
Scheduling Data Intensive Workflow Applications based
on Multi-Source Parallel Data Retrieval in Distributed

Computing Networks

Suraj Pandey, Rajkumar Buyya∗

The Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Abstract

Many large-scale scientific experiments are carried out in collaboration with re-
searchers and laboratories located around the world so that they can leverage
expertise and high-tech infrastructures present at those locations and collec-
tively perform experiments quicker. Data produced by these experiments are
thus replicated and gets cached at multiple geographic locations. This necessi-
tates new techniques for selection of both data and compute resources so that
executions of applications are time and cost efficient when using distributed
resources. Existing heuristics based techniques select ‘best’ data source for
retrieving data to a compute resource and then carry out task-resource assign-
ment. But, this approach of scheduling, which is based only on single source
data retrieval, may not give time (and cost) efficient schedules when: 1) tasks
are interdependent on data (workflow), 2) average size of data processed by
every task is large, and 3) data transfer time exceeds task computation time by
at least an order of magnitude. To achieve time efficient schedules, we leverage
the presence of replicated data sources to retrieve data in parallel from multiple
sources by incorporating the technique in our scheduling heuristic. In this paper,
we proposed multi-source data retrieval based scheduling heuristic that assign
interdependent tasks to compute resources based on both multi-source parallel
data retrieval time and task-computation time. We carried out scheduling ex-
periments by modeling applications from life sciences and astronomy domains
and deploying them on both emulated and real testbed environments. Hence,
with a combination of data retrieval and task-resource mapping technique, we
showed that our heuristic can achieve time-efficient schedules that are better
than existing heuristic based techniques, for scheduling application workflows.

Keywords: Workflow Scheduling, Parallel Data Retrieval, Data Intensive
Workflow Applications, e-Science Applications, Grid Computing, Cloud
Computing

∗Corresponding author
Email addresses: spandey@csse.unimelb.edu.au (Suraj Pandey),

raj@csse.unimelb.edu.au (Rajkumar Buyya)

September 16, 2010

1. Introduction

Large scale scientific experiments such as the Compact Muon Solenoid (CMS)
experiment for the Large Hadron Collider (LHC) at CERN and the Laser Inter-
ferometer Gravitational-Wave Observatory’s (LIGO) science runs are producing
huge amount of data. Scientists around the world are collaborating to leverage
the expertise of each other and also utilize the largely distributed IT infrastruc-
ture for the analysis of these data. As they carry out repeated experiments,
data get replicated and are cached at multiple locations around the world. We
describe each of these applications in turn in relation to quantity of data pro-
duced/analyzed and locality of data.

Figure 1: Tier-1 (red star) and Tier-2 (blue squares) sites worldwide in CMS (Image courtesy
of James Letts, http://cms.web.cern.ch, May 2008)

Case 1: The Compact Muon Solenoid Experiment (CMS) “still produces
more than five petabytes per year when running at peak performance1”. It has
large number of “Tier-2” analysis centers where physics analysis are performed,
as depicted in Figure 1. However, Tier-2 centers rely upon Tier-1s for access
to large datasets and secure storage of the new data they produce. Tier-2 sites
are responsible for the transfer, buffering and short-term caching of relevant
samples from Tier-1’s, and transfer of produced data to Tier-1’s for storage [1].
They are required to import 5 TB/day of data from Tier-1 and other data
replicated at T2, and export 1 TB/day (This is based on ∼ 108 simulated events
per year per Tier-2, multiplied by the event size and divided by the number of
working days). According to James Letts, “The ability to move and analyze
data is essential to any experiment, and so far the data transfer system in CMS
seems to be up to the challenge”.

1http://cms.web.cern.ch/cms/Detector/Computing/index.html

2

MIT

LSC:PSU
LSC:UWM

LHO

LLO

CALTECH

3002 Km

(L/c = 10 ms)

Figure 2: LIGO Data Grid (LDG) (courtesy:http://ligo.org.cn/testbeds.shtml)

Case 2: The LIGO Scientific Collaboration (LSC), currently made up of
almost 700 scientists from over 60 institutions and 11 countries worldwide, is a
group of scientists seeking to detect gravitational waves and use them to explore
the fundamental physics of gravity. The LIGO Data Grid (LDG), depicted in
Figure 2, has laboratory centers (Caltech, MIT, LHO and LLO) and LSC insti-
tutions (UWM, and 3 sites in the EU managed by the GEO-600 collaboration)
offering computational services, data storage and grid computing services. The
LDG uses the LIGO Data Replicator (LDR) to store and distribute data. Input
data is common to the majority of analysis pipelines, and so is distributed to
all LDG centers in advance of job scheduling [2]. The analysis of data from
gravitational-wave detectors are represented as workflows. Using middleware
technologies, such as workflow planning for grids (Pegasus) and Condor DAG-
Man for management, the LDG continues to manage complex workflows for its
growing number of users.

Rationale: In Case 1, data is being shared via a central repository with its
Tier-2 members and Tier-2 caches these data for short-term usage. In the three
hypothetical ‘use cases’ presented in [1], scientists are continuously sharing the
cached data for repeated experiments and analysis. Therefore, the presence of
these replicated/cached data could be used for minimizing the transfer time,
as compared to getting them from Tier-1 directly every time: the need for
multi-source data transfer. In addition, the results obtained after analy-
sis are transferred back to Tier-1, which would then be downloaded by users
from Tier-2. This back and forth transfer of data could also be minimized by
caching/transferring the output results to specific locations, where users are
active: the need for output data management.

Similarly, in Case 2, as input data is replicated at all LDG centers, complex
workflows could make use of these multiple data sources while transferring data.
The intrinsic characteristic that input data is common to majority of analysis
pipelines justifies the need for replication before application execution. This
in-turn benefits any heuristic using multi-source retrieval techniques. Similar

3

to Case 1, the results obtained from Case 2 could also be managed/replicated
at selected sites so that scientists can retrieve data within short period of time
from these sites.

When scheduling and managing the executions of these applications, an
application scheduler should be able to select these data sources and parallelize
the transfer of data to a compute host to optimize the transfer time. Similarly,
the selection of the compute host, in relation to the selected set of data hosts,
should be such that the execution time is minimized. We thus focus on these two
aspects – data host and compute host selection while scheduling data intensive
scientific application workflows.

Different approaches such as the replica selection in the Globus Data Grid
[3], Giggle framework [4] and combinations of these methods are used to resolve
replicas in data intensive applications. However, these replica selection services
primarily select one ‘best’ replica per task that gives the minimum transfer time
to a compute host. But for applications that have tasks with data-dependencies
and multiple input files per task, selecting one ‘best’ replica may not always
give the optimal transfer time [5, 6].

Storage and distribution services provided by storage service providers such
as Nirvanix Storage Delivery Network (http://www.nirvanix.com), Cloud Stor-
age [Amazon Simple Storage Services (S3), (http://www.amazon.com)], are en-
abling users and scientists to store and access content from edge servers dis-
tributed globally. These content distribution network can be used by data inten-
sive applications for storage and distribution. Users can then retrieve data from
these multiple data hosts or edge servers (in contrast to single ‘best’ storage
resource) in parallel to minimize the total transfer time. As data are transferred
in segments, the transfer process is carried out in parallel when using multiple
data sources. This is termed as ‘multi-source parallel-data-retrieval (MSPDR)’
in this article. In addition to selecting data hosts, we also need to choose a
resource where the data is transferred for execution of application tasks.

In this article, we present two scheduling heuristic that leverage multi-
source parallel data-retrieval techniques. We experiment with existing (a) probe-
based[6], (b) greedy [6], and (c) random site selection based data retrieval tech-
niques for retrieving data from selected data-hosts while scheduling tasks in
a workflow. We also propose a tree based approach for selecting multiple data
sources during the scheduling process. We then study the effect of using MSPDR
based heuristics on the makespan (i.e., the length of the schedule – data transfer
and execution time) of representative data intensive application workflows. Fi-
nally, we compare the makespan obtained by using MSPDR-heuristics against
single ‘best’ data source based heuristics.

2. Problem Statement

We now describe the problem of data host selection and tasks to resource
mapping in the presence of large number of replicated files for workflow appli-
cations [7].

4

Def 1: DTSP (D, R, T, F, G, L, M) Given a set of data-hosts D, a set of
compute resources R, a set of tasks T , a set of files F (both input and output
files of T), a graph G that represents the data flow dependencies between tasks
T , the Data-Task Scheduling Problem (DTSP) is a problem of finding assign-
ments of tasks to compute-hosts [task schedule = {tr}, t ∈ T, r ∈ R], and the
partial data set (PDtr) to be transferred from selected data-hosts to assigned
compute hosts [data set = {{PDdi→r}tr ∀di ∈ D, r ∈ R, i ≤ |D|}] for each
task, simultaneously, such that: total execution time (and cost) at r and data
transfer time (and cost) incurred by data transfers {PDdi→r} for all the tasks
are minimized.

The pre-conditions are:

1. Data files are replicated across multiple data hosts
2. Each task requires more than one data file
3. Total time and cost are bounded by L and M , respectively, where L

signifies deadline and M denotes maximum money (real currency) that
can be spent on executing all the tasks in T

In this article, we propose heuristics based scheduling techniques for the
problem stated in DEF 1 by limiting the number of objectives to only one:
minimize the makespan. Hence, execution and data transfer cost are zero.

