deadline assignment strategy is also 
developed to distribute the overall deadline over each 
partition. We also attempt to solve optimally the scheduling 
problem for sequential tasks by modeling the branch partition 
as a Markov Decision Process (MDP) [12], which has proven 
to be effective for modeling decision problems.  

Proposed workflow scheduling approach can be used by 
both end-users and utility providers. End users can use the 
approach to orchestrate Grid services, while utility providers 
can outsource computing resources to meet customers’ 
service-level requirements.  

The remainder of the paper is organized as follows. Section 
II provides an overview of QoS-based workflow management 
on service grids. We describe our novel workflow scheduling 
approach in Section III. Experimental details and simulation 
results are presented in Section IV. Finally, we conclude the 
paper with directions for further work in Section V.  

II. QOS-BASED WORKFLOW MANAGEMENT SYSTEM 

QoS-based workflow management on service Grids 
impacts all levels including workflow specification, service 
discovery and workflow scheduling. In this paper we use the 
term service to mean utility computing service as described 
before. The architecture of a typical QoS-based workflow 
management system is shown in Figure 1.  The components of 
the workflow management system are discussed below.  
 
A. Workflow Specification  

The QoS-based workflow management system allows the 
user to specify their requirements along with the descriptions 
of tasks and their dependencies using the workflow 
specification. In general, QoS constraints express the 
preferences of users and are essential for efficient resource 
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allocation. We categorize workflow QoS constraints into task-
level and workflow-level constraints.  At the task level, as 
illustrated in Figure 2, QoS constraints are specified with their 
corresponding tasks. In this scenario, the two QoS constraints, 
namely time and cost are specified with task A.  In contrast, 
QoS constraints at the workflow level are given for entire 
workflow execution.  In the example shown in Figure 3, the 
workflow execution is required to be completed before 2005-
12-10T04:20:00.000+10:00 at the minimum cost. 

  Fig. 1. QoS-based workflow management system architecture. 
 
 
 
 
 
 
 
 

 
       
 
 
 
 
 
 
 

 
 
 

Fig 3.  Workflow-level QoS specification. 
 
Users may want to specify QoS constraints, such as 

deadline and budget, for the overall workflow processing 
rather than for each task. For instance, users may want the 
entire workflow execution finished in 2 hours instead of 
specifying an execution time of 30 minutes for each task.  In 
this paper, we focus on the overall time constraint, i.e. 
deadline.  

 

B. Service Discovery and QoS Request 
After submission of the workflow specification, the 

workflow system needs to discover the appropriate services 
for processing the tasks. In a complex workflow, different 
tasks require different types of services. For example, for a 
biological imaging process, some tasks need to access a 
genome search service and some other tasks need to access a 
protein folding service. However, in a service Grid, even for 
the same type of services, they are deployed by different 
service providers and are distributed across multiple 
administrative domains. In addition, every service has its own 
local policy for different users, such as authorization and 
pricing. The workflow system should be able to query a Grid 
information service such as a grid market directory and 
generate a list of available services for every task for the user 
of the workflow.  

In a service Grid, the QoS attributes of services for 
processing the same task is diverse.  Different service 
providers can offer different QoS. One service provider also 
can offer various QoS levels for satisfying different users’ 
requirements. The pricing for the services is usually closely 
related to the QoS provided. However, some users may have 
priority in terms of service order, execution time and price 
from certain service providers. In addition, service providers 
may adjust the service price based on peak and off-peak 
periods in order to enhance the utilization of their resources.  

 

 
Fig. 4. QoS request scenario.  

 
The knowledge of QoS details for all available services is 

the key to scheduling workflow tasks efficiently. A possible 
QoS request scenario is presented in Figure 4. It initially 
starts from the Workflow Management System (WMS) 
sending a QoS request to the Grid services for every task. In 
the request it indicates the task parameters, user of the 
workflow and the estimated execution period. On receiving 
the request, the Grid services reply with the QoS parameters 
(e.g. processing speed, available storage space and free 
memory) of the service they can offer and the corresponding 
price for delivering the service at the specified QoS level. 

