
A Novel Approach for Realising Superscalar Programming Model on Global Grids

Xingchen Chu
1
, Rajkumar Buyya

1
and Rosa M. Badia

2

1
GRIDS Laboratory

Dept. of Comp. Science and Software Eng.,

The University of Melbourne, Australia

2
Barcelona Supercomputing Center

Technical University of Catalonia

Barcelona, Spain

{xchu, raj}@csse.unimelb.edu.au rosa.m.badia@bsc.es

Abstract

This paper presents a novel approach for the design

and implementation of Grid Superscalar (GS) model

on top of GWFE (Gridbus Workflow Engine). This new

workflow-based version of the GS framework enables

the easy development of applications (without the need

of explicit expression of parallelism/distribution by the

programmer) and scheduling them on Global Grids

using the GSB (Gridbus Service Broker) transparently.

By means of a simple programming model, GWFE-S

provides a pure Java library and keeps the Grid as

transparent as possible to the programmer. Moreover,

the deployment of the applications is highly optimized

by using the GSB which supports various types of Grid

middleware. The runtime of superscalar has been

designed to follow the Gridbus Workflow and is

therefore formed by a set of dependent workflow tasks

which will be scheduled and executed to different

Grids. The feasibility of the work is demonstrated by

conducting performance evaluation on a global Grid

having resources located in Australia and USA.

1. Introduction

Grids now emerges as the next generation of

distributed computing platforms for solving scientific

and engineering problems that are computational and

data intensive. There are a lot of efforts that have been

made to develop Grid middleware and applications that

uses Grids. However, Grids still like technologies that

are not very easy to use, and only very experienced

developers can write Grid applications. The difficulty

associated with developing applications to be run on

the Grid is a major barrier to adoption of this

technology by non-expert users. The challenge in this

case is to provide programming environments for Grid-

unaware applications, defined as applications where the

Grid is transparent to them but that are able to exploit

its resources.

Grid Superscalar (GS) [1] is an innovative

technology that provides an easy-to-use programming

environment for non-expert users to develop Grid

applications in a normal sequential manner. It reduces

the requirement of being aware of Grids and explicitly

expressing application parallelism. The application

code that is written using this model can be internally

translated into a workflow and will be scheduled by the

GS runtime system.

Gridbus Workflow Engine (GWFE) [2] provides

users a workflow engine that can run workflow

applications in Grids. The tasks inside the workflow

will be automatically scheduled via the Gridbus Service

Broker (GSB) [5]. The GSB provides several QoS-

aware scheduling algorithms and supports various types

of Grid middleware including Globus [3], PBS [4],

Condor [6], SGE [7], Aneka [8], and plain SSH.

Utilizing the GWFE with GSB provides a powerful

approach to run workflow applications on Global

Grids.

This paper presents a novel approach for realising

the superscalar programming model via Gridbus

middleware, which provides a way to develop and

deploy superscalar applications on Global Grids. It is

organized as follows. Section 2 discusses some related

work. Section 3 proposes a GWFE-based Superscalar

(GWFE-S) system architecture. Section 4 presents the

programming model for the applications that use GWFE-

S. Section 5 gives some implementation details about the

GWFE-S and describes the internal processes and

communications that take place inside the runtime when

executing an application. Section 6 discusses the results

of some tests on applications that use GWFE-S on global

Grids. Section 6 concludes the paper.

2. Related works

There are number of efforts that have promised to

provide programming environments and tools to

simplify the development of Grid applications. Some

projects such as GrADS [9], introduce a special

language along with a compiler in order to grid enable

the applications in such a way that the applications can

be compiled and run on their specific infrastructure.

Other efforts like GriddLeS [10], aim to provide a

more general environment that facilitates the

composition of arbitrary grid applications from legacy

software. It supports the construction of complete

applications without source modification to the existing

legacy program. The GS model unlike those

approaches tries to make programming grid

applications as the same as programming normal

sequential applications. It means, unlike constructing

the applications by linking different working legacy

programs, developers still need to write the application

code, however, in this case unlike learning and using

new programming languages, developers can work with

the existing programming language such as C++/Java,

and they can write grid applications just like write

normal sequential applications.

