
Mandi: A Market Exchange for Trading Utility
Computing Services

Saurabh Kumar Garg, Christian Vecchiola, Rajkumar Buyya

Cloud Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{sgarg}@csse.unimelb.edu.au

Abstract—The recent development in Cloud computing has
enabled the realization of delivering computing as utility. A
number of companies have started building Cloud and Grid
computing environments, and offering access to the resources
as a “Pay as you go” basis. This has created a need for a market
exchange (ME) that brings providers and consumers together
and facilitates their trading. Such market environment eases the
process of finding, comparing and buying, since they aggregate
goods and services from a variety of sources and display them in a
way which is helpful to customers. In this paper we propose a ME
framework called “Mandi” that allows consumers and providers
to trade computing resources according to their requirements. We
first present the ME requirements that motivated our design and
discuss how these facilitate trading of compute resources using
multiple market models. Finally, we evaluate the performance of
the first prototype of “Mandi” in terms of its scalability.

I. INTRODUCTION

Utility computing paradigms such as Clouds and Grids
promise to deliver highly scalable and cost effective infras-
tructure for running High Performance Computing (HPC)
applications [1]. As a result, the scientific and industrial com-
munities [2] have started using cheaper commercially available
infrastructures to run their applications which can scale up
based on demand, rather than maintaining their own expensive
HPC infrastructure. For such communities, it would be useful
to have access to a ME where the resource availability is
aggregated from various commercial providers. The presence
of a Market Exchange (ME) infrastructure can easily fulfill
their demand for compute resources, that can also resolve other
problems such as high cost of ownership and the infrequent
use of HPC infrastructures.

ME represents a significant advancement in the state-of-
the-art of utility computing, where just one large provider of
resources is dominant (e.g. Amazon [3]) [4]. It can bridge
disparate Clouds and Grids allowing consumers to choose
providers that suit their requirements. Due to the competition
between different providers in the exchange, the price will also
be lowered down for compute resources, making it even more
affordable to enterprises with a low budget.

To realize this vision, ME needs to support diverse ser-
vices [4] including an infrastructure that allows (a) registration,
buying and selling; (b) advertisement of free resources; (c)

coexistence of multiple market models or negotiation protocols
such as auction; and (d) Grid resource brokers to discover
resources/services and their attributes (e.g., access price and
usage constraints) that meet user QoS requirements. On the
consumer side, projects such as Gridbus broker [5] and Grid-
Way [6] provide the capability of negotiation with providers,
and job submission and monitoring on the heterogeneous
resources. On the provider side, technologies such as virtual-
ization and market based resource management systems such
as Tycoon [7] and Mirage [8], has enabled trading of compute
resources. Thus, the necessary middleware for enabling utility
markets from the resource provider and consumer sides are
already present to make ME a viable step.

Current efforts in this direction by projects such as Bella-
gio [9], CatNet [10] and Ocean [11] are designed for specific
market models and specific application models. But Grid is
well known to have heterogeneous resources and applications.
Moreover, each participant has its own objectives and require-
ments. Since each market model or negotiation protocol has its
own advantages and disadvantages, one market model fits for
all problems can be impractical [12]. In other words, in order
to really achieve different objectives, the ME should support
multiple and concurrent market models to provide flexibility
for consumers and resource providers to choose market models
or negotiation protocols according to their requirements.

In this paper, we propose the design and evaluation for
such a ME called Mandi1 that is the first step towards
providing a generic marketplace to isolated resource providers
and consumers, fulfilling their trading requirements. We aim
to develop a light weight and platform independent service
oriented market architecture which can be accessed easily by
current Grid systems. Mandi supports automated buying and
selling of compute services such as CPU time and storage.
Mandi has been implemented using Web Service technologies
as part of the Cloudbus Project, which is developing solutions
for service-oriented utility computing that scale from central-
ized systems to Clouds.

In the next section, we will discuss in detail the need
of marketplaces for advancement of market-based grid and

1Mandi is a colloquial term for marketplace in Indian languages

cloud computing. Then, in Section 3, we discuss related work
and compare them with Mandi. In Section 4, we discuss
requirements of a market exchange. Then in the subsequent
sections, we describe the design and implementation of Mandi
with evaluation results and conclusions.

II. RELATED WORK

Many projects focussed on building a marketplace for Grid
and Cloud infrastructures. Among them, the most promi-
nent, which are related to our work, are GridEcon [13],
SORMA [14], Ocean Exchange [11], Tycoon [7], Bellagio [9],
and CatNet [10].