 
C. Workflow Scheduling  

Workflow scheduling focuses on mapping and managing 
the execution of workflow tasks onto grid services. For the 
“pay-per-use” service Grid, the scheduling decision during 
workflow scheduling must be guided by users’ QoS 
constraints. There are three major steps in workflow 
scheduling: workflow planning, advance reservation, 
workflow execution with run-time rescheduling.   
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<Workflow> 
    <qos-constraints> 

 <qos-constraint name=”time” value=”2005-12-10 
T04:20:00.000+10:00”/> 

  <qos-constraint name=”cost” optimal=”on”/> 
    </qos-constraints> 
    <tasks> 
   …… 
    </tasks> 
   …… 
</Workflow> 

<Workflow> 
<tasks> 
 <task name=”A”> 

 <qos-constraints> 
  <qos-constraint name=”time” value=” ”/> 
  <qos-constraint name=”cost” value=” “/> 
 </qos-constraints> 
 ….. 

 </task> 
      …… 

 </tasks> 
   …… 
</Workflow> 

Fig. 2. Task-level QoS specification. 
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1) Workflow Planning 
Workflow planning is to select a service for every task in 

the workflow and generate a schedule before workflow 
execution. The result of the schedule must satisfy users’ QoS 
constraints.  The decision making of the planner for workflow 
execution needs to reference the entire workflow according to 
the QoS parameters of services obtained from QoS requests. 
In general, mapping tasks on distributed services is an NP-
hard problem; the workflow planner may only produce a sub-
optimal schedule in order to balance the scheduling time. 

 
2) Advance Reservation 

An advance reservation function has been proposed to be 
supported by guaranteed QoS services [1]. It is important to 
workflow scheduling especially for long lasting workflow 
execution. Workflow management systems need to make 
reservation of services selected by the planner in advance to 
ensure the availability of services.  

 
 
 
 
 
 
 
 
 

 
Fig. 5. Possible reservation schedule.  

 
The time slots for advance reservation services can be 

generated based on every optimal service and possible start 
time of the workflow execution. Figure 5 illustrates a possible 
advance reservation schedule for workflow execution. The 
earliest start time of the task depends on the possible 
completion time of its parent tasks.  If a task has more than 
one predecessor, the start time is the latest completion time of 
its predecessors. If we consider communication overhead, the 
task start time will be the latest completion time of parent 
tasks plus the communication time. 

However, the time slots of desired services requested by the 
result of planning may not be available when the workflow 
system makes the reservations. Therefore, the workflow 
scheduling needs to be able to re-plan so that it can acquire an 
alterative schedule.  

 
3) Workflow execution with run-time rescheduling 

Typical utility computing services are QoS guaranteed and 
need to meet service commitments. However, there is still a 
possibility that services may violate the contract between the 
workflow system and service provider for reasons such as 
service failure and service delay due to the competition with 
other service consumers with higher priority. Therefore, the 
workflow scheduler must be able to adapt and update the 
schedule based on resource dynamics. For example, if a task 
execution is delayed behind the desired start time of its 
children tasks, the scheduling must adjust the reservation 
schedule for unexecuted tasks. A QoS monitor is required in 

the system to monitor the agreed performance and inform the 
planner of any changes.  

For non-reservation services, service availability can only 
be known at run-time. In this case, run-time rescheduling is 
more critical. In addition to dealing with the situations of 
contract violation, rescheduling also needs to handle 
unavailability of optimal services at the time of a task 
execution.  

 
4) Service Level Agreement 

In the service Grid, the actual allocation of services is not 
under the control of workflow management system. The 
commitment for service execution is based on the Service 
Level Agreement (SLA) between the workflow management 
system and service providers. An SLA is a contract that 
specifies the minimum expectations and obligations that exist 
between consumers and providers [2]. SLA parameters for 
workflow tasks are QoS requirements of task processing and 
they include performance objectives such as earliest start time 
and latest completion time, and a rate model such as 
processing price.  

Penalty clauses for service level violation are also required 
in an SLA to enforce service level guarantees. The penalty 
levels for service execution violation may vary for different 
workflow tasks. For example, if the service for executing task 
B in Figure 5 is delayed for 20 minutes, it does not affect the 
completion of the overall workflow. However, with any delay 
of executing task C, the whole workflow execution will delay. 
Therefore, the penalty levels for workflow task processing 
should be based on the degree of impact on the whole 
workflow execution rather than on a single service execution.    