Apart from GWFE-S, there are other efforts exist

for linking GS model with other Grid systems. GS-

PGPORTAL [11] describes the possible integration

solution of P-GRADE [13] and GS system to create a

high level, graphical grid programming, deployment

and execution environment that combines the

workflow-oriented thin client concept of the P-GRADE

Portal with the automatic deployment and application

parallelization capabilities of GS. The difference

between that and GWFE-S is that GS-PGPORTAL was

trying to build the workflow using the P-GRADE portal

and utilizing the GS runtime to run those tasks. GWFE-

S builds the workflow in the opposite manner, which is

dynamically generated by the superscalar applications.

The most recent work related to the integration of

superscalar model is COMPs [14]. COMPs provides a

superscalar model implementation based on Grid

Component Model (GCM) [15]. As a result, the

runtime of COMPs has gained in reusability,

deployability, flexibility and separation of concerns

which are from the component-based programming

practice. This work also benefits the ProActive [16] by

means that Java developers of ProActive now can

utilize superscalar model based on its framework and

runtime environment.

Our approach differs from the above approaches by

means of combining the benefits of most of the features

provided by those solutions. GWFE-S provides native

support to compose the superscalar model as a

workflow via the GWFE, the developers do not need to

worry about how to construct the workflow manually as

the GWFE-S will automatically detect all the

dependencies and construct the workflow at runtime. It

also provides support for a dynamic scheduling

infrastructure to run tasks on various types of Grid

middleware via GSB. Furthermore, it is pure Java

based solution which will help developing superscalar

applications use Java.

3. GWFE-S Architecture

The architecture of the GWFE-S, as shown in Figure 1,

is primary based on the runtime environment provided

by GWFE and therefore it reuses the entire system as

the base infrastructure:

• Native workflow support: GWFE provides a

XML-based workflow description language

which can be internally translated into direct

acyclic graph (DAG) and automatically schedules

tasks and resolves data dependencies between

tasks.

• Just in-time scheduling: it enables the resource

allocation decision to be made at the time of task

execution and hence adapt to changing Grid

environments.

• Various Grid middleware support: it also

supports schedule tasks on Global Grids via the

GSB which allows multiple Grid middleware

environment for executing the tasks such as

Globus 2.4 and Globus 4.0, PBS, Condor, SGE,

Aneka, or plain SSH.

• Easy Deployment: the deployment of the

applications over various Grid middleware is

fairly easy via the XML-based service and

credential description language.

Most of the components in the system are reused

from the existing infrastructure provided by the

GWFE and GSB. The next section describes the two

important components that bring superscalar model

into the picture.

3.1. Context manager

The context manager is responsible for maintaining the

metadata information for the superscalar applications.

It consists of a IDL (Interface definition language)

parser which is used to scan the IDL file and resolve

any metadata about the application such as application

class name, method signature and its parameter

information. This information will be further processed

by the task analyzer to construct the tasks and their

dependencies.

3.2. Task analyzer

It intercepts the application based on the method

invocations to dynamically generate the workflow task

and its dependencies at runtime. Just like the concepts

in GS, a workflow task is just a method invocation

which matches certain method metadata obtained by

the Context manager from the IDL file. A XML file

described the entire workflow will be generated and

submitted to the GWFE runtime once the application

triggers a certain method call (see details in section 4).

3.3. Task schedule and execution

The GWFE is responsible for resolving the task graph

and all the dependencies between different tasks. There

is a build-in workflow scheduler that is used to

schedule tasks whose dependencies have been resolved

for deploying on various remote Grid resources. The

runtime environment communicates with a selected

remote Grid resource for an assigned task execution.

The infrastructure for scheduling and execution

workflow on Global Grids described here has been

leveraged without making any changes to the base

software infrastructure.

4. GWFE-S Programming Model

GWFE-S aims to provide the same promise as the GS

which is an easy-to-use programming model to enable

applications for Grid without knowing about the Grid.

