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This paper presents a taxonomy of key topics effecting research and development of distributed
storage systems. The taxonomy finds distributed storage systems to offer a wide array of function-
ality, employ architectures with varying degrees of centralisation and operate across environments
with varying trust and scalability. Furthermore, taxonomies on autonomic management, fed-
eration, consistency and routing provide an insight into challenges faced by distributed storage
systems and the research to overcome them. The paper continues by providing a survey of dis-
tributed storage systems which exemplify topics covered in the taxonomy.

The selection of surveyed systems covers a variety of storage systems, exposing the reader to
an array of different problems and solutions employed to overcome these challenges. For each
surveyed system we address the underlying operational behaviour, leading into the architecture
and algorithms employed in the design and development of the system. Our survey covers systems
from the past and present concluding with a discussion on the evolution of distributed storage
systems and possible future work.

Categories and Subject Descriptors: ED@fa]: General-Distributed Storage systems

General Terms: Distributed Storage

Additional Key Words and Phrases: distributed storage, distributed architecture, network storage,
taxonomy, autonomic, file system

1. INTRODUCTION

Storage plays a fundamental role in computing, a key eleregat present from registers
and RAM to hard-drives and optical drives. Functionallgragge may service a range of
requirements, from caching (expensive, volatile and fasfrchival (inexpensive, persis-
tent and slow). Combining networking and storage has ademfgatform with numerous
possibilities allowing Distributed Storage Systems (D&5Sadopt roles vast and varied
which fall well beyond data storage. This paper discusseSffom their inception as
Distributed File Systems (DFS) to DSSs capable of spanniglplaal network of users
providing a rich set of services; from publishing, file shgriand high performance to
global federation and utility storage.

Networking infrastructure and distributed computing sharclose relationship. Ad-
vances in networking are typically followed by new disttidoth storage systems, which
better utilise the networks capability. To illustrate, wh@etworks evolved from mostly
being private Local Area Networks (LANS) to public globald®iArea Networks (WANS)
such as the Internet, a whole new generation of DSSs emetgpdble of servicing a
global audience. These next generation Internet baseelnsysire faced with many chal-
lenges, including longer delays, unreliability, unprediglity and potentially malicious
behaviour, all associated with operating in a public sharedronment. To cope with these
challenges innovative architectures and algorithms haee proposed and developed, pro-
viding a stream of improvements to security, consistenchranting. As systems continue
to advance, they increase in complexity and the expertipained to operate them [Horn
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2001]. Unfortunately the continuing increase in compleistunsustainable and ultimately
limited by human cognitive capacity [Staab et al. 2003]. ddrass this problem the Auto-
nomic Computing [Kephart and Chess 2003] vision has emeageihg to overcome the
"complexity crisi&

Global connectivity enables resources to be shared amomigtiuals and institutions,
the processes which make this possible have sparked resatrdhe field of Grid com-
puting [Reed et al. 2003]. Grid computing focuses on soldhallenges associated with
coordinating and sharing heterogeneous resources actgtiglengeographic and admin-
istrative domains [Foster 2001]. One of these challengdata management, which has
given rise to the Data Grid [Chervenak et al. 2000]. Some efdhallenges of manag-
ing globally distributed data include providing a standaniform interface across a het-
erogeneous set of systems [Rajasekar et al. 2002], cotirdjrend processing of data
[Venugopal et al. 2006] and managing necessary meta-datcék et al. 2000].

Distributed systems designed to operate on the Internettoempe with a potential user
base numbering in the millions. To accommodate a large s, ldistributed systems are
employing more scalable decentralised Peer-to-Peertacthies over conventional cen-
tralised architectures. Distributed systems which ogesiatoss a public network need to
accommodate for a variety of potentially malicious behavi@ouceur 2002; Dingledine
2000] from free-riding [Hughes et al. 2005] to Denial of Seev(DoS) attacks [Wilcox-
O’Hearn 2002]. Whilst some level of trust can be assumed vdperating in a private
LAN, this assumption does not hold when connected to a pulglievork and thus algo-
rithms to establish trust and secure data are required.

Distributed storage systems have evolved from providingams to store data remotely,
to offering innovative services like publishing, fedeoatj anonymity and archival. To
make this possible networks have evolved to span the glolith n&twork infrastructure
expecting to undergo another quantum leap, outpacing theviidth capability of proces-
sors and hard-drives [Stix 2001], provides a platform faufa distributed storage systems
to offer more services yet again. This paper covers a wideyaif topics and challenges
shaping Distributed Storage Systems today and beyond.

The rest of the paper is organised as follows: The next se¢Bection 2) discusses
earlier works of relevance, serving to further complete aathplement our work. In
Section 3, we first introduce each of the topics covered titout the taxonomy and then
present a detailed taxonomy on distributed storage funality, architecture, operating
environment, usage patterns, autonomic managementategterconsistency and security.
In Section 4, we provide a survey of representative storggfesis. Rather than conducting
an exhaustive survey, each system is selected based ongtsewset of goals, so as to
illustrate the topics covered in the taxonomy sectionsaliyir{Section 5), we conclude the
paper with analysis of trends based on mapping of our taxgriomepresentative systems
and highlight outlook for future research work.

2. RELATED WORK

In this section we discuss studies which have investigateldsarveyed distributed stor-
age systems. The work of [Levy and Silberschatz 1990] peogid insight into the areas
of replication, naming, caching and consistency and whppéicable discusses solutions
employed by surveyed systems. Whereas [Satyanarayan8hri@®nly provides a dis-

cussion of mechanisms employed by existing DSSs but alsad@®an insight into areas
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of research. A very comprehensive survey covering all ibisted systems in general is
presented by [Borghoff and Nast-Kolb 1989]. The survey bedgly classifying distributed
systems into two main categories, being DFSs and distdboperating systems and con-
tinues to survey each system based on a proposed standaidteniThe above surveys
provide an insight into works from the late 70s right throtigkhe early 90s. These papers
serve to complement our survey and provide a comprehensiviharough survey of early
DSSs.

More recent works provide readers with an insight into Redpeer and Grid technolo-
gies. In their work [Milojicic et al. ; Oram 2001] discuss P¢e-Peer technologies whilst
covering a breadth of systems beyond distributed storagst Mcently [Hasan et al. 2005;
Androutsellis-Theotokis and Spinellis 2004] provide acdission of DSS with a particular
focus on implementations of Peer-to-Peer routing overlgiysally [Venugopal et al. 2006]
covers the emerging field of Data Grids, focusing on accedstenfederation of globally
distributed data, topics covered include replication, aggament and the processing of
data.

The early works provide a great insight into issues relattinglient-server filesystems,
concepts which are essential to building a DSS today. Themewrent surveys discuss
cutting edge research, paying particular attention to-Re®eer and Data Grid systems.
Our paper encompasses distributed storage systems aeeobsdrd, including Peer-to-
Peer and Data Grid systems whilst classifying their fumality, architecture, operating
environment and usage patterns. This paper aims to providgls eye view of current
issues effecting research and development of distribitedge systems including routing,
consistency, security, autonomic management and fedarati

3. TOPIC INDEX

We introduce each of the topics covered in our taxonomy aodige a brief insight into
the relevant research findings:

(1) System Function (Section 3.1:classification of DSS functionality uncovers a wide
array of behaviour, well beyond typical store and retrieve.

(2) Storage Architecture (Section 3.2)Afe discuss various architectures employed by
DSSs. Our investigation shows an evolution from centrdligethe more recently
favoured decentralised approach.

(3) Operating Environment (Section 3.3)e identify various categories of operating en-
vironments and discuss how each influences design andexttirit.

(4) Usage Patterns (Section 3.4):discussion and classification of various workloads ex-
perienced by DSSs. We observe that the operating envirartmasra major influence
on usage patterns.

(5) Consistency (Section 3.5Ristributing, replicating and supporting concurrent &sce
are factors which challenge consistency. We discuss vaapproaches used to en-
force consistency and the respective trade offs in perfoo@gavailability and choice
of architecture.

(6) Security (Section 3.6)With attention turning towards applications operating ba t
Internet, establishing a secure system is a challengikgithih is made increasingly
more difficult as DSSs adopt decentralised architecturesr ivestigation covers
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traditional mechanisms as well as more recent approachésisive been developed
for enforcing security in decentralised architectures.

(7) Autonomic Management (Section 3.3)ystems are increasing in complexity at an un-
sustainable rate. Research into autonomic computing [Ke@imd Chess 2003] aims
to overcome this dilemma by automating and abstracting ayatem complexity,
simplifying maintenance and administration.

(8) Federation (Section 3.8Many different formats and protocols are employed to store
and access data, creating a difficult environment to shawe atad resources. Fed-
eration middleware aims to provide a single uniform homegers interface to what
would otherwise be a heterogeneous cocktail of interfandspaotocols. Federation
enables multiple institutions to share services, fostecollaboration whilst helping
to reduce effort otherwise wasted on duplication.

(9) Routing and Network Overlays (Section 3.9}is section discusses the various rout-
ing methods employed by distributed storage systems. Irinvestigation we find
that the development of routing shares a close knit relatigmwith the architecture;
from a static approach as employed by client-server armthites to a dynamic and
evolving approach as employed by Peer-to-Peer.

3.1 System Function

In this section we identify categories of distributed stmaystems (Figure 1). The cat-
egories are based on application functional requiremeftsidentify the following: (a)
Archival, (b) General purpose Filesysterft) Publish/Sharg(d) Performance(e) Federa-
tion Middlewareand (f) Custom

Systems which fall under the archival category provide teerwith the ability to
backup and retrieve data. Consequently, their main obgito provide persistent non-
volatile storage. Achieving reliability, even in the eveffifailure, supersedes all other ob-
jectives and data replication is a key instrument in achigtiis. Systems in this category
are rarely required to make updates, their workloads fobowrite-once and read-many
pattern. Updates to an item are made possible by removirgdhtem and creating a new
item and whilst this may seem inefficient, it is adequatelfieréxpected workload. Having
a write-once/read-many workload eliminates the likelith@d any inconsistencies arising
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due to concurrent updates, hence systems in this categber eissume consistency or
enforce a simple consistency model. Examples of storaderagsn this category include
PAST [Druschel and Rowstron 2001] and CFS [Dabek et al. 2001]

Systems in the general purpose filesystem category aim toderthe user with persis-
tent non-volatile storage with a filesystem like interfathis interface provides a layer of
transparency to the user and applications which accessi. sforage behaves and thus
complies to most, if not all, of the POSIX API standards [IEEHNSI Std. 1003.1] allow-
ing existing applications to utilise storage without thediéor modification or a re-build.
Whilst systems in this category have ease of access adwamafprcing the level of con-
sistency required by a POSIX compliant filesystem is a nitatrmatter, often met with
compromises. Systems which fall into this category inclNdS [Sandberg et al. 1985],
Coda [Satyanarayanan 1990; Satyanarayanan et al. 1998][Adderson et al. 1996],
Farsite [Adya et al. 2002] and lvy [Muthitacharoen et al. 2D0

Unlike the previous two categories where the storage semiims to be persistent, the
publish/share category is somewhat volatile as the maigotilg is to provide a capability
to share or publish files. The volatility of storage is uspdiépendent on the popularity of
the file. This category of systems can be split into two furtteegories: (iAnonymity
and Anti-censorshipnd (ii) File Sharing Systems in the anonymity and anti-censorship
category focus on protecting user identity. While the sieris volatile, it has mechanisms
to protect files from being censored. Systems in this cayegsually follow the strictest
sense of Peer-to-Peer, avoiding any form of centralisqtistussed in greater detail in
Section 3.2). Examples of systems which fall into this catggnclude Free Haven [Din-
gledine et al. 2000], Freenet [Clarke et al. 2001] and PsljiMaldman et al. 2000]. The
main objective for systems in the file sharing category isrtvjole the capability to share
files amongst users. The system most famous for doing so té&fg@sam 2001], inspired
the subsequent development of other systems in this cgte@outella [Oram 2001], Mo-
joNation [Wilcox-O’Hearn 2002] and BitTorrent [Hasan et 2005] to name a few.

DSSs in the performance category are typically used by egijiins which require a
high level of performance. A large proportion of systemshiis tategory would be clas-
sified as Parallel File Systems (PFSs). PFSs typically o@evihin a computer cluster,
satisfying storage requirements of large 1/0O-intensivalb& applications. Clusters com-
prise of nodes interconnected by a high bandwidth and len@at network (e.g. Myrinet).
These systems typically stripe data across multiple noaleggregate bandwidth. It is
common for systems in this category to achieve speeds in Bise6 bracket, speeds
unattainable by other categories of DSSs. Commercial systese fibre channel or iSCSI
to connect storage nodes together to create a Storage AtemikKgSAN), providing a
high performance storage service. To best utilise the hggfopmance potential, DSSs
in this category are specifically tuned to the applicatiorrklaad and provide an inter-
face which mimics a general purpose filesystem interfacewdder, a custom interface
(e.g. MPI-10) that is more suited to parallel applicationelepment may also be adopted.
Systems which fall into this category include PPFS [Jamdaduber et al. 1995], Zebra
[Hartman and Ousterhout 2001], PVFS [Carns et al. 2000]tre8raam 2002], GPFS
[Schmuck and Haskin 2002], Frangipani [Thekkath et al. 19RIOUS [Moyer and Sun-
deram 1994] and Galley [Nieuwejaar and Kotz 1996].

Global connectivity offered by the Internet allows instiitins to integrate vast arrays
of storage systems. As each storage system has varyingilitégmlnd interfaces, the
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development of federation middleware is required to makeraperation possible in a
heterogeneous environment. Middleware in this categodjsisussed in greater detail in
Section 3.8. Systems which fall into this category are nmally responsible for storing
data, instead they are responsible for high-level objestsuch as cross domain security,
providing a homogeneous interface, managing replicastangrocessing of data. Gener-
ally speaking, much of the research into Data Grids [Cheake al. 2000; Hoschek et al.
2000; Venugopal et al. 2006; Baru et al. 1998] is relevanetiefation middleware.

Finally, the custom category has been created for storagierag that possess a unique
set of functional requirements. Systems in this category fitdnto a combination of
the above system categories and exhibit unique behavioonglé File System (GFS)
[Ghemawat et al. 2003] and OceansStore [Kubiatowicz et &002®hea et al. 2003], are
examples of such systems. GFS has been built with a partitudational purpose which
is reflected in its design (Section 4.7). OceanStore aime @ dlobal storage utility, pro-
viding many interfaces including a general purpose filesyst To ensure scalability and
resilience in the event of failure, OceanStore employs-Re€rer mechanisms to dis-
tribute and archive data. Freeloader [Vazhkudai et al. PBOBbines storage scavenging
and striping, achieving good parallel bandwidth on shaesdurces. The array of features
offered by Freeloader, OceanStore and the purpose builtaBFERhibit unique qualities
and are consequently classified as custom.