III. A QOS-BASED WORKFLOW SCHEDULING 

The processing time and execution cost are two typical QoS 
constraints for executing workflows on “pay-per-use” services. 
The users normally would like to get the execution done at 
lowest possible cost within their required timeframe. Given 
this motivation, in this section we present a QoS-based 
workflow scheduling methodology and algorithm that allows 
the workflow management system to minimize the execution 
cost while delivering results within the deadline. 

 
1) Problem Description and Methodology 

We model workflow applications as a Directed Acyclic 
Graph (DAG). Let � be the finite set of tasks )1( niTi ≤≤ . 
Let � be the set of directed arcs of the form ),( ji TT where 

iT is called a parent task of jT , and jT the child task of iT . We 

assume that a child task cannot be executed until all of its 
parent tasks are completed. Let D be the time constraint 
(deadline) specified by the users for workflow execution. 
Then, the workflow application can be described as a 
tuple ),( D�,�� .  

In a workflow graph, we call a task which does not have 
any parent task an entry task denoted as entryT  and a task 

which does not have any child task an exit task denoted 
as  exitT .  

startTime:2005-12-10T04:10:00.000+10:00 
endTime:2005-12-10T04:20:00.000+10:00 

startTime: 2005-12-10T03:00:00.000+10:00 
endTime: 2005-12-10T03:20:00.000+10:00 

startTime:2005-12-10T03:20:00.000+10:00 
endTime:2005-12-10T03:50:00.000+10:00 

startTime:2005-12-10T03:20:00.000+10:00 
endTime:2005-12-10T04:10:00.000+10:00 

B 

D 

C 

A 
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Let m be the total number of services available. There are a 

set of services )  (cond mm,mjn, 1i1:S ii
j

i ≤≤≤≤≤≡  is 

capable of executing the task iT , but only one service can be 
assigned for the execution of a task. Services have varied 
processing capability delivered at different prices. In general, 
the service price is inversely proportional to the processing 
time as shown in Figure 6. We denote j

it (such that cond is 
satisfied) as the sum of the processing time and data 
transmission time, and satisfied) is cond (such that j

ic  as the 
sum of the service price and data transmission cost for 
processing iT  on service j

iS .  
 
 
 
 

Fig. 6.  Processing time vs. price for task execution. 
 

The scheduling problem is to map every iT  onto some j
iS to 

achieve minimum execution cost and complete the workflow 
execution within the deadline D . We solve the scheduling 
problem by following the divide-and-conquer technique using 
the methodology listed below: 

Step  1.  Discover available services and request QoS 
parameters of services for every task. 

Step 2. Group workflow tasks into task partitions. 
Step 3.  Distribute user’s overall deadline into every task 

partition. 
Step  4.   Generate optimized schedule plan based on the 

local optimal solution of every task partition. 
Step  5.  Start workflow execution and reschedule when the 

initial schedule is violated at run-time. 
 
We provide details of steps 2-5 in the following sub-

sections. The service discovery can be done by querying a 
directory service such as the Grid market directory [14] . 

 
B. Workflow Task Partitioning  

We categorize workflow tasks to be either a 
synchronization task or a simple task. A synchronization task 
is defined as a task which has more than one parent or child 
task. In Figure 7a, 1T , 10T  and 14T  are synchronization tasks. 
Other tasks which have only one parent task and child task are 
simple tasks. In the example, 92 TT −  and 1311 TT −  are simple 
tasks.  

 
 
 
 
 
 
 
 
 
 
            (a)  Before partitioning.         (b)  After partitioning. 

Fig. 7. Workflow task partition.  

Let a branch be a set of simple tasks that are executed 
sequentially between two synchronization tasks. For example, 
the branches in Figure 7b are },,{ 432 TTT , },{ 65 TT , }{ 7T , 

},{ 98 TT , }{ 11T and },{ 1312 TT . We then partition workflow 

tasks �  into independent branches )1( kiBi ≤≤ and 

synchronization tasks )1( liYi ≤≤ , such that k  and l are the 
total number of branches and synchronization tasks in the 
workflow respectively.  

LetV be a set of nodes in a DAG corresponding to a set of 
task partitions )1( lkiVi +≤≤ .  Let E be the set of directed 

edges of the form ),( ji VV where iV is a parent task partition 

of  jV  and jV  is a child task partition of iV . Then, a task 

partition graph is denoted as ),,( DEVG . A simple path 
(referred to as path) in G is a sequence of task partitions such 
that there is a directed edge from every task partition (in the 
path) to its child, where none of the vertices (task partitions) 
in the path is repeated. 

