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Abstract 
 

This paper presents a novel approach for the design 

and implementation of Grid Superscalar (GS) model 

on top of GWFE (Gridbus Workflow Engine). This new 

workflow-based version of the GS framework enables 

the easy development of applications (without the need 

of explicit expression of parallelism/distribution by the 

programmer) and scheduling them on Global Grids 

using the GSB (Gridbus Service Broker) transparently. 

By means of a simple programming model, GWFE-S 

provides a pure Java library and keeps the Grid as 

transparent as possible to the programmer. Moreover, 

the deployment of the applications is highly optimized 

by using the GSB which supports various types of Grid 

middleware. The runtime of superscalar has been 

designed to follow the Gridbus Workflow and is 

therefore formed by a set of dependent workflow tasks 

which will be scheduled and executed to different 

Grids. The feasibility of the work is demonstrated by 

conducting performance evaluation on a global Grid 

having resources located in Australia and USA. 

 

1. Introduction 
 

Grids now emerges as the next generation of 

distributed computing platforms for solving scientific 

and engineering problems that are computational and 

data intensive. There are a lot of efforts that have been 

made to develop Grid middleware and applications that 

uses Grids. However, Grids still like technologies that 

are not very easy to use, and only very experienced 

developers can write Grid applications. The difficulty 

associated with developing applications to be run on 

the Grid is a major barrier to adoption of this 

technology by non-expert users. The challenge in this 

case is to provide programming environments for Grid-

unaware applications, defined as applications where the 

Grid is transparent to them but that are able to exploit 

its resources.  

Grid Superscalar (GS) [1] is an innovative 

technology that provides an easy-to-use programming 

environment for non-expert users to develop Grid 

applications in a normal sequential manner. It reduces 

the requirement of being aware of Grids and explicitly 

expressing application parallelism. The application 

code that is written using this model can be internally 

translated into a workflow and will be scheduled by the 

GS runtime system.  

Gridbus Workflow Engine (GWFE) [2]  provides 

users a workflow engine that can run workflow 

applications in Grids. The tasks inside the workflow 

will be automatically scheduled via the Gridbus Service 

Broker (GSB) [5]. The GSB provides several QoS-

aware scheduling algorithms and supports various types 

of Grid middleware including Globus [3], PBS [4], 

Condor [6], SGE [7], Aneka [8], and plain SSH.  

Utilizing the GWFE with GSB provides a powerful 

approach to run workflow applications on Global 

Grids.  

This paper presents a novel approach for realising 

the superscalar programming model via Gridbus 

middleware, which provides a way to develop and 

deploy superscalar applications on Global Grids. It is 

organized as follows. Section 2 discusses some related 

work. Section 3 proposes a GWFE-based Superscalar 

(GWFE-S) system architecture. Section 4 presents the 

programming model for the applications that use GWFE-

S. Section 5 gives some implementation details about the 

GWFE-S and describes the internal processes and 

communications that take place inside the runtime when 

executing an application. Section 6 discusses the results 

of some tests on applications that use GWFE-S on global 

Grids. Section 6 concludes the paper. 



2. Related works 
 

There are number of efforts that have promised to 

provide programming environments and tools to 

simplify the development of Grid applications. Some 

projects such as GrADS [9], introduce a special 

language along with a compiler in order to grid enable 

the applications in such a way that the applications can 

be compiled and run on their specific infrastructure. 

Other efforts like GriddLeS [10], aim to provide a 

more general environment that facilitates the 

composition of arbitrary grid applications from legacy 

software. It supports the construction of complete 

applications without source modification to the existing 

legacy program. The GS model unlike those 

approaches tries to make programming grid 

applications as the same as programming normal 

sequential applications. It means, unlike constructing 

the applications by linking different working legacy 

programs, developers still need to write the application 

code, however, in this case unlike learning and using 

new programming languages, developers can work with 

the existing programming language such as C++/Java, 

and they can write grid applications just like write 

normal sequential applications. 

Apart from GWFE-S, there are other efforts exist 

for linking GS model with other Grid systems. GS-

PGPORTAL [11] describes the possible integration 

solution of P-GRADE [13] and GS system to create a 

high level, graphical grid programming, deployment 

and execution environment that combines the 

workflow-oriented thin client concept of the P-GRADE 

Portal with the automatic deployment and application 

parallelization capabilities of GS. The difference 

between that and GWFE-S is that GS-PGPORTAL was 

trying to build the workflow using the P-GRADE portal 

and utilizing the GS runtime to run those tasks. GWFE-

S builds the workflow in the opposite manner, which is 

dynamically generated by the superscalar applications.   

