
A Particle Swarm Optimization (PSO)-based Heuristic for Scheduling Workflow
Applications in Cloud Computing Environments

Suraj Pandey1, Linlin Wu1, Siddeswara Guru2, Rajkumar Buyya1
1Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

{spandey, linwu, raj}@csse.unimelb.edu.au

2Tasmanian ICT Centre, CSIRO
Tasmania, Australia

siddeswara.guru@csiro.au

Abstract

Cloud computing environments facilitate applications by
providing virtualized resources that can be provisioned dy-
namically. However, users are charged on a pay-per-use
basis. User applications may incur large data retrieval and
execution costs when they are scheduled taking into account
only the ‘execution time’. In addition to optimizing execu-
tion time, the cost arising from data transfers between re-
sources as well as execution costs must also be taken into
account. In this paper, we present a particle swarm op-
timization (PSO) based scheduling heuristic for data in-
tensive applications that takes into account both computa-
tion cost and data transmission cost. We experiment with a
workflow application by varying its computation and com-
munication costs. We analyze the cost savings when us-
ing PSO as compared to using existing ‘Best Resource Se-
lection’ (BRS) algorithm. Our results show that we can
achieve: a) as much as 3 times cost savings as compared
to BRS, b) good distribution of workload onto resources,
when using PSO based scheduling heuristic.

1 Introduction

Nowadays, many scientific experiments such as struc-
tural biology and chemistry, neuroscience data analysis and
disaster recovery are conducted through complex and dis-
tributed scientific computations that are represented and
structured as scientific workflows [8]. Scientific workflows
usually need to process huge amount of data and compu-
tationally intensive activities. A scientific workflow man-

agement system [14] is used for managing these scientific
experiments by hiding the orchestration and integration de-
tails inherent while executing workflows on distributed re-
sources provided by Cloud service providers.
Cloud computing is a new paradigm for distributed

computing that delivers infrastructure, platform, and soft-
ware (application) as services, which are made available
as subscription-based services in a pay-as-you-go model
to consumers [2]. It helps user applications dynamically
provision as many compute resources at specified locations
(currently US east1a-d for Amazon1) as and when required.
Also, applications can choose the storage locations to host
their data (Amazon S32) at global locations. In order to
efficiently and cost effectively schedule the tasks and data
of applications onto these cloud computing environments,
application schedulers have different policies that vary ac-
cording to the objective function: minimize total execution
time, minimize total cost to execute, balance the load on re-
sources used while meeting the deadline constraints of the
application, and so forth. In this paper, we focus on mini-
mizing the total execution cost of applications on these re-
sources provided by Cloud service providers, such as Ama-
zon and GoGrid3. We achieve this by using an iterative
method called Particle Swarm Optimization (PSO).
Particle Swarm Optimisation (PSO) is a self-adaptive

global search optimisation technique introduced by
Kennedy and Eberhart [9]. The algorithm is similar to other
population-based algorithms like Genetic algorithms but,
there is no direct combination of individuals of the popu-
lation. Instead, it relies on the social behaviour of the par-

1http://aws.amazon.com
2http://aws.amazon.com/s3/
3http://www.gogrid.com

ticles. In every generation, each particle adjusts its trajec-
tory based on its best position (local best) and the position
of the best particle (Global best) of the entire population.
This concept increases the stochastic nature of the particle
and converge quickly to a global minima with a reasonable
good solution.
PSO has become popular due to its simplicity and its

effectiveness in wide range of application with low com-
putational cost. Some of the applications that have used
PSO are: the reactive voltage control problem [23, 6], data
mining [16], chemical engineering [4, 13], pattern recogni-
tion [10] and environmental engineering [11]. The PSO has
also been applied to solve NP-Hard problems like Schedul-
ing [24, 21] and task allocation [22, 26].
Our main contributions in this paper are as follows:

• We formulate a model that uses PSO for task-resource
mapping to minimize the overall cost of execution

• We design a scheduling heuristic that uses PSO based
task-resource mapping

The rest of the paper is organized as follows: Section 2
presents related work, Section 3 describes the PSO model.
In Section 4 we describe the cost minimization problem
with a help of an example workflow. In Section 5, we
present our scheduling heuristic that uses PSO. Section 6
presents an experimental evaluation of the performance our
heuristic. Section 7 concludes the paper and discusses some
future work.