3. Scheduling Heuristic

In this section, we first describe a static scheduling heuristic (also known
as offline scheduling) assuming the scheduler has advance information of the
environment. For dynamic environments, where the estimates are not used, we
propose a Steiner Tree based resource selection method. Using this tree, we
then describe a dynamic scheduling heuristic (also known as online scheduling)
where the scheduler makes scheduling decisions at run-time.

3.1. Static Scheduling Heuristic
We propose an Enhanced Static Mapping Heuristics (ESMH) assuming the

scheduling system has advance information of tasks, compute and storage re-
sources and network statistics at the time of scheduling and prior to execution,
as listed below:

• Number of tasks to be scheduled

• Estimated execution time of every task on a set of dedicated resources

• Maximum execution time of a task (used for task preemptions in a priority
queue based resource management system)

• Size of data handled by each task

• Earliest start time for an unscheduled task on any given resource

5

• Resource characteristics: CPU MHz, memory, cache

• Average network bandwidth available between resources at the time of
scheduling (based on prediction)

Data-Resource Matrix: Every task tk ∈ T processes a set of input to
produce output files, all in the set {f1, ..., fn}tk ∀fi ∈ F . A data-resource
matrix for a task tk stores the average time required for each file fi, or a set
of files {fi}, to be transferred to a resource (rj) at a location mij . The mij

values must be calculated/estimated in advance by using partial file transfer
mechanisms, e.g. probe, random or greedy.

In static mapping heuristics (e.g. HEFT, HBMCT), it is a common practice
to compute or estimate these transfer times using access logs, prediction models
or real-executions. This matrix is similar to a meta-data catalog that provides
transfer times of files between resources. Our approach is different than the
meta-data catalogs as data is transferred from multiple locations in parallel
using either probe or greedy based retrieval technique.

Resource Selection: We select compute resources based on the Earliest
Finish Time (EFT) value we calculate for a task on a resource. This EFT value
is calculated by adding the estimated computation time of a task on a resource
avg comp(ti, Rk) ∀ti ∈ T ; Rk ∈ R and the estimated transfer time of total data
to the resource tr({f}ti , Rk). To select the resource that has the minimum
EFT for a task, we rely on external information, usually obtained by using an
Estimated Time to Compute (ETC) matrix, user supplied information, task
profiling, analytical benchmarking, as mentioned by Siegel et al. [8].

Heuristics: Algorithm 1 lists the ESMH. We start task-resource mapping
by selecting tasks in a workflow on a level-by-level basis. The DAG representa-
tion of a workflow is divided into levels to form a tree using breadth-first-search
(BFS). The BFS begins at the root node and explores all the neighboring nodes.
Then, for each of those neighboring nodes, we explore their unexplored neigh-
bors and so on, until we have explored all the tasks in the DAG. Each search
step defines a new level until we reach the leaf nodes.

For each task, we first form a set of compute resources {R} by selecting
only those resources that have Minimum Transfer Time (MTT) min(tr({fi}))
for each input file fi of a task ti. The transfer time value tr({fi}, resource) =
mij = m[file, resource] is obtained from the data-resource matrix for all the
resources. We then form a compute resource set {R} that contains resources
having MTT for each input file for all the tasks in the workflow. Among these
resources, we mark a resource Rk ∈ {R} that has minimum computation time
for the task ti. Next, we estimate the Earliest Finish Time (EFT) value of the
task (EFTmin avg) by adding the average of the minimum Execution Time (ET)
given a resource for the task and the transfer time of all input files required by
the task to that resource. This EFT value is an average value since we take the
average of all the minimum computation time (min avg comp) of tasks on that
resource. We assume the minimum computation time of every task varies on a
resource as the size of input files vary.

6

Algorithm 1: Enhanced Static Mapping Heuristics (ESMH)
Data: Tasks {ti} with input files {f1, ..., fn}ti,
Data: A data-resource matrix {M: mij = tr(fi → rj)}
Data: Average computation time: avg comp of ti on each rj

Data: fk ∈ F can be fully downloaded from more than one location
(replicated)

begin
for each task starting from the root do

Form resource set {R} that has min(tr({fi})) for each file fi

required by task ti
Mark Rk ∈ {R} that has min. computation time for ti
EFTmin avg = min avg comp(ti, Rk) + tr({f}ti, Rk)
for each resource ri ∈ {R} do

EFTrelative = avg comp(ti, ri) + tr({f}ti, ri)
if [EFTrelative] < [EFTmin avg] then

Map ti to ri; break;

if ti not assigned then
Mark Rm /∈ {R} that has minimum tr time for the largest file
required by task ti
EFTfile = min avg comp(ti, Rm) + tr({f}ti, Rm)
if [EFTfile] ≤ [EFTmin avg] then

Map ti to Rm

else
Map ti to Rk /* last option */

Update resource availability information based on task-resource
mapping

end

Next, we calculate the EFT value of the task ti for all the resources in the
resource set {R}. This EFT given by each resource is termed as EFTrelative.
EFTrelative is different than EFTmin avg as the EFT value is relatively depen-
dent (convolution relationship) on data transfer and on average computation,
unlike EFTmin avg which is dominated by the minimum value of execution
time given by a resource. We then compare the EFTmin avg value against the
EFTrelative. If we find a resource that has the EFTrelative value lesser than
the EFTmin avg, then we assign the task to the resource that gives this lesser
EFTrelative.

If none of the resources in the set {R} have EFT value lower than EFTmin avg,
we compute the EFT based on the file size. We choose a resource Rm such that it
has minimum transfer time value for the largest input file of the task ti. We then
compute the EFTfile based on this resource Rm. The task is then assigned to
the resource that has minimum EFT value (either Rm or Rk). We could search
for optimal EFTrelative, but it would be computationally not feasible for large

7

resource set {R}.
Rationale: The formation of a bounded compute resource set {R} ensures

that only limited, but right candidate resources are selected from a pool of
large number of resources. The resources in this set are selected based on the
transfer time of input files of each task. As we are considering data-intensive
workflows, we focus on minimizing data transfer time (i.e. EFTrelative, EFTfile)
over task computation time (i.e. EFTmin avg). Thus, the heuristic maps tasks
to resources based on the size of data. If all the input files of a task have higher
values of transfer time than its averaged minimum computation time, the task
is assigned to the resource that has minimum EFTrelative value. If only some of
the input files of a task have higher values of transfer time than computing time,
the task is assigned to the resource that has minimum EFTfile value. If the
averaged minimum computation time of a task outweighs the transfer time of
input files, the task is assigned to the resource that gives minimum EFTmin avg

value. Hence, in a workflow, all the tasks get equal share of resources depending
on their data and computation requirements.

ESMH is different than HEFT, HBMCT and existing static heuristics as:
(a) it evaluates task schedules based on multi-source file transfer times to a
resource (b) manages task to resource mapping based on both data-transfer
and computation requirements, (c) uses only selected resources in contrast to
all available resources, and (d) balances tasks to resource mappings based on
both transfer time and computation time.

3.1.1. Example Workflow
Figure 3 shows an example of a workflow with input and output files and data

dependencies between tasks. The table in Figure 3c shows the schedule length
produced by using ESMH listed in Algorithm 1. In this example, ESMH uses
values from pre-computed matrices. These matrices are: a) one that stores val-
ues of average computation time of each task on each resource (Figure 3a) and b)
one that stores values of average transfer time of each data-file from distributed
data-centers to each resource (Figure 3c) based on probe-based multi-source
parallel retrieval technique. As ESMH is an offline heuristic, these matrices are
computed before the heuristic operates.

In this example, we have three resources {R1, R2, R3} and eight tasks t1 to
t8. Each task operates on several input files to produce output files. We take
the example of mapping of task t3. The schedule given by each resource R1,
R2 and R3 is (12+3917), (4+2571) and (21+3184) seconds, respectively. As
resource R2 ’s available time is after task t1 finishes execution, the minimum
EFT is given by resource R3, hence the mapping.

3.1.2. Limitations of Static Heuristic
The static heuristic we have proposed would be most appropriate if all of

our assumptions listed in sub-section 3.1 could be realized in practice. However,
in distributed environment where resources are shared among a large number
of users, the estimates recorded in the matrices, as described above, will have
large deviations compared to the values at the time of task execution. Hence the

8

F7,F3

F6,F7
F1,F3 F8,F4,F0 F4,F6,F9

F1,F3,
F9,F8

F3,F0,F2

F6,F8
F3,F0,F2,F6,F8,F5

F7,F8,F0

t1

t2 t3 t4 t5

t6 t7

t8

F1,F9,F5,F2,F3

F1,F9,F5,F4,F6

F6,F7,F8,F4,F0,F9,F1

F1,F9,F5

F1,F9,F5,F3
F1,F9,F5,F4,F3

Data Dependency
Task t

Storage Cloud F1,F2, ...

Output Files

Input Files

a) Task execution time
on resources

b) Multi-source file transfer
time based on probe-based

parallel retrieval c) A schedule generated by using ESMH
Tasks R1 R2 R3
t1 8 23 40
t2 8 41 43
t3 12 4 21
t4 29 39 49
t5 35 8 22
t6 2 27 16
t7 26 43 29
t8 3 4 12

Files R1 R2 R3
F0 10 341 1438
F1 376 1351 1344
F2 401 45 108
F3 375 243 942
F4 1005 158 1022
F5 845 379 105
F6 256 240 12
F7 475 1315 639
F8 1441 1259 727
F9 1435 443 701

Tasks R1 R2 R3 start finish
t1 - 680 - 0 680
t2 384 - - 680 1064
t3 - - 4224 680 4904
t4 4266 - - 1064 5330
t5 510 - - 5330 5840
t6 8698 - - 5850 14538
t7 - 12145 - 5840 17985
t8 - 20833 - 17985 38818

Makespan = 38818

Figure 3: An example workflow, matrices with estimated values, and a schedule generated
by using ESMH.

static estimates of computation and communication time cannot be relied upon
for time efficient scheduling of applications that have long-running tasks with
large data-sets to process. This limitation prevents us from forming the initial
resource set {R} in Algorithm 1. To circumvent this limitation, we propose
a Steiner Tree based resource selection and apply it for online scheduling, as
described in the following section.