Many existing systems (such as Bellagio [9] and Tycoon [7])
have restrictive pricing and negotiation policies. Auctions are
held at fixed intervals, and only one type of auction is allowed
(e.g. First Price, Second Price [15]). More generic market
architectures such as CatNet, Ocean Exchange, GridEcon and
SORMA also currently support only one or two market models
such as bilateral negotiation and combinatorial auctions. In
SORMA, automated bidding is provided to participate in an
auction or to bargain with a resource provider that may lead
to increased delays for consumers who urgently need the
resources. GridEcon project started with a vision to research
into a viable business model for trading services in an open
market. The current implementation of GridEchon only sup-
port commodity market model. Ocean Exchange currently
supports commodity market model, while CatNet supports the
only bargaining and contract/net models. SORMA project’s
Open Grid Market has similar architecture as proposed by
CatNet [16]. Thus, in the most of the previous work, the
choice of market model is decided by market itself. On the
other hand, in Mandi, we leave the choice of negotiation
and pricing protocols to the consumers and providers in the
system. This is crucial as the choice of the market model
(such as the auction and commodity model) and pricing (fixed,
variable) can vary from participant to participant depending
on their utility gained. Thus Mandi acts as neutral entity
or middleman giving the flexibility to participant to use any
market model or negotiation protocol for trading their service
and allowing concurrent and multiple negotiations between
market participants.

Moreover, these systems also handles the management of
job execution after matching it to appropriate resource. While,
in Mandi, unlike the other systems, the responsibility of actual
job submissions to resources and monitoring lies with user
brokers and provider’s resource management system.

Thus, our main contribution in this paper is to propose a
novel market-exchange architecture and design which reflects
the real-world markets where different participants interact
with each other using the mechanisms of their choice.

III. MOTIVATION AND MARKET SCENARIO

In past, the need for marketplace and market based mecha-
nisms is argued and counter argued by many researchers such
as Nakai and Van Der Wijngaart [17] argued about the insta-
bility of markets using the General Equilibrium (GE) theory.

In spite of these arguments, the need for markets in Grid like
infrastructures where any user can get resources on demand is
a reality. Many commercial providers and consumers from var-
ious industries including logistics and automobiles companies
exist today [18]. Moreover, it is pointed out by Shneidman
et al. [19] that many computer systems have reached to a
point where the goal is not always to maximise utilisation;
instead, when demand exceeds supply and not all needs can
be met, a policy for making resource allocation decisions is
required. Hence, market based systems and exchanges are the
next step. The benefits are following: a) Coordination between
concurrent user demands, and answers a critical question of
resource allocations i.e., who gets which resources and when?,
b) Ease the resource discovery by aggregation of different
resource providers and services, c) Increase the efficiency
of system usage by reducing resource wastage and avoid
problems like tragedy of commons, d) Competition among
various resource providers leads to reduction in money and
time, e) Automatically balance supply and demand, and f)
the market exchange acts as a neutral third party which
can support resolution of conflicts between consumers and
providers.

The key participant in any market are resource consumers,
providers and ME which act as an auctioneer or clearing
house. The consumers need to execute their applications that
require compute resources, while the providers have free
compute resources which can be leased for executing the
application. The ME on the behalf of consumers or providers
do the matching according their objectives using a negotiation
protocol such as Vickrey auction or double auction [4]. There
are three trading scenarios exist in market exchange:

• Consumer contacts providers to initiate the trading. The
ME in this context can be used to allow consumer to
discover various compute services on sale by different
resource providers. It allows consumers to join an auction
running for compute resources conducted by a provider,
or directly contact a provider for reserving compute
resources as in the commodity market model. It can also
hold auction for consumers if their need is not satisfied
by current advertised services.

• Provider contacts consumers to initiate the trading. In
the ME, the providers can also find clients for selling
their compute resources. Thus, ME allows providers to
join an auction initiated by consumers. It also facilitates
the providers to start their own trading protocol such as
auction, or advertise their compute resources.

• Consumers and Providers use ME services to coordi-
nate the trading and finding the most appropriate match.
In this scenario, the ME act as a clearing house running
market model such as double auction.

The market scenario where ME acts as a clearing house
is explained in Figure 1. Several users can submit their
application requirements to the ME. These requirements can
be in the form of number of compute resources, time at
which users need these resources, minimum memory require-

ments, and the power of each computing resource. Users can
access all services of ME through a user interface which
also manages the authentication and authorization. Similarly
resource providers can advertise their compute services (time
slot: number of compute resources and time for which they
are available) in the ME which will be maintained in resource
catalogue and in a database for backup.

The Meta-Broker is the main component of ME that coor-
dinates the trading between various consumers and providers.
The meta-broker periodically holds a double auction. At each
scheduling event, the Meta-Broker collects the time-slots and
the broker (consumer) requests from the Resource Discov-
ery and Queuing Service. According to the objective of the
consumers and the providers whether it is cost minimization
or time minimization, matching is performed. After matching
each broker resource-request to a time-slot, the reservation of
matched time-slot will be initiated by the Reservation Service.
The information about reservations can be collected by user
brokers from the ME.