It is so-called ‘Grid-unaware applications’ which is

programmed in a sequential fashion. Nevertheless, by

means of GWFE-S, it identifies the tasks that compose

the application, detects task dependencies, dynamically

generates the workflow on the fly, decides when to

distribute the task to the Grid and manages their remote

execution.

The following subsections explain, through a very

simple, how to create a GWFE-S application.

4.1. Original Sequential Code

Consider a Java application that generates random

numbers and calculate the mean value of those random

numbers. From now on, we call it Mean. Figure 2

Figure 1. GWFE-based Superscalar System Overview

Globus

Nodes

Workflow
Tuple Space

SGE

Cluster

PBS

Cluster

Plain SSH

Nodes

Aneka

Cluster

Condor

Cluster

Internet/Intranet

IDL File

Java Code

Superscalar
Client

Broker

G

Workflow

Engine

Gridbus
Middleware

C
o
n
te
x
t
M
a
n
a
g
e
r

T
a
s
k
 A
n
a
ly
z
e
r

Globus

Nodes

Globus

Nodes

Workflow
Tuple Space

SGE

Cluster

SGE

Cluster

PBS

Cluster

PBS

Cluster

Plain SSH

Nodes

Plain SSH

Nodes

Aneka

Cluster

Aneka

Cluster

Condor

Cluster

Condor

Cluster

Internet/Intranet

IDL File

Java Code

Superscalar
Client

IDL File

Java Code

Superscalar
Client

IDL File

Java Code

Superscalar
Client

Broker

G

Workflow

Engine

Gridbus
Middleware

Broker

G
Broker

G

Workflow

Engine

Gridbus
Middleware

C
o
n
te
x
t
M
a
n
a
g
e
r

T
a
s
k
 A
n
a
ly
z
e
r

Figure 2. Sequential Code of Mean

for (int i = 0; i < loops; i++)
{

Mean.genrandom("random.txt");

Mean.mean("random.txt", RESULT);

}

//post processing the result

printResult();

shows the original sequential code of Mean application.

All parameters of the methods are files. The program

first generates random numbers into a random.txt file

and then reads that file and appends the results to the

result file.

4.2. Define the tasks

The first step consists in defining which tasks it must

take into account, that is, which methods called from

the application code will be actually executed on the

Grid. This is done by providing a IDL (interface

definition language) file which declares these methods.

It is the exactly the same approach that has been used

in the GS. As the current implementation, we are trying

to make the least impacts on the original GS

programming environment, the adoption of using IDL

is one of these concerns which enables reusing the

existing GS programs. The IDL provides the metadata

required by the Task analyzer module to intercept the

corresponding method invocations on the target class to

dynamically generate workflow tasks. Figure 3

corresponds to IDL definition of the tasks of Mean.

4.3. Preparing the application

The second step involves making the application

invoke the runtime of GWFE-S. This runtime must be

started in order to receive the tasks to submit to the

Grid and know about the files that the application

accesses. Obviously, the original code of a sequential

Java application cannot itself interact with GWFE-S.

For that reason, we developed a interceptor-based

aspect that intercepts the application at execution time

by inserting some necessary logic in it; the intercepting

method invocation at runtime were featured by JBoss-

AOP (Aspect Oriented Programming) framework.

 In order to enable the GWFE-S, the programmer

can use up to 2 API methods (GSMaster.On and

GSMaster.Off) in the application code. In particular,

the API offers methods to start and stop the runtime.

Figure 4 shows the modified code of Mean, resulting

from the inclusion of API calls; note that the invocations

of genrandom and mean remain the same, since it is the

duty of the AOP interceptor to translate them into the

creation of workflow tasks. Also note that although the

GSMaster style may look similar to the GS, but it is a

totally different implementation that works particularly

with the GWFE-S runtime.

5. Design and Implementation

In order to fully understand the design and

implementation of the GWFE-S runtime environment,

the next subsections describe the base technologies, the

different phases that are required to configure and

deploy the runtime environment, as well as its

underlining operations when executing an application.