3.2. A Steiner Tree
Definition: A Steiner Tree problem can be defined as: Given a weighted

undirected graph G = (V, E), and a set S subset of V , find the Minimum-Cost
tree that spans the nodes in S.

G = (V, E) denotes a finite graph with a set V of vertices and the set E of
edges. A weight w defines a number w(e) ∈ R+

0 associated with each edge e, i.e,
w : E → R+

0 . In particular, the weight d : E → R+
0 , and c : E → R+

0 represent
the delay and the cost of the link, respectively. A path is a finite sequence of non-
repeated nodes p = (v0, v1, · · · , vi), such that, 0 < i ≤ k, k = |V |, there exists
a link from vi to v(i + 1) ∈ E. A link e ∈ p means that path p passes through

9

link e. The delay and cost of a path p are thus given by: d(p) =
∑

e∈p d(e), and
c(p) =

∑
e∈p c(e).

A spanning tree T of a graph G with length, which is the shortest among all
spanning trees, is called a minimum spanning tree for G. An Steiner-Minimal-
Tree (SMT) for a set of points is a minimum spanning tree, where a finite set of
additional vertices VA is introduced into the space in order to achieve a minimal
solution for the length of the path p.

In order to approximate the length of the path p, we assume the delay and
cost of a path are in metric space and can be combined with the a distance
function ρ.

Let (X, ρ) be a metric space. That means: X is a nonempty set of points
and ρ : X2 �→ � is a real-valued function, called a metric, satisfying:

1. ρ(x, y) ≥ 0 for any x, y in X ; whereby equality holds if and only if x = y;
2. ρ(x, y) = ρ(y, x) for any x, y in X ; and
3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z in X (triangle inequality).

G = (V, E) is embedded in (X, ρ) in such a way that V is a set of points in
X and E is a set of unordered pairs vv′ of points v, v′ ∈ V . For each edge vv′ a
length is given by ρ(v, v′). Hence, we define the length of the graph G in (X, ρ)
as the total length of G:

L(G) = L(X, ρ)(G) =
∑

vv′∈E

ρ(v, v′). (1)

Thus, the SMT is a tree that connects vertices in V with additional vertices
VA to lower the path length ρ. Even though Internet can be regarded as a
non-metric space, where the network flow is constantly changing in time and
the triangle inequality may not hold, the assumption that ρ is in metric space
highly simplifies the problem of constructing the tree and hence selecting vertices
as compared to when using ρ in a non-metric space.

3.2.1. Forming a Steiner Tree
The SMT problem is NP-hard, so polynomial-time heuristics are desired

[9]. The Bounded Shortest Multicast Algorithm (BSMA) is a very well-known
delay-constrained minimum-cost multicast routing algorithm that shows excel-
lent performance in terms of generated tree cost, but suffers from high time
complexity [10]. In this paper, we use the incremental optimization heuristic
developed by Dreyer et al. [9]. Even though it does not give an optimal solution,
we get a feasible solution at any point in time 2.

The time complexity of constructing SMT with minimal length for a finite
set of points N in the metric space (X, ρ) depends on n = |N | and, the time
taken to compute ρ(x, y) for any point (x, y) ∈ V of the space. The definition
of the distance function in terms of the delay and cost of a path p is:

2http://www.nirarebakun.com/graph/emsteinercli.html

10

ρ(v, v′) = w1d(p) + w2c(p) (2)

The weights w1, w2 are considered as a measure of the significance of each
objective in the distance function of Equation 2. We could have obtained a
Pareto optimal solution by choosing the right combination of w1 and w2, which
minimizes the distance. But, we are interested in reducing the time complexity
of the overall process. Hence, we leave the values of these weights (delay and
cost) to the user to select at runtime. Moreover, even a random choice (but
within acceptable bounds) of delay values (keeping the cost a constant in this
article) help achieve the objective of our problem as compared to using a single
source.

3.3. Steiner Tree Based Resource Selection and Multi-source Data retrieval
The problem of selecting multiple data sources can be handled by forming a

SMT. In our formulation of the Steiner tree problem, the vertices V represent
both data D and compute R sources (as noted in Section 2) and the links E
represent the network connection between them in the graph G. The additional
vertices VA represent nodes around V that are not data or compute sources, but
would minimize the path length if the communication network connects through
them.

In order to validate our implementation of the Steiner tree based resource se-
lection method, we constructed the tree on three independent networks: planet
lab nodes in US under our slice, the Grid‘5000 network, and a distributed com-
pute resources similar to CMS resources in Figure 1. These trees are shown
in Figure 4. The trees are SMTs constructed out of vertices scattered in an
euclidean plane – the coordinates of these points on the plane are the latitudes
and longitudes of the cities where resources are present. A tree connect the
vertices with lines such that the distance between the points in the plane is
minimal. If there are vertices which fall on the minimal path, the tree routes
through them without the need of additional vertices, as in the planet lab net-
work (boxes with a marked dot). Additional vertices are added (boxes without
a marked dot) where nodes do not fall in the path of the tree, as in the other
two networks. The trees drawn using the Euclidean plane are close enough
to the real-world network connections between the resources (e.g. Grid’5000),
thus validating our implementation of Steiner trees. In addition to validation
tests, we use the distributed compute resources depicted in Figure 4(c) when
conducting real experiments, as described further in Section 4.

In Figure 4, there are vertices (existing and added) which have in-degree
(ind: the number of edges coming into a vertex in a graph) of two and three.
Higher value of ind signifies the number of connections a vertex can make for
parallel data retrieval. For e.g., if a vertex v ∈ V has ind = 3 with vertices
v1, v2, v3 ∈ V , a resource located at/nearby v can retrieve data from these three
data sources with minimal path length:

L(X, ρ) =
i=3∑

i=1,viv∈E

ρ(vi, v)

11

b) Grid 5000 Network

c) Distributed Compute Resources (Hybrid Cloud)

a) Planet Lab Nodes in US (under our slice)

Lille Luxembourg

Bordeaux
Lyon

Grenoble

Rennes
Paris

Nancy

Marsille

Toulouse Nice
US East US West

Valence

Poitiers

Melbourne, Australia

Tokyo, Japan
Madrid, Spain

Innsbruck, Austria
Ireland

North California

Atlanta, Georgia

North Virginia

Indiana, Pennsylvania

Binghamton, NY

Lyon, France

Physical Compute ResourceLabel

Shortest Path between Resources

Resource Site

New Vertex added by Steiner Tree

Taiwan

EC2 Amazon EC2 Nodes (Virtual Machines)

Figure 4: A Steiner Tree constructed for Planet Lab nodes, Grid‘5000 network and distributed
resources available for our experiment

In the Planet Lab network, there are several nodes (dots with square) that
have an in-degree of three. In the case of Grid‘5000 network, Paris, Marsille
possess compute nodes that are each connected to 3 other sites around them.
If Poitiers and Valence were to host compute nodes, these sites would also have
an in-degree of three.

Thus, we first construct a Steiner tree on a network and select resources that
have the highest value of in-degree ind. This selection procedure will then be
used for dynamic mapping heuristics.

12

Algorithm 2: Enhanced Dynamic Mapping Heuristics (EDMH)
Data: A Tasks {ti} with input files {f1, ..., fn}ti

Data: Earliest Start Time (EST) for a task on each rj

Data: fk can be sourced from more than one location (replicated)
begin1

Construct a Steiner tree using all available resources2

Get N compute resources {R}N with highest value of ind3

for each task ti starting from the root do4

Set minimum Start Time (minST) = ∞5

for each resource ri ∈ {R}N do6

Probe each connected neighbor rneighbor
i of ri for calculating7

instantaneous bandwidth (max of ind probes)
Split input files based on probe values:8

{fsplit−1, · · · , fsplit−ind}ti ∈ {f}ti

Estimate total transfer time tr({f}ti, ri) for transferring split9

files {fsplit}ti from each rneighbor
i to ri

StartT ime(ST) = EST (ti, ri) + tr({f}ti, ri)10

if (ST ≤ minST) then11

minST = ST , minCR = ri12

Assign ti to the minCR ⇒ the ri that gives minimum ST13

Wait for polling time14

Update the ready task list15

Distribute output data of task ti to resources that host the files16

required by successors of ti

end17

3.4. Dynamic Mapping Heuristic
In this section, we describe the Enhanced Dynamic Mapping Heuristic (EDMH)

using the Steiner tree based resource selection as described in Sub-section 3.2.
The EDMH is listed in Algorithm 2.

EDMH is an online heuristic where tasks are assigned to resources based
on resource load and network latency values available at runtime. Unlike static
heuristics (or offline heuristics), EDMH does not estimate or use average compu-
tation time of tasks, instead relies on the Earliest Start Time provided/forecast
by resources. In addition, EDMH selects initial pool of resources based on the
Steiner Tree based selection method.