The most recent work related to the integration of 

superscalar model is COMPs [14]. COMPs provides a 

superscalar model implementation based on Grid 

Component Model (GCM) [15]. As a result, the 

runtime of COMPs has gained in reusability, 

deployability, flexibility and separation of concerns 

which are from the component-based programming 

practice. This work also benefits the ProActive [16] by 

means that Java developers of ProActive now can 

utilize superscalar model based on its framework and 

runtime environment. 

Our approach differs from the above approaches by 

means of combining the benefits of most of the features 

provided by those solutions. GWFE-S provides native 

support to compose the superscalar model as a 

workflow via the GWFE, the developers do not need to 

worry about how to construct the workflow manually as 

the GWFE-S will automatically detect all the 

dependencies and construct the workflow at runtime. It 

also provides support for a dynamic scheduling 

infrastructure to run tasks on various types of Grid 

middleware via GSB. Furthermore, it is pure Java 

based solution which will help developing superscalar 

applications use Java.  

 

3. GWFE-S Architecture 
 

The architecture of the GWFE-S, as shown in Figure 1, 

is primary based on the runtime environment provided 

by GWFE and therefore it reuses the entire system as 

the base infrastructure: 

• Native workflow support: GWFE provides a 

XML-based workflow description language 

which can be internally translated into direct 

acyclic graph (DAG) and automatically schedules 

tasks and resolves data dependencies between 

tasks. 

• Just in-time scheduling: it enables the resource 

allocation decision to be made at the time of task 

execution and hence adapt to changing Grid 

environments. 

• Various Grid middleware support: it also 

supports schedule tasks on Global Grids via the 

GSB which allows multiple Grid middleware 

environment for executing the tasks such as 

Globus 2.4 and Globus 4.0, PBS, Condor, SGE, 

Aneka, or plain SSH.  

• Easy Deployment: the deployment of the 

applications over various Grid middleware is 

fairly easy via the XML-based service and 

credential description language.  

Most of the components in the system are reused 

from the existing infrastructure provided by the 

GWFE and GSB.  The next section describes the two 

important components that bring superscalar model 

into the picture. 

 

3.1. Context manager 
 

The context manager is responsible for maintaining the 

metadata information for the superscalar applications. 

It consists of a IDL (Interface definition language) 

parser which is used to scan the IDL file and resolve 

any metadata about the application such as application 

class name, method signature and its parameter 

information. This information will be further processed 



by the task analyzer to construct the tasks and their 

dependencies.  

 

3.2. Task analyzer 
 

It intercepts the application based on the method 

invocations to dynamically generate the workflow task 

and its dependencies at runtime. Just like the concepts 

in GS, a workflow task is just a method invocation 

which matches certain method metadata obtained by 

the Context manager from the IDL file. A XML file 

described the entire workflow will be generated and 

submitted to the GWFE runtime once the application 

triggers a certain method call (see details in section 4).  

 

3.3. Task schedule and execution 
 

The GWFE is responsible for resolving the task graph 

and all the dependencies between different tasks. There 

is a build-in workflow scheduler that is used to 

schedule tasks whose dependencies have been resolved 

for deploying on various remote Grid resources. The 

runtime environment communicates with a selected 

remote Grid resource for an assigned task execution. 

The infrastructure for scheduling and execution 

workflow on Global Grids described here has been 

leveraged without making any changes to the base 

software infrastructure.  

 

4. GWFE-S Programming Model 
 

GWFE-S aims to provide the same promise as the GS 

which is an easy-to-use programming model to enable 

applications for Grid without knowing about the Grid. 

It is so-called ‘Grid-unaware applications’ which is 

programmed in a sequential fashion. Nevertheless, by 

means of GWFE-S, it identifies the tasks that compose 

the application, detects task dependencies, dynamically 

generates the workflow on the fly, decides when to 

distribute the task to the Grid and manages their remote 

execution. 

The following subsections explain, through a very 

simple, how to create a GWFE-S application. 

 

4.1. Original Sequential Code 
 

Consider a Java application that generates random 

numbers and calculate the mean value of those random 

numbers. From now on, we call it Mean. Figure 2 

Figure 1. GWFE-based Superscalar System Overview 
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Figure 2. Sequential Code of Mean 

for ( int i = 0; i < loops; i++ )
{

Mean.genrandom("random.txt");

Mean.mean("random.txt", RESULT);

}

//post processing the result

printResult();



shows the original sequential code of Mean application. 