3.2 Storage Architecture

In this section our focus turns to distributed storage sysdechitectures. The architec-
ture determines the application’s operational boundaniésnately forging behaviour and
functionality. There are two main categories of architeesy(Figure 2)client-serverand
Peer-to-Peer.The roles which an entity may embrace within a client-searehitecture
are very clear, an entity may exclusively behave as eithBeator a server, but cannot be
both [Schollmeier 2001]. On the contrary, participantshivita Peer-to-Peer architecture
may adopt both a client and a server role. A Peer-to-Peeitectlre in its strictest sense
is completely symmetrical, each entity is as capable aseixe Mhe rest of this section
discusses both categories in greater detail.

A client-server based architecture revolves around thees@roviding a service to re-
guesting clients. This architecture has been widely adbipyadistributed storage systems
past and present [Sandberg et al. 1985; Anderson et al. M@8is et al. 1986; Satya-
narayanan 1990; Thekkath et al. 1997; Vazhkudai et al. 2@Emawat et al. 2003].
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In a client-server architecture, there is no ambiguity esnimg who is in control, the
server is the central point, responsible for authenticatonsistency, replication, backup
and servicing requesting clients. A client-server architee may exhibit varying levels
of centralisation and we have identified two catego@ésbally CentralisedandLocally
Centralised A globally centralised architecture contains a singletie@mentity being the
server, this results in a highly centralised architectubhéctv has limited scalability and
is susceptible to failure. To alleviate problems assodiatéh a single central server, a
locally centralised architecture distributes respotitids across multiple servers allow-
ing these systems [Anderson et al. 1996; Satyanarayanddy T9@kkath et al. 1997;
Vazhkudai et al. 2005; Ghemawat et al. 2003] to be more egsitb outages, scale better
and aggregate performance. However, even a locally cesgdahrchitecture is inherently
centralised, making it vulnerable to failure and scalapbiottlenecks. A client-server ar-
chitecture is suited to a controlled environment, eithested or partially trusted (Section
3.3). Operating in a controlled environment allows the foixushift to performance, strong
consistency and providing a POSIX file I/O interface.

To meet the challenges associated with operating in an adshtvusted environment
such as the Internet, a new generation of systems adoptirgpatéPeer architecture
have emerged. In a Peer-to-Peer architecture every nodbdaetential to behave as a
server and a client, and join and leave as they wish. Routingrrually adapts to what is
an ever changing environment. Strengths of the Peer-todpgeoach include resilience
to outages, high scalability and an ability to service arestricted public user-base. These
strengths vary depending on the category of Peer-to-Pegstens adopts.

There are three main categories of Peer-to-Peer archiése@lobally Centralised, Lo-
cally CentralisedandPure Peer-to-PeeEach of these categories have a varying degree of
centralisation, from being globally centralised to logalentralised to having little or no
centralisation with pure Peer-to-Peer. One of the early-RePeer publishing packages,
Napster [Oram 2001] is an example of a system employing aatjiobentralised architec-
ture. Here, peers are required to contact a central sermaioing details of other peers
and respective files. Unfortunately, this reliance on a gligtcentral index server limits
scalability and proves to be a Single Point of Failure (SPF).

Locally centralised architectures were inspired by thertslomings of early Peer-to-
Peer efforts. Gnutella [Oram 2001] initially relied on bdoasting to relay queries al-
though this proved to be a bottleneck, with as much as 50% [itB 2002] of the traffic
attributed to queries. To overcome this scalability battiek, a locally centralised archi-
tecture employs a few hosts with high performance and relieharacteristics to behave
assuper nodesThese super nodes maintain a repository of meta-data vargoimmunity
of local nodes may query and update. Super nodes commuaitategst each other form-
ing bridges between communities, allowing local nodes torstiqueries to a super node
rather than broadcasting to the entire community. Whilpesmodes introduce an element
of centralisation, in sufficient numbers, they avoid beawgpoints of failure. Examples of
Peer-to-Peer systems which use a locally centralisedtantbie include FastTrack [Ding
Choon-Hoong and Buyya 2005; Hasan et al. 2005], Clippeerpalht et al. 2003], Bittor-
rent [Hasan et al. 2005] and eDonkey [Tutschku 2004].

Without any central entities, a pure Peer-to-Peer ardhite@xhibits symmetrical har-
mony between all entities. The symmetrical nature ensinasittis the most scalable of
the three and proves to be very capable at adapting to a dgremwvironment. Whilst on
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the surface it may seem that this is the architecture of eéhaidhering to a pure Peer-to-
Peer philosophy is challenging. Achieving a symmetrickdtienship between nodes is
made difficult in the presence of an asymmetric [Oram 200fiyokk such as the Internet.
User connections on the Internet are usually biased towdndsloads, sometimes by as
much as 600% (1.5Mb down/256Kb up). This bias discouragessifsom sharing their
resource, which in turn hinders the quality of service pided by the Peer-to-Peer system.
The way in which nodes join [Wilcox-O’Hearn 2002] a Peerfeer network also poses
a challenge. For example, if every node were to join the ndtwlrough one node, this
would introduce a SPF, something which Peer-to-Peer n&smoeed to avoid. Finally
the lack of centralisation and the ad-hoc networking in arfe@®eer system operation,
the need for establishing trust and accountability becoeseential, which is difficult to
do without ironically introducing some level of centralisa or neighbourhood knowl-
edge. Systems which closely follow a pure Peer-to-Peeritanthre include Free Haven
[Dingledine et al. 2000], Freenet [Clarke et al. 2001] and[Muthitacharoen et al. 2002].

The choice of architecture has a major influence on systemtifurality, determining
operational boundaries and its effectiveness to operateparticular environment. As
well as functional aspects, the architecture also has argean the mechanisms a sys-
tem may employ to achieve consistency, routing and secuitgntralised architecture is
suited to controlled environments and while it may lack tba&ability of its Peer-to-Peer
counterpart, it has the ability to provide a consistent @uaf Service (QoS). By contrast
a Peer-to-Peer architecture is naturally suited to a dypamiironment, key advantages
include unparallelled scalability and the ability to adapta dynamic operating environ-
ment. Our discussion of architectures in this section has peesented in a chronological
order. We can see that the evolution of architectures addpgeDSSs have gradually
moved away from centralised to more decentralised appesafffigure 3), adapting to
challenges associated with operating across a dynamialgheiwork.
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3.3 Operating Environment

This section discusses the possible target environmenthwiistributed storage systems
may operate in. While examining each operating environpaestiscussion of the influence
on architecture and the resulting workload is made. We hasmtified three main types of
environments, (aJrusted (b) Partially Trustedand (c)Untrusted as shown in Figure 4.

A trusted environmentis dedicated and quarantined off fotimer networks. This makes
the environment very controlled and predictable. Usersreseicted and therefore ac-
countable. Its controlled nature ensures a high level of @ubtrust, although in general
scalability is limited. Administration is carried out undecommon domain and therefore
security is simpler compared to environments that streggfobd the boundaries of an in-
stitution. Due to the controlled nature of a trusted enwinent, workload analysis can be
conducted without the need to consider the unpredictaliievdeur exhibited by external
entities. As the workload is primarily influenced by the apation, the storage system can
be optimised to suit the workload. As the storage systemis g@al is performance, less
emphasis is given to adhering to the standard POSIX Filent@riace [IEEE/ANSI Std.
1003.1]. A cluster is a good example of a trusted environment

Distributed storage systems which operate in a partiallstéd environment are exposed
to a combination of trusted and untrusted nodes. These ramrate within the bounds
of an organisation. The user base is also limited to the peedavithin the organisation.
Whilst a level of trust can be assumed, security must accaatedor “the enemy within”
[Shafer 2002; Rudis and Kostenbader 2003]. This envirotrisenot as controlled as
a trusted environment as many other applications may nesbare the same resources
and as such this introduces a level of unpredictability.esretwork is a shared resource,
DSSs need to utilise it conscientiously so as not to impelderatsers. In a partially trusted
environment, DSSs are primarily designed for maximum cdibiity and the provision
of a general purpose filesystem interface.

In an untrusted environment, every aspect (nodes and retwfyastructure) is un-
trusted and open to the public. An environment which besnigkitself to this is the
Internet. In an open environment where accountabilityfigcdit if not impossible [Oram
2001], a system can be subjected to a multitude of attacksgjBdine 2000]. With the
emergence of Peer-to-Peer systems allowing every host &s bapable as the next, it is
important to understand user behaviour and the possibils pgome lessons learntinclude
a very transient user base (also referred to as churn) [WiZélearn 2002] tragedy of
the commonfHardin 1968] and th&lashdot effediddler 1999].

Early research [Satyanarayanan 1992; Spasojevic andrigafyganan 1996] discusses
issues associated with scaling up client-server diseibbatorage systems (Andrew [Morris
et al. 1986] and Coda [Satyanarayanan 1990]) across a WAIRe 86the problems identi-
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fied include (i) a lower level of trust existent between usg@nscoordination of administra-
tion is difficult, (iii) network performance is degraded aadures are more common than
what is found in a LAN environment. DSSs need to overcomédehging constraints im-
posed by an untrusted environment. Achieving a robust acursestorage service whilst
operating in an untrusted environment is a source of ongesgarch.

Our survey of DSSs has found the operating environment hag@r influence on sys-
tem design and the predictability of workload. A trustediemvment has the advantage
of being sheltered from the unpredictable entities oth&syiresent in partially trusted and
untrusted environments. The predictability and conttbilature of a trusted environment
is suitable for a client-server architecture. In contrést, dynamic nature of a partially
trusted or untrusted environment requires that a more adapproach to architecture be
employed, such as Peer-to-Peer.

3.4 Usage Patterns

Collection and analysis of usage data including variousfilerations and attributes plays
an important role in the design and tuning of DSSs. Empirstadlies serve to provide
an important insight into usage trends, identifying pdssdiallenges and the necessary
research to overcome them. In our investigation, we foursdj@patterns to be closely
related to the operating environment (Figure 4) and forréson our discussion of usage
patterns is organised based on operating environments s€htion summarises empirical
studies based on DSSs which operate in a partially trustédomment, a trusted environ-
ment and finally in an untrusted environment.

3.4.1 Partially Trusted. A study [Noble and Satyanarayanan 1994] focusing on the us-
age patterns of the Coda [Satyanarayanan 1990] (Sectipstdrdge system makes some
interesting observations regarding file usage whilst diseated from the file server. Coda
employs an optimistic approach to consistency (Sectiopesmitting users to continue
to work on locally cached files even without network connatti During the study, the
authors found there to be a surprisingly high occurrendatefration failuresor change
conflicts. A change conflict occurs when a user reconnectset@entheir changes with
files that have already been modified during the period thewae disconnected. A file
server attempting to merge a conflicting change will fail tos, requiring the users to
merge their changes manually. Whilst some of these chantféate were due to servers
disappearing during the process of merging changes, ttikremained a high proportion
of conflicts. This occurrence suggested that disconnecedsido not work on widely
distinct files as previously thought, this is an importamtisation for DSSs adopting an
optimistic approach to consistency.

A survey [Douceur and Bolosky 1999] conducted across 48Q@stations within Mi-
crosoft found only half of the filesystem storage capacitypéoutilised. These results
inspired a subsequent feasibility study [Bolosky et al. @0th accessing this untapped
storage. The feasibility study focused on machine avditgbfilesystem measurements
and machine load. The results supported earlier findings evity 53% of disk space be-
ing used, half of the machines remained available for ovét 85the time, machine’s cpu
load average to be 18% and 70% of the time the machine’s disks idle. The results of
the feasibility study found that developing a storage sysiéhich utilised available stor-
age from shared workstations was in fact possible and coesgly led to the development
of Farsite [Adya et al. 2002] (Section 4.3).
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A number of other empirical studies relevant to the paitialisted category include:
A comparatively early study [Spasojevic and Satyanarayd886] primarily focusing on
the use of AFS [Howard et al. 1988] whilst another study aeldgt developer’s perspec-
tive [Gill et al. 1994], analysing source code and objectditgibutes. That study found
more read-write sharing to be present in an industrial envirent than typically found in
an academic environment. DSSs operating in a partiallfedisnvironment aim to pro-
vide an all-purpose solution, servicing a wide array of aggpilons and users. Due to the
general nature of these storage systems, studies analysige patterns are influenced by
a combination of user and application behaviour.

3.4.2 Untrusted. Usage patterns of applications designed to operate in ansied
environment are primarily influenced by user behaviour. ligagions which adopt a Peer-
to-Peer approach serve as primary examples, empowerimg eser with the ability to
provide a service. With these type of systems, it is theeeforportant to understand
user behaviour and the resulting consequences. Pastexpefrom deploying MojoNa-
tion [Wilcox-O’Hearn 2002] show how flash crowds have thdigbto cripple a system
with any element of centralisation in its architecture. \WMojoNation was publicised on
Slashdot, their downloads skyrocketed from 300 to 10,008yalEven though MojoNation
employs a Peer-to-Peer architecture for its day-to-dayatis®, a central server assigned
to handling new MojoNation users was overwhelmed, rendeitiminavailable. Further
observations include: a very transient user base with 808%%6 of users being con-
nected once and for less than an hour and users with highalidiicand highly-available
resources being least likely to stay connected for conafidelengths of time.

Systems adopting a Peer-to-Peer philosophy rely on usepecating and sharing their
services, unfortunately there are many disincentivesdiiah et al. 2003] resulting in
Peer-to-Peer systems being vulnerable to free-ridingrevigers mainly consume services
without providing any in return. Studies show that [Oram 20Beldman et al. 2003;
Hughes et al. 2005] the primary reason for this behaviounéstd the asymmetrical nature
of users’ connections, being very biased towards downi@adh usage study of Gnutella
[Hughes et al. 2005] found that 85% of users were free-ridifig discourage this and
promote cooperation, the next generation of Peer-to-gseras (Maze [Yang et al. 2005],
Bittorrent [Bittorrent ]) provide incentives for users tordribute services.

3.4.3 Trusted. Unlike the previous two categories, storage systems dpgrata trusted
environment (e.g. clusters) service a workload primauilfjuenced by application be-
haviour. A trusted environment is dedicated, making it piadle and controlled, elim-
inating variables otherwise found in shared environmdatsjing the application as the
main influence of usage patterns. Currently the vastly sapperformance of CPU and
memory over network infrastructure has resulted in netimgrkeing the bottleneck for
many parallel applications, especially if heavily reliamnt storage. Hence, understanding
the application’s workload and tuning the storage systesutbplays an important role
in improving storage performance, reducing the networkidoéck and realising a system
running closer to its full potential. A usage pattern stu@ygndall et al. 1995] of various
parallel applications found that each application had s anique access pattern. The
study concluded that understanding an application’s acpastern and tuning the stor-
age system (caching and prefetching) to suite was the kesetsing the full potential of
parallel filesystems.
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The Google File System (GFS) [Ghemawat et al. 2003] (Sedtidnis another example
highlighting the importance of understanding an applards usage pattern and the advan-
tages of designing a storage system accordingly. The atidhe GFS made a humber
of key observations on the type of workload their storageesgsvould need to service
and consequently designed the system to accommodate HasSGHS typical file size was
expected to be in the order of GB’s and the application wattlerould consist of large
continuous reads and writes. Based on this workload, thepted a relaxed consistency
model with a large chunk size of 64MB. Choosing a large chimdk groved beneficial as
(i) the client spent less time issuing chunk look up requé€gjghe meta-data server had
less chunk requests to process and consequently chun&statistore and manage.

