
A Taxonomy of Distributed Storage Systems

MARTIN PLACEK and RAJKUMAR BUYYA
The University of Melbourne
Revision : 1.148This paper presents a taxonomy of key topis e�eting researh and development of distributedstorage systems. The taxonomy �nds distributed storage systems to o�er a wide array of funtion-ality, employ arhitetures with varying degrees of entralisation and operate aross environmentswith varying trust and salability. Furthermore, taxonomies on autonomi management, fed-eration, onsisteny and routing provide an insight into hallenges faed by distributed storagesystems and the researh to overome them. The paper ontinues by providing a survey of dis-tributed storage systems whih exemplify topis overed in the taxonomy.The seletion of surveyed systems overs a variety of storage systems, exposing the reader toan array of di�erent problems and solutions employed to overome these hallenges. For eahsurveyed system we address the underlying operational behaviour, leading into the arhitetureand algorithms employed in the design and development of the system. Our survey overs systemsfrom the past and present onluding with a disussion on the evolution of distributed storagesystems and possible future work.
Categories and Subject Descriptors: E.0 [Data]: General—Distributed Storage systemsGeneral Terms: Distributed StorageAdditional Key Words and Phrases: distributed storage, distributed arhiteture, network storage,taxonomy, autonomi, �le system
1. INTRODUCTION

Storage plays a fundamental role in computing, a key element, ever present from registers
and RAM to hard-drives and optical drives. Functionally, storage may service a range of
requirements, from caching (expensive, volatile and fast)to archival (inexpensive, persis-
tent and slow). Combining networking and storage has created a platform with numerous
possibilities allowing Distributed Storage Systems (DSS)to adopt roles vast and varied
which fall well beyond data storage. This paper discusses DSSs from their inception as
Distributed File Systems (DFS) to DSSs capable of spanning aglobal network of users
providing a rich set of services; from publishing, file sharing and high performance to
global federation and utility storage.

Networking infrastructure and distributed computing share a close relationship. Ad-
vances in networking are typically followed by new distributed storage systems, which
better utilise the networks capability. To illustrate, when networks evolved from mostly
being private Local Area Networks (LANs) to public global Wide Area Networks (WANs)
such as the Internet, a whole new generation of DSSs emerged,capable of servicing a
global audience. These next generation Internet based systems are faced with many chal-
lenges, including longer delays, unreliability, unpredictability and potentially malicious
behaviour, all associated with operating in a public sharedenvironment. To cope with these
challenges innovative architectures and algorithms have been proposed and developed, pro-
viding a stream of improvements to security, consistency and routing. As systems continue
to advance, they increase in complexity and the expertise required to operate them [Horn

2 · Martin Placek and Rajkumar Buyya

2001]. Unfortunately the continuing increase in complexity is unsustainable and ultimately
limited by human cognitive capacity [Staab et al. 2003]. To address this problem the Auto-
nomic Computing [Kephart and Chess 2003] vision has emergedaiming to overcome the
”complexity crisis”.

Global connectivity enables resources to be shared amongstindividuals and institutions,
the processes which make this possible have sparked research into the field of Grid com-
puting [Reed et al. 2003]. Grid computing focuses on solvingchallenges associated with
coordinating and sharing heterogeneous resources across multiple geographic and admin-
istrative domains [Foster 2001]. One of these challenges isdata management, which has
given rise to the Data Grid [Chervenak et al. 2000]. Some of the challenges of manag-
ing globally distributed data include providing a standarduniform interface across a het-
erogeneous set of systems [Rajasekar et al. 2002], coordinating and processing of data
[Venugopal et al. 2006] and managing necessary meta-data [Hoschek et al. 2000].

Distributed systems designed to operate on the Internet need to cope with a potential user
base numbering in the millions. To accommodate a large user base, distributed systems are
employing more scalable decentralised Peer-to-Peer architectures over conventional cen-
tralised architectures. Distributed systems which operate across a public network need to
accommodate for a variety of potentially malicious behaviour [Douceur 2002; Dingledine
2000] from free-riding [Hughes et al. 2005] to Denial of Service (DoS) attacks [Wilcox-
O’Hearn 2002]. Whilst some level of trust can be assumed whenoperating in a private
LAN, this assumption does not hold when connected to a publicnetwork and thus algo-
rithms to establish trust and secure data are required.

Distributed storage systems have evolved from providing a means to store data remotely,
to offering innovative services like publishing, federation, anonymity and archival. To
make this possible networks have evolved to span the globe. With network infrastructure
expecting to undergo another quantum leap, outpacing the bandwidth capability of proces-
sors and hard-drives [Stix 2001], provides a platform for future distributed storage systems
to offer more services yet again. This paper covers a wide array of topics and challenges
shaping Distributed Storage Systems today and beyond.