2 Related Work

Workflow applications are commonly represented as a
directed acyclic graph. Themapping of jobs to the compute-
resources is an NP-complete problem in the general form.
The problem is NP-complete even in two simple cases: (1)
scheduling jobs with uniform weights to an arbitrary num-
ber of processors and (2) scheduling jobs with weights equal
to one or two units to two processors [19]. So, past work
have proposed many heuristics based approach to schedul-
ing workflow applications. Data intensive workflow ap-
plications are a special class of workflows, where the size
and/or quantity of data is large. As a result, the transfer of
data from one compute node to another takes longer time,
incurs higher transmission cost and storage cost, than com-
pute processes running on these data.
Deelman et al. [5] have done considerable work on

planning, mapping and data-reuse in the area of workflow
scheduling. They have proposed Pegasus [5], which is a
framework that maps complex scientific workflows onto
distributed resources such as the Grid. DAGMan, together
with Pegasus, schedules tasks to Condor system. The Tav-
erna project [12] has developed a tool for the composition

and enactment of bioinformatics workflows for the life sci-
ence community. Other well-known projects on workflow
systems include GridFlow [3], ICENI [7], GridAnt [1] and
Triana [18]. Most of the past work schedule tasks on re-
sources based on earliest finish time, earliest starting time
or the high processing capabilities. We term these as “best
resource selection” (BRS) approach, where a resource is se-
lected based on its performance.
Previous work have used Genetic Algorithm (GA) for

scheduling workflows [25]. However, GA is not the best
approach. Salman et al. [15] have shown that the perfor-
mance of PSO algorithm is faster than GA in solving static
task assignment problem for homogeneous distributed com-
puting systems based on their test cases. Also, Lei et al.
[27] have shown that the PSO algorithm is able to get bet-
ter schedule than GA based on their simulated experiments
for Grid computing. In addition, the results presented by
Tasgetiren et al. [17] have provided evidence that PSO al-
gorithm was able to improve 57 out of 90 best known solu-
tions provided by other well known algorithms to solve the
sequencing problems.
We use PSO as it has a faster convergence rate than GA.

Also, it has fewer primitive mathematical operators than in
GA (e.g. reproduction, crossover, mutation), making appli-
cations less dependent on parameter fine-tuning. It allows
us to use the fitness function directly for the optimization
problem. Moreover, using discrete numbers, we can easily
correlate particle’s position to task-resource mappings.

3 Particle Swarm Optimization

Particle SwarmOptimisation (PSO) is a swarm-based in-
telligence algorithm [9] influenced by the social behaviour
of animals such as a flock of birds finding a food source or
a school of fish protecting themselves from a predator. A
particle in PSO is analogous to a bird or fish flying through
a search (problem) space. The movement of each particle
is co-ordinated by a velocity which has both magnitude and
direction. Each particle position at any instance of time is
influenced by its best position and the position of the best
particle in a problem space. The performance of a particle
is measured by a fitness value, which is problem specific.
The PSO algorithm is similar to other evolutionary algo-

rithms. In PSO, the population is the number of particles
in a problem space. Particles are initialised randomly. Each
particle will have a fitness value, which will be evaluated by
a fitness function to be optimised in each generation. Each
particle knows its best position pbest and the best position
so far among the entire group of particles gbest. The pbest
of a particle is the best result (fitness value) so far reached
by the particle, whereas gbest is the best particle in terms
of fitness in an entire population. The particle will have
velocity, which directs the flying of the particle. In each

generation the velocity and the position of particles will be
updated as follows:

vk+1
i = ωvk

i + c1rand1 × (pbesti − xk
i) +

c2rand2 × (gbest− xk
i), (1)

xk+1
i = xk

i + vk+1
i , (2)

where:
vk

i velocity of particle i at iteration k
vk+1

i velocity of particle i at iteration k + 1
ω inertia weight
cj acceleration coefficients; j = 1, 2
randi random number between 0 and 1; i = 1, 2
xk

i current position of particle i at iteration k
pbesti best position of particle i
gbest position of best particle in a population
xk+1

i position of the particle i at iteration k + 1.

4 Cost Minimization Problem

The mapping of tasks of an application workflow to dis-
tributed resources can have several objectives. We focus
on minimizing the total cost of computation of an applica-
tion workflow. We minimize the cost such that it completes
within the time (deadline) a user specifies.
We denote an application workflow using a Directed

Acyclic Graph (DAG) byG=(V, E), where V ={T1, ..., Tn}
is the set of tasks, and E represents the data dependencies
between these tasks, that is, tdatak = (Tj , Tk) ∈ E is
the data produced by Tj and consumed by Tk. We have a
set of storage sites S = {1, ..., i}, a set of compute sites
PC = {1, ..., j}, and a set of tasks T = {1, ..., k}. We
assume the ‘average’ computation time of a task Tk on a
compute resource PCj for a certain size of input is known.
Then, the cost of computation of a task on a compute host
is inversely proportional to the time it takes for computa-
tion on that resource. We also assume the cost of unit data
access txcosti,j (datacenter access cost and data transfer
cost) from a storage resource Si to a compute resourcePCj

is known. The access cost is fixed by the service provider
(e.g. Amazon CloudFront). The transfer cost can be cal-
culated according to the bandwidth between the sites. We
assume that these costs are non-negative, symmetric, and
satisfy the triangle inequality: that is, txcosti,j = txcostj,i
for all i, j ∈ N , and txcosti,j + txcostj,k ≥ txcosti,k for
all i, j, k ∈ N .
Figure 1 depicts a workflow structure with five tasks,

which are represented as nodes. The dependencies between
tasks are represented as arrows. This workflow is similar to
the Evolutionary Multi-objective Optimization (EMO) ap-
plication [20]. Each task may have an input file (e.g. f 1)
and generates output files after the task has been completed

T4T3

T1

T5

T2 PC
1

PC
2

PC
3

f1

f12

f25 f35

f14

f45

f5.out

S1 S2 S3f13

Figure 1: An example workflow, storage (S) and compute (PC)
nodes.

(f12, f13, ..., f45). The figure also depicts three compute
resources (PC1, PC2, PC3) connected with storage units
(S1, S2, S3) with varying network bandwidth (dark lines
represent faster links). The goal is to assign the workflow
tasks to the compute resources such that the cost of compu-
tation is minimized.
The problem can be stated as: “Find a task-resource

mapping instance M , such that when estimating the total
cost incurred using each compute resource PCj , the high-
est cost among all the compute resources is minimized.”
Let Cexe(M)j be the total cost of all the tasks assigned

to a compute resource PCj (Eq. 3). This value is computed
by adding all the node weights (the cost of execution of a
task k on compute resource j) of all tasks assigned to each
resource in the mapping M . Let Ctx(M)j be the total ac-
cess cost (including transfer cost) between tasks assigned
to a compute resource PCj and those that are not assigned
to that resource in the mapping M (Eq. 4). This value is
the product of the output file size (given by the edge weight
ek1,k2) from a task k1 ∈ k to task k2 ∈ k and the cost
of communication from the resource where k1 is mapped
(M(k1)) to another resource where k2 is mapped (M(k2)).
The average cost of communication of unit data between
two resources is given by dM(k1),M(k2). The cost of com-
munication is applicable only when two tasks have file de-
pendency between them, that is when ek1,k2 > 0. For two
or more tasks executing on the same resource, the commu-
nication cost is zero.
Equation 6 ensures that all the tasks are not mapped to

a single compute resource. Initial cost maximization will
distribute tasks to all resources. Subsequent minimization
of the overall cost (Equation 7) ensures that the total cost is
minimal even after initial distribution.