3.5 Consistency

The emergence and subsequent wide proliferation of thenetend mobile computing
has been a paradox of sorts. Whilst networks are becomimgasingly pervasive, the
connectivity offered is unreliable, unpredictable andamtoollable. The resultant effect
is a network that imposes challenging operational comgsain distributed applications.
More specific to storage systems, the Internet and mobilgating increase availability
and the risk of concurrent access and unexpected outageshapotential to partition
networks, further challenging data consistency. Thiseecliscusses various mechanisms
employed by DSSs to ensure data remains consistent eveam prgbence of events which
challenge it. Our discussion of consistency begins fromtaldese viewpoint outlining
principles and terminology and continues with a discussiovarious approaches storage
systems employ.

3.5.1 Principles and Terminologyln this section we shall cover the underlying prin-
ciples and terminology relevant to consistency. The topis teceived much attention in
the area of transactions and databases and thus we shalligoathese works [Gray and
Reuter 1993; Date 2002] to provide a brief introduction. Iathierminology used to de-
scribe consistency in databases (transactions and tadgsjiffer to DSSs (file operations
and files) the concepts are universal. Consistency endweestdte of the system remains
consistent or correct even when faced with events (e.g.woert writers, outages) which
would otherwise result in an inconsistent or corruptedcestaihe ACID principles, serial-
izability, levels of isolation and locking are all importaerms which lay the foundations
for consistency and we shall now discuss each briefly.

The ACID (Atomic, Consistent, Isolation, Durability) [Heker and Reuter 1983] princi-
ples describe a set of axioms, that if enforced, will endueesystem remains in a consistent
state. A system is deemed to uphold ACID principles if:

(1) Atomic: Transaction is atomic, that is, all changes are completenboe are (all or
nothing)

(2) Consistency:Transactions preserve consistency. Assuming a databasa sonsis-
tent state to begin with, a transaction must ensure that apopletion the database
remains in a consistent state.

(3) Isolation: Operations performed within the life-cycle of a transattioust be per-
formed independently and unbeknown to other transactiomsing concurrently. The
strictest sense of isolation is referred to as serialitgl{tee below). A system may
guarantee varying degrees of isolation each with theietaits.
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(4) Durablity: Once a transaction has completed the system must guarhatesy mod-
ifications done are permanent even in the face of subsecpienes.

Serializability is a term used to describeréerion of correctnessA set of transactions
is deemed serializable if their resultdemeserial execution of the same transactions. In
other words, even though the execution of these transacti@y have been interleaved,
as long as the final result is achieved by some serial ordexesfigion, their execution is
deemed serializable and thus correct. To guarantee a ttéors#s serializable, its execu-
tion needs to adhere to the two-phase locking [Eswaran £9@b] theorem. The theorem
outlines the following two axioms on acquiring and relegdocks:

(1) Before executing any operations on data, a transactiest mcquire a lock on that
object.

(2) Upon releasing a lock, the transaction must not acquiyen@ore locks.

Serializability achieves maximum isolation, with no irfegence allowed amongst exe-
cuting transactions. The ANSI/ISO SQL standard (SQL92)tifies four degrees of iso-
lation. To offer varying levels of isolation, transactianay violate the two-phase locking
theorem and release locks early and acquire new locks. tifigléghe two-phase locking
protocol relaxes the degree of isolation allowing for a tge#&evel of concurrency and
performance at the cost of correctness. The SQL standandifide the following three
possible ways in which serializability may be violated:

(1) Dirty Read:Uncommitted modifications are visible by other transacidfransaction
Ainserts arecord, Transaction B is able to read the recoethskction A than executes
a rollback leaving Transaction B with a record which no langests.

(2) Non-Repeatable Readdubsequent reads may return modified records. Transaction

A executes a query on table A. Transaction B may insert, @paad delete records
in table A. Assuming Transaction B has committed its changbgen Transaction A
repeats the query on Table A changes made by Transactiorl Beniisible.

(3) Phantom ReadSubsequent read may return additional (phantom) recondss@c-
tion A executes a query on table A. Transaction B than inserecord into table A
and commits. Transaction A then executes, repeats itsnatiguery of table A and
finds an additional record.

Therefore a database typically supports the following fleuels of consistency, with
repeatable read usually being the default:

(1) Serializability: To achieve serializability, transactions executing caorently must
execute in complete isolation and must not interfere wittheather. Transactions
must adhere to the two-phase locking protocol to achievalgability. Whilst this
offers the highest level of isolation possible, a subsetpenalty is poor concurrency.

(2) Repeatable ReadRepeatable read ensures that data retrieved from an eguilkey
will not be changed for the life of that transaction. Therefsubsequent executions of
the same query will always return the same records unmodéidtbugh additional
(phantom) records are possible. Repeatable Read emplaysdsitead locks which
only covers existing data queried. Other transactions koeed to 'insert’ records
giving rise toPhantom Reads
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(3) Read CommittedTransactions release read locks early (upon completiomad);
allowing other transactions to make changes to data. Wheanadction repeats a
read, it reacquires a read lock although results may have teeified, resulting in a
Non-Repeatable Read

(4) Read UncommittediVrite locks are released early (upon completion of writédyea
ing modifications to be immediately visible by other trarigats. As data is made
visible before it has been committed, other transactioeseffectively performing
Dirty Readson data which may be rolled back.

3.5.2 Approaches.Thus far our discussion of consistency has been in the cbatex
databases and transactions, which have been used to ctwevggrieral principles. There
are two ways of approaching consisten8irongor Optimistig each method with its re-
spective trade offs (Figure 5).

Strong consistency also known as pessimistic, ensuredaltatvill always remain and
be accessed in a consistent state, thus holding true to thi® phciples. A couple of
methods which aim to achieve strong consistency includecopg serializability [Bern-
stein and Goodman 1983], locking and leasing. The main adgarof adopting a strong
approach is that data will always remain in a consistenesfahe disadvantages include
limited concurrency and availability, resulting in a systeith poor performance that is
potentially complex if a distributed locking mechanism iemoyed. The other approach
to consistency is optimistic consistency [Kung and Robin$681] which is also known
as weak consistency. It is considered weak as it allows @Syt operate whilst in an
inconsistent state. Allowing concurrent access to partéd replicas has the potential for
inconsistent reads and modifications that fail to merge dwenflicting changes. The ad-
vantages associated with an optimistic approach includellext concurrency, availabil-
ity and consequently good scalable performance. The mainlziicks being inconsistent
views and the risk of change conflicts which require usemrugtetion to resolve.

3.5.3 Strong ConsistencyThe primary aim of strong consistency is to ensure data is
viewed and always remains in a consistent state. To maistaing consistency, locking
mechanisms need to be employed. Put simply, a piece of dédaked to restrict user
access. Much discussion and work [Ries and Stonebraker, 1978; Gray et al. 1994]
has gone into applying locks and choosing an appropriate gize. Choosing a large
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Table I. strong consistency - impact on architecture andt@ment

[ System [ Architecture | Environment |
Frangipani || Client-Server Partially Trusted
NFS Client-Server Partially Trusted
Farsite Locally Centralised Partially Trusted
Peer-to-Peer

grain to lock has the advantage of lowering the frequencyhétimocking be initiated, the
disadvantages include increasing the probability of dealvith lock contention and low
concurrency. Choosing a small grain to lock has the advandédpigh concurrency, but
carries an overhead associated with frequently acquidoks. These grain size trade-offs
are universal and also apply to a distributed storage emviemt.

In a distributed environment the performance penalty aasst with employing a lock-
ing infrastructure is high. Distributed storage systemsctvisupport replication face the
prospect of implementing a distributed locking serviceaffgipani [Thekkath et al. 1997]
and OceanStore [Kubiatowicz et al. 2000]) which incursHartperformance penalties;
a polynomial number of messages need to be exchanged betimeegroup of machines
using a Byzantine agreement (see Section 3.6). With thegedverheads the choice to
use a large block size is justified: e.g. 64MB used by the GH&f@wat et al. 2003].
However, careful analysis of storage workload is requisedrgy performance gained from
choosing a large block size would be annulled by the regultok contention otherwise
present in a highly concurrent workload.

A locking infrastructure requires a central authority tonrage and oversee lock re-
quests. Therefore, DSSs choosing to employ locking to aehiensistency are restricted
to architectures which contain varying degrees of cesttibn (Table I). A client-server
architecture is ideal, leaving the server to be the centitityewhich enforces locking.
Implementing a locking mechanism over a Peer-to-Peer tathre is a more involved
process, which becomes impossible in a pure Peer-to-Pelgitesnture. Systems which
choose to support strong consistency mostly operate in talhatrusted environment.
The relatively controlled and reliable nature of a panjidgtusted environment suites the
requirements imposed by strong consistency.

3.5.4 Optimistic ConsistencyThe primary purpose is to keep data consistent without
imposing the restrictions associated with strong consiste Optimistic consistency al-
lows multiple readers and writers to work on data withoutrieed for a central locking
mechanism. Studies of storage workloads [Kistler and ®aigyanan 1991; Gill et al.
1994] show that it is very rare for modifications to result iorenge conflict and as such
the measures used to enforce strong consistency are paieswerkilland unnecessary.
Taking an optimistic approach to consistency is not unnealste and in the rare event that
a conflict should occur users will need to resolve conflictanadly.

An optimistic approach to consistency accommodates a digremaironment, allowing
for continuous operation even in the presence of partitioeplicas, this is particularly
suited to unreliable connectivity of WANs (e.g. Internef)here are no limits imposed
on the choice of architecture when adopting an optimistjgreach and, as it is highly
concurrent, it is well suited to a pure Peer-to-Peer archite.

Examples of DSSs which employ an optimistic consistencyehimtlude: xFS [Ander-
son et al. 1996], Coda [Satyanarayanan 1990] and lvy [Math#roen et al. 2002]. Both
Ivy and xFS employ a log structured filesystem, recording\efikesystem operation into
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a log. By traversing the log it is possible to generate evengion of the filesystem and
if a change conflict arises it is possible to rollback to a ¢steat version. Coda allows
the client to have a persistent cache, which enables thetusentinue to function even
when without a connection to the file server. Once a user resn, the client software
will synchronise with the server’s.

3.6 Security

Security is an integral part of DSSs, serving under manysguisom authentication and
data verification to anonymity and resilience to DenialSgfvice (DoS) attacks. In this
section we shall discuss how system functionality (Sec3idy, architecture (Section 3.2)
and operating environment (Section 3.3) all have an impadezurity and the various
methods (Figure 6) employed to enforce it. To illustratetcsiegye system used to share
public documents within a trusted environment need notreefthe level of security other-
wise required by a system used to store sensitive informatian untrusted environment.

Systems which tend to operate within the confines of a singfiristrative domain
use ACL (Access Control List) to authenticate users and &Hawio restrict external ac-
cess. These security methods are effective in controlletiamments (partially trusted or
trusted). Due to the controlled nature of these environmehe potential user base and
hardware is restricted to within the bounds of an institutiallowing for some level of
trust to be assumed. On the contrary, untrusted envirormseich as the Internet expose
systems to a global public user base, where any assumptidnssbare void. Storage
systems which operate in an untrusted environment are eggosa multitude of attacks
[Douceur 2002; Dingledine 2000]. Defending against thes®i-trivial and the source of
much ongoing research.

The choice of architecture influences the methods used emdefgainst attacks. Archi-
tectures which accommodate a level of centralisation sgatlient-server or centralised
Peer-to-Peer have the potential to either employ ACL or eratieighbourhood knowl-
edge to establish reputations amongst an uncontrolledqudr base. However, security
methods applicable to a centralised architecture are qnaate in a pure Peer-to-Peer set-
ting [Harrington and Jensen 2003]. Systems adopting a peee-t®-Peer architecture
have little, if any, element of centralisation and becaustheir autonomous nature are
faced with further challenges in maintaining security [Ga®t al. 2002; Sit and Morris
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2002]. Current Peer-to-Peer systems employ network oxge(ection 3.9) as their means
to communicate and query other hosts. Securing a Peereior@twork overlay [Castro
et al. 2002] decomposes into the following key factors:

(1) Node Id AssignmentWhen a new node joins a Peer-to-Peer network it is assigned
a random 128bit number which becomes the node’s id. Alloveingpde to assign
itself an id is considered insecure, making the system vabie to various attacks,
including (i) attackers may assign themselves ids closeaalbcument hash, allow-
ing them to control access to the document, (ii) attackeng assign themselves ids
contained in a user’s routing table, effectively contrailithat user’s activities within
the Peer-to-Peer network. Freenet [Clarke et al. 200 Ijgtteto overcome this prob-
lem by involving a chain of random nodes in the Peer-to-Petvaork to prevent users
from controlling node id selection. Assuming the user dogtshave control of node
id selection, this still leaves the problem of users tryiaglominate the network by
obtaining a large number of node ids, this kind of attack & &nown as the Sybil
[Douceur 2002] attack. A centralised solution is proposedidastro et al. 2002],
where a trusted entity is responsible for generating nosland charging a fee to pre-
vent the Sybil attack. Unfortunately this introduces caligation and a SPF which
ultimately could be used to control the Peer-to-Peer ndtviself.

(2) Routing Table Maintenanc&very node within a Peer-to-Peer network overlay main-
tains a routing table that is dynamically updated as nodasjod leave the network.
An attacker may attempt to influence routing tables, rasglin traffic being redi-
rected through their faulty nodes. Network overlays whish proximity information
to improve routing efficiency are particularly vulnerabtethis type of attack. To
avoid this, strong constraints need to be placed upon r@u#bles. By restricting
route entries to only point to neighbours close in the nodsgpate (CAN and Chord),
attackers cannot use network proximity to influence routiides. Whilst this results
in a Peer-to-Peer network that is not susceptible to suclitackait also disables any
advantages gained from using network proximity based mguti

(3) Secure Message Forwardingsll Peer-to-Peer network overlays provide a means of
sending a message to a particular node. It is not uncommoa foessage to be
forwarded numerous times in the process of being routededatget node. If any
nodes along this route are faulty, this message will nothrélae desired destination.
A faulty node may choose notto pass on the message or pretbadtie destined node
id. To overcome this, [Castro et al. 2002] proposes a failesemethod to determine
if a route works and suggests the use of a redundant routihigydeen this test fails.