5.1. Base Technologies

To implement GWFE-S, we took Java as the

programming language, and JBoss AOP 2.0, GWFE

2.0 and GSB 3.0 as the base technologies.

JBoss AOP [17] is a 100% pure Java aspect

oriented programming framework which allows the

developers to insert behavior between the caller of a

method and the actual method being called. It provides

an abstraction called interceptor which can be

configured to bind to certain method invocation via a

XML configuration file. The task analyzer component

is built primary based on the interceptor concept. A

SuperscalarInterceptor class deriving from the

org.jboss.aop.advice.Interceptor interface has been

implemented, which generates a workflow task for a

specific method invocation, adds any dependencies of

that task to the workflow, and postpones the actually

invocation of that method as the logic of the method

will only be executed remotely.

 GWFE is a Java based workflow engine that

facilitates users to execute their workflow applications

on Grids. It provides a XML-based workflow language

for the users to define tasks and dependencies. It uses

the tuple space (IBM TSpaces implementation) [18]

approach to enable an event-driven scheduling

architecture for simplifying workflow execution. All

the tasks that have been dynamically generated by the

Figure 3. IDL of the Mean application

interface Mean {

void genRandom(out File rnumber_file);

void mean(in File rnumber_file, inout File results_file);

};

Figure 4. Code of Mean that triggers GWFE-S

GSMaster.On();

for (int i = 0; i < loops; i++)

{

Mean.genrandom("random.txt");

Mean.mean("random.txt", RESULT);
}

GSMaster.Off(1);

//post processing the result

printResult();

task analyzer are objects representing certain XML

element, those tasks and dependencies will be saved

into the workflow XML descriptor and submit to the

workflow engine once the application triggers the

GSMaster.Off invocation. The contribution of the

GWFE is mainly to build the DAG, resolve the

dependencies between each task and submit the ready

tasks to the broker.

GSB is an user-level Grid middleware that mediates

access to distributed Grid resources. It supports various

types of Grid middleware including Globus, Alchemi,

PBS, Condor, SGE and also plain SSH. The major

contribution of the GSB in our approach is to manage

the Grid resources and the execution of workflow tasks

on Grids.

5.2. Configurations

Before launching any superscalar applications with

GWFE-S, there are 3 points to address regarding to the

configurations. First, user needs to specify an XML file

which is a list of Grid resources that can be used for

GWFE-S to distribute the tasks. Secondly, the user also

needs to specify an XML file describing the credentials

that can be used for the GSB to execute the tasks. The

XML schemas for both resources and credentials

configuration file are created by GSB. Lastly, a

WEProperties file must be provided to the GWFE to

configure the tuple space.

5.3. Phase I : Workflow Creation

Besides the external configurations, the execution of

the superscalar applications within GWFE-S is

composed of two phases. The first phase as shown in

Figure 5 is recognized as workflow creation. The main

purpose of this phase as indicated by the name is to

create the XML workflow descriptor that will be

submitted to the GWFE. Phase one consists of two sub-

phases: static AOP weaving and dynamic task

analyzing.

5.3.1. Static AOP weaving. As the JBoss AOP

requires a jboss-aop.xml file to identify which method

invocations should be intercepted by the AOP

interceptor in order to insert instructions into the

classes, the IDLParser is responsible for analyzing the

IDL file to store metadata including application name,

method details, and it is able to utilize the metadata to

generate the AOP configuration file. According to the

AOP XML, and the implementation classes for the

application, the instructions of the required logic can be

weaved into the classes via a JBoss AOP compiler tool

at compilation time. The modified AOP weaved classes

that contain specific instructions to the AOP interceptor

will be used by the GWFE-S runtime.

5.3.2. Dynamic Task Analyzing. Once the weaved

classes have been successfully generated, the AOP

interceptor will be triggered when a specific method

invocation occurs within the superscalar application.