Cexe(M)j =
∑

k

wkj ∀M(k) = j (3)

Ctx(M)j =
∑

k1∈k

∑

k2∈k

dM(k1),M(k2)ek1,k2

∀M(k1) = j and M(k2) &= j (4)

Ctotal(M)j = Cexe(M)j + Ctx(M)j (5)
Cost(M) = max(Ctotal(M)j) ∀j ∈ P (6)

Minimize(Cost(M) ∀M) (7)

For a given assignmentM , the total cost Ctotal(M)j for
a compute resource PCj is the sum of execution cost and
transfer cost (Eq. 5). Then, the total cost for all the assign-
ments will be dominated by the highest cost of a compute
resource (Eq. 6). Hence, the goal of the assignment is to
minimize this cost (Eq. 7).

5 Scheduling based on Particle Swarm Opti-
mization

In this section, we present a scheduling heuristic for dy-
namically scheduling workflow applications. The heuris-
tic optimizes the cost of task-resource mapping based on
the solution given by particle swarm optimization tech-
nique. The optimization process uses two components: a)
the scheduling heuristic as listed in Algorithm 2, and b) the
PSO steps as listed in Algorithm 1.

Scheduling Heuristic: We calculate the average com-
putation cost (assigned as node weight in Figure 1 of all
tasks on all the compute resources. This cost can be calcu-
lated for any application by executing each task of an ap-
plication on a series of known resources. As the computa-
tion cost is inversely proportional to the computation time,
the cost is higher for those resources that complete the task
quicker. Similarly, we store the average value of communi-
cation time between resources per unit data. This time can
be obtained from logs, or through predictions. The cost of
communication is inversely proportional to the time taken.
We also assume we know the size of input and output data
of each task (assigned as edge weight ek1,k2 in Figure 1).

Algorithm 1 PSO algorithm.
1: Set particle dimension as equal to the size of ready tasks
in {ti} ∈ T

2: Initialise particles position randomly from PC =
1, ..., j and velocity vi randomly.

3: For each particle, calculate its fitness value Equation 6.
4: If the fitness value is better than the previous best pbest,
set the current fitness value as the new pbest.

5: After Steps 3 and 4 for all particles, select the best par-
ticle as gbest.

6: For all particles, calculate velocity using Equation 1
and update their positions using Equation 2.

7: If the stopping criteria or maximum iteration is not sat-
isfied, repeat from Step 3.

The initial step is to compute the mapping of all tasks in

the workflow, irrespective of their dependencies (Compute
PSO(ti)). This mapping optimizes the overall cost of com-
puting the workflow application. To validate the dependen-
cies between the tasks, the algorithm assigns the tasks that
are “ready” to the mapping given by PSO. By “ready” tasks,
we mean those tasks whose parents have completed exe-
cution and have provided the files necessary for the tasks’
execution. After dispatching the tasks to resources for ex-
ecution, the scheduler waits for polling time. This time
is for acquiring the status of tasks, which is middleware
dependent. Depending on the number of tasks completed,
the ready list is updated, which will now contain the tasks
whose parents have completed execution. We then update
the average values for communication between resources
according to the current network load. As the communica-
tion costs will have changed, we recompute the PSO map-
pings. Based on the recomputed PSO mappings, we assign
the ready tasks to the compute resources. These steps are
repeated until all the tasks in the workflow are scheduled.
The algorithm is dynamic (online) as it updates the com-

munication costs (based on average communication time
between resources) in every scheduling loop. It also recom-
putes the task-resourcemapping so that it optimizes the cost
of computation, based on the current network conditions.