The rest of this section discusses a few methods commont/lus®SSs to establish
trust, enforce privacy, verify and protect data. A simplédiftective way of ensuring data
validity is through the use of cryptographic hash functisush as the Secure Hash Al-
gorithm (SHA) [National Institute of Standards and Teclugyl 1995] or Message Digest
algorithm (MD5) [Rivest 1992]. These algorithms calculatanique hash which can be
used to check data integrity. Due to the unique nature of sk hdistributed storage pro-
grams also use it as a unique identifier for that block of dateprotect data and provide
confidentiality the use of the Public Key Infrastructure (P&lows data encryption and
restricted access to audiences holding the correct keys.

The Byzantine agreement protocol [Castro and Liskov 200@pkes the establishment
of trust within an untrusted environment. The algorithmaséd on a voting scheme, where
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a Byzantine agreement is only possible when more than twdsthf participating nodes
operate correctly. The protocol itself is quite networkeimgive with messages passed
between nodes increasing in polynomial fashion with reisjpebe number of participants.
Hence the number of participants which form a Byzantine grane limited and all require
good connectivity. OceanStore [Kubiatowicz et al. 2000] &arsite [Adya et al. 2002]
are both examples of systems which have successfully emgltye Byzantine protocol to
establish trust. Another way to establish trust is via a t&jan scheme, rewarding good
behaviour with credits and penalising bad behaviour. FraeeH [Dingledine et al. 2000]
and MojoNation [Wilcox-O’Hearn 2002] use digital currenttyencourage participating
users to behave.

Systems such as Free Haven [Dingledine et al. 2000] and &r§€larke et al. 2001]
both aim to provide users with anonymity and anti-censgrshihese class of systems
need to be resilient to many different attacks from potdgtowerful adversaries whilst
ensuring they do not compromise the very thing they weregdesi to protect. Introducing
any degree of centralisation and neighbourhood inteléganto these systems is treated
with caution [Dingledine et al. 2003; Marti and Garcia-Mwli2003] as this makes the
system vulnerable to attacks. Onion routing [Oram 2001gRidine et al. 2004; Syverson
et al. 1997] and probabilistic routing [Dingledine et al0B) are two methods employed
to provide anonymous and censorship resistant commuaitsatnedium.

3.7 Autonomic Management

The evolution of DSSs has seen an improvement in availglpkétrformance and resilience
in the face of increasingly challenging constraints. Tdiseathese improvements DSSs
have grown to incorporate newer algorithms and more comgsnpicreasing their com-
plexity and the knowledge required to manage them. Withttieisd set to continue, re-
search into addressing and managing complexity (Figureag)léd to the emergence of
autonomic computing [Horn 2001; Kephart and Chess 2003]Je ditonomic comput-
ing initiative has identified theomplexity crisisas a bottleneck, threatening to slow the
continuous development of newer and more complex systems.

Distributed Storage Systems are no exception, evolvirgamge scale complex systems
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with a plethora of configurable attributes, making admmatébn and management a daunt-
ing and error prone task [Barrett et al. 2003]. To addressdallenge, autonomic comput-
ing aims to simplify and automate the management of largie smanplex systems. The
autonomic computing vision, initially defined by eight cheteristics [Horn 2001], was
later distilled into four [Kephart and Chess 2003]; selfifiguration, self-optimisation,
self-healing and self-protection, all of which fall undeetumbrella of self management.
We discuss each of the four aspects of autonomic behavidli@m they translate to auto-
nomic storage in Table Il. Another approach to autonomicmating takes a more ad-hoc
approach, drawing inspiration from biological models Ehtat al. 2003]. Both of these
approaches are radical by nature, having broad long-telafs gequiring many years of
research to be fully realised. In the mean time, researcig{fSen et al. 1996; Wolski
et al. 2001; Buyya 2002; Weglarz et al. 2004] with more imnagzlgoals discuss the use
of market models to autonomically manage resource allocaticomputer systems. More
specifically, examples of such storage systems and the traddels employed are listed
below and discussed in greater detail in Section 4.

(1) Mungi [Heiser et al. 1998]:is a Single-Address-Space Operating System (SASOS)
which employs a commodity market model to manage storagi&quo

(2) Stanford Archival Repository Project [Cooper and Garcialivia 2002]: apply a bar-
tering mechanism, where institutions barter amongst etedr ¢or distributed storage
services for the purpose of archiving and preserving infdrom.

(3) MojoNation [Wilcox-O’Hearn 2002]uses digital currencyMojo) to encourage users
to share and barter resources on its network, users whidhlmate are rewarded with
Mojo which can be redeemed for services.

(4) OceanStore [Kubiatowicz et al. 2000§ a globally scalable storage utility, providing
paying users with a durable, highly available storage serbiy utilising untrusted
infrastructure.

(5) Storage Exchange [Placek and Buyya 200&pplies a sealed Double Auction market
model allowing institutions to trade distributed storagevices. The Storage Ex-
change provides a framework for storage services to be brdlaitonomically based
on immediate requirements.

As distributed storage systems are continuing to evolve grander, more complex
systems, autonomic computing is set to play an importaet s#leltering developers and
administrators from the burdens associated with complexit

3.8 Federation

Global connectivity provided by the Internet has alloweg &nst to communicate and
interact with any other host. The capability for institutioto integrate systems, share re-
sources and knowledge across institutional and geographicdaries is available. Whilst
the possibilities are endless, the middleware necessdeglévate resources across institu-
tional and geographic boundaries has sparked researchdrc@mputing [Foster 2001].
Grid computing is faced with many challenges including:muting cross domain admin-
istration, security, integration of heterogeneous systaesource discovery, the manage-
ment and scheduling of resources in a large scale and dyraviilonment.

In relation to distributed storage, federation involvederstanding the data being stored,
its semantics and associated meta-data. The need for mgndgia has been identi-
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Table Il. autonomic computing and distributed storage
1.Self-configuration: Autonomic systems are configured with high-level policidsch trans-
late to business-level objectives.

Large DSSs are governed by a myriad of configurable attrsbuéguiring experts to transt
late complex business rules into these configurables. @tdralicies [Devarakonda et al.
2003] provide a means by which high-level objectives candfmdd. The autonomic comt
ponent is responsible for translating these high-levetahjes into low level configurables,
simplifying the process of configuration.

2 .Self-optimisation: Continually searching for ways to optimise operation.

Due to the complex nature and ever changing environmentrumkieh DSSs operate in
finding an operational optimum is a challenging task. A ceugflapproaches have beg
proposed, introspection [Kubiatowicz et al. 2000], ancergly a more ad-hoc approach
[Staab et al. 2003] inspired by the self-organising behaviound in biological systems.
The process of introspection is a structured three stadealyprocess: data is collected,
analysed and acted upon. To illustrate, a system samplddoadrdata and upon analys
finds the user to be mostly reading data, the system can thienisp operation by heavily,
caching on the client side, improving performance for ther asid reducing the load on the
file server.

Several efforts focusing on self-optimisation include GWAR [Cuce and Zaslavsky|
2002], HAC [Castro et al. 1997] and a couple of proposals {lale; Li et al. 2005] which
apply data mining principles to optimise storage accessORAR is an adaptable con
sistency mechanism that selects an optimum consistencliyansen based upon the use
connectivity. HAC (Hybrid Adaptive Caching) proposes amptdble caching mechanis
which optimises caching to suit locality and applicationrkioad.

3.Self-healing: Being able to recover from component failure.

Large scale distributed storage systems consist of manyaoents and therefore occu
rence of failure is to be expected. In an autonomic systencharésms to detect and re
cover from failure are important. For example, DSSs whiclplemreplication to achieve|
redundancy and better availability need recovery mechanishen replicas become in
consistent.
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4 .Self-protection: Be able to protect itself from malicious behaviour or casngdailures.
Systems which operate on the Internet are particularly eralvle to a wide array of at
tacks. Self-protection is especially important to thesgteys. To illustrate, Peer-to-Peg¢
systems are designed to operate in an untrusted envirorandrtty design adapt well t
change be-it malicious or otherwise. Systems which focugromiding anonymity and
anti-censorship (Freenet [Clarke et al. 2001] and Free m@éngledine et al. 2000])
accommodate for a large array of attacks aimed to disrupicesr and propose various
methods to protect themselves.

=

fied across various scientific disciplines (Ecological B®i998], High Energy Physics
[Holtman 2001], Medicinal [Buyya 2001]). Currently mosstitutions maintain their own

repository of scientific data, making this data availabléh® wider research community
would encourage collaboration. Sharing data across uistits requires middleware to
federate heterogeneous storage systems into a single leommgs interface which may
be used to access data. Users need not be concerned abdotdttm, replication and

various data formats and can instead focus on what is impon@aking use of the data.
The Data Grid [Chervenak et al. 2000] and SRB [Baru et al. 18@8asekar et al. 2002]
(Section 4.8) are examples of current research being daori¢ into federating storage
services.
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3.9 Routing and Network Overlays

The evolution of routing has evolved in step with distrimlstorage architecture. Early
DSSs [Morris et al. 1986; Howard et al. 1988; Sandberg et @85] that were based
on a client-server architecture, employed a static appré@couting. A client would be
configured with the destination address of the server, @ligthe client to access storage
services in one hop. The server address would seldom chadgéso would require the
client to be re-configured.

The next phase of evolution in routing was inspired by redearto Peer-to-Peer sys-
tems, which itself underwent many stages of developmently Bgstems like Napster
[Oram 2001] adopted a centralised approach, where Pdeedo<clients were configured
with the address of a central Peer-to-Peer meta-serves. iieia-server was responsible
for managing a large dynamic routing table which mappedditees to their stored lo-
cations. Clients now required three hops to reach the dmbtiata source: one to query
the meta-server for the host address storing the data aestteanother hop for the re-
ply and finally a third hop to the host containing the data. Téetralisation introduced
by the meta-server proved to be a scalability and religtiildgttieneck, inspiring the next
generation of Peer-to-Peer systems.

A method of broadcasting queries [Oram 2001] was employe@rytella to abate cen-
tralisation, although this inadvertently flooded the netwoPeer-to-Peer clients would
broadcast their queries to immediately known peers whictuin would forward the
gueries to their known list of peers. This cycle of broadoastlooded the network to
the point where 50% of the traffic was attributed to queriesPinitri 2002]. To limit
the flooding, a Time To Live (TTL) attribute was attached teqes, this attribute was
decremented with every hop. Unfortunately a TTL meant $esrevould fail to find data
even though it was present on the network. The problem of ifitmphspired the use of
super nodes (FastTrack [Ding Choon-Hoong and Buyya 20@jjper nodes are respon-
sible for maintaining routing knowledge for a neighbourtd@$ nodes and serving their
queries. The use of super nodes reduced the traffic spenesiegbut resulted in a locally
centralised architecture.

The next generation of Peer-to-Peer systems brought gptatithe forefront of research.
The introduction of Distributed Hash Tables (DHT) spawneacthmresearch [Plaxton et al.
1997; Zhao et al. 2003; Stoica et al. 2001; Rowstron and Del2001; Ratnasamy et al.
2000; Dabek et al. 2003; Maymounkov and Mazieres 2002] iatavark overlays. Routing
tables were no longer the property of a centralised metaes@r super nodes, routing
tables now belonged to every peer on the network.

Each peer is assigned a hash id, some methods use a randgnothask hash the IP
address of the node [Zhao et al. 2003; Rowstron and DrusclHl]2 Each data entity
is referenced by a hash of its payload and upon insertionugdotowards nodes with
the most similar hash id. A Peer-to-Peer network overlayie to route a peer’s storage
request withinog N hops, whereV is the number of nodes in the network. Whilst this
may not perform as well as an approach with constant lookae,thetwork overlays scale
well and continue to operate in an unreliable and dynamidrenment. A comparison
(Table 1) of all discussed routing algorithms, suggesitteach has a varying capability
regarding performance. Variables listed in Table Il arsalibed in detail in [Lua et al.
2005], which also provides a detailed description and caiapa of network overlays.

Continuous research and development into network ovetagsseen them evolve to
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Table lll. comparison of routing mechanisms
[ System ]| Model | Hops to Data |
AFS, NFS || Client-Server O(1)
Napster Central Meta-Server O(3)
Gnutella Broadcasting O(TTL)
Chord Uni-Dimensional O(logN)
Circular ID space
CAN multi-dimensional space O(d.Nﬁ)
Tapestry Plaxton-style Global Mesh O(logyN)
Pastry Plaxton-style Global Mesh O(logeN)
Kademlia || X-OR based O(logeN)
Look-up Mechanism

Where:
N: the number of nodes in the network
d: the number of dimensions
b: base of the chosen peer identifier
c: number of bits used for the base of the chosen identifier
e: number of bits in the Node ID

Table IV. routing and architecture taxonomy

| || Centralised | Decentralised |
Static 1. Client-Server 2. Replicated Servers
NFS [Sandberg et al. 1985] XFS [Anderson et al. 1996], Coda
[Satyanarayanan 1990]
Dynamic || 3. Centralised Peer-to-Peer 4. Peer-to-Peer Network Overlay
Napster [Oram 2001] lvy [Muthitacharoen et al. 2002]
OceanStore [Kubiatowicz et al,
2000]

supportanincreasing number of services. Some of thesiessixclude providing stronger
consistency [Lynch et al. 2002], better query capabilityaftén et al. 2002; Triantafil-
lou and Pitoura 2003], anonymity [Freedman and Morris 2@0®] censorship resistance
[Hazel and Wiley 2002]. To consolidate the vast array of aeste, [Dabek et al. 2003]
proposes a standard interface for network overlays. Theoasihope that standardising
will help facilitate further innovation in network overlayand integrate existing Peer-to-
Peer networks. Currently, a user requires a different ttietog into every Peer-to-Peer
network, if the standard is embraced, it would serve to irstegvarious networks, allowing
a single client to operate across multiple networks comnily.

An interesting observation in the evolution of routing i® tbhift from (1) static cen-
tralised routing tables, to (2) static decentralised tod{@)amic centralised and finally to
(4) dynamic decentralised (Figure 1V). The shift from cefited to decentralised has seen
the move from one static server to multiple static servesglicating storage, providing
better redundancy and load balancing. The shift from statidynamic routing has re-
sulted in storage systems being able to cope with a dynamicoement where each host
is capable of providing services. The more recent advanite liynamic decentralised
routing tables which has moved the management of routinigdab thefringes of the
network, giving rise to Peer-to-Peer network overlays.
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4. SURVEY

Our survey covers a variety of storage systems, exposing#uer to an array of different
problems and solutions. For each surveyed system, we adtheesinderlying operational
behaviour, leading into the architecture and algorithmpleged in the design and devel-
opment. Our survey covers systems from the past and prdsduhe, V lists all the surveyed
systems tracing back to those characteristics discusdbd taxonomy.