Then it is the SuperscalarInterceptor’s responsibility to

translate the normal method invocation to a workflow

task with all its dependencies by looking at the

metadata provided by the IDLParser. Once the

Figure 6. Workflow for Mean Application

Figure 7. Phase II: Workflow submission

Main
App

Program

Broker

G

Workflow

Engine

Gridbus Middleware

Workflow
XML

Service
XML

Credential
XML

Start

Workflow
Tuple
Space

Global
Grids

Resources

Workflow
Monitor

Distribute
GridSuperscalar

Tasks

Main
App

Program

Broker

G

Workflow

Engine

Gridbus Middleware

Workflow
XML

Service
XML

Credential
XML

StartMain
App

Program

Broker

G

Workflow

Engine

Gridbus Middleware

Broker

G
Broker

G

Workflow

Engine

Gridbus Middleware

Workflow
XML

Service
XML

Credential
XML

Start

Workflow
Tuple
Space

Global
Grids

Resources

Workflow
Monitor

Distribute
GridSuperscalar

Tasks

Figure 5. Phase I: Workflow Creation

IDL

Meta
Data

JBoss
AOP
XML

Java
Classes

JBoss
AOP

Compiler

AOP
Weaved
Classes

IDL
Parser

Main
App

Program

Superscalar

AOP Interceptor

T1

T2 T3 T4 T5

T6

T7

T8

Workflow XML

IDL

Meta
Data

JBoss
AOP
XML

Java
Classes

JBoss
AOP

Compiler

AOP
Weaved
Classes

IDL
Parser

Main
App

Program

Superscalar

AOP Interceptor

T1

T2 T3 T4 T5

T6

T7

T8

T1

T2 T3 T4 T5

T6

T7

T8

Workflow XML

application calls the GSMaster.Off method, all the

generated tasks and dependencies will be saved to the

workflow XML file.

The workflow generated for the Mean the one

depicted in Figure 6. Tasks with no dependencies pass

will be scheduled immediately. According to the graph

of Mean, the first suitable tasks are genrandom-0 and

genrandom-3: they can be run in parallel on the Grid.

Upon the completion of the first two tasks, the tasks

with dependencies such as mean-1 and mean-3 will be

executed on the Grid.

5.4. Phase II: Workflow Submission

Once phase I has been successfully passed, it comes to

the second phase as shown in Figure 7 which is the

submission of the workflow to the GWFE along with

the services and credentials configurations. Phase two

is started inside the GSMaster.Off method, which

initializes the workflow monitor, initializes the GSB

with the three XML files: workflow, services and

credentials files and synchronizes the execution of the

workflow. The GSB is responsible for managing the

actual execution to the Grids, which is continuously

accepting the tasks scheduled by the GWFE and

dispatching them to the remote resources. Once all the

tasks belonging to the application have been

succeeded, relevant output files will be synchronized to

the local workstation and results can be displayed by

the application program. The GSB, GWFE as well as

the monitor will be shutdown once the application

finished.

5.5. Task Executor

What we have discussed so far are components on the

master node, it is important to also mention how the

local method invocation is executed remotely. The

GSWorker class uses the Java reflection API to run the

a method on a specific class with all required

parameters. The information of the method, class and

parameters will be automatically given to the

GSWorker program at phase I when the workflow

descriptor is generated. The GSB will copy the

required jar files that contain the GSWorker class as

well as the application class, and the remote Grid

runtime is responsible for executing the GSWorker

program by using standard Java command with the

target method name, class name, and arguments for that

method. The only restriction on the Grid is that the

Java 5.0+ runtime has to be installed. For example, the

following shell command will be executed on the

Grids:

java –cp GSWorker.jar:GSApp.jar. GSWorker

Mean mean random.txt result.txt

It invokes the mean method on the Mean class

which takes two arguments random.txt and result.txt.