Algorithm 2 Scheduling heuristic.
1: Calculate average computation cost of all tasks in all
compute resources

2: Calculate average cost of (communication/size of data)
between resources

3: Set task node weight wkj as average computation cost
4: Set edge weight ek1,k2 as size of file transferred be-
tween tasks

5: Compute PSO({ti}) /* a set of all tasks i ∈ k*/
6: repeat
7: for all “ready” tasks {ti} ∈ T do
8: Assign tasks {ti} to resources {pj} according
to the optimized particle position given by PSO

9: end for
10: Dispatch all the mapped tasks
11: Wait for polling time
12: Update the ready task list
13: Update the average cost of communication between

resources according to the current network load
14: Compute PSO({ti})
15: until there are unscheduled tasks

PSO: The steps in the PSO algorithm are listed in Al-
gorithm 1. The algorithm starts with random initialization
of particle’s position and velocity. Based on these values,
it evaluates the fitness function. On each evaluation, the
pbest and gbest values are updated according to Equations

1-2. The evaluation is carried out in a loop until the results
converge or until the specified number of iterations (user-
specified stopping criteria).

[1 2 3]
 T2 T3 T4

{ (T2, PC1), (T3, PC2), (T4, PC3) }

Task to resource mapping instance

A particle in PSO

Figure 2: A representation of task to resource mapping as a PSO
particle.

PSO Particle: Figure 2 depicts the representation of
a 3 − dimentional particle. Each position in the particle
represents a task and the value at that position represents
the mapping of the task to a resource.

6 Experimental Evaluation

In this section, we present the metric of comparison, the
experiment setup and the results.

6.1 Performance metric

As a measure of performance, we used cost for complete
execution of application as a metric. We computed the total
cost of execution of a workflow using two heuristics: PSO
based cost optimization (Algorithm 2), and best resource
selection (based on minimum completion time by selecting
a resource with maximum cost). The heuristic that achieves
minimum cost of execution but still meets the users’ dead-
line constraint is considered superior to others.

6.2 Data and Implementation

We have used three matrices that store the values for:
a) average computation cost of each task on each re-
source (TP-matrix), b) average communication cost per unit
data between compute resources (PP-matrix), and c) in-
put/output Data Size of each task (DS-matrix), as depicted
in Table 1.
The values for PP-matrix resemble the cost of unit data

transfer between resources given by Amazon CloudFront 4.
We assume PC1 to be in US, PC2 in Hong Kong (HK) and
PC3 in Japan (JP), respectively. We randomly choose the
values in the matrix for every repeated experiment, but keep
these values constant during the PSO iterations.
The values for TP-matrix varies for two classes of exper-

iments. While varying the size of data, we choose the TP-
matrix values to resemble the Evolutionary Multi-objective
Optimization (EMO) [20] application. While varying the

4http://aws.amazon.com/cloudfront/

Table 1: The TP-matrix, PP-matrix and DS-matrix

TP [5 × 3] =

2

666664

PC1 PC2 PC3
T1 1.23 1.12 1.15
T2 1.17 1.17 1.28
T3 1.13 1.11 1.11
T4 1.26 1.12 1.14
T5 1.19 1.14 1.22

3

777775

TP [i, j] = CostofexecutionofTi atPCj

PP [3× 3] =

2

664

PC1 PC2 PC3
PC1 0 0.17 0.21
PC2 017 0 0.22
PC3 0.21 0.22 0

3

775

PP [i, j] = CostofcommunicationbetweenPCi &PCj

(EC2priceofresourcesintherange1.1− 1.28/hr)

DST2,T3,T4[2 × 2] =

2

4
f1 f2

i/p 5 5
o/p 5 5

3

5

DST5[2 × 2] =

2

4
f1 f2

i/p 15 15
o/p 30 30

3

5

row1 = i/p file sizes, row2 = o/p file sizes

processing cost, we use the Amazon EC2’s5 pricing pol-
icy for different classes of virtual machine instances. E.g.
if we were to use small+medium instances of Linux ma-
chines in both US and Europe, the TP-matrix would have
values between $0.1-$0.3/hour, assuming all the tasks com-
plete within 1 hour.
As each task has its own DS-matrix, the sum of all the

values in the matrix varies according to the size of data we
experiment (64-1024MB).
For solving our PSO formulation, we modified and used

the JSwarm6 package available from sourceforge. Table 2
lists the values we used for the number of particles, iter-
ations and the number of experiments (for calculating the
confidence intervals) to obtain the results.