IV. MARKET REQUIREMENTS

The market framework requirement can be divided into two
categories: infrastructure requirements and the marketplace
requirements.

A. Infrastructural Requirements

1) Scalability: Since, increase in the number of resource
requests can affect the performance of the ME, thus
the scalability of the exchange can become an issue.
The exchange architecture should be designed such that
access to market services be least effected by the number
of service requests. In addition, it should guarantee the
best efficiency in matching the consumers demand and
provider’s supply.

2) Interface Requirements and Grid Heterogeneity: The
user interface plays an important role in making the
usage of any system easy for a wide variety of users.
Depending on how user wants to access the market,
different types of interfaces should be provided. In
Grids, many market based brokers [6] [5] ease the
process of accessing the Grid middleware. Similarly,
on the resource provider side, heterogeneous resource
brokers [7] with market based capabilities are available.
Thus, these brokers should seamlessly access ME’s
services whenever required by invoking simple platform
independent exchange APIs.

3) Fault Tolerance: As failure is the reality of any system,
the ME should be able to resume its services from the
closest point before the failure.

4) Security: To avoid spamming, there should be a security
system for user registration. All the services of the
exchange must be accessed by authorized users.

B. Marketplace Requirements

1) Variety of Application Models and Compute Ser-
vices: The user resource requirement can vary ac-
cording to their application model. For example, to

run an MPI application, users may want to lease all
the compute resources from same resource provider,
which gives high bandwidth between communicating
processes. Thus, users can have different types of com-
pute resource demands depending on their applications.
Similarly, resource providers can advertise different type
of resources such as storage and virtual machines. Thus,
the ME should be generic enough to allow submission
of different types of compute resource requests and
services.

2) Multiple User Objectives: Users may wish to satisfy
different objectives at the same time. Some possible
objectives include receiving the results in the minimum
possible time or within a set deadline, reducing the
amount of data transfer and duplication, or ensuring
minimum expense for an execution or minimum usage
of allocated quota of resources. Different tasks within an
application may be associated with different objectives
and different QoS (Quality of Service) requirements.
The exchange should, therefore, ensure that different
matching strategies meeting different objectives can be
employed whenever required.

3) Resource Discovery: As discussed earlier, users may
have different resource requirements depending on their
application model and Quality of Service needs. Thus,
the exchange should be able to aggregate different
compute resources and should allow users to access and
discover them on demand.

4) Support for Different Market Models: In Grids, many
market based mechanisms have been proposed on dif-
ferent trading or market models such as auctions and
commodity market [20]. Each mechanism, such as En-
glish auction and Vickery auction, has different matching
and pricing strategies and has their own advantages and
disadvantages. Thus, the exchange should be generic
enough to support as many market models as possible.

5) Coexistence/Isolation of Market Models: Similar to
real world markets, the ME should support concurrent
trading of compute services by different negotiation
protocols such as auction. For example, double auction
and Vickery auction can coexist simultaneously and
users can participate in each of them.

6) Support for Holding, Joining and Discovery of Auc-
tions: Users can have requirements that may not be
fulfilled by currently available compute resources, and
thus, may want to hold their own auctions and invite
bids. Moreover, any user can discover these auctions
and join them if necessary.

The following sections present the architecture, design and
implementation of Mandi market exchange that takes into
account the challenges mentioned so far, and abstracts the
heterogeneity of the environment at all levels from the end-
user.

Resource

Discovery
Queuing

Service

M
a

rk
e

t
E

xc
h

a
n

g
e

Global

Information

Service

Grid Exchange User Interface

Gridbus

Broker (B2)Gridbus

Broker (B1)

P
e

rsiste
n

t d
a

ta

Send

resource

request

2. Insert request

in database

S
ch

e
d

u
lin

g
 E

v
e

n
t M

a
n

a
g

e
r

3. Check next

Event

Inform Time

For Next

Scheduling Event

Get Current

Available

Resource
Get Status of

Resources

Get time slots

with prices

Get request

to match
Get resource

requests

Start

Matching

Reservation

of time slots

1

2

4

3

5
5 6

6

7

8

Get

Matched

Resource

11

6 Meta-BrokerResourcID

and Job

12

M
a

rk
e

t
E

xc
h

a
n

g
e

Resource

Provider (R1)
Resource

Provider (R2)

Resource

Catalogue

Reservation Service Accounting

Service

d
a

ta
b

a
se

Advertise

available slots

Insert available slots

by R1..RN

S
ch

e
d

u
lin

g
 E

v
e

n
t M

a
n

a
g

e
r

of time slots

Reservation

of time slots

1

2

9
10

Update available

Requests and time

slots.