All parameters of the methods are files. The program 

first generates random numbers into a random.txt file 

and then reads that file and appends the results to the 

result file.  

 

4.2. Define the tasks 
 

The first step consists in defining which tasks it must 

take into account, that is, which methods called from 

the application code will be actually executed on the 

Grid. This is done by providing a IDL (interface 

definition language) file which declares these methods. 

It is the exactly the same approach that has been used 

in the GS. As the current implementation, we are trying 

to make the least impacts on the original GS 

programming environment, the adoption of using IDL 

is one of these concerns which enables reusing the 

existing GS programs. The IDL provides the metadata 

required by the Task analyzer module to intercept the 

corresponding method invocations on the target class to 

dynamically generate workflow tasks. Figure 3 

corresponds to IDL definition of the tasks of Mean. 

 

  

4.3. Preparing the application 
 

The second step involves making the application 

invoke the runtime of GWFE-S. This runtime must be 

started in order to receive the tasks to submit to the 

Grid and know about the files that the application 

accesses. Obviously, the original code of a sequential 

Java application cannot itself interact with GWFE-S. 

For that reason, we developed a interceptor-based 

aspect that intercepts the application at execution time 

by inserting some necessary logic in it; the intercepting 

method invocation at runtime were featured by JBoss-

AOP (Aspect Oriented Programming) framework.  

  In order to enable the GWFE-S, the programmer 

can use up to 2 API methods (GSMaster.On and 

GSMaster.Off) in the application code. In particular, 

the API offers methods to start and stop the runtime. 

Figure 4 shows the modified code of Mean, resulting 

from the inclusion of API calls; note that the invocations 

of genrandom and mean remain the same, since it is the 

duty of the AOP interceptor to translate them into the 

creation of workflow tasks. Also note that although the 

GSMaster style may look similar to the GS, but it is a 

totally different implementation that works particularly 

with the GWFE-S runtime. 

 

5. Design and Implementation 
 

In order to fully understand the design and 

implementation of the GWFE-S runtime environment, 

the next subsections describe the base technologies, the 

different phases that are required to configure and 

deploy the runtime environment, as well as its 

underlining operations when executing an application.  

 

5.1. Base Technologies 
 

To implement GWFE-S, we took Java as the 

programming language, and JBoss AOP 2.0, GWFE 

2.0 and GSB 3.0 as the base technologies. 

JBoss AOP [17] is a 100% pure Java aspect 

oriented programming framework which allows the 

developers to insert behavior between the caller of a 

method and the actual method being called. It provides 

an abstraction called interceptor which can be 

configured to bind to certain method invocation via a 

XML configuration file. The task analyzer component 

is built primary based on the interceptor concept.  A 

SuperscalarInterceptor class deriving from the 

org.jboss.aop.advice.Interceptor interface has been 

implemented, which generates a workflow task for a 

specific method invocation, adds any dependencies of 

that task to the workflow, and postpones the actually 

invocation of that method as the logic of the method 

will only be executed remotely.   

  GWFE is a Java based workflow engine that 

facilitates users to execute their workflow applications 

on Grids. It provides a XML-based workflow language 

for the users to define tasks and dependencies. It uses 

the tuple space (IBM TSpaces implementation) [18] 

approach to enable an event-driven scheduling 

architecture for simplifying workflow execution. All 

the tasks that have been dynamically generated by the 

Figure 3. IDL of the Mean application 

interface Mean {

void genRandom( out File rnumber_file );

void mean( in File rnumber_file, inout File results_file );

};

Figure 4. Code of Mean that triggers GWFE-S 

GSMaster.On();

for ( int i = 0; i < loops; i++ )

{

Mean.genrandom("random.txt");

Mean.mean("random.txt", RESULT);
}

GSMaster.Off(1);

//post processing the result

printResult();



task analyzer are objects representing certain XML 

element, those tasks and dependencies will be saved 

into the workflow XML descriptor and submit to the 

workflow engine once the application triggers the 

GSMaster.Off invocation. The contribution of the 

GWFE is mainly to build the DAG, resolve the 

dependencies between each task and submit the ready 

tasks to the broker.  