Pre-Scheduling:
We construct a Steiner tree using all the available resources. The tree helps

us identify resources that are well connected and thus have high ind. These
resources form a set of candidate resources {R}N , which are later chosen for

13

executing tasks. We construct the tree using a metric space (X, ρ)3.
Scheduling: EDMH is a list-based scheduling heuristic. We maintain a

ready-list, where tasks are added as they become available for scheduling. In
dependent-task scheduling, child tasks become ‘ready’ only when their parents
have successfully completed execution. The ready-list is filled by the scheduling
loop, starting from the root task, as tasks are scheduled and get completed.

Initially, every ready task’s Start Time (ST) is set to a high value (e.g. ∞).
This time will be set to a wall-clock time later as tasks are assigned to available
resources. Before any task can start execution, we assume data required by the
task must be available at the assigned resource. The downloading of a task’s
input data to a resource depends on the total time it takes for multi-source
parallel retrieval of data. To determine this time, we use probe-based approach
to estimate the instantaneous bandwidth between connected resources and hence
estimate approximate time it would take to download input data from multiple
resources for every task.

Grid 5000 Network

Toulouse Nice

Marsille

Valence

10Gbps

2Gbps

10Gbps

Total Instantaneous BW = 22 Gbps
Proportional Share of BW: 10/22, 10/22, 2/22 (45.5%, 45.5%, 9%)
Total Input File Size for a task t_i : 2000 MB
Consider Task t_i is at site: Marsille

fsplit-toulouse = 45.5% of 2000 MB = 910 MB
fsplit-nice = 45.5% of 2000 MB = 910 MB
fsplit-valence = 9.0% of 2000 MB = 180 MB

Minimum Transfer Time (for the largest segment 910 MB): 0.71 secs

Calculation of Partial Downloads

ti

2000MB

Figure 5: An example showing the partitioning of input files in proportion to the available
instantaneous bandwidth.

As each resource ri ∈ {R}N is connected with multiple neighboring nodes
{rneighbor

i } in the network (the Steiner tree helps identify these connections
based on the ind), we probe these neighboring nodes to determine instantaneous
bandwidth available. Based on this value, we split each input file among the nd

resources connected to ri in proportion as: {fsplit−1, · · · , fsplit−ind}ti ∈ {f}ti.
This split will enable parallel download of the respective segments from each of
the connected neighbors to the resource where a task is scheduled. For example,
in Figure 5, if a task ti were to be scheduled at Marsille, input files of total size
2000MB is split into three segments (as nd = 3 for Marsille): fsplit-toulouse,
fsplit-nice, and fsplit-valence. These segments will then be downloaded to Mar-
sille in parallel from the three neighboring sites. In this example, entire input
files can be downloaded from all the three sites. The minimum transfer time of
0.71 seconds depends on the size of the largest segment (910MB in the exam-
ple). While this segment is being downloaded, we assume the smaller segments

3using a non-metric space also validates our heuristic as long as we can define the distance
function ρ(v, v′) and the path length L(G)

14

will have finished downloading, so that we can approximate the value of ST .
We take this minimum time as the total transfer time tr({f}ti, ri) and add it
to the Earliest Start Time (EST) of the task EST (ti, ri) to obtain the value
of ST . The transfer time function tr({f}ti, ri) is analogous to the path length
L(G) of the metric Steiner tree. Similarly, the value of instantaneous bandwidth
resembles the distance function ρ(v, v′) (see Section 3.2).

We assign a task ti to the resource (minCR) that projects the minimum
start time (minST) based on our estimations. The scheduler then waits for a
duration defined by the delay: polling time. In online scheduling, polling is
necessary as the scheduler needs to update the status of completed/failed tasks
so that, after this delay, it can update and schedule ready tasks.

We partition and distribute the output files produced by each task to those
sites that host files needed by the immediate successors of the task producing the
output. This distribution step ensures that these output files can be downloaded
from multiple sites which are also hosting the input files of the child tasks. This
distribution should ensure that neighboring hosts of the candidate resources
{R}N have all the segments to complete the entire file when downloaded at a
resource, using any replication algorithm [11].

While scheduling workflows there exists more than one task that can be
scheduled independently of one another. Since our workflows are data intensive
in nature, the transfer time are dominant as compared to the computation
time. This gives rise to the possibility that majority of tasks are assigned to a
single or only few compute resources. This occurs only when tasks have more
than one input file in common and these files are only available from selected
few resources. In such cases, grouping these tasks to form a batch task and
submitting to a resource reduces data-transfer time.

4. Performance Evaluation

We have evaluated proposed heuristic by two methods: 1) using emulation,
where the network was virtualized, and 2) real environment. First we describe
the performance metric, application workflows and data locality, which are com-
mon to both the experiments.

4.1. Performance Metric
We used average makespan as a metric to compare the performance of the

heuristic based approaches on the network topology and workload distribution
for both emulation and real environment. Average makespan for every heuristic
is computed by taking an average of all the makespan produced by the heuristic
for an application workflow, under a setting. The smaller the value of the
average makespan, the better the heuristic performs in terms of executing the
application in time scale.

15

alignwarp

reslicewarp

pngappendpngappendpngappend

reslicewarp

alignwarp alignwarp

reslicewarp

reslicereslicereslice

alignlinear

makeaheader

fslmaths

bet

alignlinear

makeaheader

fslmaths

bet

alignlinear

makeaheader

fslmaths

betbet

fslmaths

makeaheader

alignlinear

definecommonair

reslice

softmean

reslicewarp

softmean

slicer

pngappendpngappend

alignwarp

slicer

pngappend

of subjects
to be registered

bet
bet

flirt

G2

G1

G4

G5 G6

alignwarp

reslicewarp

alignlinear

G3

alignlinear

reslicewarp

alignwarp

alignlinear

reslicewarp

alignwarp

alignlinear

reslicewarp

alignwarp

bet

flirt

bet

flirt

bet

flirt

slicer

pngappendpngappend

slicer slicer

pngappendpngappend

slicer slicer

pngappendpngappend

slicer

0

1 1 1 1 1

4

2 2 2 2 2

3 3 3 3 3

5 5 5 5 5

6

1 1

2 2

3 3

5 5

1 1 11

1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 11 1 11 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 11 1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1

1

Montage

LIGO Image Registration (IR)

Figure 6: Application Workflow types: Balanced (Montage), complex (LIGO) and hybrid
(IR) workflows

4.2. Application Workflows
We used three types of workflows: pipelined, complex and hybrid, as de-

picted in Figure 6. Figure 6-Montage depicts a workflow similar to the Mon-
tage Workflow [12]. In this type of workflow structure, tasks are symmetrically
distributed in the graph and can be easily partitioned/separated into levels ac-
cording to their dependencies. Figure 6-LIGO represents a complex workflow
similar to a subset of the workflow used to analyze data from the second LIGO
science run for binary inspirals [13]. In this type of workflows, tasks cannot be
partitioned into levels easily as they have linked (data dependencies) to/from
tasks across levels. Figure 6-IR represents a real application workflow used for
Image Registration (IR) for fMRI applications [14]. This type of workflows have
both balanced and complex structures: group of pipelined tasks form a balanced
structure that can be easily partitioned into levels (upper half of the workflow),
whereas some parts are complex (lower half of the workflow). In all these work-
flows, each task requires at least two files as input and produces at least one file
as output (similar to the example workflow depicted in Figure 3).

In contrast to parallel tasks, where there are no data dependencies, makespan
of a workflow is highly dependent on the structure of the workflow (data-
dependencies between tasks). Random selection of data-sources at any level
will increase the data transfer time, delaying the start time of child tasks which
in-turn increases the makespan.

We experimentally recorded the makespan for all the three types of workflows
to determine: a) if the makespan and the workflow structures were related, and

16

b) the effect of multi-source retrieval technique based scheduling on decreasing
the makespan of all workflow structures. We also checked if static scheduling
or dynamic scheduling approach produced better makespan when using multi-
source data retrieval technique.

4.3. Data Locality
For experimenting greedy retrieval technique, we segmented each file and

distributed them uniformly to the number of resources used. The maximum
and minimum file segment size for our experiment varied between 0.5Mb to
500Mb. We tracked progress of file downloads by segment number. We manually
configured at least 30% of the resources to have all the segments of 50% of the
files, for each workflow type. For experimenting the probe-based retrieval, we
distributed all the files without segmenting to all the resources. This is because
the size of a file to be downloaded depended on the value calculated by probing
(as described in Sub-Section 3.4).

4.4. Emulation based Evaluation
Here, we list the intrinsic components of our emulation setup: the network

topology, compute and storage resources, and the design of the emulation plat-
form. Then, we present the results.

4.4.1. Emulation Setup
We used NS-2 (http://www.isi.edu/nsnam/ns) as the emulation tool. For

simulating the network connecting resources, we constructed a dense network
topology by interconnecting ns nodes. As an emulator, we injected workflow
execution traffic into the simulator and emitted packets on to live network using
NS-2’s real-time scheduler. Figure 7 depicts the architecture of our emulation
platform. The virtual network is connecting a set of User-mode Linux (UML
[15]) Virtual Machines (VMs), all running on a single physical machine. VMs are
connected via an Ethernet bridge in the host machine using a virtual interface.
The network bridge is configured such that it blocks all the packets forwarded
through it, and passes the traffic through the network defined in NS-2. We
mapped each VM to a ns node using NS-2’s network objects and tap agents, by
using the correspondence between the Ethernet addresses of the VMs and the
network layer addresses of the NS-2 nodes [16].