Fig. 1. Grid Exchange Protocol

V. MANDI ARCHITECTURE AND DESIGN

A. Design Considerations and Solutions

The primary aim of Mandi is to provide a marketplace
where the consumer’s resource requests and the provider’s
compute resources can be aggregated, and matched using
different market models. The main challenges and the way
they are approached in Mandi design are as follows:

1) Flexibility in choosing market model and user ob-
jectives: As already discussed various market models
or negotiation protocol can be used by users to trade
compute resources. Each market model has different
requirements [20]. For example, in the commodity mar-
ket model, consumers search the current state of the
market and immediately buy some compute service.
This requires synchronous access to that instance of
compute resource. In the case of auction, there is a
clearing time when the winner selection is done. In
addition, any user can request to hold their own auc-
tions, thus a separation of each auction is required.
Thus, the components within the Mandi are designed
to be modular and cleanly separated on the basis of
functionality. Each of them talks through the persistence
database which reduces the synchronization problems. It
is also possible to introduce new auction protocols by
extending the one-sided auction and the double sided

auction components. Each auction type is separated by
”objective” and the winner selection mechanism. The
reservation of matched services is handled independent
of the trading mechanisms that allows flexibility and
coexistence of different market models.

2) Support heterogeneous compute resources and appli-
cations: Mandi is designed to be as generic as possible
independently of user application model and resource
provider’s middleware. Mandi has a service oriented ar-
chitecture which allows platform independent interaction
with Grid middleware.

3) Fault tolerance: Mandi can handle failure at two stages:
during trading, and during reservation. The failure dur-
ing reservation can occur due to network problems, and
over subscription of resources. In the case of network
problem, the failed resource requests will be considered
in the next scheduling cycle. The reservation failure due
to resource oversubscription is handled by consumers
and providers. For the failures during trading, a parallel
or bag of task application is not scheduled until all
jobs/tasks are matched with a resource. In addition, The
persistence database protects the Grid Exchange against
failure during trading. The state of Mandi is periodically
saved in the database. Thus, Mandi can resume its work
from where it left.

4) Scalability: Most of the Mandi’s component work in-

dependently and interact through the database. This
facilitates the scalable implementation of Mandi as each
component can be distributed across different servers
accessing a shared database. In addition to that, most of
the threads of Mandi are light weight and short lived.

B. Architecture Details

W
Registration

Advertisement

Service

Service

Discovery

Service

Reservation

Hold

Auction

Join

Auction

Web Service Interface

Authentication

Authorization

Advance

Reservation

Meta Broker

Double

Auction Accounting

One-Sided

Auction E
x
ch

a
n

g
e

U
s

e
r

In
te

rf
a

c
e

 L
a

y
e

r
C

o
re

 L
a

y
e

r

Persistence Database

Service

Catalogue

Lease Request

Catalogue

Auction

Catalogue

Users

Catalogue

Authorization Auction AccountingAuction

M
a

rk
e

t
E

x
ch

a
n

g
e

C
o

re
 L

a
y
e

r
S

to
ra

g
e

 L
a

y
e

r

Fig. 2. Mandi Architecture

The architecture proposed in this work is inspired by the
concepts of the ‘Open Market’ where any user can join , sell
and buy their compute services. Mandi is made of three layers
i.e. the user interface, the core layer consisting of the meta-
broker service and the reservation service, and the storage
layer. The main functions of these layers is described as
follows:

User Interface layer: Consumers and compute resource
providers can access the services of the market exchange
through a Web Service interface. This layer provides the
following features:

1) Registration: The users are needed to be registered
before they can access the exchange’s services. Their
details are stored in the storage layer, and are used for
authentication and authorization.

2) Hold Auction and Join Auction: This allows users to
join any auction and bid for the items. Hold Auction
allows participants to specify the type and the objective
of auctions they want to hold. The objective of the
auction help Mandi to decide the winner. Users have
to provide details of the auction item (e.g. CPU time
slot).

3) Service Discovery and Service Reservation : allow
consumers to find services of their requirements and
reserve them.

4) Advertisement Service: allows resource providers to
advertise their CPU time slots.

Core layer: This layer performs main function of grid
exchange. It provides functionalities like user authentications

and authorization when users submit their login details. Its
core components are the meta-broker, the accounting and the
advance reservation system.

1) Meta-broker: It finds out the current one-sided auction
and double auction from the auction catalogue and
initiates the match process. After matching it invokes the
advance reservation service to inform providers about
the matching and the reservation of the resources.

2) Advance reservation: It informs the resource provider
about the match, reserves the advertised (matched) ser-
vice, and gets the reservation id that is used by consumer
to submit his application.

3) Accounting Service: keeps the trading information of
each user. It also keeps the information about transac-
tions failed and successful.

Storage Layer: This layer is the interface between the
database and other agents such as the web interface, the
advance reservation and the meta-broker. Its main objective
is to maintain the state of Mandi. It enables the recovery of
Mandi in the case of unexpected failure, and is also useful in
synchronizing exchange’s various components.