GSB is an  user-level Grid middleware that mediates 

access to distributed Grid resources. It supports various 

types of Grid middleware including Globus, Alchemi, 

PBS, Condor, SGE and also plain SSH. The major 

contribution of the GSB in our approach is to manage 

the Grid resources and the execution of workflow tasks 

on Grids.  

 

5.2. Configurations 
 

Before launching any superscalar applications with 

GWFE-S, there are 3 points to address regarding to the 

configurations. First, user needs to specify an XML file 

which is a list of Grid resources that can be used for 

GWFE-S to distribute the tasks. Secondly, the user also 

needs to specify an XML file describing the credentials 

that can be used for the GSB to execute the tasks. The 

XML schemas for both resources and credentials 

configuration file are created by GSB. Lastly, a 

WEProperties file must be provided to the GWFE to 

configure the tuple space. 

 

5.3. Phase I : Workflow Creation 
 

Besides the external configurations, the execution of 

the superscalar applications within GWFE-S is 

composed of two phases. The first phase as shown in 

Figure 5 is recognized as workflow creation. The main 

purpose of this phase as indicated by the name is to 

create the XML workflow descriptor that will be 

submitted to the GWFE. Phase one consists of two sub-

phases: static AOP weaving and dynamic task 

analyzing.  

 

5.3.1. Static AOP weaving. As the JBoss AOP 

requires a jboss-aop.xml file to identify which method 

invocations should be intercepted by the AOP 

interceptor in order to insert instructions into the 

classes, the IDLParser is responsible for analyzing the 

IDL file to store metadata including application name, 

method details, and it is able to utilize the metadata to 

generate the AOP configuration file. According to the 

AOP XML, and the implementation classes for the 

application, the instructions of the required logic can be 

weaved into the classes via a JBoss AOP compiler tool 

at compilation time. The modified AOP weaved classes 

that contain specific instructions to the AOP interceptor 

will be used by the GWFE-S runtime.  

 

5.3.2. Dynamic Task Analyzing. Once the weaved 

classes have been successfully generated, the AOP 

interceptor will be triggered when a specific method 

invocation occurs within the superscalar application. 

Then it is the SuperscalarInterceptor’s responsibility to 

translate the normal method invocation to a workflow 

task with all its dependencies by looking at the 

metadata provided by the IDLParser. Once the 

Figure 6. Workflow for Mean Application 

Figure 7. Phase II: Workflow submission 
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Figure 5. Phase I: Workflow Creation 
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application calls the GSMaster.Off method, all the 

generated tasks and dependencies will be saved to the 

workflow XML file.  

The workflow generated for the Mean the one 

depicted in Figure 6. Tasks with no dependencies pass 

will be scheduled immediately. According to the graph 

of Mean, the first suitable tasks are genrandom-0 and 

genrandom-3: they can be run in parallel on the Grid. 

Upon the completion of the first two tasks, the tasks 

with dependencies such as mean-1 and mean-3 will be 

executed on the Grid. 

 

5.4. Phase II: Workflow Submission 
 

Once phase I has been successfully passed, it comes to 

the second phase as shown in Figure 7 which is the 

submission of the workflow to the GWFE along with 

the services and credentials configurations.  Phase two 

is started inside the GSMaster.Off method, which 

initializes the workflow monitor, initializes the GSB 

with the three XML files: workflow, services and 

credentials files and synchronizes the execution of the 

workflow. The GSB is responsible for managing the 

actual execution to the Grids, which is continuously 

accepting the tasks scheduled by the GWFE and 

dispatching them to the remote resources. Once all the 

tasks belonging to the application have been 

succeeded, relevant output files will be synchronized to 

the local workstation and results can be displayed by 

the application program. The GSB, GWFE as well as 

the monitor will be shutdown once the application 

finished. 

 

5.5. Task Executor 
 

What we have discussed so far are components on the 

master node, it is important to also mention how the 

local method invocation is executed remotely. The 

GSWorker class uses the Java reflection API to run the 

a method on a specific class with all required 

parameters. The information of the method, class and 

parameters will be automatically given to the 

GSWorker program at phase I when the workflow 

descriptor is generated. The GSB will copy the 

required jar files that contain the GSWorker class as 

well as the application class, and the remote Grid 

runtime is responsible for executing the GSWorker 

program by using standard Java command with the 

target method name, class name, and arguments for that 

method. The only restriction on the Grid is that the 

Java 5.0+ runtime has to be installed. For example, the 

following shell command will be executed on the 

Grids: 

java –cp GSWorker.jar:GSApp.jar. GSWorker 

Mean mean random.txt result.txt 

It invokes the mean method on the Mean class 

which takes two arguments random.txt and result.txt. 