Table 2: The values for PSO optimization

Default # of particles = 25
Number of iterations = 20
Number of experiments = 30

6.3 Experiments and Results

We evaluated the scheduling heuristic using the work-
flow depicted in Figure 1. Each task in the workflow has

5http://aws.amazon.com/ec2/
6http://jswarm-pso.sourceforge.net/

input and output files of varying sizes. Also, the execution
cost of each task varies among all the compute resources
used (in our case PC1 − PC3). We analyze the perfor-
mance of our heuristic by varying each of these in turn.

6.3.1 Variation in Total Data Size of a Workflow

We varied the size of total data processed by the workflow
uniformly in the range 64-1024 MB. By varying data size,
we compared the variance in total cost of execution for the
two algorithms as depicted in Figure 3. We also measured
the distribution of workload on resources, as depicted in
Figure 4.

Figure 3: Comparison of total cost between PSO based resource
selection and best resource selection algorithms when varying total
data size of a workflow.

Total Cost of Execution: Figure 3 plots the total cost of
computation of the workflow (in the log scale) when the size
of data increases. The graph is plotted by averaging the re-
sult of 30 executions. The graph also plots 95% Confidence
Interval (CI) for each data point. The cost obtained by PSO
based task-resource mapping increases much slowly than
the BRS algorithm. PSO achieves at least three times lower
cost for 1024MB of total data processed than the BRS algo-
rithm. Also, the value of CI in cost given by PSO algorithm
is +/- 2.37, which is much lower as compared to the BRS

algorithm (+/- 253.04), for 1020 MB of data processed by
the workflow.
The main reason for PSO to perform better than the ‘best

resource’ selection is the way it takes into account commu-
nication costs of all the tasks, including dependencies be-
tween them. When calculating the cost of execution of a
child task on a resource, it adds the data transfer cost for
transferring the output from its parent tasks’ execution node
to that node. This calculation is done for all the tasks in
the workflow, hence a global minima is found. However,
the BRS algorithm calculates the cost for a single task at a
time, which does not take into account the mapping of other
tasks in the workflow. This results in PSO based algorithm
giving lower cost of execution as compared to BRS based
algorithm.

Figure 4: Distribution of workflow tasks on available processors.

Distribution of Load: For various sizes of total data pro-
cessed, we calculated the distribution of workflow tasks
onto available resources, depicted in Figure 4. This eval-
uation is necessary as algorithms may choose to submit
all the tasks to few resources to avoid communication be-
tween resources, thus minimizing communication cost to
zero (Equation 6 tries to avoid this as much as possible).
The X-axis has the size of data and the Y-axis the aver-
age number of tasks a compute resource received for every
size of data processed, as a percentage. The figure clearly

shows that tasks are well distributed for all the sizes of data.
When the size of data is smaller (for 64-256 MB) the tasks
were distributed to the cheaper resources (PC1 − PC2).
However, when the size of data increased over 256MB, the
tasks were distributed fairly equally among all the com-
pute resources. The distribution of tasks to all the available
resources in proportion to their usage costs, ensured that
hotspots (resource overloading) were avoided. Our heuris-
tic could minimize the total cost of execution, as well as
faily balance the load on available resources.