6. Performance Evaluation

This section presents the results of experiment studies

performed on GWFE-S. The experiments took place in

three different Grid sites as shown in Table 1. Manjra

cluster consists of 11 nodes, which is running in CSSE

department at the University of Melbourne. Belle is a

workstation containing 4 CPUs at the same site as

manjra cluster. We have also used up to 18 nodes at

State University of New York, Binghampton, USA,

where each node contains 4 processors. We have

decided to use the plain SSH adaptor provided by GSB

which have the least overhead compared with other

middleware support such as Globus. The main purpose

of the test is to show the GWFE-S works within the

context of the GSB as workflows on Global Grids, and

meanwhile it provides reasonable performance gain via

Node Location Grid

Adaptor

No. Processors

Per Node

CPU Info

manjra.cs.mu.oz.au The University of

Melbourne, Australia

Plain SSH 4 Intel ® Xeon ™ CPU

2.00GHz

belle.cs.mu.oz.au The University of

Melbourne, Australia

Plain SSH 4 Intel ® Xeon ™ CPU

2.80GHz

node**.cs.binghamton.

edu (8 different nodes)

State University of

New York, USA

Plain SSH 4 Intel ® Xeon ™ CPU

2.66GHz

Figure 8. Matmul application experiments

Table 1. Experiment Setup (** start from 01 to 08)

parallelism on Grids against the sequential program.

The experiment that we have adopted to

demonstrate the objective is parallelizing an

application that multiplies two matrices (Matmul). The

matrices are divided into blocks, which are themselves

smaller matrices of doubles. The tasks generated by

Matmul work with blocks stored in files. In particular,

we used matrices of 6 x 6 blocks, with 800 x 800

doubles in each block. With these input parameters,

Matmul produces 216 coarse-grained tasks, each one

multiplying two blocks. The corresponding dependency

graph as shown in Figure 8 contains 36 groups of 6

pipelined tasks where each task reads the result of the

previous one. For this test, the whole GWFE-S runtime

(which plays the role of master) was deployed in the

client machine, submitting the tasks to a variable

number of other nodes (workers). Since not all of the

nodes are in the same domain, and due to the security

constrains on the local nodes as well, there is no way to

provide a NFS-like setup so that the experiment

assumes all the input files have to be transferred to the

worker nodes which incurs quite large network

overhead especially transferring files to the US nodes.

In Figure 9 appear the execution times of Matmul

when parallelising it over different numbers of worker

processors as the input parameters we mentioned. As

can be seen from the results, for this particular

execution of Matmul, which generates a medium

number of tasks (216 in total), shows the reasonable

speedup when the number of processors increases. The

performance gain from 4 to 40 processors are

reasonably good, the network overhead involved for

transferring files between Australia and USA nodes is

the main reason for degrading the performance in this

application. As a result, the GWFE-S would perform

quite well if the time for execution of one task is much

longer than the network overhead caused by the file

transfer.

7. Summary and Conclusions

This paper has presented GWFE-S superscalar, a new

version of GRID superscalar which is an new

implementation of the programming model to follow

the principles of GWFE, a workflow model intended

for the Grid. GWFE-S provides a straightforward

programming model that keeps the Grid transparent to

the user, who is only required to specify the tasks to be

executed on the Grid, being free to leave the code of

the Java application completely unchanged. In addition,

through an operation example, we have explained how

the runtime components of GWFE-S are individually

concerned with different functionalities and how they

collaborate to reach the common goal of remotely

running the application. Finally, we have discussed

some test results that explore the possible performance

gain of running the application via GWFE-S.

 Although in this paper we have focused on Grid-

unaware applications, we believe that GWFE-S could

offer an alternative way to develop Grid-aware

applications as well. As the GSB is highly optimized to

support economy-based scheduling policies, the

GWFE-S can easily utilize the scheduling infrastructure

provided by the GSB to support QoS-aware

applications.

8. Acknowledgement

This work is partially supported through an

International Science Linkage (ISL) project funded by

the Australian Department of Innovation, Industry,

Science and Research (DIISR).

9. References

[1]. R.M. Badia, J. Labarta, R. Sirvent, J.M. Pérez, J.M.

Cela, R. Grima, “Programming Grid Applications with

GRID Superscalar”, Journal of Grid Computing,

Springer, 2003 , pp. 151-170(20).

[2]. J. Yu and R. Buyya, “A Novel Architecture for Realizing

Grid Workflow using Tuple Spaces”, Proceedings of the

5th IEEE/ACM International Workshop on Grid

Computing, IEEE Computer Society Press, Los

Alamitos, CA, USA, Nov. 8, 2004.