 

6. Performance Evaluation 
 

This section presents the results of experiment studies 

performed on GWFE-S. The experiments took place in 

three different Grid sites as shown in Table 1. Manjra 

cluster consists of 11 nodes, which is running in CSSE 

department at the University of Melbourne. Belle is a 

workstation containing 4 CPUs at the same site as 

manjra cluster. We have also used up to 18 nodes at 

State University of New York, Binghampton, USA, 

where each node contains 4 processors. We have 

decided to use the plain SSH adaptor provided by GSB 

which have the least overhead compared with other 

middleware support such as Globus.  The main purpose 

of the test is to show the GWFE-S works within the 

context of the GSB as workflows on Global Grids, and 

meanwhile it provides reasonable performance gain via 

Node Location Grid 

Adaptor 

No. Processors 

Per Node 

CPU Info 

manjra.cs.mu.oz.au The University of 

Melbourne, Australia 

Plain SSH 4 Intel ® Xeon ™ CPU 

2.00GHz 

belle.cs.mu.oz.au The University of 

Melbourne, Australia 

Plain SSH 4 Intel ® Xeon ™ CPU 

2.80GHz 

node**.cs.binghamton.

edu (8 different nodes) 

State University of 

New York, USA 

Plain SSH 4 Intel ® Xeon ™ CPU  

2.66GHz 

Figure 8.  Matmul application experiments 

Table 1.  Experiment  Setup (** start from 01 to 08) 



parallelism on Grids against the sequential program.  

The experiment that we have adopted to 

demonstrate the objective is parallelizing an 

application that multiplies two matrices (Matmul). The 

matrices are divided into blocks, which are themselves 

smaller matrices of doubles. The tasks generated by 

Matmul work with blocks stored in files. In particular, 

we used matrices of 6 x 6 blocks, with 800 x 800 

doubles in each block. With these input parameters, 

Matmul produces 216 coarse-grained tasks, each one 

multiplying two blocks. The corresponding dependency 

graph as shown in Figure 8 contains 36 groups of 6 

pipelined tasks where each task reads the result of the 

previous one. For this test, the whole GWFE-S runtime 

(which plays the role of master) was deployed in the 

client machine, submitting the tasks to a variable 

number of other nodes (workers). Since not all of the 

nodes are in the same domain, and due to the security 

constrains on the local nodes as well, there is no way to 

provide a NFS-like setup so that the experiment 

assumes all the input files have to be transferred to the 

worker nodes which incurs quite large network 

overhead especially transferring files to the US nodes. 

In Figure 9 appear the execution times of Matmul 

when parallelising it over different numbers of worker 

processors as the input parameters we mentioned. As 

can be seen from the results, for this particular 

execution of Matmul, which generates a medium 

number of tasks (216 in total), shows the reasonable 

speedup when the number of processors increases. The 

performance gain from 4 to 40 processors are 

reasonably good, the network overhead involved for 

transferring files between Australia and USA nodes is 

the main reason for degrading the performance in this 

application. As a result, the GWFE-S would perform 

quite well if the time for execution of one task is much 

longer than the network overhead caused by the file 

transfer.  

7. Summary and Conclusions 
 

This paper has presented GWFE-S superscalar, a new 

version of GRID superscalar which is an new 

implementation of the programming model to follow 

the principles of GWFE, a workflow model intended 

for the Grid. GWFE-S provides a straightforward 

programming model that keeps the Grid transparent to 

the user, who is only required to specify the tasks to be 

executed on the Grid, being free to leave the code of 

the Java application completely unchanged. In addition, 

through an operation example, we have explained how 

the runtime components of GWFE-S are individually 

concerned with different functionalities and how they 

collaborate to reach the common goal of remotely 

running the application. Finally, we have discussed 

some test results that explore the possible performance 

gain of running the application via GWFE-S. 

 Although in this paper we have focused on Grid-

unaware applications, we believe that GWFE-S could 

offer an alternative way to develop Grid-aware 

applications as well. As the GSB is highly optimized to 

support economy-based scheduling policies, the 

GWFE-S can easily utilize the scheduling infrastructure 

provided by the GSB to support QoS-aware 

applications. 
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