4.1 OceanStore

OceanStore [Kubiatowicz et al. 2000] is a globally scalaiteage utility, allowing con-
sumers to purchase and utilise a persistent distributedggaservice. Providing a storage
utility inherently means that data must be highly availabézure, easy to access and sup-
port guarantees on Quality of Service (Qo0S). To allow useractcess their data easily
from any geographic location, data is cached in geografhidistant locations, in effect,
travelling with the user and thus giving rise to the temomadic data OceanStore pro-
vides a transparent, easily accessible filesystem ineerfaiding any underlying system
complexities whilst enabling existing applications tdisé storage services.

4.1.1 Architecture. OceanStore employs a 2-tier based architecture (Figutieesfiyst
is the super-tier, responsible for providing an interfazamsistency mechanisms and au-
tonomic operation. It achieves this by maintaining a priyn@plica amongst an “inner
ring” of powerful, well connected servers. The second tiee, archival-tier, is responsi-
ble for archiving data and providing additional replicatioy utilising nodes which may
not be as well connected or powerful. A hierarchy exists betwthe tiers, the super-tier
constitutes of super nodes, which form a Byzantine agreef@astro and Liskov 2000]
enabling the collective to take charge and make decisiohs.archival-tier receives data
from the super-tier which it stores, providing an archivahgce. The nodes within an
archival-tier need not be well connected or provide high gotational speed, as it neither
performs high computational tasks or service requeststtiirmade by user applications.
The super-tier is a centralised point, as it forms a gatewaysers to access their files, but
as OceanStore can accommodate multiple cooperating epgrwe classify its architec-
ture as locally centralised.

Any requests to modify data are serviced by the super-tiet,leence it is responsible
for ensuring data consistency [Bindel and Rhea 2000]. Therstier maintains a primary
replica which it distributes amongst its nodes. Modificasiconsist of information regard-
ing the changes made to an object and the resulting state objkct, similar to that of the
Bayou System [Demers et al. 1994]. Once updates are condnbittédne primary replica,
these changes are distributed to the secondary replicdereBeata is distributed to sec-
ondary replicas, erasure codes [Blomer et al. 1995] are @maglto achieve redundancy.
Erasure codes provide redundancy more efficiently themetke possible by replication
[Weatherspoon et al. 2001].

The super-tier utilises Tapestry [Zhao et al. 2003], fotriisting the primary replica.
Tapestry is a Peer-to-Peer network overlay responsiblerfariding a simple API capable
of servicing data requests and updates, whilst taking dareuting and data distribution
to achieve availability across a dynamic environment. Hemrinformation on network
overlays can be found in Section 3.9.

Data objects are stored (read-only), referenced by indidecks, in principle very much
like a log structured filesystem [Rosenblum and Ousterh882]L These indirect blocks
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System System Architecture | Operating Consistency | Routing Interfaces Scalability
Function Environment
OceanStore Custom Locally Untrusted Optimistic Dynamic | POSIX and| Large
Centralised DHT custom (global)
Peer-to-Peer (Tapestry)
Free Haven Publish/Share | Pure Untrusted N/A Dynamic | Custom Large
Peer-to-Peer (WORM) Broadcast (global)
Farsite General pur-| Locally Partially Strong Dynamic | POSIX Medium
pose Filesys{ Centralised | Trusted DHT (institution)
tem Peer-to-Peer
Coda General pur-| Locally Partially Optimistic Static POSIX Medium
pose Filesys{ Centralised | Trusted (institution)
tem
Ivy General pur-| Pure Trusted Optimistic Dynamic | POSIX Medium
pose Filesys{ Peer-to-Peer DHT (small groups)
tem (Dhash)
Frangipani Performance | Locally Trusted Strong Static POSIX Medium
Centralised Petal (small groups)
GFS Custom Locally Trusted Optimistic Static Incomplete Large
Centralised POSIX (institution)
SRB Federation Locally Trusted Strong Static Incomplete Large
Middleware Centralised POSIX (global)
Freeloader Custom Locally Partially N/A Dynamic | Incomplete Medium
Centralised | Trusted (WORM) POSIX (institution)
PVFS Performance | Locally Trusted Strong Static POSIX, MPI-| Medium
Centralised I/0 (institution)
StorageExchange| General pur-| Globally Untrusted Strong Static POSIX Large
pose Filesys{ Centralised (institution)
tem
Table V. distributed storage systems surveyed
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themselves are referenced by a root index. Therefore, wheipdate is made to a data
object, a new pointer is created in the root index, which fstima series of indirect blocks,
which finally point to a combination of old unchanged dataectg and newly created data
objects containing the modifications. This logging meckianenables every version of
the data object to be recreated, enabling the user to reguaat versions of the file, hence
the provision of a rollback facility. Unfortunately, praling this feature bears a high cost
in space overhead. Indirect blocks are indexed by a cryapigcally secure hash of the
filename and the owner’s public key, whereas data blocksndexied by a content hash.

Finally, the concept of introspection is introduced as amseaf providing autonomic
operation. A three-step cycle of Computation, Observadiuth Optimisation is proposed.
Computation is considered as normal operation, which caedmded and analysed (Ob-
servation). Based on these Observations, Optimisatianbegut in place.

4.1.2 Implementation A prototype named Pond [Rhea et al. 2003] has been developed
and released as open source under the BSD license and asd@édr downloal SEDA
[Welsh et al. 2001] (Staged Event-Driven Architecture) waksed to provide a means of
implementing an event driven architecture. Java was theail@nguage of choice due to
its portability, strong typing and garbage collection. Alplem with the unpredictability
of the garbage collection was highlighted as an issue, aastfaund to pause execution
for an unacceptable amount of time posing a performancdgrob

4.1.3 Summary.The authors of OceanStore set themselves a very challesgtnof
requirements covering many areas of research. Ocean$twsaaprovide a storage util-
ity with a transparent filesystem like interface, providi@gS typical of a LAN whilst
operating in a untrusted environment. Providing a storadigyumplies the need for

1OceanStore Homepage: http://oceanstore.cs.berkeley.ed



26 . Martin Placek and Rajkumar Buyya

accountability and thus a payment system. Providing adedility within a distributed
untrusted environment is a challenging task and it wouldeh@en interesting to see how
that would have been incorporated into the architecture.

The prototype [Rhea et al. 2003] has been tested in a caedreitvironment and showed
promising benchmark results. Pond provides an excelleigh into the challenges of
building a system of this calibre. Challenges identifiedude performance bottlenecks
in erasure codes, providing further autonomic operatimrgased stability, fault tolerance
and security [Eaton and Weis ].

4.2 Free Haven

Free Haven [Dingledine et al. 2000] [Oram 2001] is a distelustorage system which
provides a means to publish data anonymously and securbéyaim is to provide indi-
viduals with an anonymous communication channel, allovtiregn to publish and reach
out to an audience without the fear of persecution from gawent bodies or powerful
private organisations who would otherwise censor the médion. The authors motiva-
tion for providing an anonymous communication medium issblaen the shortcomingsin
existing Peer-to-Peer publication systems, where systmrators (Napster [Oram 2001])
or users themselves (Gnutella [Oram 2001]) were being petsé for breach of copyright
laws. Performance and availability are secondary with thgry focus being on pro-
tecting user identity. Protecting user identity enablehviduals to distribute and access
material anonymously. Dingldine [Dingledine 2000] prossda detailed classification of
various types of anonymity. Further objectives includep@jsistence: to prevent censor-
ship despite attacks from powerful adversaries, (i) fldityp accommodate for a dynamic
environment and (iii) accountability: to establish syneirgan otherwise untrusted envi-
ronment.

4.2.1 Architecture. Free Haven is based upon a pure Peer-to-Peer design philosop
With no hierarchy, every node is equal to the next and traisacare carried out in a
symmetric and balanced manner. Free Haven utilises a remmatwork [Danezis et al.
2002], which provides an anonymous communications mediynitibising onion routing
(Figure 9). Queries are broadcast with the use of onion mguthaking it difficult for
adversaries to trace routes. Each user is assigned a pseudonvhich a reputation is
assigned. Servers are only known by their pseudonyms makerg difficult to locate.
Reputations are assigned to each pseudonym and are tradgosdagically. In the rest of
this section we shall provide an overall high-level walketiigh and discuss reputation and
the process of trading.

The primary purpose of the anonymous communication med&utn ensure the mes-
sages relayed cannot be traced to the source or destinptmegcting user identity. The
anonymous communication medium can utilise onion routing i@-mailer, both work on
a similar set of principles. Nodes communicate by forwagdiressages randomly amongst
each other using different pseudonyms at each hop makiiffjcéudt for adversaries to de-
termine a message’s origin or destination. Figure 9 showeeaglient G communicating
to H along a route that involves nodes A, B, C, D, | and J. OnlgenA is able to map G's
pseudonym to its IP, as once the message is passed beyong psenidonyms are used.
Even though peer client G may need only to communicate witthel,route taken may
visit other peer clients (I and J) along the way, again to mh&erocess of finding a users
true identity more difficult.
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A reputation mechanism is used to provide an incentive ferao participate in an
honest manner. Reputation makes the users accountabléipgpa means to punish or
even exclude users who misbehave. The process of integatieputation mechanism
requires careful consideration [Dingledine et al. 2003rtMend Garcia-Molina 2003], so
as not to compromise the very thing the system was desigraatect, user identity. The
amount of data which a server may store is governed by raépnfanhaking it difficult
for users to clog the system with garbage. Reputation isutztked based upon the trades
a server makes with other servers. A successful trade isesethe server’s reputation.
Trades made amongst servers consist of two equally sizeidaotsy which are negotiated
and (if successful) traded. The size of the contract is bardtle file size and the duration
for which the file is to be stored. Therefore, the size of caettequates to the file size
multiplied by the duration. As such, the larger the file anel fidlnger the period it is to
be stored, the more expensive the contract. Servers witleiFtee Haven environment
are continually making trades to: provide a cloak of anonyrfar publishers, create a
moving target, provide longer lasting shares, and allowessrto join and leave, amongst
other reasons.

The process of confirming a trade is made difficult by the faat it is done in an un-
trusted environment. Detecting malicious behaviour, wtservers may falsely deny they
received a trade or present false information about angr@er to reduce its reputation.
To address these problems, a buddy system is introducedhiviglves each server hav-
ing a shadow to look over and certify trades. When negotiatioa contract is finalised,
each server sends a receipt acknowledging the trade. Tdegptés then sent from each
server to the other and to their respective buddies. Eaatiyowil receive the same receipt
twice. Once from the server which created the trade and anoe the accepting server.
This enables the buddies to oversee the contract and detentalicious behaviour.

4.2.2 Implementation Free Haven has not been released, the website details the pro
lems and areas which need to be addressed and as such dexel@pm a state of hiber-
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natiorf. The problems discussed involve:

(1) Reputation:Flaws have been identified in the current reputation systémaneed to
incorporate verifiable transactions.

(2) Protocol: The underlying protocol is based on broadcasting messtggsyas found
to be too inefficient.

(3) Anonymous CommunicatioAt the moment there is no anonymous communications
medium. An enhanced version of the onion routing protocpl@posed [Dingledine
et al. 2004], detailing how anonymity could be integratethatTCP level rather than
at the message level. Although weaker anonymity is tradeghaglower latency in
this situation.

Releases of both the anonymous re-mailer Mixminion [Danetial. 2002] and Tor
[Dingledine et al. 2004] can be found on the Free Haven websit

4.2.3 Summary.Free Haven aims to operate in a globally untrusted envirom pre-
viding the user with the ability to anonymously publish dafaee Haven sacrifices effi-
ciency and convenience in its pursuit of anonymity, peesise, flexibility and account-
ability. The persistence of data published is based on idmras apposed to popularity (as
in many other publishing systems), this is an important uaitgature as it prevents pop-
ular files frompushing oubther files and as such cannot be used by adversaries to censor
information.

As Free Haven aims to resist censorship and provide strorgjspece, even under
attacks from strong opponents, its design was based oredbtainsideration [Dingledine
2000] of possible attacks. The documented attacks arecayidi to any system operating
in an untrusted environment. The concepts applied by Freeide achieve anonymity
could be applied by other systems aiming to protect useagpyiv

4.3 Farsite

The goal of Farsite [Adya et al. 2002] is to provide a securalable file system by util-
ising unused storage from user workstations, whilst opegatithin the boundaries of an
institution. Farsite aims to provide a transparent, easystofile system interface, hiding
its underlying complexities. From the administrators pergive, it aims to simplify effort
required to manage the system. Tasks such as backing up demedundant through
replication, available storage space is proportionatééoftee space on user machines.
This autonomic behaviour aims to reduce the cost of owngtshsimplifying the admin-
istration and better utilising existing hardware. If a néadurther storage is required, the
option of adding dedicated workstations to the network eaadhieved without introduc-
ing down time. Due to its ability to utilise existing infrastture, Farsite can be seen as a
cheaper solution to a SAN, but only if a trade-off in performoais acceptable.

4.3.1 Architecture. The architecture is based on the following three concepientc
directory group and a file host (Figure 10). A node may adopt@rall of these roles. The
client is responsible for providing a filesystem like intexé. Nodes which participate in a
directory group do so in a Byzantine agreement, these nadassponsible for establish-
ing trust, enforcing consistency, storing meta-data anditoong operational behaviour.

2Free Haven Homepage: http://www.freehaven.net/
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They can also, as required, execute choirs and exhibit a2dagfrautonomic operation.
The file host role consists of providing storage space fordféia. We shall now discuss
each role in greater detail.

The client provides an interface which emulates the belavid a traditional local
filesystem, providing users with the ability to access thetey in a transparent, easy
to use manner. The directory group begins as a set of nodgmedshe root names-
pace for which they have to service client requests. As tlmeesaace grows, a part of
the namespace is delegated to another directory group. @facip establishes trust and
redundancy via the Byzantine protocol. Every node in th@ugrmaintains a replica of
the meta-data. The directory group behaves like a gatewaglitmt requests, ensuring
consistency by utilising leases. Autonomic behaviourrat$gto managing replication, by
relocating replicas to maintain file availability. File @ability is based on the availability
of replicas and therefore files which have a higher availgttihan the mean availability
have their replicas swapped with replicas which have lowaila@bility, this establishes a
uniform level of availability across all files.

The meta-data stored by the directory group includes @atds, lease information, di-
rectory structure, Access Control Lists (ACL) and a routiaigle, consisting of filenames,
content hash and file location. There are three main typesrtficates, a namespace cer-
tificate which associates the root of a file-system namespébethe directory group, a
user certificate which associates the user with his publictkeprovide a means to autho-
rise a user against an ACL and a machine certificate whiclmisasito the user certificate
exceptit is used to authorise and identify the machine asquamesource. Certificates are
signed by trusted authorities, which are used to establ@tam of trust. A user’s private
key is encrypted with a symmetric key derived from the usga'ssword.