6.3.2 Variation in Compute Resource Cost

We experimented the performance of PSO by varying the
cost of computation of all compute resources. This variation
is practically justifiable as different Cloud service providers
(e.g. Amazon, GOGRID) can have varying pricing policies
depending on the type and capabilities of their resources
(virtual machines).
Figure 5 depicts the change in total cost of computa-

tion of applications for different range of compute resource
prices (price range are similar to Amazon EC2 instances in
US and Europe combined). The plotted values are an aver-
age of 30 executions. We use curve fitting to plot the lines
along the points to show the trend: rise in cost in compari-
son to rise in compute resource cost for the two algorithms.
Clearly, PSO based mapping has much lower cost as

compared to BRS based mapping. In addition, the slope of
the trend line shows that PSO maps tasks to resources such
that the percentage rise in total cost for increasing resource
costs is lower than that computed by BRS.
The reason for PSO’s improvement over BRS is due to

PSO’s global optimization strategy when mapping tasks in
the workflow. BRS simply maps a task to the resource that
has minimum completion time (a resource with higher fre-
quency, lower load and thus having higher cost). As the
resource costs increase, the user of BRS leads to more costs
due to the affinity towards better resource. Whereas, PSO
analyzes the local best and the global best values before
changing the task-resource mappings.

7 Conclusions & Future Work

In this work, we presented a scheduling heuristic based
on Particle Swarm Optimization (PSO). We used the heuris-
tic to minimize the total cost of execution of scientific ap-
plication workflows on Cloud computing environments. We
varied the communication cost between resources, the exe-
cution cost of compute resources and compared the results
against “Best Resource Selection” (BRS) heuristic. We
found that PSO based task-resource mapping can achieve
at least three times cost savings as compared to BRS based
mapping. In addition, PSO balances the load on compute

Figure 5: Comparison of total cost between PSO based resource
selection and best resource selection algorithms when varying
computation cost of resources.

resources by distributing the tasks the available resources.
As part of our future work, we would like to integrate

PSO based heuristic into our workflow management sys-
tem to schedule workflows of real applications such as brain
imaging analysis [14], EMO [20], and others.

Acknowledgments

This work is partially supported through Australian Re-
search Council (ARC) Discovery Project grant. Some val-
ues in our experiments were obtained from Amazon Cloud
Services (EC2, CloudFront and S3) pricing policies. We
would like to thank William Voorsluys of the University
of Melbourne for his comments on the experiments and re-
sults.

References

[1] K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluzec,
S. Hampton, and A. Rossi. Gridant: A client-controllable
grid work.ow system. In HICSS ’04: Proceedings of the
Proceedings of the 37th Annual Hawaii International Con-
ference on System Sciences (HICSS’04) - Track 7, 2004.

[2] R. Buyya, S. Pandey, and C. Vecchiola. Cloudbus toolkit for
market-oriented cloud computing. In Proceeding of the 1st

International Conference on Cloud Computing (CloudCom
2009), Beijing, China, December 2009. Springer, Germany.

[3] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Gridflow:
Workflow management for grid computing. In CCGRID
’03: Proceedings of the 3st International Symposium on
Cluster Computing and the Grid, pages 198–205, Washing-
ton, DC, USA, 2003.

[4] A. R. Cockshott and B. E. Hartman. Improving the fermen-
tation medium for echinocandin b production part ii: Parti-
cle swarm optimization. Process Biochemistry, 36:661–669,
2001.

[5] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,
A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: A framework
for mapping complex scientific workflows onto distributed
systems. Sci. Program., 13(3):219–237, 2005.

[6] Y. Fukuyama, S. Takayama, Y. Nakanishi, and H. Yoshida.
A particle swarm optimization for reactive power and volt-
age control in electric power systems. In the Genetic
and Evolutionary Computation Conference 1999 (GECCO
1999), pages 1523–1528, 1999.

[7] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Dar-
lington. Iceni: an open grid service architecture imple-
mented with jini. In Supercomputing ’02: Proceedings of
the 2002 ACM/IEEE conference on Supercomputing, 2002.