Cappello et al. [17] have compared 4 virtual machine technologies (Vserver,
Xen, UML and VMware) in the context of large scale emulation. We used
UML based virtualization mainly for its low CPU and network overheads and
ease of integration with NS-2, which was application even when 100 VMs were
running on a single host. Hence, the 20 virtual nodes running on a single
machine had minimal impact on the performance of the applications. We used
our Workflow Engine (WFE) [14, 18] as a workflow execution and scheduling
engine for executing the workflows depicted in Figure 6. All the scheduling
heuristic are implemented in WFE. We dedicated one VM for running the WFE
and another for hosting the NWS nameserver and memory. We used NWS for
monitoring the network’s bandwidth and latency.

17

VM_1NS-2

Network
Object

Tap AgentTap Agent

Node Node

Network

RealTime
Scheduler

Tap Agent

Node

VM_2

VM_3

VM_n

Work ow
Application

Work ow
Application

Work ow
Application

Work ow
Application

vth0

vth0

vth0

vth0

N
et

w
or

k
B

rid
ge

 (
D

is
ab

le
 fo

rw
ar

di
ng

)

n - virtual machinesTransit-stub

Synthetic
Traf c

Host Machine

Figure 7: Experiment design using NS-2 based emulation

4.4.2. Network Topology
We used the GT-ITM internetwork topology generator to generate ran-

dom graphs (http://www.cc.gatech.edu/projects/gtitm). GT-ITM is a topol-
ogy modeling package that produces graphs that look like wide-area Internet.
We used the Transit-Stub network model, where hierarchical graphs are gener-
ated by composing interconnected transit and stub domains (see [19] for more
details).

We attached our VM to one node in the hierarchical network, such that the
node was in a stub domain. We fixed the number of ns nodes to 100, with
average node degree at 3.5 and 50% asymmetry in the network links.

For the IR workflow depicted in Figure 6, we recorded estimates of execu-
tion time and data transfer time of each task on compute resources provided
by Grid’5000. We refer the reader to the our paper that focuses on IR exper-
iment [14] on Grid’5000. However, for Montage and LIGO workflows, we used
random execution time and data size. The execution times of each task on every
machine were randomly generated from a uniform distribution in the interval
[10, 50] seconds. To maintain higher values of communication-to-computation
ratio, we chose each file size in the interval [1, 1000] Mb. Each task for the
two workflows were dummy computation that remained in execution until its
assigned execution time expired. The files associated with each task were gen-
erated by writing blocks of random characters until the file was of required size.
These random values, once computed, remained fixed throughout the experi-
ment.

4.4.3. Storage and Compute Resources
Modeling of storage resources is a challenge. However, emerging technologies

like Cloud storage systems, as mentioned in Section 5, are addressing storage
services from a higher level. Since we are not concerned about sub-millisecond

18

 Montage Workflow LIGO Workflow IR Workflow
Workflow Balanced Complex Hybrid
Number of tasks 200 200 164

(20 Subjects, grouped tasks)
Execution
Time/Task

[10, 50] sec [10, 50] sec [1, 2656] sec

File Size/Task [1, 1000] MB [1, 1000] MB [0.8, 80] MB
Storage
Resources

20 20 20

Compute
Resources

< 30 < 30 < 30

Number of Data
hosts containing
100% of file

6 (greedy)
20 (probe, random)

6 (greedy)
20 (probe, random)

6 (greedy)
20 (probe, random)

Synthetic Traffic UDP + Exponential UDP + Exponential UDP + Exponential
Network Loss
Model

Normally
distributed

Normally
distributed

Normally distributed

Figure 8: A table summarizing parameters used in the emulation

response times, usually in the case of transactional processing systems and not
in scientific workflows, we have assumed our data centers to have characteristics
similar to that of an Internet based storage service provider. In our experiment,
the data passes through the Internet and suffers delays as any other normal
traffic. This delay is incorporated in the network topology modeled using NS-2
using the synthetic traffic and loss model.

We created synthetic non-real traffic in NS-2 using UDP constant bit rate
(CBR) and exponential traffic generators. The real-time traffic from the VMs
passed through the simulated network and suffered from mixing with non-real
time traffic in the links to create congestion. All links had a delay of 10ms. In
order to produce losses, we attached a loss model based on a normal distribution
to each link between stub domains. However, we did not load the VMs with
additional workload, besides the executing workflows.

For our emulation, we used UML based VMs for both compute resources and
storage servers. All VMs used the network defined in NS-2. The total number of
VMs running at one instance was limited to 50, half the size as experimented by
Cappello [17]. We assigned 20 of these VMs as storage resources and remaining
as compute resources. The number of storage nodes remained fixed while the
number of compute nodes running was changed based on the workflow (Montage,
LIGO or IR) being executed. Figure 8 summarizes all the parameters used for
our emulation.

4.4.4. Experimental Results
Comparision of Retrieval Techniques: Data can be retrieved from mul-

tiple sources using: greedy, probe, or random, retrieval techniques. To choose
between one of these technologies, we compared the data transfer time (ex-
cluding the processing time) of files of different sizes using each technique, as

19

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90

T
im

e
(s

ec
)

Size of a data file (MB)

Transfer time of different retrieval techniques

Single Source
Multi-source (random)

Multi-source (probe)
Multi-source (greedy)

Figure 9: Comparison of transfer time and error margins between single-source and multi-
source data retrieval techniques using data files of different sizes (files are from IR Workflow
experiment only) (Bézier curve fitting used)

depicted in Figure 9. The average data transfer times obtained using these tech-
niques were close to the results listed by Zhou et al.[6]. As the size of files were
increased, random method gave the worst and the greedy gave the best transfer
times on our emulated network topology. However, greedy method of retrieval
suffered from high processing time.

To compare the processing times of these techniques, we computed the ratio
of the processing time over transfer time, depicted as a percentage in Figure 10
(upper half). By processing time, we mean the total time spent for (a) numerous
repeated connections to hosts due to large number of segments per file, (b)
overheads in maintaining the transfer threads for each segment, (c) repeated
retrievals of data segments due to intermittent failures (significant factor), and
(d) time taken to combine segments to form a single data file. Our results showed
that the overall time taken when using probe-based retrieval technique was less
than the greedy-based retrieval even though the latter gave better transfer time.
Also, the probe method gave lower transfer-time than random/single-source
based retrieval, in addition to the lower overheads than greedy-based retrieval.
We obtained the the total transfer time (T) and overheads (processing time
(P)) for the retrieval methods on all the three types of workflows, as depicted
in Figure 10.

As the workflow structure becomes complex (from WF type 1 to WF type 3),
both the transfer time and the processing time increased for greedy and random
based retrievals, as depicted in Figure 10 (upper half). However, probe-based
retrieval had minimum overheads as compared to the other two methods but
gave higher transfer time (T), which in-turn made its ratio P/T lower. This
experiment demonstrated that both transfer time and overheads needed consid-
eration before choosing a retrieval method for complex workflows. Thus, using
probe-based data retrieval for complex workflows (with large number of files)

20

0
1440
2880
4320
5760
7200
8640

WF Type 1 WF Type 2 WF Type 3

T
im

e
(s

ec
)

Random
Greedy

Probe

0
2
4
6
8

10
12

R
at

io
 o

f
P/

T
 (

%
)

Ratio of Processing/Transfer time for different workflows

Random P/T
Greedy P/T

Probe P/T

Figure 10: Average data transfer and segment-processing times of all files using random,
greedy and probe-based retrieval techniques for three workflow (WF 1, WF 2 and WF 3
corresponding to Montage, LIGO and IR workflows in Figure 6)

was better in terms of time and complexity than using greedy/random/single-
source retrievals. Hence, we used probe-based data retrieval technique in our
heuristic for its advantage over greedy and random techniques.

Comparison of Heuristic Approaches: We compared the static and
dynamic approaches in turn.

Static Approaches: We executed the workflows on our emulated platform,
based on the static mappings given by our heuristic, to obtain the actual
makespans. The makespans for real execution had higher values than their cor-
responding static estimates, as the estimated transfer time was lower than the
actual transfer time on the emulated network. As the network was subjected to
synthetic non-real traffic load (CBR and exponential traffic generators) during
the executions of the workflows, the total data transfer time varied considerably
than their estimates at the time of scheduling. We depict the static estimates of
the makespan generated by all the static heuristic as the lower bound of the ver-
tical lines in Figures 11 and 12. Each makespan is the addition of data transfer
time, task execution time, and overheads. For all the three types of workflows,
ESMH estimated minimum makespan (lower value of the vertical lines). When
executed on our emulated environment, the actual makespan recorded for ESMH
was lower than HEFT and HBMCT algorithms.

Dynamic Approaches: In Figures 11 and 12, we also depict the makespans
generated by each dynamic mapping heuristic. EDMH confirms its superiority
in generating minimum makespan as compared to the ‘dynamic’ versions of the
HEFT and HBMCT algorithms for all the three types of workflows. However,
dynamic heuristic shows mixed results when compared to the makespans given
by their corresponding static heuristic.