A task partition iV has four attributes: start time ( ][ iVst ), 

deadline ( ][ iVdl ), expected execution time ( ][ iVeet ), and 

minimum execution time ( ][ iVmet ). The earliest start time of 

iV is the earliest time the first task in it can be executed and it 
can be computed according to its parent partitions,   

][ iVst = ][max j
iPjV

Vdl
∈

, where iP is the set of parent task 

partitions of iV . The minimum execution time of 

iV is �
∈ ≤≤iVxT

y
x

xmy
t min

1
. The attributes are related as: ][ iVeet = 

][ iVdl - ][ iVst .   
 

C. Deadline Assignment  
After workflow task partitioning, we distribute the overall 

deadline between each iV  in G . The deadline ][ iVdl  assigned 

to any iV  is a sub-deadline of the overall deadline D . In this 
paper, we consider the following deadline assignment policies: 

 
P1. The cumulative sub-deadline of any independent path 
between two synchronization tasks must be same. 

A synchronization task cannot be executed until all tasks in 
its parent task partitions are completed. Thus, instead of 
waiting for other independent paths to be completed, a path 
capable of being finished earlier can be executed on slower 
but cheaper services. For example, the deadline assigned to 

},{ 98 TT  is the same as }{ 7T in Figure 7. Similarly, deadlines 

assigned to },,{ 432 TTT , },{ 65 TT , and },{ { 7T      

}},{ },{ 131210 TTT are same. 
 

P2. The cumulative sub-deadline of any path from 
)( ientryi VTV ∈  to )( jexitj VTV ∈  is equal to the overall 

deadline D .   
P2 assures that once every task partition is computed 

within its assigned deadline, the whole workflow execution 
can satisfy the user’s required deadline.  
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P3. Any assigned sub-deadline must be greater than or equal 
to the minimum processing time of the corresponding task 
partition. 

If the assigned sub-deadline is less than the minimum 
processing time of a task partition, its expected execution 
time will exceed the capability that its execution services can 
handle.  
P4. The overall deadline is divided over task partitions in 
proportion to their minimum processing time. 

The execution times of tasks in workflows vary; some tasks 
may only need 20 minutes to be completed, and some others 
may need at least one hour. Thus, the deadline distribution for 
a task partition should be based on its execution time. Since 
there are multiple possible processing times for every task, we 
use the minimum processing time to distribute the deadline.  

 
We implemented deadline assignment policies on the task 

partition graph by combining Breadth-First Search (BFS) and 
Depth-First Search (DFS) algorithms with critical path 
analysis to compute start times, proportion and sub-deadlines 
of every task partition.  

 
D. Planning  

The planning stage is to generate an optimized schedule for 
advance reservation and run-time execution. The schedule 
allocates every workflow task to a selected service such that 
they can meet users’ deadline at low execution cost.  

We solve the workflow scheduling problem by dividing the 
entire problem into several task partition scheduling 
problems.  Once each task partition has its own sub-deadline, 
we can find a local optimal schedule for each task partition. If 
each local schedule guarantees that their task execution can 
be completed within their sub-deadline, the whole workflow 
execution will be completed within the overall deadline. 
Similarly, the result of the cost minimization solution for each 
task partition leads to an optimized cost solution for the entire 
workflow.  Therefore, an optimized workflow schedule can 
be easily constructed by all local optimal schedules.  

There are two types of task partitions: synchronization task 
and branch partition. The scheduling solutions for each type 
of partition and the overall algorithm are described in 
following sub-sections.  

 
1) Synchronization Task Scheduling (STS) 

For STS, the scheduler only considers one task to decide 
the service for executing that task. The objective function for 
scheduling of a synchronization task iY  is: 

j
icmin , where imj ≤≤1  and )( i

j
i Yeett ≤  

The solution to a single task scheduling problem is simple. 
The optimal decision is to select the cheapest service that can 
process the task within the assigned sub-deadline. 
2) Branch Task Scheduling (BTS) 

If there is only one simple task in a branch, the solution for 
BTS is the same as STS. However, if there are multiple tasks, 
the scheduler needs to make a decision on which service to 
execute its child task after the completion of the parent task.  
The optimal decision is to minimize the total execution cost 

of the branch and complete branch tasks within the assigned 
sub-deadline. The objective function for scheduling branch 

jB  is: 

�
∈ jBiT

k
icmin , where imk ≤≤1 and )( j

jBiT

k
i Beett ≤�

∈
 

BTS can be achieved by modeling the problem as a 
Markov Decision Process (MDP) [12], which has been shown 
to be effective for solving sequential decision problems.  