Farsite utilises leases to ensure consistency. The grétguéleases is variable, in that
they may cover anything from a single file to a directory tfBeere are four main types of
leases, content leases, name leases, mode leases andeasessContent leases govern
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what access modes are allowed. There are two types of cdassds, read-write which
permits a client to perform both read and write operatiortsaread-only lease that guar-
antees the client that data read is not stale. Name leaseisi@aients with control over
a filenames in a directory. Mode leases are application leasks, enabling applications
to have exclusive read, write or delete modes. Access leaisassed to support Microsoft
Windows deletion semantics, which state that a file can bé&edato be deleted, but can
only be deleted after all open handles are released. A fitéstihaarked for deletion cannot
accept new file handles, but applications which already adileé handle have the capabil-
ity of resetting the delete flag. To support this there aredltypes of access leases; public,
protected and private. A public lease being the least otistiof the three, indicates the
lease holder has the file open. A protected lease is the sathe asiblic lease with the
extra condition that any lease request made by clients masthintact the lease holder.
Finally the private lease is the same as the protected ledaseth a further condition that
any access lease request by a client will be refused.

4.3.2 Implementation.Unfortunately Farsite is closed source and because ofithis,
ited information is availabfe  The authors break down the code into two main com-
ponents, user and kernel level, both developed in C. Usel tmmponent is responsible
for the backend jobs, including managing cache, fetchimg fiteplication, validation of
data, lease management and upholding the Byzantine ptottamel level component is
mainly responsible for providing a filesystem like integdor the user. Whilst Farsite has
implemented some of its proposed algorithms, others retoaire completed, including
those related to scalability and crash recovery.

4.3.3 Summary.Farsite aims to operate in a controlled environment, witmnnnsti-
tution. The controlled nature of this environment means ttales are assumed to be
interconnected by a high bandwidth, low latency network ahist some level of mali-
cious behaviour is expected, on the whole, most machinezsatamed, to be available and
functioning correctly. As a level of trust is assumed we sifgsthe operating environment
as partially trusted. Farsite bases its workload model pit&y desktop machine operating
in an academic or corporate environment and thus assumesiffédenot being updated or
read by many concurrent users. Farsite maintains a databesetent hashes of every file
and utilises it to detect duplicate files and increase itag®efficiency. On the whole Far-
site aims to provide distributed storage utilising exigfiimfrastructure within an institution
whilst minimising administration costs, through autonomwperation.

4.4 Coda

Coda[Satyanarayanan 1990; Satyanarayanan et al. 19%91@ridisd Satyanarayanan 1991]
provides a filesystem like interface to storage that isithisted within an institution. Coda
clients continue to function even in the face of network get as a local copy of the
user’s files is stored on their workstation. As well as prowibetter resilience to network
outages, having a local copy increases performance anéptowe particularly useful to
the ever growing group of mobile users taking advantagepibfzs. Coda was designed
to take advantage of Conventional Off The Shelf (COTS) haréwproving to be a cost
competitive solution compared with expensive hardwareired by traditional fileservers
or SANs. Upgrades simply require the addition of anothevesewithout affecting the

3Farsite Homepage: http://research.microsoft.com/gdrsi
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operation of existing servers, therefore eliminating wiability due to upgrades. Coda
has been designed to operate within an institution and iteseare assumed to be con-
nected by a high bandwidth, low latency network in what wendézbe a partially trusted
environment.

4.4.1 Architecture. Coda is divided into two main components (Figure 11), theeser
(Vice) and the client (Venus). Many Vice servers can be canéid to host the same Coda
filesystem in effect replicating the filesystem. Each Vicessethat hosts the filesystem
is part of a Volume Storage Group (VSG). Referring to Figutewe can see that Vice
Servers A, B and C form a VSG for volume A, whilst only Vice SenwB and C form a
VSG for volume B. The Venus client software enables the userdunt the Coda volume,
providing a transparent filesystem interface. Venus hasviedge of all available Vice
servers and broadcasts its requests to them. Venus caetjaefiitly accessed files allowing
users to operate on cached files even when disconnected foensé&fvers.

The architecture of Coda is heavily oriented around thentli@he client is left with
the majority of the responsibilities, reducing the burded eomplexity of the Vice server.
Therefore, the client is left with the responsibility fortdeting inconsistencies and broad-
casting changes to all Coda servers. This itself could piobe a bottleneck as the system
scales up.

Clients have two modes of operations, a connected mode kedlient has connectiv-
ity to the Server and a disconnected mode when the cliens losenectivity to the server.
Disconnected mode enables the user to continue operatrvevilst losing connectivity
with the network. Coda is able to provide this mode by cacfiieg locally on the user’s
machine. Whilst caching was initially seen as a means toargperformance, it has the
added advantage of increasing availability. Files are eddbcally based upon the Least
Recently Used (LRU) algorithm, much like traditional caapalgorithm. Allowing client
side caching and disconnected operation raises issu¢ingei@consistency.

There are two possible scenarios leading to data inconsigta the Coda environment.
The first is in the event that a client enters disconnectedatipa, the second being when
a Coda server loses connectivity with other Coda serversenfdhclient switches to dis-
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connected operation the user is still able to make changéshaesy were still connected,
completely oblivious to the fact they have lost conneatiwvhilst the user makes changes
a log keeps all the changes they make to their files. Upon resmiion an attempt to merge
their changes with the Coda server is attempted by replabiadog of their changes. If
the merge fails and a conflict is detected, manual intergaris required to resolve the
conflict.

Coda’s approach to consistency is optimistic as it allowta deplicas to become incon-
sistent. To illustrate, disconnected users are permitieddke changes and hence their
local replica becomes inconsistent with the server’s, arign the user reconnects are all
replicas returned to a consistent state. The choice to usptanistic approach was based
on analysing a users’ workload profile [Kistler and Satyaganan 1991] and observing
that it was an unlikely occurrence for them to make modifaaiwhere a conflict would
arise. With this in mind, the advantages to be gained by agticrconcurrency control far
outweigh the disadvantages.

When a Coda server loses connectivity with other serveeggbponsibility of detecting
inconsistencies is left with the client. When a client regige file, it first requests the file
version from each of the Coda servers. If it detects a disereypin the version numbers,
it notifies the Coda server with the latest version of the filés only then that changes are
replicated amongst the Coda servers.

4.4.2 Implementation.Coda was written in C and consists of two main components,
the Vice server and the Venus client (Figure 12). Venus st&sif two main modules, the
Coda FS kernel module and the cache manager. The Coda F$ kemhée is written to
interface the Linux VFS (virtual file system) enabling it teHave like any other filesystem.
When a client program accesses data on a Coda mount point,r&fes/es these 1/0
requests and routes them to the Coda FS kernel module. TreeFEHBernel module than
forwards these requests to cache manager, which, basedoaativity and cache status,
can choose to service these requests by either logging th&rodl store or contacting the
Vice servers. Vice consists of one main component whichigesvan RPC interface for
Venus to utilise in the event of cache misses or meta-dateests,

Coda is an open source effort and is available for dowrfloadVhilst Coda itself is
written in C, the distribution is accompanied by a host ofitigs written in shell and
Perl for recovery and conflict resolution. Current develepirefforts include: making
Coda available to a wider community by porting it to variooegplar platforms, reliability,
robustness, setting up a mailing group and extending thiabl@documentation.

4.4.3 Summary.Coda aims to provide all the benefits associated with conueattfile
servers whilst utilising a decentralised architectured&is resilient to network outages
by employing an optimistic approach to consistency, whilkbws clients to operate on
locally cached data whilst disconnected from the servalisitig an optimistic consistency
model is a key component in providing maximum data avaitgb@lthough this creates
the possibility for consistency conflicts to arise. Knovgedjained from the usage of Coda
[Kistler and Satyanarayanan 1991] has shown that the cacerof conflicts are unlikely
and therefore the advantages gained by utilising an ogitensistency model outweigh
the disadvantages. Coda’s ability to provide disconnempedation is a key unique feature,
which will grow in popularity with mobile computing.

4Coda Homepage: http://www.coda.cs.cmu.edu/
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45 vy

Ivy [Muthitacharoen et al. 2002] employs a Peer-to-Peehitecture to provide a dis-

tributed storage service with a filesystem like interfaceliké many existing Peer-to-Peer
storage systems (Gnutella [Oram 2001], Napster [Oram 200ich focus on publish-

ing or at best only supporting the owner of the file to make rfications, vy supports

read-write capability and an interface which is indifferém any other mounted filesys-
tem. Ivy is suited to small cooperative groups of geogragdhialistant users. Due to its
restrictive user policy, a user is able to choose which otisers to trust. In the event a
trusted user node is compromised and changes made areaus/iairollback mechanism
is provided to undo any unwanted changes. lvy is designed tdilised by small groups

of cooperative users in an otherwise untrusted environment

4.5.1 Architecture. lvy’s architecture has no hierarchy, with every node bedwenti-
cal and capable of operating as both a client and server. ®its symmetrical nature,
the architecture is considered pure Peer-to-Peer. Eadhcwtbists of two main compo-
nents Chord/Dhash and the Ivy server(Figure 13). ChordiBlsused for providing a
reliable Peer-to-Peer distributed storage mechanismIvifeerver interfaces to Dhash, to
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Fig. 13. vy architecture

send and receive data from peer nodes, and to the NFS lodqdbacovide a filesystem
interface.

Ivy uses a log based structure whereby every user has theilayvand view of the
filesystem. Logs contain user data and the changes madefitetlystem. These logs are
stored in a distributed fashion utilising Chord/DHash [&cet al. 2001], a Peer-to-Peer
network overlay (Section 3.9), used for its ability to rbliastore and retrieve blocks of
data across a network of computers.

The log contains a linked list data structure, where evecpne represents one NFS
operation. Log records are immutable and kept indefinitelgbéing users to roll back
any unwanted changes, much like a log structured filesysRmagnblum and Ousterhout
1992]. Whilst Ivy supports file permission attributes, albus are able to read any log in
the Ivy system. Itis advised that if a user wishes to resaiicess to their files they use en-
cryption. Log records store minimal information to minimithe possibility of concurrent
updates and consistency issues.

To create a filesystem within lvy, a group of users agree uphuinwset of logs will be
trusted and therefore used to generate the filesystem. Eoy kg deemed to be part of
the filesystem, an entry pointing to its log head is createtérview array. The view array
is the rootindex and is traversed by all the users to genarst@pshot of the filesystem. A
filesystem may comprise of multiple logs which in turn can bedito record modifications
concurrently. As Ivy supports concurrent writes, consisyeconflicts can occur.

Ivy aims to provide close-to-open consistency and as suddifivations completed by
users are immediately visible to operations which othetigpants may initiate. This
feature cannot be upheld when nodes in the Ivy filesystemdoseectivity or become
partitioned. To achieve close-to-open consistency, elxgrngserver that is performing a
modification waits until Dhash has acknowledged the reasfiptew log records before
announcing completion. For every NFS operation, Ivy retpuBsash for the latest view
array. Modifications which result in consistency confliaguire the use of thie com-
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mand, which detects conflicts by traversing the logs, logkor entries with concurrent
version vectors which affect the same file or directory entisers are expected to resolve
these conflicts by analysing the differences and mergingtiheges.

Whilst an optimistic approach to consistency is used wiipeet to file modifications,
a more strict strategy (utilising locking) is in place foefitreation. Ivy aims to support
exclusive creation, its reason for doing so extends to egiidins which rely upon these
semantics to implement their own locking. Ivy can only guméea exclusive creation when
the network is fully available. As each user has to fetchywoérer user’s log, performance
degrades as the number of users increase. Consequenitystaability is limited and
hence the system is only suited to small groups of users.

4.5.2 Implementation.lvy is distributed as open source under the GPL agreement and
is available for download Source code is written using a combination of C and C++. The
SFS tool kit is utilised for event-driven programming. Rerfiance benchmarks conducted
in a dedicated controlled environment and with replicaaitched off in Chord/DHash,
showed promising results where vy was only a factor of 2 tin@$ slower than NFS.

4.5.3 Summary.lvy uniquely provides a distributed storage service withHesfistem
like interface, whilst employing a pure Peer-to-Peer dedhire. Every user stores a log of
their modifications and at a specified time interval genesratnapshot, a process which re-
quires them to retrieve logs from all participating user$il! the transfer of logs from ev-
ery user may prove to be a performance bottleneck, userghewdility to make changes
to the filesystem without concern to the state of anotheigipaint’s logs. Ivy logs and
stores every change a user makes which enables users tactodhy unwanted changes,
although this comes at a high cost in storage overhead. iNgastan optimistic approach
to consistency allowing users to make concurrent changegseteame piece of data, pro-
viding users with maximum flexibility whilst avoiding loakg issues. Although, like any
other systems which adopts an optimistic approach to demsig, the system can reach an
inconsistent state requiring user intervention to resaeerall, Ivy can be seen as an ex-
tension of CFS [Dabek et al. 2001], which, like Ivy, utiliseeord/DHash for distributing
its storage but only supports a limited write-once/readwraterface.

4.6 Frangipani

Frangipani [Thekkath et al. 1997] is best utilised by a caafree group of users with a
requirement for high performance distributed storageffére users excellent performance
as it stripes data between servers, increasing perfornadoeg with the number of active
servers. Frangipani can also be configured to replicate laungl dffer redundancy and
resilience to failures. It provides a filesystem like ingéex that is completely transparent to
users and applications. Frangipaniis designed to opamndtsaale within an institution and
thus machines are assumed to be interconnected by a seghrkahdwidth network under
a common administrative domain. The operating environrhgmtature mirrors a cluster
and can be considered a trusted environment. Frangipandesigned with the goal of
minimising administration costs. Administration is kejpphple even as more components
are added. Upgrades simply consist of registering new mastib the network without
disrupting operation.

5lvy Homepage: http://www.pdos.lcs.mit.edu/ivy/
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4.6.1 Architecture. Frangipani consists of the following main components: Pegaver,
Distributed Locking Service and the Frangipani File Seiedule (Figure 14). The Petal
Server [Thekkath and Lee 1996] is responsible for providimpmmon virtual disk inter-
face to storage that is distributed in nature. As Petal Setwdes are added, the virtual
disk scales in throughput and capacity. The Petal devieednimics the behaviour of a
local disk, hiding its distributed nature.

The Distributed Locking Service is responsible for enfogeconsistency, thus changes
made to the same block of data by multiple Frangipani ses@rserialised ensuring data
is always kept in a consistent state. The locking service independent component of the
system, it may reside with Petal or Frangipani Servers an emean independent machine.
It was designed to be distributed, enabling the service tm&tantiated across multiple
nodes with the aim of introducing redundancy and load bahanc

The locking service employs a multiple reader, single writeking philosophy. It
employs a file locking granularity where files, directorieslaymbolic links are lockable
entities. When there is a lock conflict, the locking servieads requests to the holders
of the conflicting locks to either release or downgrade. Titeeth@o main types of locks,
a read lock and a write lock. A read lock allows a server to teaddata associated with
the lock and cache it locally. If it is asked to release itk|ldtmust invalidate its cache.
A write lock permits the server to read and write to the asdedi data. If it is asked to
downgrade, the server must write any cached modificatiodslawngrade to a read lock.
If it is asked to release the lock, it must also invalidate#she.