For symmetric workflows (Figure 6-Montage), the makespans generated by

21

0

1440

2880

4320

5760

7200

Data Transfer Execution Overheads Makespan

T
im

e
(s

ec
)

Static Heuristic - Workflow Type 1

ESMH
HEFT

HBMCT

0

1440

2880

4320

5760

7200

8640

Data Transfer Execution Overheads Makespan

T
im

e
(s

ec
)

Static Heuristic - Workflow Type 2

ESMH
HEFT

HBMCT

0

1440

2880

4320

5760

7200

Data Transfer Execution Overheads Makespan

T
im

e
(s

ec
)

Dynamic Heuristic - Workflow Type 1

EDMH
D-HEFT

D-HBMCT

0

1440

2880

4320

5760

7200

8640

Data Transfer Execution Overheads Makespan

T
im

e
(s

ec
)

Dynamic Heuristic - Workflow Type 2

EDMH
D-HEFT

D-HBMCT

(a) Type 1 workflow (e.g. Montage) (b) Type 2 workflow (e.g. LIGO)

Figure 11: Makespan of Montage and LIGO (Type 1 and 2) workflows when using static and
dynamic heuristic.

static heuristic are similar to that generated by their corresponding dynamic
mapping heuristic. This is mainly due to the structure of the workflow: in
Figure 6-Montage there are only two tasks that download output files from more
than one parent, while other tasks can download the files from their immediate
parent. As a result, both the scheduling heuristic try to schedule the pipelined
tasks to the same resource to avoid file transfers between resources. This resulted
in similar transfer time for both the static and dynamic heuristic as depicted by
the data transfer time components of the makespan in Figures 11 for workflow
type 1 (Montage).

However, for both complex and hybrid workflows (Figure 6-LIGO, IR),
makespans generated by dynamic mapping heuristics were at least 5% less
than that generated by their corresponding static heuristic. This is entirely
due to the reduction in total transfer time when using dynamic scheduling ap-
proach. As static approach estimated the bandwidth between resources at the
scheduling time (not at the run-time) for all the tasks, it was lower than the
actual makespan recorded after execution. The dynamic approach scheduled
each task at runtime by probing bandwidth right before dispatching the task to
resources for execution. This difference can be easily seen when comparing the
data transfer time component of makespan in Figures 11 and 12 for workflow
type 2 (LIGO) and type 3 (IR).

Dynamic heuristic performed better even when we considered resource load
to be fairly constant as compared to changing network bandwidth. In cases when
resource usage changes randomly, static scheduling approaches may perform
even worse than dynamic approaches.

In Figures 11 and 12, in addition to the overall makespan, we also compared

22

0
1440
2880
4320
5760
7200
8640

10080
11520
12960

Data Transfer Execution Overheads Makespan

T
im

e
(s

ec
)

Static Heuristic - Workflow Type 3

ESMH
HEFT

HBMCT

0
1440
2880
4320
5760
7200
8640

10080
11520
12960

Data Transfer Execution Overheads Makespan

T
im

e
(s

ec
)

Dynamic Heuristic - Workflow Type 3

EDMH
D-HEFT

D-HBMCT

Figure 12: Makespan of IR workflow (type three) using static and dynamic heuristic.

the individual components of the schedule, namely the data transfer time, task
execution time and the processing time of the scheduling approaches. With
the use of the multi-source data retrieval technique, both ESMH and EDMH
achieved minimum data transfer times for all the types of workflows as com-
pared to other heuristic. However, both ESMH and EDMH performed poorly
when scheduling tasks to resources based on task execution time alone. HEFT
and HBMCT performed better than our heuristic in terms of execution time,
with HBMCT giving better results on average. As HBMCT tries to schedule
independent tasks to optimize minimum completion time, it has better esti-
mates for task executions. The average scheduling overhead of HBMCT was
higher than all other static heuristic for all the three types of workflows. ESMH
and HEFT were comparable in scheduling overhead. In the case of dynamic
heuristics, EDMH gave better makespans than both D-HEFT and D-HBMCT
even though it suffered from higher scheduling overheads. Clearly, dynamic ap-
proaches produced better makespans for all the three types of workflows; IR
workflow benefiting the most in terms of total data-transfer time.

However, when the data transfer time was added into the makespan, ESMH
and EDMH produced lower makespans than all the other static and dynamic
approaches HEFT, HBMCT, and D-HEFT, D-HBMCT, respectively.

4.5. Real Experiment based Evaluation
In this section, we present the results obtained using a real testbed depicted

in Figure 4(c). This testbed was selected to match the resource distribution
shown in the motivation section in Figure 1. In order to determine the feasi-
bility of proposed heuristic in practical environments, we experimented the IR
workflow, depicted in Figure 6-Image Registration, using the real testbed. This
application used data and scripts provided to us by Dartmouth Brain Imaging
Center.

4.5.1. Experiment Setup
We formed an experimental testbed consisting of compute resources from

worldwide research labs and Amazon EC2, as depicted in Figure 4(c). These
resources were a combination of real compute nodes and virtual machines (VM)
(Amazon EC2 nodes), similar to a hybrid Cloud. The Figure 4 labels each
resource by the name of the city where it is located. We chose to distribute

23

Figure 13: Determining the benefit of using multi-source parallel data retrieval by comparing
the ratio of makespan for IR workflow (WF type three) in real environment

these resources worldwide so that we could study the effect of locality of data
on the total transfer time when using multi-source parallel retrievals. As we
are interested in data intensive applications, the location of the resources is of
primary concern to us than their compute power.

We reserved two nodes at each location; 24 compute nodes in total, all
running Linux. Each physical node had at least a dual-core 2 GHz CPU, 1GB
memory and 20GB free disk space. Each Amazon VM was a large instance with
4 EC2 Compute units (2 virtual cores with 2 EC2 compute units each), 7.5GB
memory and 850GB local storage. We used the IR application workflow with
data distribution described in sub-subsection 4.3.

The nodes were all connected via Internet. In order to approximate the
network topology, we used each node’s location (latitudes and longitudes) and
constructed the Steiner tree (Figure 4(c). Using the Steiner tree, we could
identify the in-degrees of each node: nodes at Lyon and Taiwan were having in-
degree of three; nodes at Atlanta, North Virginia, Indiana, Binghamton, Ireland,
and Innsbruck had in-degrees of two. Thus, these nodes were the candidate
resource set {R}N in EDMH (Algorithm 2) with value of ind ≥ 3, ind ≥ 2,
respectively.

4.5.2. Experimental Results
We executed the IR workflow consisting of 20 subjects on the reserved com-

pute resources using the EDMH. Typically, when the input file size is 16MB
per task, the total size of data handled by a 20-subject IR workflow exceeds
12GB [14]. We varied the input file size for each task from 16KB to 640MB and
iterated the experiment for eight times for each input size (Figure 13) using D-

24

HEFT and EDMH, in turns. We then calculated the ratio of makespan given by
dynamic heuristic when using single source (D-HEFT) and multi-source parallel
data retrieval (EDMH) techniques, as given by Equation 3:

MakespanRatio =
(MakespanD−HEFT)
(MakespanEDMH)

(3)

Figure 13 plots the mean values of the ratio from Equation 3 for varying
file sizes for the IR workflow. It also plots the standard error4 about the mean
values. Based on eight measurements, the ratio was 0.25± 0.02 and 1.25± 0.92
for 16KB and 640MB of data per task, respectively. Positive values of the ratio
clearly showed that the makespan given by EDMH was smaller than that given
by D-HEFT. However, the ratio became positive only for file sizes 128MB and
above, clearly indicating the relationship of retrieval technique to data sizes.

The results obtained in Figure 13 is in conformity with that obtained in the
emulation. When the size of data was small (16KB � 128MB), the overheads
of using multi-source parallel retrievals resulted in higher values of makespan
for EDMH. However, when size of data was increased (≥ 128MB), the EDMH
started producing better makespan than D-HEFT. This was because the transfer
time for large amount of data was significantly higher than the overheads and
EDMH reduced the transfer time than the D-HEFT.

The change in bandwidth between the resources and intermittent failures
caused higher than expected deviation in the real experiment results as com-
pared to the emulated version. This resulted in higher values of standard error,
as reported in Figure 13. Also, the break-even point (the intersection of the
two lines) in Figure 13 occurred for file sizes much higher in value (≥ 128MB)
than the results we obtained in our emulation. This can be attributed to the
largely distributed settings of our experimental platform. However, both the
experiments showed that multi-source retrieval technique reduces the total data
transfer time, and hence makespan, for data intensive workflow applications.

5. Related Work

In this section, we survey past work on replica selection in relation to data
retrieval and workflow scheduling algorithms.

Replica Selection and Retrieval: Vazhkudai et al. [3] presented design
and implementation of high-level replica selection service in the Globus data
Grid. Chervenak et al. [4] defined a replica location service (RLS) that maintains
and provides access to information about the physical locations of copies. Hu
et al. [20] proposed the Instance-Based-Learning (IBL) algorithm for replica
selection where only limited data sources are available. Their results show that
IBL performs well for data-intensive Grid applications. Zhou et al. [6] analyzed
various algorithms for replica retrieval and concluded that probe-based retrieval

4The standard error is calculated by dividing the standard deviation by the square root of
number of measurements

25

is the best approach, providing twice the transfer rate of the ‘best’ replica server.
Feng et al. [5] proposed rFTP that improves the data transfer rate and reliability
on Grids by utilizing multiple replica sources concurrently. Their NWS Dynamic
algorithm depends on Network Weather Service (NWS) [21] deployment at all
participating Grid nodes, and NoObserve or SelfObserve does not use NWS.
In these work, the replica selection system seeks one ‘best’ replica among all
available replicas. Retrieving data from the best source may result in poor
performance and degraded reliability as noted by Zhou et al. [6] and Feng et
al. [5]. Our work leverages these retrieval techniques.

When data are partitioned and distributed at various locations without full
replication, a set of data-hosts that complete the required data files should
be found. The selection of the optimal set of data-hosts in the presence of
large number of replicated files for a single job is computationally intensive.
Venugopal et al. [22] selected the data-hosts by using one of the solutions to
the Set-Coverage problem [23]. In this paper, we assume that data are fully
replicated and hence set-coverage is guaranteed by every data source.