 
3) MDP Model for Sequential Branch Tasks  

The definition of our MDP model for scheduling branch iB  
is described below: 

 
States: 

A Markov decision process is a state space S  such that:  
Definition 1: A state Ss ∈  consists of current execution task 

iT   and remaining deadline RD .  
Definition 2: A start state is a state when the current 
execution task is the first task of the branch and RD is ][ iBdl .  
Definition 3: A terminal state is a state after the last task of 
the branch is completed.  
Actions and transitions: 

For every state s , there are a set of actions sA . Actions 
incur immediate utility and affect the MDP to transit from one 
state to another. 
Definition 4: An action in the MDP is to allocate a service to 
a task. There are two variables associated with each action a : 
the processing time of the service denoted as t  and the 
service price denoted as c . 
Definition 5: )(s,a,s'u  is the immediate utility obtained from 
taking action a at state s and transitioning to state s'  .  
 
 
 
Definition 6: A transition incurred by an action from one 
state to another is deterministic, as services are QoS 
guaranteed. 
 The MDP problem is to find an optimal policy *π  for all 
possible states. A policy is a mapping from s  to a .  Decision 
making for finding an optimal action for each state is not 
based on the immediate utility of the action but its expected 
utility, which is the sum of all the immediate utilities obtained 
as a result of decisions made for transiting from this state to a 
terminal state.  

The value associated to each state represents the expected 
utility of this state in the MDP. This value is calculated 
recursively by using the value of successor states. The value 
of one state s  is: 

)}'()',,({min)( sUsasusU
sAa

+=
∈

 

 The best action for state s  is:  
)}'()',,({minarg)(* sUsasus

sAa
+=

∈
π  

The computation of the optimal policy can be solved by 
using a standard dynamic programming algorithm such as 
policy iteration and value iteration [12] (we have used value 

a.c ,  otherwise 

   ∞ , 0. <RDs'  
)(s,a,s'u = 
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iteration here). The optimal policy indicates the best services 
that should be assigned to execute branch tasks under a 
specific sub-deadline.  
4) Planning Algorithm 

Figure 8 shows the pseudo-code of the algorithm for 
planning an execution schedule. After acquiring the 
information about available services for each task, a task 
partition graph G is generated from the application graph �  
and overall deadline D is distributed over every partition in it. 
Then optimal schedules are computed for every partition in G 
level-by-level using either STS or BTS. We also found that 
after the optimization of one partition, there is an idle time 
between expected completion of planned services and 
assigned sub-deadline.  Instead of waiting, we adjust the 
assigned sub-deadline of planned partitions and the start time 
of their child partitions.  
 

 
 
Fig. 8. Planning algorithm for optimizing execution cost within users’ 
deadline. STS is to compute an optimal schedule for a synchronization task 
to optimize the execution within sub-deadline while BTS is for branch tasks. 
 
E. Rescheduling  
 In order to complete workflows and satisfy users’ 
requirements, run-time rescheduling is required to be able to 
adapt to dynamic situations such as the variation in 
availability of services due to failures. The key idea of our 

rescheduling policy for handling an unexpected situation is to 
adjust sub-deadlines and re-compute optimal schedules for 
unexecuted task partitions level-by-level. The motivation of 
the level-by-level task partition approach is to reschedule the 
minimum number of task partitions. For example, if the 
execution of one task partition is delayed, we look at its child 
task partitions. If the delay time can be accommodated by the 
child task partitions, rescheduling will not impact on its lower 
levels. Otherwise, the rest of the delay time is accumulated to 
its successors until the total delay time has been distributed.  

 

 
Fig. 9. Rescheduling algorithm for a synchronization delay. 