To understand the interrelationships between the Mandi’s
components, it is necessary to see how they interact in different
scenarios. The objects in the Mandi can be broadly classified
into two categories- entity and workers. This terminology is
derived from standard business modelling processes[21]. Enti-
ties exist as information containers representing the properties,
functions and instantaneous states of the various architectural
elements. The entities are stored in the database and are
updated periodically. Workers represent the functionality of the
broker, that is, they implement the actual logic and manipulate
the entities in order to achieve the application objectives.
Therefore, workers can be considered as active objects and
the entities as passive objects. The next section (Section V-C)
takes a closer look at the entities and workers within the broker
accompanied by UML diagrams that illustrate the relationships
between the components.

C. Entities

1) Users: Figure 3 shows the class diagram representation
of user details. The Users class is used to store information
about the participant members (consumers and providers)
of Mandi. This information is used for authentication and
authorization. From the point of view of the exchange, any
user can act as consumer or provider thus there is not special
field to differentiate this in the Users class.

2) Compute Resource: Figure 3 shows the TimeSlot Class
that is used to represent of compute resources which are
available as ”commodities”. The ”TimeSlot” indicates the time
for which resource will be available and how many CPUs will
be available. Each ”TimeSlot” is associated with a compute
resource that is a representation of a set of CPUs or virtual
machines advertised by the resource provider. The ”TimeSlot”
class can be also used for a storage resources where only the
attributes related to time will be used. If a resource provider
has conducted an auction for inviting bids for the time-slot,

then the AuctionType and the AuctionID attributes will be
used to store information about the auction.

Fig. 3. User, and Timeslot Classes

3) Auction Request: All the information for holding an
auction for any commodity advertised by a user is represented
using the AuctionRequest Class. Figure 3 shows the class
diagram of the AuctionRequest. Every auction is identified
by a unique identifier i.e. auctionID. In economics, generally
bids in auctions are considered in the form of monetary
value. But in the case of computing service, a bid can be
a more generalized form depending on the requirements of an
auction holder. For example, a user holds an auction to find
a resource provider who can lease the compute resource with
minimum delay and within the specified budget. Thus, the
user can invite bids in terms of the start time of the resource
lease. Thus, Mandi provides facilities to define the ”objective”
which is used as the criteria for choosing the winner bid.
To enable integration of the different auction models with
different matching and pricing strategies, the AuctionRequest
class contains the ”auctionType” as an attribute which informs
Mandi which auction user wants to hold.

4) Application: Application class represents the resource
requests of the user’s application such as total number of CPUs
required, QoS requirements, deadline, and budget. The ”dead-
line” attribute represents the urgency of the user to get his/her
application finished. The ”QoS” is an abstract class which
can be extended to codify special application requirements
such as bandwidth. Each application can consist of several
jobs that may differ in their resource requirements such as
execution time. To allow users to submit different application
model requirements such as parameter sweep and parallel
application, in Mandi, each application is associated with the
”appType” attribute that will be considered while matching an
application with a resource. The application object also stores
the information about the auction in which the user (consumer)
has opted to participate for leasing resource for its application.

Fig. 4. Application, Job, and Qos Classes

D. Workers

Fig. 5. Main Worker Classes

1) MetaBroker: MetaBroker is the first component in
Mandi to be started that instantiates other worker components
of Mandi, and manages the life cycles of other workers such
as Scheduler, and Monitor. The BrokerStorage is the front end
to the persistence system and implements interfaces used to
interact with the database. Another function of the MetaBroker
is to periodically get the list of current auction requests from
the database and start a scheduling thread for clearing each
auction.

2) GridExchange Service: The GridExchange Service is a
Web Service interface which enables users to access various
services of Mandi. The services that are available to users are
registration, submission of application and time slots, holding
and joining auctions, and discovering services and getting
service reservations. The GridExchange Service interacts with
the BrokerStorage class to access the persistence database. The
example sequence of operations for user registration is shown
in Figure 6. The UserBroker sends a registration request to
the exchange using the GridExchange web service. It submits
the preferred login name and password. The GridExchange
service gets the registered user list from the database and
checks whether the user is registered or not. If the user is
not registered, it sends a reply back to user broker with

Fig. 6. Registration Process

Fig. 7. Scheduling Sequence

”registration success” message.
3) Scheduler: For each market model, the Scheduler

matches the user application to the advertised compute re-
sources and also decides the price for executing the applica-
tion. The Figure 7 shows the basic steps that are performed
by the Scheduler. The Scheduler gets the auction object (can
be in the form of a timeslot or an application) from the

persistent database and the list of all the bids submitted for the
auction. The Scheduler sets the auction status to ”closed” to
prevent any further bid submission to the auction. Depending
on the auction type and objective, the winner bid is chosen
and the trading price is calculated. The status of winner bid
is changed to “matched” from “unmatched”. The match is
saved to database in the form a reservation request which will
be used by the Monitor to inform/reserve resources on the
compute resource. The function of the Monitor is described in
detail below.