The third component is the Frangipani File Server Moduleictvlinterfaces with the
kernel and the Petal device driver to provide a filesystem ilikerface. Frangipani File
Server communicates with the Distributed Locking Serviza¢quire locks and ensure
consistency, and with Petal Servers for block-level steregpability. Frangipani File
Server communicates with Petal Servers via the Petal devieer module which is re-
sponsible for routing data requests to the correct Petalegett is the responsibility of
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Frangipani File Server Module to abstract the block-letaiage provided by the Petal de-
vice driver and present a file level interface to the kernéliclv in turn provides a filesys-
tem interface.

Frangipani utilises write-ahead redo logging of meta-ttatad in failure recovery. The
logged data is written into a special area of space allocatéhdn Petal Server. When
the failure of a Frangipani File Server is detected, any ilede written to a Petal Server
are used by the recovery daemon to perform updates and upgpletion releases locks
owned by the failed server.

4.6.2 Implementation Frangipani was implemented on top of the Petal system, em-
ploying Petal's low-level distributed storage servicestarfgipani was developed on a
DIGITAL Unix 4 environment. Through careful design consialions, involving a clean
interface between Petal Server and Frangipani File Sethveiquthors were able to build
the system within a few months. Unfortunately, because ahgipani's close integra-
tion to the kernel, its implementation is tied to the platfipmaking it unportable to other
operating systems. The product has no active web page antgkat its has no active
developer/user base. Frangipani is closed source andtunédely in an archived state.

4.6.3 Summary.Frangipani provides a distributed filesystem that is sdalabboth
size and performance. It is designed to be utilised witha llounds of an institution
where servers are assumed to be connected by a secure hijmiddnnetwork. Perfor-
mance tests carried out by the authors have shown that lpaamids a very capable system.
A benchmark on read performance showed Frangipani was @lgeovide a near linear
performance increase with respect to the number of Petaé&erThe only limiting factor
was the underlying network, with benchmark results tageoif as they approached the
limit imposed by network capacity.

An interesting experiment was conducted, showing the &ffet locking contention
on performance. The experiment consisted of a server gréifile while other servers
read the file. The frequent lock contention resulted in a dtamperformance drop, in
the factors of 15 to 20. In summary, the impressive benchmesidts demonstrate that
Frangipani is a capable high performance distributed gtosgstem, whilst being resilient
to component failure.

4.7 GFS

The Google File System [Ghemawat et al. 2003] is a distribsterage solution which
scales in performance and capacity whilst being resilieriardware failures. GFS is
successfully being utilised by Google to meet their vagegie requirements. It has proven
to scale to hundreds of terabytes of storage, utilising$hods of nodes, whilst meeting
requests from hundreds of clients. GFS design was primenflyenced by application
workload. In brief, GFS is tailored to a workload that cotssisf handling large filesx
1GB) where modifications are mainly appended, possiblyoperéd by many applications.
With this workload in mind, the authors propose interestimigue algorithms. Existing
applications may need to be customised to work with GFS asutsem interface provided
does not fully comply to POSIX file I/O. Whilst GFS has provete scalable, its intended
use is within the bounds of an institution and in a Trustediemment.

4.7.1 Architecture. In the process of designing GFS, the authors focused onctisele
of requirements and constraints. GFS was designed toeu@l@mmodity Off The Shelf
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(COTS) hardware. COTS hardware has the advantage of beirgensive, although fail-
ure is common and therefore GFS must accommodate for thisint@m file size will be
in the order of Gigabytes. Workload profile, whether readingriting, is almost always
handled in a sequential streaming manner, as apposed tomarReads consist of either
large streaming reads (MB+) or small random reads. Writeslgneonsist of appending
data, with particular attention made to supporting mutiglients writing records to the
same file.

Bearing all these constraints and requirements in mind, @Bposes an interesting so-
lution. Replication is used to accommodate for node fadur&s most of the workload
is based upon streaming, caching is non-existent, thisrim gimplifies the consistency,
allowing a more “relaxed model”. A special atomic appendrapien is proposed to sup-
port multiple concurrent clients appending without the chée provide synchronisation
mechanisms. Having described the core concepts behind &-Shall now discuss the
architecture.

GFS has three main components (Figure 15), a Master SerkhenkCServers and a
Client Module. For an application to utilise the GFS, thee@tiModule needs to be linked
in at compile time. This allows the application to commutgcaith the Master Server
and respective Chunk Servers for its storage needs. A M&steer is responsible for
maintaining meta-data. Meta-data includes namespacesscontrol information, map-
ping information used to establish links between filenambanks (which make up files
contents) and their respective Chunk Server locations.Mdwter Server plays an impor-
tant role in providing autonomic management of the storageGhunk Servers provide.
It monitors the state of each Chunk Server and in the everdibfré, maintains a level
of replication by using remaining available replicas toliegie any chunks that have have
been lost in the failure. The Chunk Servers are responsiblkesirvicing data retrieval and
storage requests from the Client Module and the Master &erve

Having a single Master Server introduces a Single Point dfifea(SPF) and conse-
qguently a performance and reliability hot-spot. In resgaiosthese challenges, the Master
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Server replicates its meta-data across other serversdprgredundancy and a means to
recover in the event of failure. To avoid the Master Serveobg@ng a performance hot-
spot, the Client Module interaction with the Master Sengekept to a minimum. Upon
receiving the Chunk Server location from the Master Sertver,Client Module fetches
the file data directly from the corresponding Chunk Servdre Thoice of using a large
chunk size of 64MB also reduces the frequency with which tlester Server needs to be
contacted.

A large chunk size also has the following advantages: it isqaarly suited to a work-
load consisting of large streaming reads or appends suclr&sl@ver network overhead
as it allows the Client Module to sustain an established T@fhection with a Chunk
Server for a longer period. A disadvantage normally assediwith a large chunk size is
the wasted space, which GFS avoids by storing chunks as filad.oux filesystem.

GFS follows an optimistic consistency model, which suitesirt application require-
ments well and allows for a simple solution whilst enablingltiple concurrent writers to
append to a particular file. This feature is particularlytesthito storage requirements of
distributed applications, enabling them to append thaiulis in parallel to a single file.

GFS supports two types of file modifications, writes and rée@pends. Writes consist
of data being written at a specified offséf record append causes data to be appended
atomically at least once even in the presence of concurremations, but at an offset of
GFS’s choosing.”Adopting an optimistic approach to consistency (as apptséaple-
menting distributed locking) introduces the possibilitxat not all replicas are byte-wise
identical, allowing for duplicate records or records thatymneed to be padded. Therefore,
the client is left with the responsibility of handling padidescords or duplicate records.
The authors acknowledge that consistency and concurreaogs do exist, but that their
approach has served them well.

4.7.2 Implementation.Unfortunately, due to the commercial nature of GFS the sourc
code has not been released and limited information is dailarhe authors discuss the
Client Module utilises RPC for data requests. A discussia the challenges which they
have encountered whilst interfacing to the Linux kernels® @ocumented. This suggests
that a large portion of code, if not all, was written in C.

4.7.3 Summary.GFS was designed to suit a particular application workloather
than focusing on building a POSIX-compliant filesystem. Gd-ilored to the following
workload: handling large files, supporting mostly largeatning reads/writes and sup-
porting multiple concurrent appends. This is reflected snghbsequent design decisions,
large chunk size, no requirement for caching (due to stregmature) and a relaxed con-
sistency model. GFS maintains replication allowing it tatiioue operation even in the
event of failure. The choice of using a centralised appreaubplified the design. A single
Master Server approach meant that it was fully aware of #ie sff its Chunk Servers and
allowed it to make sophisticated chunk placement and rafdic choices. Benchmarks
have shown GFS to scale well providing impressive aggretateighput for both read
and write operations. GFS is a commercial product succhséfeing used to meet the
storage requirements within Google.

48 SRB

Data can be stored under many types of platforms in manyrdiftdormats. Federating
this heterogeneous environment is the primary job of thea§®Resource Broker (SRB)
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[Baru et al. 1998; Rajasekar et al. 2002]. The SRB providasifaum interface for appli-
cations to access data stored in a heterogeneous enviran8RB aims to simplify the
operating environment under which scientific applicatiacsess their data. Applications
accessing data via the SRB need not concern themselvesogdtidns or data formats,
instead they are able to access data with high level ad-hedegu Whilst providing a
uniform interface, the SRB also enables applications tessclata across a wide area
network, increasing data availability. The SRB was degigmed developed to provide a
consistent and transparent means for scientific applitaittio access scientific data stored
across a variety of resources (filesystems, databases@rdashisystems).

4.8.1 Architecture. The SRB architecture consists of the following main commsie
the SRB server, Meta-data Catalog (MCAT) and Physical §mResources (PSRs). The
SRB server is middleware which sits between the PSRs angieations which access
it (Figure 16). MCAT manages meta-data on stored data dalles; PSRs and an Access
Control List (ACL). PSRs refer to the Physical Storage Reseitself, which could be a
database, a filesystem or any other type of storage resonrreghfch a driver has been
developed. Applications read and write data via the SRBesgeissuing requests which
conform to the SRB server API. Data stored via the SRB neelis tccompanied by an
description which is stored in MCAT. The SRB server receieggiests from applications,
consults the MCAT to map the request to the correct PSReessithe data from the PSR
and finally forwards the result back to the application. SB®&ers have a federation mode
of operation where one SRB server behaves as a client of @®RB server. This allows
applications to retrieve data from PSRs that may not nedgskea under the control of the
SRB server they communicate with.

Application
SRB server
MCAT
PSR PSR PSR PSR PSR
aacle DB2 usn MWSQL Ext2 fs usn FAT fs

Fig. 16. SRB architecture

Now that we have a high level understanding of how the majonpmnents of SRB
work together, we shall provide more details about secUMAT and the data structures
used to manage stored data. Security is broken down into t&in areas, authentication
and encryption between the application and the SRB sergeamongst the SRB servers.
The SRB server supports password-based authenticatibndatt. encryption based on
SEA [Schroeder 1999], which employs public and private k&gshanisms and a sym-
metric key encryption algorithm (RC5). When SRB serversraggein federated mode,
the communication between them is also encrypted usingaime snechanisms. During
authentication the SRB server queries MCAT for autheriticatetails. Data access is con-
trolled by a ticketing scheme whereby users with approp@atess privileges may issue
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tickets to access objects to other users. These tickets rmiedased on duration or the
number of times they have been used to access data.

MCAT organises data in a collection hierarchy. The hiergishgoverned by the fol-
lowing axioms: A collection contains zero or more sub-atiilens or data items. A sub-
collection may contain zero or more data items or other slleations. A data item is
a file or a binary object. This hierarchy scheme extends ta datess control. Users,
be-it registered or unregistered, are issued with a tiakeevery collection they wish to
access. This ticket will grant them access to the colleaimhthe subsequent data objects
contained within the hierarchy of that collection. PSRsadse organised in a hierarchical
manner, where one or more PSRs can belong to a single Lodmadge Resource (LSR).
PSRs which belong to the same LSR may be heterogeneous ire pand therefore the
LSR is responsible for providing uniform access to a hetenegus set of PSRs. Data
written to a LSR is replicated across all PSRs and can be readdny PSR as its final
representation is identical.

As data is replicated amongst PSRs, there is a possibilitynfmnsistencies to arise
when a PSR fails on a write. SRB handles this scenario byngettie “inconsistent”
flag for that replica, preventing any application from acieg dirty data. Replicas which
become inconsistent can re-synchronise by issuing a egplcommand, which duplicates
data from an up-to-date replica.

When a client connects to an SRB server, it sends a connagesegUpon receiving
a connect request, the SRB server will authenticate thatdlied fork off an SRB agent.
The SRB agent will then handle all subsequent communicatittrthe client. SRB allows
different SRB servers to communicate between each othewiab the federation of data
across different SRB servers. The SRB agent will query MC&Tiap high level data
requests to their physical stored locations and if the dedqaest can be serviced by local
PSRs the SRB agent will initiate contact with the PSR whidiniswn to have the data.

4.8.2 Implementation.SRB binaries and source code are available for dowfload
Downloading the software requires registration, upon Whigublic key can be used to
decrypt and install SRB. SRB is currently being used acreedunited States, a major
installation being the BIRN Data Grid, hosting 27.8 TB ofalatross 16 sites. SRB has
been developed using a combination of C and Java, providargyrmodules and portals
which support a multitude of platforms, including the web.

4.8.3 Summary.SRB was built to provide a uniform homogeneous storagefaater
across multiple administrative domains which contain tegteneous storage solutions and
data formats. The homogeneous interface provided by SRB @irsimplify data stor-
age and retrieval for scientific applications which haveealdvith many data-sets. This
simplification removes the need for scientists to indiviuanplement modules to ac-
cess data in different formats or platforms. The authorsRB &ave identified a possible
centralisation bottleneck associated with the MCAT searat wish to do a performance
impact study with a large number of concurrent users.

4.9 Freeloader

Scientific experiments have the potential to generate ldega-sets, beyond the storage
capability of end-user workstations, typically requir@gemporary storing hold as scien-

6SRB Homepage: http://www.sdsc.edu/srb/
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tists analyse the results. Freeloader [Vazhkudai et abpditns to provide an inexpensive
way to meet these storage requirements whilst providingl geoformance. Freeloader is
able to provide inexpensive, mass-storage by aggregatavgaged storage from existing
workstations and through the use of striping, is able to egage network bandwidth pro-
viding an inexpensive but fast alternative to storage efldsy a file server. Freeloader is
intended to operate within a partially trusted environngerd scale well within the bounds
of an institution.

4.9.1 Architecture. Freeloader was designed with the following assumptionsiimdm
(i) usage pattern is expected to follow a write-once/readwyrprofile, (ii) scientists will
have a primary copy of their data stored in another repgsifor) data stored is tempo-
rary (days-weeks) in nature, before new data is generategldader aims to fulfill these
assumptions rather than being a general purpose filesyBtata.is stored in 1MB chunks
calledMorsels this size was found to be ideal for GB-TB data-sets.

Freeloader consists of three main components (Figure t&¢ldader Client, Freeloader
Manager and Benefactor. The Freeloader Client is resplenfgibservicing user storage
requests, in doing so communicates with the Freeloader ttarand respective Benefac-
tors. A Benefactor is a host which donates its availableagi@rwhilst servicing Freeloader
Clients’ storage requests and meta-data requests frommek&Bder Manager. The Freeloader
Manager component is responsible for maintaining systetauata whilst overseeing the
overall operation of the system. The overall architectdrEreeloader shares many sim-
ilarities to GFS [Ghemawat et al. 2003] and PVFS [Carns €2@00], even though each
system has distinct operational objectives and algorithive now discuss each of the
main components in greater detail.