 
The rescheduling algorithm for a synchronization task 

delay is illustrated in Figure 9. First, we adjust the start time 
of child task partitions to be the actual completion time of the 
delayed synchronization task (line 4). Then, we check 
whether the new deadlines of the child task partitions can be 
achieved by comparing their minimum processing times (line 
13). If achievable, the planner generates new optimal 
schedules for the tasks in the child task partitions based on the 
new expected execution times (line 14) and rescheduling is 
stopped. Otherwise, new sub-deadlines are assigned by using 
the minimum processing time as the expected execution time 
and then new schedules are generated (line 16-18). When the 
delay cannot be accommodated by the first level child 
partitions, the lower level child partitions are put into the 
queue for further rescheduling (line 19-22). A queue, Q, is 
used for implementing the breadth-first search algorithm for 
identifying new start time in the graph.  

For branch task rescheduling, if a branch task execution is 
delayed, the optimal schedule for the next branch task of the 
delayed task can still be obtained from the initial MDP result, 
according to its current remaining sub-deadline. The other 

Input: A task partition graph ),( DV,EG , delayed synchronization task X 
and delay time delay 
Output: a new schedule for the unexecuted tasks in the workflow 
1       ← 1S all child task partitions of X 

2  for all Gi   ∈  do   scheduled[i] ← true 
4  for all 1  Si∈ do  delayistist +←  ][  ][  
6  PartitionRescheduling(i) 
7  while Q is not empty do 
8   ← i remove the first task partition in Q 
9   ←3S all parent task partitions of  i 

10   if  2S     ∈∀ j ,  ][ jscheduled is true  then   ][ max  ][
3Sj

jdlist
∈

←  

12   PartitionRescheduling( i ) 
 
PartitionRescheduling( i ): 
13  if   ][  ) ][ - ][ ( imeistidl ≥  then  
14    compute a new optimal schedule for i 
15         true ][ ←ischeduled  

16  else ][  ][  ][ imeistidl +←  
17    compute a new optimal schedule for i 
18     true ][ ←ischeduled  

19   ← 4S all child task partitions of i 

20    for all 4S  ∈j do 
21    put j into Q      
22     false  ][ ←jscheduled   

Input: A workflow graph ),( D�,��  
Output: a schedule for all workflow tasks 
1     request processing time and price from available services for �Ti    ∈∀  

2        convert � into ),( DV,EG  

3   distribute deadline D over GVi    ∈∀  

4  for all GVi    ∈  do  ←][ischeduled false 

5  ← 1S all entry partitions  

6  for all 1  Si∈ do    
7   if i is a branch then  
8    compute an optimal schedule for i using BTS 
9   else   
10    compute an optimal schedule for i using STS 
11   ←][ischeduled true 
12   Child-PartitionHandling(i)  [see below] 
13   while Q is not empty do 
14   ←i  remove the first element in Q 

15   ← 2S all parent task partitions of i 

16    if  2S     ∈∀ j ,  ][ jscheduled is true  then   ][ max  ][
3Sj

jdlist
∈

←  

17   else   put i into Q 
18   compute an optimal schedule for i using STS  
19   Child-PartitionHandling(i) 
 
 Child-PartitionHandling( i): 
20   ][ ←idl get expected completion time of i 

21  ←2S get child task partitions of i 

22  for all 2  Sj ∈ do  
23   if  j is a branch partition then  
24    ][  ][ idljst ←  
25     compute an optimal schedule for j using BTS 
26     ←k get the child partition of j 
27     put k into a queue Q 
28   else  put j into Q 
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unexecuted partitions will not be affected as long as the delay 
does not exceed the minimum processing time of the 
remaining unexecuted tasks in the branch. 

In addition to handling task execution delay, the level-by-
level task partition based approach can also be applied for 
managing other dynamic situations such as service 
unavailability and service policy change.  

IV. PERFORMANCE EVALUATION 

The performance of QoS-based workflow scheduling 
algorithm described in Section III has been evaluated through 
simulation using the GridSim Toolkit [4]. We conducted 
several experiments by simulating the structure of a protein 
annotation workflow application (see Figure 10) developed 
by the London e-Science Centre [3]. The number in bracket 
next to the task represents the length of task in MI (million 
instructions). Every task in the workflow requires a certain 
type of service for processing.  

We simulated 15 types of services and each service type is 
supported by 5 different service providers. That is, we 
simulated 80 service providers. Table I shows attributes an 
instance of 5 different service providers in terms of  their 
processing capacity in MIPS (Million Instructions Per 
Second), delivery/processing time in second and price in G$. 
They all deliver the same type of service required for 
executing task 3. We extended GridSim to support service 
discovery with request based on QoS parameters. As 
indicated in Figure 11, the workflow system first discovers 
available services for every task via Grid Index Service (GIS) 
within GridSim and then queries the services to obtain their 
processing time and price. The processing time of a task on a 
service depends on the complexity of the task and the 
combined capability of resource used for service provision. 
As indicated in Figure 6, services with lower processing time 
are delivered at higher price.  