4) Monitor: The Monitor keeps track of all the reservation
request in the database, as shown in the Figure 8. The
Monitor periodically requests all the reservation requests from
the persistent database. It uses Web Services to send SOAP
messages to the resource provider, which informs the provider
of the matching of the user application to the advertised
timeslot (compute service). In the return, the Monitor gets the
reservationID from the provider. The reservationID is used by
the consumer to access the compute services offered by the
resource provider. It represents the time-slot reserved and is
also the security key for accessing the resource. After getting
the reservationID, the Monitor will set all the reservation
details in the user application object stored in the persistent
database. The consumers (using brokers) can access the reser-
vation information by using the GridExchange service.

Fig. 8. Reservation Process

VI. PROTOTYPE AND PERFORMANCE EVALUATION

In order to evaluate the performance of Mandi and provide
a proof of concept of its architecture, we implemented a
prototype and tested it by using Aneka as a service provider.
In this section we will give an overview of the components
composing the system used for testing and discuss the perfor-
mance evaluation.

A. System Details

1) Mandi: Mandi has been implemented in Java which al-
lows in order to be portable over different platforms such as the

Windows and Unix operative systems. From an implementa-
tion point of view Mandi is composed of a collection of threads
that interact by means of a persistence layer represented by
the HSQL database. The system is accessible from external
components through a web service that has been deployed by
using Apache Axis2 on a TOMCAT web server (v. 5.5). This
makes the interaction with Mandi platform independent. The
current prototype support three type of trading mechanisms:
i) First Bid Sealed Auction; ii) Double Auction, and iii)
Commodity market.

2) Aneka: On the provider side, Aneka [22] has been used
and extended to support the reservation and advertisement
of slots on Mandi. Aneka is a service-oriented middleware
for building Enterprise Clouds. The core component of an
Aneka Cloud is the Aneka container that represents the
runtime environment of distributed applications on Aneka.
The container hosts a collection of services through which
all the tasks are performed: scheduling and execution of jobs,
security, accounting, and reservation. In order to support the
requirements of Mandi a specific and lightweight implemen-
tation of the reservation infrastructure has been integrated
into the system. This infrastructure is composed by a central
reservation service that provides global view of the allocation
map of the Cloud and manages the reservation of execution
slots, and a collection of allocation services on each node
hosting execution services that are in charge of keeping track
of the local allocation map and ensures exclusive execution for
reserved slots. The reservation service is accessible to external
applications by means of a specific Web Service that exposes
the common operations for obtaining the advertised execution
slots and reserving them.

3) Client Components: The client components are consti-
tuted by a simple web service client that generates all the
resource requests to Mandi.

Reservation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Mandi
Market Exchange

User

Aneka

Master Node

Slave Node

Allocation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Web Service

Reservation Client

(Dynamically Downloaded)

User

User

Fig. 9. The Topology of Testbed

B. Performance Evaluation

We evaluated the performance of Mandi in terms of over-
head caused to the system due to the interaction between
the internal components and Mandi’s interaction with users
requests and provider’s middleware. As discussed previously,
Mandi is designed to handle multiple market models con-
currently and exposes a service oriented interface to handle
users requests and reservations of resources. Thus, to evaluate
the scalability of Mandi, the first set of experiments examines
the CPU and memory requirements of our implementation of
Mandi. However, the performance of Mandi is also determined
by how quickly and how many simultaneous user requests can
be handled. Hence, the second set of experiments evaluates
time incurred in resource request submission (which is ini-
tiated from client machine) and resource reservation (which
involve negotiation of Mandi with providers).

The experimental setup for this evaluation is characterized
as follows:

• An instance of Mandi has been deployed on 2.4 GHZ
Intel Core Duo CPU and 2 GB of main memory running
the Windows operative system and Java 1.5. The HSQL
Database was configured to run on the same machine.
The performance of Mandi evaluated using JProfiler [23]
profiling tool.

• The Aneka setup was characterized by one master node
and 5 slave nodes. The reservation infrastructure was
configured as follows: the master node hosted the reser-
vation service while each of the slave nodes contained an
instance of the allocation service. Each container has been
deployed on a DELL OPTIPLEX GX270 Intel Core 2
CPU 6600 @2.40GHz, with 2 GB of RAM and Microsoft
Windows XP Professional Version 2002 (Service Pack 3).
As a result the reservation infrastructure can features ten
concurrent execution lines (one per core). The topology
of resources is given in Figure 9.