[3]. I. Foster and C. Kesselman, “Globus: A Metacomputing

Infrastructure Toolkit”, International Journal of

Supercomputer Applications, 1997, pp: 115-128.

[4]. A. Bayucan, R. Henderson, C. Lesiak, B. Mann, T.

Proett, and D. Tweten, "Portable Batch System:

External reference specification". Technical report,

MRJ Technology Solutions, 1999.

[5]. S. Venugopal, R. Buyya and L. Winton, “A Grid

Service Broker for Scheduling e-Science Applications

on Global Data Grids”, Concurrency and Computation:

Figure 9. Execution time of Matmul

0

20

40

60

80

100

120

140

4 8 20 40

Number of Work Processors

M
in

iu
te

s

Practice and Experience, 18(6), Wiley Press, New York,

USA, May 2006, pp: 685-699.

[6]. W. Gentzsch, “Sun Grid Engine: Towards Creating a

Compute Power Grid”, Proceedings of the 1st

International Symposium on Cluster Computing and the

Grid (CCGrid 2001), Brisbane, Australia. IEEE CS

Press, Los Alamitos, CA, USA, 2001.

[7]. M. Litzkow, M. Livny, and M. W. Mutka, “Condor - a

hunter of idle workstations”, Proceedings of the 8th

International Conference of Distributed Computing

Systems (ICDCS 1988), San Jose, CA, USA, IEEE CS

Press, Los Alamitos, CA, USA, 1988.

[8]. X. Chu, K. Nadiminti, C. Jin, S. Venugopal, R. Buyya,

“Aneka: Next-Generation Enterprise Grid Platform for

e-Science and e-Business Applications”, Proceedings of

the 3rd IEEE International Conference on e-Science an

Grid Computing (e-Science 2007), Dec. 10-13, 2007,

Bangalore, India.

[9]. F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster,

D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J.

Mellor-Crummey, D., L. Torczon, R. Wolski, “The

GrADS Project: Software Support for High-Level Grid

Application Development”, International Journal of

High Performance Computing Applications, 2001, pp.

327-344.

[10]. J. Kommineni, D. Abramson, and J. Tan.

“Communication over a Secured Heterogeneous Grid

with the GriddLeS runtime environment”, Proceedings

of the 2nd IEEE International Conference on e-Science

and Grid Computing. Dec. 4- 6, 2006, Amsterdam,

Netherlands.

[11]. R. Lovas, R. Sirvent, G. Sipos, J. Perez, R.M. Badia, P.

Kacsuk, “GRID superscalar enabled P-GRADE

portal”. Proceedings of the Integrated Research in Grid

Computing Workshop, Università di Pisa, Dipartimento

di Informatica, Nov 2005, pp: 467-476.

[12]. S. Venugopal, K. Nadiminti, H. Gibbins, R. Buyya,

“Designing a Resource Broker for Heterogeneous

Grids”, Software: Practice and Experience, Wiley Press,

New York, USA, July 10, 2008, pp: 793-825.

[13]. G. Sipos, P. Kacsuk, “Classification and

Implementations of Workflow-Oriented Grid Portals”.

High Performance Computing and Communications,

First International Conference, HPCC 2005, Sorrento,

Italy, Sept 21-23, 2005, pp:684-693.

[14]. E. Tejedor, R.M. Badia, "COMP Superscalar: Bringing

GRID superscalar and GCM Together". Cluster

Computing and Grid 2008, Lyon, May 2008, pp: 185-

193.

[15]. “ Basic Features of the Grid Component Model

(assessed)”, CoreGRID Deliverable D.PM.04, 2007.

[16]. D. Caromel, W. Klause, J. Vayssiere, “Towards

seamless computing and metacomputing in java”,

Concurrency Practice and Experience, vol. 10, no. 11–

13, 1998, pp. 1043–1061.

[17]. JBoss AOP, http://www.jboss.org/jbossaop/.

[18]. TSpaces, http://www.almaden.ibm.com/cs/TSpaces/