 
 

      
                Table I. QoS attributes of   
              services of different providers for 

                                           executing task 3. 
 
 

 
 
 
 
 
 

     Fig. 10.  A workflow for the protein annotation. 

In our first experiment, we compare our proposed 
scheduling algorithm denoted as Deadline Min-Cost with 
three other scheduling algorithms: Greedy-Cost, Greedy-Time 
and 100-Random Selection. The Greedy-Cost and Greedy-
Time algorithms always arrive at the best immediate solution 
while searching for an answer. The Greedy-Cost algorithm 
selects the cheapest service for executing each task, whereas 
the Greedy-Time algorithm selects the fastest service. The 
100-Random Selection algorithm uses the average value of 

execution time and execution cost captured through the 
repeated execution of workflow application 100 times in 
which services are selected randomly. 

 
Fig. 11. Service discovery in GridSim. 

The two main measurements used to evaluate the 
scheduling approaches are the time constraint and execution 
cost. The former indicates whether the schedule produced by 
the scheduling approach meets the required deadline, while 
the latter indicates how much it costs to schedule the 
workflow tasks on the simulated service Grid. 

Figure 12 compares the execution time and cost generated 
by the planner using the four scheduling approaches. As 
shown in Figure 12a, the expected execution time of 
workflow using Deadline Min-Cost algorithm increases as 
users relax their deadline. The workflow execution time for 
Greedy-Cost and 100-Random Selection algorithms is higher 
and cannot meet the users’ requirements when the deadline is 
lower. The Greedy-Time algorithm can complete earlier than 
the Deadline Min-Cost algorithm but its execution cost is 
much higher (Figure 12b). Figure 12b shows that the 
execution cost of workflow using Deadline Min-Cost 
algorithm is reduced as users relax their deadline. 
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a. Expected execution time of four scheduling approaches. 
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b. Expected execution cost of four scheduling approaches.  

Fig. 12. Expected execution time and cost using four scheduling approaches. 
Greedy-Time can complete the execution with earliest time, but the 
corresponding cost is very high. Greedy-Cost can complete the execution 
with cheapest cost, but it is unable to meet users’ deadlines when the 
deadline is small.  
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We can see from Figure 12 that the Deadline Min-Cost 
algorithm is the only one that considers users’ deadline 
requirements while optimizing the cost. The Greedy-Time 
and Greedy-Cost algorithms represent the scheduling 
approaches that intend to achieve minimization of execution 
time and cost respectively.  

In another experiment, we executed the workflow with the 
optimal services produced by the planner using the Deadline 
Min-Cost algorithm. At run-time, we simulated delays for the 
execution of task 6 as 0, 50, 100, 150, 200, 250 and 300 
seconds. Figure 13 shows that actual workflow completion 
time with and without rescheduling. We can see that 
rescheduling is able to adapt to the delay time and complete 
the workflow execution on time. However, the actual 
execution cost increases (Figure 14), since the scheduler 
switches the remaining tasks to more expensive services to 
speed up execution. Therefore, there is a need for appropriate 
penalty mechanisms to compensate for the loss caused by the 
violation of the QoS guarantees. 
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Fig. 13. Actual execution time of task 6 (deadline 1000 seconds) with 
rescheduling and without rescheduling for increasing delay. 
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Fig. 14.  Actual execution cost of task 6 (deadline 1000 seconds) with 
rescheduling for increasing delay.  

 

VI. CONCLUSION AND FUTURE WORK 
Workflow management on “pay-per-use” service Grids has 

not been addressed in existing Grid workflow systems. In this 
paper, we presented a QoS-based workflow management 
system.  In this, we proposed a novel QoS-based workflow 
scheduling algorithm that minimizes the cost of execution 
while meeting the deadline. We also described task 
partitioning and overall deadline assignment for optimized 
execution planning and efficient run-time rescheduling. We 
have utilized a Markov Decision Process approach to 
schedule sequential workflow task execution.  