1) Memory Usage and CPU Load: The main threads run-
ning in Mandi are: i) MetaBroker, which initiates other threads
and controls the overall execution of Mandi, ii) Monitoring
Thread, and iii) Scheduler Threads, which dynamically vary
based on the number of auctions. Thus, the performance
of Mandi is highly dependent on the number of auctions
conducted concurrently. Thus, to evaluate the performance
of Mandi, we varied the number of auctions from 10 to
10,000 that are conducted over period of 5 seconds. For
this experiment, we generated 50,000 resource requests for
matching. Each resource request is mapped to an auction
using uniform distribution. Figure 10 shows the graphs of
the memory and CPU usage by the broker over a period of
5 Second run. In Figure 10(b), the variation in CPU usage
is about 10% with increase in number of auctions. This is
because scheduler threads conducting auctions are short lived
and has comparable CPU need. The little higher value of CPU
usage in the case when 10 auctions are conducted is due to
the large number of resource request per auction (50,000/10)
needed to be matched.

60

50

40
H

e
a

p
 S

iz
e

 (
M

B
)

30

H
e

a
p

 S
iz

e
 (

M
B

)

20H
e

a
p

 S
iz

e
 (

M
B

)

20H
e

a
p

 S
iz

e
 (

M
B

)

10

0

10 100 1000 10000

Number of Auctions

(a) Memory Required by Mandi VS Auction Conducted

60%

50%

40%

C
P

U
 L

o
a

d

30%

C
P

U
 L

o
a

d

20%

C
P

U
 L

o
a

d

10%

20%

10%

0%

10 100 1000 10000

Number of AuctionsNumber of Auctions

(b) CPU Usage by Mandi vs Auction Conducted

Fig. 10. Performance of Mandi for 50,000 clearance requests

In figure 10(a), we can see how memory usage of Mandi
is increasing with the number of auctions. For instance, the
memory usage increases from 32 MB to 56 MB when the
number of auctions increases from 1000 to 10000. Therefore,
there is only a 2 times increase in memory usage for 10
times increase in the number of auctions. This is due to
the fact that the auction thread loads resource requests from
database only when a decision for the auction winner needs
to be taken. In addition, the memory is freed for all resource
requests participating in the auction as soon as auction finished
executing. This reduces the memory occupied by resource
request objects waiting to be matched.

2) Overhead in Interaction with Resource Provider and
Consumer: Two experiments were performed; one for mea-
suring the resource request submission time and the other for
reservation time and free slot advertisement by the provider
middleware. All interactions between different entities i.e
Mandi, consumer, and provider middleware is using web
service. To measure these parameters, we used JMeter tool
that generate SOAP messages to test the performance of web
services. We generated SOAP messages until no more connec-
tion can initiated with the web service located at Mandi and
resource provider’s site. In case of interaction with Mandi’s
web service, about 750 concurrent resource submission re-
quests were generated, while in case of interaction with Aneka
reservation web service about 100 concurrent requests were
generated. Table I shows the time taken to serve a request by
web service in milliseconds. Overhead in terms of time for
resource request submission is only 11.75 ms. The time taken
by Aneka web service to serve free resource and reservation
requests is much longer because each reservation request can
trigger the interaction between the reservation service on the
master node and the allocation service on the slave node
where the reservation is allocated. This interaction implies the
communication between two different containers and varies
sensibly according to the network topology.

C. Discussion

The performance results indicate good scalability of current
prototype of Mandi which is able to clear about 50,000
resource requests and 10,000 auctions in about 5 seconds. The
major bottleneck in the scalability of Mandi’s architecture is
the shared database. The database constraints the number of
multiple and concurrent accesses which is also the reason that
experiments over 50,000 resource requests are not conducted.
In addition to that the database can be cause of single point
failure of whole system. The distributed databases which use
replication and load balancing techniques can be helpful in
increasing the scalability of the system.

TABLE I
OVERHEAD DUE TO INTERACTIONS OF MANDI

Web Service Request Service Time/request (ms)
Resource Request Submission 11.75
Getting Free Resources 30
Resource Reservation 240

VII. CONCLUSION

The presence of IT demand and supply in utility oriented
Clouds and Grids led to the need of a market exchange
that can ease the trading process by providing the required
infrastructure for interaction. In this paper we introduced
the novel market exchange framework named ”Mandi” for
facilitating such trading. We identified the various technical
and market requirements and challenges in designing such
an exchange. We described the architecture and the imple-
mentation of Mandi and evaluated it with two experiments:
measuring the effect of design choices on the performance of
Mandi and measuring overhead time incurred in the interaction
between the consumer and the provider through Mandi. The
experiments shows that Mandi can scale well and can handle
many concurrent trading models and resource requests. We
can thus conclude that the overhead generated for matching
a large number of resource requests in concurrent auctions

is minimal. The only limit to the scalability of the system is
the persistence layer, which also constitutes the single point of
failure. In order to address this issue, a more efficient database
server and a solid replication infrastructure has to be put in
place.