Some work on transport protocols have focused on receiver based flow con-
tention management. Rodriguez et al. [24] proposed a dynamic-parallel access to
replicated content from multiple servers or caches in content delivery networks.
They showed that users experience significant speedups and very consistent re-
sponse times when using multiple parallel transfers. Similarly, Wu et al. [25]
proposed Group Transport Protocol (GTP) and a receiver based rate allocation
scheme to manage multi-source data transmissions. They also showed that GTP
outperforms other point-to-point protocol for multiple-to-point transmission.

Multi-source parallel data transfers can be much more efficient than single
source transfers. It can reduce access times by transferring data from several
replicas in parallel. This has been studied in detail by Yang et al. [26] and Feng
and Humphrey [5]. GridFTP and rFTP [5] are existing tools which support
these types of transfers.

Static and Dynamic Workflow Scheduling: We focus on list based
scheduling heuristics for computing static schedules (offline); and task parti-
tioning and iterative rescheduling for computing dynamic schedules (online).

Topcuouglu et al. [27] designed the HEFT algorithm based on list scheduling.
HEFT is a static scheduling algorithm which attempts to schedule tasks on
heterogeneous resources to get minimum execution time. It assigns ranks to
the tasks according to estimated communication and computation costs and
preserves the job execution precedence. However, the communication and task
computation values are average estimates.

Sakellariou and Zhou et al. [28] investigated the performance of the HEFT
algorithm produced by different approximation methods. They concluded that
the mean value method is not the most efficient choice, and the performance
could differ significantly from one application to another. They also proposed
a hybrid heuristics that uses standard list scheduling approach to rank the
nodes of the Directed Acyclic Graph (DAG) and then uses this ranking to form
group of tasks which can be scheduled independently. Their Balanced Minimum
Completion Time (BMCT) is for scheduling independent tasks formed by using

26

the hybrid heuristic. BMCT algorithm tries to minimizes the execution time in
the initial allocation, and again tries to minimize the overall time by swapping
tasks between machines. We take the Hybrid and BMCT algorithm (HBMCT)
for comparing with our static scheduling heuristic.

Deelman et al. [29] partitioned a workflow into multiple sub-workflows and
allocated resources to tasks of one sub-workflow at a time based on real-time
information. Shankar and Deelman et al. [30] proposed a planner that uses
a file location table to determine the locations of cached or replicated files for
scheduling data intensive workflows using the Pegasus framework.

Iterative re-computing technique keeps applying the scheduling algorithm
on the yet-to-be-scheduled tasks of a workflow in execution. Sakellariou and
Zhou et al. [31] proposed a low-cost Selective Rescheduling (SR) policy by
recomputing a schedule only when the delay of a carefully selected task impacts
the schedule of the entire workflow.

Several work have explored static and dynamic scheduling strategies for
workflow execution that focused on: user quality of service and location affin-
ity [32, 33, 34], iterative calls of static algorithms [35, 36, 37], dynamic program-
ming [38] and so forth. Lopez et al. [36] explored several static and dynamic
approaches for scheduling workflows and concluded that list-based heuristics sig-
nificantly outperform non-list based heuristics. Yu et al. [39] have described the
strategies involved in scheduling workflows for Grid computing environments,
in much detail.

Many past work on scheduling workflows focused primarily on compute-
intensive workflows. Most of these scheduling algorithms could make use of
multi-source data retrieval technique while also scheduling tasks on compute
resources. However, the challenge is to use a retrieval technique while scheduling
workflow applications. To the best of our knowledge, this problem has not
been explored in detail in the past. This paper addressed this challenge using
heuristics based approaches.

6. Conclusions

In this paper, we presented two workflow scheduling heuristic that leverages
multi-source parallel data-retrieval techniques. We showed that probe-based
data retrieval from as many resources (multi-source) produces better transfer
times and hence better makespans for data intensive workflows than selecting
one ‘best’ storage resource for both static and dynamic scheduling methods. In
static scheduling heuristic, we used probe based approach to select candidate
sources, whereas in dynamic scheduling, we applied Steiner tree based multi-
ple resource selection technique to enable multi-source parallel retrievals. We
compared the makespans produced by our heuristic against that produced by
both static and dynamic versions of HEFT and HBMCT algorithms for three
different types of workflows in an emulated network environment. To deter-
mine the feasibility of our approach, we also carried out experiments using a
real testbed. The results obtained from both emulation and real experiments
consistently showed that makespan of workflows can be decreased significantly

27

when using multi-source parallel data retrieval technique while scheduling work-
flow. From our experimental results, we also conclude that, on average, En-
hanced Dynamic Mapping Heuristic (EDMH) produces time-efficient makespan
than HEFT, HBMCT, D-HEFT and D-HBMCT algorithms for data intensive
workflows.

As part of our future work, we would like to constrain the resources and net-
work bandwidth based on pricing (similar to the pricing model of CDN, SDN
and storage Clouds) and propose a multi-objective (time and cost) scheduling
heuristic. We would also like to explore the effect of changing data to com-
pute ratio, segment sizes and replica distribution on the makespan produced by
ESMH, EDMH and other heuristics based approaches.

Acknowledgments

This work is partially supported through Australian Research Council (ARC)
Discovery Project grant, and International Science Linkages (ISL) program of
the Department of Innovation, Industry, Science and Research. Some experi-
ments presented in this paper were carried out using the Grid’5000 experimental
testbed, an initiative from the French Ministry of Research. We thank Ama-
zon for providing us educational grant for using EC2 and S3 resources. We
are also grateful to several research labs that provided access to their compute
infrastructure for our experiments: Binghamton University, Victorian Partner-
ship for Advanced Computing, InTrigger at University of Tokyo, Georgia State
University, DPS group at University of Innsbruck, and Complutense University
of Madrid. We thank James Dobson from Department of Psychological & Brain
Sciences, Dartmouth College, for providing us real data and scripts for fMRI
image registration application.

References

[1] G. L. Bayatyan, M. Della Negra, A. Foa, Herve, A. Petrilli, CMS comput-
ing : Technical Design Report, Tech. Rep. CERN-LHCC-2005-023, CMS
Collaboration (May 2005).

[2] M. A. Papa, The LSC-Virgo white paper on gravitational wave data analy-
sis, Tech. Rep. LIGO-T0900389-v1, The LSC-Virgo Data Analysis Working
Groups (August 2009).

[3] S. Vazhkudai, S. Tuecke, I. Foster, Replica Selection in the Globus Data
Grid, in: CCGRID ’01: Proceedings of the 1st International Symposium
on Cluster Computing and the Grid, IEEE, Washington, DC, USA, 2001,
pp. 106 – 113.

[4] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi,
C. Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger,
K. Stockinger, B. Tierney, Giggle: a framework for constructing scal-
able replica location services, in: Supercomputing ’02: Proceedings of the

28

2002 ACM/IEEE conference on Supercomputing, IEEE, Los Alamitos, CA,
USA, 2002, pp. 1–17.

[5] J. Feng, M. Humphrey, Eliminating Replica Selection - Using Multiple
Replicas to Accelerate Data Transfer on Grids, in: ICPADS ’04: Pro-
ceedings of the Tenth International Conference on Parallel and Distributed
Systems, IEEE, Washington, DC, USA, 2004, pp. 359–366.

[6] X. Zhou, E. Kim, J. W. Kim, H. Y. Yeom, ReCon: A Fast and Reliable
Replica Retrieval Service for the Data Grid, in: CCGRID ’06: Proceedings
of the Sixth IEEE International Symposium on Cluster Computing and the
Grid, IEEE, Washington, DC, USA, 2006, pp. 446–453.

[7] S. Pandey, R. Buyya, Scheduling of Scientific Workflows on Data Grids, in:
CCGRID ’08: Proceedings of the Eighth IEEE International Symposium
on Cluster Computing and the Grid, IEEE, Washington, DC, USA, 2008,
pp. 548–553.

[8] L. D. Briceno, M. Oltikar, H. J. Siegel, A. A. Maciejewski, Study of an
Iterative Technique to Minimize Completion Times of Non-Makespan Ma-
chines, in: IPDPS ’07: Proceedings of the 21th International Parallel and
Distributed Processing Symposium, IEEE, USA, 2007, pp. 1–14.

[9] D. R. Dreyer, M. L. Overton, Two Heuristics for the Euclidean Steiner Tree
Problem, Journal of Global Optimization 13 (1) (1998) 95–106.

[10] H. F. Salama, D. S. Reeves, Y. Viniotis, Evaluation of multicast rout-
ing algorithms for real-time communicationon high-speed networks, IEEE
Journal on Selected Areas in Communications 15 (1997) 332–345.

[11] L. Qiu, V. N. Padmanabhan, G. M. Voelker, On the Placement of Web
Server Replicas, in: INFOCOM ’01: Proceedings of IEEE INFOCOM,
2001, pp. 1587–1596.

[12] J. Jacob, D. Katz, T. Prince, G. Berriman, J. Good, A. Laity, The Montage
Architecture for Grid-Enabled Science Processing of Large, Distributed
Datasets, in: ESTC ’04: Fourth Annual Earth Science Technology Con-
ference, 2004.

[13] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields, Workflows for e-
Science: Scientific Workflows for Grids, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[14] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. E. Dobson, K. Chiu,
A grid workflow environment for brain imaging analysis on distributed
systems, Concurrency and Computation: Practice & Experience 21 (16)
(2009) 2118–2139.