The current system uses run-time rescheduling to handle 
service agreement violations.  In future work, we will further 
enhance our scheduling method to handle more dynamic 
scenarios such as dynamic pricing. 

ACKNOWLEDGMENTS 

We would like to thank Hussein Gibbins, Chee Shin Yeo, 
Srikumar Venugopal, Sushant Goel, and Arun Konagurthu for 
their comments on this paper. This work is partially supported 
through StorageTek Fellowship and Australian Research 
Council (ARC) Discovery Project grant. 

REFERENCES 
[1] S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt,  “VGE - A 

Service-Oriented Grid Environment for On-Demand Supercomputing”, 
In the Fifth IEEE/ACM International Workshop on Grid Computing 
(Grid 2004), Pittsburgh, PA, USA, November 2004. 

[2] M.J. Buco et al, “Utility computing SLA management based upon 
business objectives,” IBM System Journal, Vol. 43(1):159-178, 2004. 

[3] A. O’Brien, S. Newhouse and J. Darlington, “Mapping of Scientific 
Workflow within the e-Protein project to Distributed Resources”, In 
UK e-Science All Hands Meeting, Nottingham, UK, Sep. 2004. 

[4] R. Buyya and M. Murshed, 
�

GridSim: A Toolkit for the Modeling 
and Simulation of Distributed Resource Management and Scheduling 
for Grid Computing

�

 Concurrency and Computation: Practice and 
Experience,  Vol. 14(13-15):1175-1220, Wiley Press, USA, 2002. 

[5] K. Cooper et al, “New Grid Scheduling and Rescheduling Methods in 
the GrADS Project”, NSF Next Generation Software Workshop, 
International Parallel and Distributed Processing Symposium, Santa Fe, 
IEEE CS Press, Los Alamitos, CA, USA, April 2004. 

[6] E. Deelman et al, “Mapping Abstract Complex Workflows onto Grid 
Environments”, Journal of Grid Computing, Vol.1:25-39, 2003.  

[7] T. Eilam et al, “A utility computing framework to develop utility 
systems”,  IBM System Journal, Vol. 43(1):97-120, 2004. 

[8] T. Fahringer et al, “ASKALON: a tool set for cluster and Grid 
computing”, Concurrency and Computation: Practice and Experience, 
17:143-169, Wiley InterScience, 2005.  

[9] I. Foster et al, “The Physiology of the Grid”, Open Grid Service 
Infrastructure WG, Global Grid Forum, 2002. 

[10] A. Mayer et al, “ICENI Dataflow and Workflow: Composition and 
Scheduling in Space and Time”, In UK e-Science All Hands Meeting, 
Nottingham, UK, IOP Publishing Ltd, Bristol, UK, September 2003. 

[11] S. Newhouse, “Grid Economy Services Architecture (GESA)”, Grid 
Economic Services Architecture WG, Global Grid Forum, 2003.  

[12] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An 
Introduction”, MIT Press, Cambridge, MA, 1998. 

[13] G. Thickins, “Utility Computing: The Next New IT Model”, Darwin 
Magazine, April 2003.    

[14] J. Yu, S. Venugopal, and R. Buyya, “A Market-Oriented Grid 
Directory Service for Publication and Discovery of Grid Service 
Providers and their Services”, Journal of Supercomputing, Kluwer 
Academic Publishers, USA, 2005. 

[15] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems 
for Grid Computing”, Technical Report, GRIDS-TR-2005-1, Grid 
Computing and Distributed Systems Laboratory, University of 
Melbourne, Australia, March 10, 2005. 

[16] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor - A 
Distributed Job Scheduler. Beowulf Cluster Computing with Linux, 
The MIT Press, MA, USA, 2002. 

[17] G. Singh, E. Deelman, G. Mehta, K. Vahi, M. Su, B. Berriman, J. 
Good, J. Jacob, D. Katz, A. Lazzarini, K. Blackburn, S. Koranda, "The 
Pegasus Portal: Web Based Grid Computing", The 20th Annual ACM 
Symposium on Applied Computing, Santa Fe, NM, Mar. 13 -17, 2005. 

[18] A. Birnbaum, J. Hayes, W. Li, M. Miller, P. Bourne, H. Casanova, 
“Grid workflow software for High-Throughput Proteome Annotation 
Pipeline”, Proceedings of the First International Workshop on Life 
Science Grid (LSGRID2004), Ishikawa, Japan, June 2004. 