In the current implementation, the accounting and the bank-
ing service are not implemented, thus we aim to implement
them in next version of Mandi. In future, we will like to
consider large scale setups using Mandi. We plan to extend the
Gridbus Broker [5] and integrate various resource providers
such as Amazon. In addition, since in reality there will be
multiple exchanges, thus we will research how they will
intercommunicate.

REFERENCES

[1] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments
Workshop, 2008. GCE’08, 2008, pp. 1–10.

[2] “Ian Foster, What’s faster-a supercomputer or EC2? ,” http://ianfoster.
typepad.com/blog/2009/08/whatsfasterasupercomputerorec2.html, Aug.
2009.

[3] Amazon, “Amazon Elastic Compute Cloud (EC2),” http://www.amazon.
com/ec2/, Aug. 2009.

[4] J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented grids and
utility computing: The state-of-the-art and future directions,” Journal of
Grid Computing, vol. 6, no. 3, pp. 255–276, 2008.

[5] S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya, “Designing a re-
source broker for heterogeneous grids,” SoftwarePractice & Experience,
vol. 38, no. 8, pp. 793–825, 2008.

[6] E. Huedo, R. Montero, and I. Llorente, “A framework for adaptive
execution in grids,” Software Practice and Experience, vol. 34, no. 7,
pp. 631–651, 2004.

[7] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. Huberman, “Tycoon:
An implementation of a distributed, market-based resource allocation
system,” Multiagent and Grid Systems, vol. 1, no. 3, pp. 169–182, 2005.

[8] B. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. Parkes, J. Shneidman,
A. Snoeren, and A. Vahdat, “Mirage: a microeconomic resource allo-
cation system for sensornet testbeds,” in Proceedings of the 2nd IEEE
workshop on Embedded Networked Sensors. IEEE Computer Society,
2005, pp. 19–28.

[9] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat, “Resource allocation
in federated distributed computing infrastructures,” in Proceedings of
the 1st Workshop on Operating System and Architectural Support for
the On-demand IT InfraStructure, vol. 9. Citeseer, 2004.

[10] T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, L. de Cerio, F. Freitag,
R. Messeguer, L. Navarro, D. Royo, and K. Sanjeevan, “Decentral-
ized vs. Centralized Economic Coordination of Resource Allocation in
Grids,” in Grid computing: first European Across Grids Conference,
Santiago de Compostela, Spain. Springer-Verlag New York Inc, 2003.

[11] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. Frank, and
C. Chokkareddy, “OCEAN: The Open Computation Exchange and
Arbitration Network,” in International Symposium on Parallel and
Distributed Computing, Ljubljana, Slovenia, October 2003.

[12] D. Neumann, J. Stößer, and C. Weinhardt, “Bridging the adoption gap -
developing a roadmap for trading in grids,” Electronic Markets, vol. 18,
no. 1, pp. 65–74, 2008.

[13] J. Altmann, C. Courcoubetis, G. Stamoulis, M. Dramitinos, T. Rayna,
M. Risch, and C. Bannink, “GridEcon: A market place for computing
resources,” Lecture Notes in Computer Science, vol. 5206, pp. 185–196,
2008.

[14] D. Neumann, J. Stoesser, A. Anandasivam, and N. Borissov, “Sorma-
building an open grid market for grid resource allocation,” Lecture Notes
in Computer Science, vol. 4685, p. 194, 2007.

[15] C. Yeo and R. Buyya, “A taxonomy of market-based resource manage-
ment systems for utility-driven cluster computing,” Software Practice
and Experience, vol. 36, no. 13, p. 1381, 2006.

[16] SORMA, “Economic Middleware and Grid Operating System
Extensions,” http://www.im.uni-karlsruhe.de/sorma/fileadmin/SORMA\
Deliverables/D5.1\ final.pdf.

[17] J. Nakai and R. Van Der Wijngaart, “Applicability of markets to global
scheduling in grids,” NAS Report, pp. 03–004.

[18] TOP500 Supercomputers, “Supercomputer’s Application Area Share,”
http://www.top500.org/stats/list/33/apparea, 2009.

[19] J. Shneidman, C. Ng, D. Parkes, A. AuYoung, A. Snoeren, A. Vahdat,
and B. Chun, “Why markets could (but dont currently) solve resource
allocation problems in systems,” in 10th USENIX Workshop on Hot
Topics in Operating System, 2005.

[20] J. Altmann, M. Ion, and A. Mohammed, “Taxonomy of grid business
models,” Lecture Notes in Computer Science, vol. 4685, p. 29, 2007.

[21] H. Eriksson and M. Penker, “Business Modeling with UML: Business
Patterns at Work, John Wiley&Sons,” 2001.

[22] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” CoRR, vol. abs/0910.1979,
2009.

[23] E. Cho, “JProfiler: Code Coverage Analysis Tool for OMP Project,”
2006.