29

[15] H.-J. Hoxer, K. Buchacker, V. Sieh, Implementing a User-Mode Linux
with Minimal Changes from Original Kernel, in: Linux-Kongress ’02: Pro-
ceedings of the 9th International Linux System Technology Conference,
Cologne, Germany, 2002, pp. 72–82.

[16] D. Mahrenholz, S. Ivanov, Real-Time Network Emulation with ns-2, in:
DS-RT ’04: Proceedings of the 8th IEEE International Symposium on Dis-
tributed Simulation and Real-Time Applications, IEEE, Washington, DC,
USA, 2004, pp. 29–36.

[17] B. Quetier, V. Neri, F. Cappello, Selecting A Virtualization System For
Grid/P2P Large Scale Emulation, in: EXPGRID ’06:Proceedings of the
Workshop on Experimental Grid testbeds for the assessment of large-scale
distributed applications and tools, Paris, France, 2006.

[18] J. Yu, R. Buyya, A Novel Architecture for Realizing Grid Workflow using
Tuple Spaces, in: GRID ’04: Proceedings of the 5th IEEE/ACM Interna-
tional Workshop on Grid Computing, IEEE, Washington, DC, USA, 2004,
pp. 119–128.

[19] E. W. Zegura, K. L. Calvert, S. Bhattacharjee, How to Model an Inter-
network, in: INFOCOM ’96: Proceedings of the IEEE Fifteenth Annual
Joint Conference of the IEEE Computer Societies. Networking the Next
Generation. Proceedings of IEEE INFOCOM, Vol. 1-3, 1996, pp. 594–602
vol.2.

[20] Y. Hu, J. Schopf, IBL for Replica Selection in Data-Intensive Grid Appli-
cations, Tech. Rep. TR-2004-03, The University of Chicago (2004).

[21] R. Wolski, N. T. Spring, J. Hayes, The Network Weather Service: A Dis-
tributed Resource Performance Forecasting Service for Metacomputing, Fu-
ture Generation Computing Systems 15 (5-6) (1999) 757–768.

[22] S. Venugopal, R. Buyya, A Set Coverage-based Mapping Heuristic for
Scheduling Distributed Data-Intensive Applications on Global Grids, in:
GRID ’06: Proceedings of the 7th IEEE/ACM International Conference
on Grid Computing, IEEE, Washington, DC, USA, 2006, pp. 238–245.

[23] E. Balas, M. W. Padberg, On the set-covering problem, Operations Re-
search 20 (6).

[24] P. Rodriguez, E. W. Biersack, Dynamic parallel access to replicated content
in the internet, IEEE/ACM Transactions on Networking 10 (4) (2002) 455–
465.

[25] R. X. Wu, A. A. Chien, GTP: group transport protocol for lambda-Grids,
in: CCGRID ’04: Proceedings of the Fourth IEEE International Sympo-
sium on Cluster Computing and the Grid, IEEE, Washington, DC, USA,
2004, pp. 228–238.

30

[26] L. Yang, J. M. Schopf, I. Foster, Improving parallel data transfer times us-
ing predicted variances in shared networks, in: CCGRID ’05: Proceedings
of the Fifth IEEE International Symposium on Cluster Computing and the
Grid - Volume 2, IEEE, Washington, DC, USA, 2005, pp. 734–742.

[27] H. Topcuouglu, S. Hariri, M.-y. Wu, Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing, IEEE Trans-
actions on Parallel and Distributed Systems 13 (3) (2002) 260–274.

[28] R. Sakellariou, H. Zhao, A Hybrid Heuristic for DAG Scheduling on Het-
erogeneous Systems, in: HCW ’04:Proceedings of the 13th IEEE Hetero-
geneous Computing Workshop, Santa-Fe, New Mexico, USA, 2004.

[29] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, D. S. Katz, Pega-
sus: A framework for mapping complex scientific workflows onto distributed
systems, Scientific Programming 13 (3) (2005) 219–237.

[30] S. Shankar, D. J. DeWitt, Data driven workflow planning in cluster man-
agement systems, in: HPDC ’07: Proceedings of the 16th international
symposium on High performance distributed computing, ACM, New York,
NY, USA, 2007, pp. 127–136.

[31] R. Sakellariou, H. Zhao, A low-cost rescheduling policy for efficient mapping
of workflows on grid systems, Scientific Programming 12 (4) (2004) 253–
262.

[32] I. Brandic, S. Pllana, S. Benkner, An approach for the high-level specifi-
cation of QoS-aware grid workflows considering location affinity, Scientific
Programming 14 (3,4) (2006) 231–250.

[33] V. Bhat, M. Parashar, S. Klasky, Experiments with in-transit processing
for data intensive grid workflows, in: GRID ’07: Proceedings of the 8th
IEEE/ACM International Conference on Grid Computing, IEEE, Wash-
ington, DC, USA, 2007, pp. 193–200.

[34] R. S. Barga, D. Fay, D. Guo, S. Newhouse, Y. Simmhan, A. Szalay, Ef-
ficient scheduling of scientific workflows in a high performance computing
cluster, in: CLADE ’08: Proceedings of the 6th international workshop on
Challenges of large applications in distributed environments, ACM, New
York, NY, USA, 2008, pp. 63–68.

[35] R. Prodan, T. Fahringer, Dynamic scheduling of scientific workflow appli-
cations on the grid: a case study, in: SAC ’05: Proceedings of the 2005
ACM symposium on Applied computing, ACM, New York, NY, USA, 2005,
pp. 687–694.

[36] M. M. Lopez, E. Heymann, M. A. Senar, Analysis of Dynamic Heuristics
for Workflow Scheduling on Grid Systems, in: ISPDC ’06: Proceedings

31

of the Proceedings of The Fifth International Symposium on Parallel and
Distributed Computing, IEEE, Washington, DC, USA, 2006, pp. 199–207.

[37] Z. Yu, W. Shi, An Adaptive Rescheduling Strategy for Grid Workflow
Applications, in: IPDPS 07: Proceedings of the 21th International Parallel
and Distributed Processing Symposium, IEEE, USA, 2007, pp. 1 –8.

[38] R. Prodan, M. Wieczorek, Bi-Criteria Scheduling of Scientific Grid Work-
flows, Automation Science and Engineering, IEEE Transactions on 7 (2)
(2010) 364 –376.

[39] J. Yu, R. Buyya, K. Ramamohanarao, Metaheuristics for Scheduling in Dis-
tributed Computing Environments, Vol. 146/2008, Springer, Berlin, Ger-
many, 2008, Ch. Workflow Scheduling Algorithms for Grid Computing, pp.
173–214.

32

Biography

Suraj Pandey is a PhD student at the Cloud Comput-
ing and Distributed Systems (CLOUDS) Laboratory at the
University of Melbourne, Australia. He received Masters de-
gree from Inha University, Korea in 2007 and Bachelors de-
gree from Tribhuvan University, Nepal in 2003. His research
spans many areas of high performance computing, including
scheduling, and accelerating life sciences applications in dis-
tributed systems. He has been participating in international
software demonstrations and has been awarded in several oc-
casions.

Dr. Rajkumar Buyya is Professor of Computer Sci-
ence and Software Engineering; and Director of the Cloud
Computing and Distributed Systems (CLOUDS) Laboratory
at the University of Melbourne, Australia. He is also serv-
ing as the founding CEO of Manjrasoft Pty Ltd., a spin-off
company of the University, commercializing its innovations in
Grid and Cloud Computing. He has authored and published
over 300 research papers and four text books. The books on
emerging topics that Dr. Buyya edited include, High Perfor-
mance Cluster Computing (Prentice Hall, USA, 1999), Con-
tent Delivery Networks (Springer, Germany, 2008), Market-
Oriented Grid and Utility Computing (Wiley, USA, 2009), and Cloud Com-
puting (Wiley, USA, 2019). He is one of the highly cited authors in computer
science and software engineering worldwide. Software technologies for Grid and
Cloud computing developed under Dr. Buyya’s leadership have gained rapid
acceptance and are in use at several academic institutions and commercial en-
terprises in 40 countries around the world. Dr. Buyya has led the establishment
and development of key community activities, including serving as foundation
Chair of the IEEE Technical Committee on Scalable Computing and four IEEE
conferences (CCGrid, Cluster, Grid, and e-Science). He has presented over 250
invited talks on his vision on IT Futures and advanced computing technologies
at international conferences and institutions in Asia, Australia, Europe, North
America, and South America. These contributions and international research
leadership of Dr. Buyya are recognized through the award of “2009 IEEE Medal
for Excellence in Scalable Computing” from the IEEE Computer Society, USA.
Manjrasofts Aneka technology for Cloud Computing developed under his lead-
ership has received 2010 Asia Pacific Frost & Sullivan New Product Innovation
Award.

33

	Introduction
	Problem Statement
	Scheduling Heuristic
	Static Scheduling Heuristic
	Example Workflow
	Limitations of Static Heuristic

	A Steiner Tree
	Forming a Steiner Tree

	Steiner Tree Based Resource Selection and Multi-source Data retrieval
	Dynamic Mapping Heuristic

	Performance Evaluation
	Performance Metric
	Application Workflows
	Data Locality
	Emulation based Evaluation
	Emulation Setup
	Network Topology
	Storage and Compute Resources
	Experimental Results

	Real Experiment based Evaluation
	Experiment Setup
	Experimental Results

	Related Work
	Conclusions