[8] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox,
D. Gannon, C. Goble, M. Livny, L. Moreau, and J. My-
ers. Examining the challenges of scientific workflows. Com-
puter, 40(12), 2007.

[9] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Neural Networks, 1995. Proceedings., IEEE International
Conference on, volume 4, pages 1942–1948 vol.4, 1995.

[10] J. Louchet, M. Guyon, M. J. Lesot, and A. Boumaza. Dy-
namic flies: a new pattern recognition tool applied to stereo
sequence processing. Pattern Recognition Letters, 23(1-
3):335–345, 2002.

[11] W. Z. Lu, H.-Y. Fan, A. Y. T. Leung, and J. C. K. Wong.
Analysis of pollutant levels in central hong kong applying
neural network method with particle swarm optimization.
Environmental Monitoring and Assessment, 79(3):217–230,
Nov 2002.

[12] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformat-
ics, 20(17):3045–3054, November 2004.

[13] C. u. O. Ourique, E. C. J. Biscaia, and J. C. Pinto. The
use of particle swarm optimization for dynamical analysis in
chemical processes. Computers and Chemical Engineering,
26(12):1783–1793, 2002.

[14] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. Dob-
son, and K. Chiu. A grid workflow environment for brain
imaging analysis on distributed systems. Concurrency and
Computation: Practice and Experience, In Press, 2009.

[15] A. Salman. Particle swarm optimization for task assignment
problem. Microprocessors and Microsystems, 26(8):363–
371, November 2002.

[16] T. Sousa, A. Silva, and A. Neves. Particle swarm based data
mining algorithms for classification tasks. Parallel Comput-
ing, 30(5-6):767–783, 2004.

[17] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyil-
maz. A particle swarm optimization algorithm for makespan
and total flowtimeminimization in the permutation flowshop
sequencing problem. European Journal of Operational Re-
search, 177(3):1930–1947, March 2007.

[18] I. Taylor, M. Shields, I. Wang, and R. Philp. Distributed p2p
computing within triana: A galaxy visualization test case.
In IPDPS ’03: Proceedings of the 17th International Sym-
posium on Parallel and Distributed Processing, 2003.

[19] J. D. Ullman. Np-complete scheduling problems. J. Comput.
Syst. Sci., 10(3), 1975.

[20] C. Vecchiola, M. Kirley, and R. Buyya. Multi-objective
problem solving with offspring on enterprise clouds. Pro-
ceedings of the 10th International Conference on High-
Performance Computing in Asia-Pacific Region (HPC Asia
2009), pages 132–139, March 2009.

[21] K. Veeramachaneni and L. A. Osadciw. Optimal scheduling
in sensor networks using swarm intelligence. 2004.

[22] P.-Y. Yin, S.-S. Yu, and Y.-T. Wang. A hybrid particle
swarm optimisation algorithm for optimal task assignment
in distributed systems. Computer Standards and Interfaces,
28(4):441–450, 2006.

[23] H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi. A
particle swarm optimization for reactive power and voltage
control considering voltage stability. In the International
Conference on Intelligent System Application to Power Sys-
tem, pages 117–121, 1999.

[24] B. Yu, X. Yuan, and J. Wang. Short-term hydro-thermal
scheduling using particle swarm optimisation method. En-
ergy Conversion and Management, 48(7):1902–1908, 2007.

[25] J. Yu, R. Buyya, and K. Ramamohanarao. Work-
flow Scheduling Algorithms for Grid Computing, volume
146/2008, chapter 7, pages 173–214. Springer Berlin / Hei-
delberg, 2008.

[26] A. E. M. Zavala, A. H. Aguirre, E. R. Villa Diharce, and
S. B. Rionda. Constrained optimisation with an improved
particle swarm optimisation algorithm. International Jour-
nal of Intelligent Computing and Cyvernetics, 1(3):425–453,
2008.

[27] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang. A task
scheduling algorithm based on pso for grid computing. In-
ternational Journal of Computational Intelligence Research,
4(1), 2008.