The Freeloader Client is responsible for servicing apfibcestorage requests by trans-
lating incoming function calls to requests, which are theuted to the Manager or Bene-
factor depending on the operation. Before a Freeloadentbkeable to read/write data,
it needs to contact the Freeloader Manager for details omdiges which it is able to
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read/write data to/from. The Freeloader Client receivessp values containing chunk

id and the Benefactor id. The Freeloader Client is then abteute its storage request to
the correct Benefactor. When retrieving data-sets, thel&aeer Client will issue requests
for chunks in parallel, aggregating network transfer froenBfactors. Whilst retrieving

chunks, the Freeloader Client assembles them and presemnésimn of data to the applica-
tion.

Benefactor hosts run a daemon which is responsible for &dwey its presence to the
Freeloader Manager whilst servicing requests from Frekdo&lients and the Freeloader
Manager. The Benefactor utilises local storage to storeks$ichunks relating to the same
data-set are stored in the same file. The Benefactor seimim¥ations to create and delete
data-sets from the Freeloader Manager and put and get mperdtom the Freeloader
Client. The Benefactor monitors the local host's perforoeallowing it to throttle its
service so as not to impede the host’s operation.

The Freeloader Manager component is responsible for gtarid maintaining the sys-
tem’s meta-data. The meta-data includes chunk ids andBkeiefactor locations, replica-
tion, checksums for each of the chunks and the necessarjodatpport client side encryp-
tion. The Freeloader Manager is responsible for chunk aflon utilising two algorithms:
round robin and asymmetric striping. The round robin apgihc@nsists of striping data
evenly across Benefactors, but as resource availabilitywaiy from Benefactor to Bene-
factor, the algorithm has been altered to bias Benefactibhsmore available storage. The
asymmetric approach involves striping data across Betwrtaand the Freeloader Client
itself, storing part of the data set locally. A local/remadtio determines the proportion
of chunks which are to be stored locally and on remote Betafaic The ratio which
yields optimal performanceoughly corresponds to the local I/O rate and aggregate net-
work transfer rate from the remote Benefactofdthough this ratio may result in optimal
operation, constraints imposed by limited local storagg ma permit this ratio.

4.9.2 Implementation.The TCP Protocol is used to transfer chunks between thedadet
Client and Benefactor, due to its reliability and its cortgesflow control mechanisms it
was deemed suitable for larger transfers. The rest of theraorication between the com-
ponentsis performed in UDP, as the messages are short asig iourature. An application
utilising storage services will need to call the Freelodidbeary which implements some
of the standard UNIX file 1/O functions.

Benchmarks show the capability of asymmetric striping tgragate disk I/O perfor-
mance up to network capacity. A machine with a local disk dgkemughput of 30MB/Sec
was able to attain approx 95MB/Sec whilst striping data s&€remote nodes. At the mo-
ment, Freeloader has not been released, although it is dotechthat the Freeloader
Client library has been written in C and implements the saathd/O function calls. Oth-
erwise, it is unclear what languages were used to developéhefactor and Freeloader
Manager components.

4.9.3 Summary.Freeloader’s target audience includes scientists engadegdh per-
formance computing that seek an inexpensive alternatigéoting data whilst providing
performance associated with a parallel filesystem. Freelo®s designed to accommo-
date a transient flow of scientific data which exhibits a wotee/read-many workload. In
doing so, it utilises existing infrastructure to aggregateage and network bandwidth to
achieve a fast, inexpensive storage solution providingrgists with an alternative to more
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expensive storage solutions like SANSs.

410 PVFS

PVFS [Carns et al. 2000] is a parallel filesystem designegéoaie on Linux clusters. The

authors identify an absence of production quality, highfgrenance parallel filesystem

for Linux clusters. Without a high-performance storagausoh, Linux clusters cannot

be used for large 1/O intensive parallel applications. PWS designed to address this
limitation and provide a platform for which further resdanato parallel filesystems. PVFS

is designed to operate within the bounds of an institutioa frusted environment.

4.10.1 Architecture. PVFS was designed with three operational goals in mindr@) p
vide high-performance access and support concurrentwegelbperations from multiple
processes to a common file, (ii) provide multiple interf#&4’s, (iii) allow existing ap-
plications which utilise POSIX file 1/0 to utilise PVFS withbthe need to modify or
recompile. The PVFS architecture is designed to operatechara-server system (Figure
18). There are three main components which make up the P\&t&syPVFS Manager,
PVFS Client and PVFS 1/0 daemon. A typical cluster environtrteas multiple nodes
dedicated to storage and computation. Nodes responsibEdmge run the PVFS 1/0
daemon and nodes responsible for computation will have YeSRClient installed. An
extra node is dedicated to running the PVFS Manager.

The PVFS Manager is responsible for storing meta-data assdening location requests
from PVFS Clients. Meta-data stored by the PVFS Manageudefilenames and at-
tributes such as file size, permissions and striping atg(segment size, segment count,
segment location). The PVFS Manager does not service regahequests, instead, this
is the responsibility of the 1/O daemon. Striping chunks afedacross multiple 1/0 nodes
allows parallel access. The PVFS Manager is responsibleriforcing a cluster wide
consistent namespace. To avoid overheads associatedistiibuted locking and the pos-
sibilities of lock contention, PVFS employs a minimalistipproach to consistency with
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meta-data operations being atomic. Beyond enforcing atometa-data operations, PVFS
does not implement any other consistency mechanisms. A8Nided by PVFS include a
custom PVFS API, a UNIX POSIX I/O APl and MPI-1O.

The PVFS Client is responsible for servicing storage regutem the application.
Upon receiving a storage request, it will contact the PVFSiddger to determine which
PVFS 1/O daemons to contact. The PVFS Client than contaet®¥S I/O daemons
and issues read/write request. The PVFS Client library @mgints the standard suite of
UNIX POSIX I/O API and when in place, traps any system I/O<allhe PVFS Client
library than determines if the call should be handled byffite# passed onto the kernel.
This ensures that existing applications need not be modifieecompiled. The PVFS I/O
daemon is responsible for servicing storage requests frdRSFClients whilst utilising
local disk to store PVFS files.

4.10.2 Implementation PVFS is distributed as open source under the GPL agreement
and is available for downlodd All components have been developed using C. PVFS uses
TCP for all its communication so as to avoid any dependemiggistom communication
protocols. Benchmarks conducted with 32 1/0O daemons andB#ls have shown to
achieve 700MB/Sec using Myrinet and 225MB/Sec using 10&#/®Bec Ethernet. PVFS
is in use by the NASA Goddard Space Flight Centre, Oak RidgeNal Laboratory and
Argonne National Laboratory.

4.10.3 Summary.PVFS is a high-performance parallel filesystem designegévaie
on a Linux clusters. It provides an inexpensive alternatitiésing Commodity Off The
Shelf (COTS) products allowing large I/O intensive apgiimas to be run on Linux clus-
ters. Benchmarks provided indeed show that PVFS providéghagerformance storage
service. Some future work identified include a migrationaivam TCP, as it is deemed
to be a performance bottleneck. Other areas of future relséaclude: scheduling algo-
rithms for I/O daemons, benchmarks show a performance ftat gptential for further
tuning and replication.

4.11 Storage Exchange

The Storage Exchange(SX) [Placek and Buyya 2006] is a phatédlowing storage to be
treated as a tradeable resource. Organisations with ypsfatage requirements can use
the SX platform to trade and exchange storage services.n@ajens have the ability to
federate their storage, be-it dedicated or scavenged aseditaet it to a global storage mar-
ket. The storage exchange platform has been designed tateymer a global network such
as the Internet, allowing organisations across geograptdadministrative boundaries to
participate. Consumers and providers of storage use treggt@xchange to advertise their
requirements, which employs a Double Auction market mamlefficiently allocate trades.
Organisations may trade storage based on their currenireaggents, an organisation that
is running low on storage it may purchase storage, altesglgtif it finds that there is an
abundance of storage it has the ability to lease out the sxtesage.

4.11.1 Architecture. The storage exchange employs are hierarchical architefig-
ure 19) consisting of the following four main componenty: Storage Client: provides
an interface for the user to access storage services, ¢iia&e Provider: harnesses avail-

"PVFS Homepage: http://www.pvfs.org/
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able storage on installed host whilst servicing requests fStorage Client, (iii) Storage
Broker: manages inhouse storage capacity and trades stbasgd upon storage service
requirements of institution, and finally the (iv) StoragecBange: a trading platform used
by Storage Brokers to trade storage. We shall now discuds @fathe components in
greater detail;

Storage Provider: The storage provider is deployed on hosts within an orgtaisa
chosen to contribute their available storage. Whilst waston the Storage Provider to be
used to scavenge available storage from workstations thero reason why it can not be
installed on servers or dedicated hosts. The Storage Rrogidesponsible for keeping the
organisations broker up-to-date with various usage taiand service incoming storage
requests initiated by Storage Clients.

Storage Client: An organisation wishing to utilise a negotiated storagetramb will
need to use a Storage Client. A user will configure the Sto€lgmt with the storage
contract details. The Storage Client then uses these si&tadluthenticate itself with the
provider’s Storage Broker and upon successful autheitittie Storage Client requests a
mount for the volume. The provider’s Storage Broker therk$oap the Storage Providers
responsible for servicing the storage contract and intstrthem to connect to the Storage
Client. Once the Storage Providers establish a connectiintihe Storage Client, the
Storage Client then provides a filesystem like interfacechrike an NFS[Sandberg et al.
1985] mount point. The filesystem interface provided by tte&)e Client allows appli-
cations to access the storage service like any other filersyand therefore applications
need not be modified or to be linked with special libraries.

Storage Broker: For an organisation to be able to participate in the SX piatfthey
will need to use a Storage Broker. The Storage Broker endlfsdesrganisation to trade
and utilise storage services from other organisations.Stheage Broker needs to be con-
figured to reflect how it should best serve the organisatioteseésts. From a consumer’s
perspective the Storage Broker will need to know the orgdiniss storage requirements
and the budget it is allowed to spend in the process of acauthem. From the Provider’s
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perspective the Storage Broker needs to be aware of thablastorage and the financial
goals it is required to reach. Upon configuration, a Storagd® will contact the storage
exchange with its requirements.

Storage Exchange (SX)The Storage Exchange component provides a platform for
Storage Brokers to advertise their storage services andreagents. The SX is a trusted
entity responsible for executing a market model and det@ngihow storage services are
traded. When requests for storage are allocated to avaitibiage services the Storage
Exchange generates a storage contract. The storage d¢aanézins a configuration of the
storage policy forming a contract binding the provider tifilithe service at the determined
price. In a situation where either the provider or consumeathes a storage contract, the
SX will keep a record of reputation for each organisationalihidan be used to influence
future trade allocations.

4.11.2 Implementation.The storage provider and storage client components have bee
written in C. The storage client utilises the FUSE librar{JfE 2000] to provide a local
mount point of the storage volume in user space. The StoragkeBand Storage Ex-
change have both been written in Java. Storage Provideposgugplication, allowing
volumes to be replicated across multiple storage providersuring better reliability and
availability. Communication between components is cdroiet via TCP socket communi-
cation. The storage exchange accepts offers from storagetsrand employs a clearing
algorithm to allocate trades. Performance evaluationigeal/[Placek and Buyya 2006]
focuses on the storage exchange and comparing the diffelearing algorithms it em-

ploys.

4.11.3 Summary.The SX platform provides organisations with various steragr-
vices and requirements the capability to trade and exchémgge services. The platform
aims to federate storage services, allowing organisatiorid storage services which
better meet their requirements whilst better utilisingrtheailable infrastructure. Organi-
sations are able to scavenge storage services acrossdtveark of workstations and with
the use of the SX platform lease it out globally. The Storagehange has much scope
for future research, laying a foundation for further inigation into utilising economic
principles to achieve autonomic management [Pattnaik @08i3] of storage services.

5. CONCLUSION

This paper discusses a wide range of topics and areas ofchgetevant to distributed
storage systems. We begin by proposing an abstract modieh\glves an overall view,
demonstrating how each topic fits into the big scheme of ghilge abstract model is sub-
sequently used as a road map for the work discussed throtiffetaxonomy sections.
The taxonomy has two main sections to it, one section cdgstem Wid®pics the other
Core System-Wideovers storage functionality, architecture, operatingrenment and
usage patterns. Topics included in @ere section focus on autonomic storage, Feder-
ation, Consistency, Security and finally Routing and NekwOwrerlays. The taxonomy
sections are followed by the survey, which covers a wide eafgystems, from systems
which provide storage utility on a global scale (OceanStreystems which provide high
level of accessibility to mobile users (Coda). Each systesildeen selected for its unique
properties serving to exemplify topics discussed throughtaxonomy section. Table V
demonstrates how each surveyed system traces back to onotay and abstract model.
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Throughout our investigation we observe various relatiqgsamongst topics covered.
In the taxonomy we see that distributed storage functignalichitecture, operating envi-
ronment, usage patterns, routing and consistency all stagi@us points of dependencies.
To illustrate, we observe that a system providing strongsist@ncy requires the underly-
ing architecture to have some level of central control aredljgtability such that strong
consistency can be enforced. In contrast, systems whight aticarchitecture with little or
no centralisation, may only support an optimistic apprdaatonsistency or avoid dealing
with issues of consistency altogether by supporting a WORAYe pattern. These class of
systems typically provide publishing capability scalingat dynamic global audience and
as such employ an architecture with limited centralisatiosuite.

Whilst these are some of the issues facing current developofeDSSs, there are
many emerging challenges on the horizon, two challengdsdedncreasing in complex-
ity [Staab et al. 2003; Kephart and Chess 2003; Horn 2001 ]gdwtohl federation of re-
sources [Foster 2001; Venugopal et al. 2006; Rajasekar 2002] which have given rise
to autonomic computing and Grid computing respectivelytolilomic computing aims to
overcome the burden imposed by complexity through abstiadtaway from users and
developers. Whereas Grid computing allows institutionsoitaborate and share resources
across geographic and administrative boundaries. Whiéstet are emerging areas of re-
search, the more established issues including consistending and security, are no less
important. Hence they will continue to evolve and serve arody in the development of
Distributed Storage Systems.

Future research and development of DSS is very much depeondethe underlying
network infrastructure. To illustrate, the advent of theelnet saw a subsequent flurry of
research aiming to harness new possibilities which comle gldbal connectivity. With
networking predicted to undergo another quantum leap amirtig development of compu-
tational and storage [Stix 2001] devices, it is certain thi radical change will result in
yet another wave of research, seeking to better utilisedkareces in network infrastruc-
ture. Laying the foundation for exciting and innovativegash into Distributed Storage
Systems.
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