The rest of the paper is organised as follows: The next section (Section 2) discusses
earlier works of relevance, serving to further complete andcomplement our work. In
Section 3, we first introduce each of the topics covered throughout the taxonomy and then
present a detailed taxonomy on distributed storage functionality, architecture, operating
environment, usage patterns, autonomic management, federation, consistency and security.
In Section 4, we provide a survey of representative storage systems. Rather than conducting
an exhaustive survey, each system is selected based on its unique set of goals, so as to
illustrate the topics covered in the taxonomy sections. Finally (Section 5), we conclude the
paper with analysis of trends based on mapping of our taxonomy to representative systems
and highlight outlook for future research work.

2. RELATED WORK

In this section we discuss studies which have investigated and surveyed distributed stor-
age systems. The work of [Levy and Silberschatz 1990] provide an insight into the areas
of replication, naming, caching and consistency and where applicable discusses solutions
employed by surveyed systems. Whereas [Satyanarayanan 1989] not only provides a dis-
cussion of mechanisms employed by existing DSSs but also provides an insight into areas

A Taxonomy of Distributed Storage Systems · 3

of research. A very comprehensive survey covering all distributed systems in general is
presented by [Borghoff and Nast-Kolb 1989]. The survey begins by classifying distributed
systems into two main categories, being DFSs and distributed operating systems and con-
tinues to survey each system based on a proposed standard template. The above surveys
provide an insight into works from the late 70s right throughto the early 90s. These papers
serve to complement our survey and provide a comprehensive and thorough survey of early
DSSs.

More recent works provide readers with an insight into Peer-to-Peer and Grid technolo-
gies. In their work [Milojicic et al. ; Oram 2001] discuss Peer-to-Peer technologies whilst
covering a breadth of systems beyond distributed storage. Most recently [Hasan et al. 2005;
Androutsellis-Theotokis and Spinellis 2004] provide a discussion of DSS with a particular
focus on implementations of Peer-to-Peer routing overlays. Finally [Venugopal et al. 2006]
covers the emerging field of Data Grids, focusing on access and the federation of globally
distributed data, topics covered include replication, management and the processing of
data.

The early works provide a great insight into issues relatingto client-server filesystems,
concepts which are essential to building a DSS today. The more recent surveys discuss
cutting edge research, paying particular attention to Peer-to-Peer and Data Grid systems.
Our paper encompasses distributed storage systems across the board, including Peer-to-
Peer and Data Grid systems whilst classifying their functionality, architecture, operating
environment and usage patterns. This paper aims to provide abirds eye view of current
issues effecting research and development of distributed storage systems including routing,
consistency, security, autonomic management and federation.

3. TOPIC INDEX

We introduce each of the topics covered in our taxonomy and provide a brief insight into
the relevant research findings:

(1) System Function (Section 3.1):A classification of DSS functionality uncovers a wide
array of behaviour, well beyond typical store and retrieve.

(2) Storage Architecture (Section 3.2):We discuss various architectures employed by
DSSs. Our investigation shows an evolution from centralised to the more recently
favoured decentralised approach.

(3) Operating Environment (Section 3.3):We identify various categories of operating en-
vironments and discuss how each influences design and architecture.

(4) Usage Patterns (Section 3.4):A discussion and classification of various workloads ex-
perienced by DSSs. We observe that the operating environment has a major influence
on usage patterns.

(5) Consistency (Section 3.5):Distributing, replicating and supporting concurrent access
are factors which challenge consistency. We discuss various approaches used to en-
force consistency and the respective trade offs in performance, availability and choice
of architecture.

(6) Security (Section 3.6):With attention turning towards applications operating on the
Internet, establishing a secure system is a challenging task which is made increasingly
more difficult as DSSs adopt decentralised architectures. Our investigation covers

4 · Martin Placek and Rajkumar Buyya

Function

Archival

Publish/Share

General purpose Filesystem

Performance

Federation Middleware

Custom

Fig. 1. system function taxonomy

traditional mechanisms as well as more recent approaches that have been developed
for enforcing security in decentralised architectures.

(7) Autonomic Management (Section 3.7):Systems are increasing in complexity at an un-
sustainable rate. Research into autonomic computing [Kephart and Chess 2003] aims
to overcome this dilemma by automating and abstracting awaysystem complexity,
simplifying maintenance and administration.

(8) Federation (Section 3.8):Many different formats and protocols are employed to store
and access data, creating a difficult environment to share data and resources. Fed-
eration middleware aims to provide a single uniform homogeneous interface to what
would otherwise be a heterogeneous cocktail of interfaces and protocols. Federation
enables multiple institutions to share services, fostering collaboration whilst helping
to reduce effort otherwise wasted on duplication.

(9) Routing and Network Overlays (Section 3.9):This section discusses the various rout-
ing methods employed by distributed storage systems. In ourinvestigation we find
that the development of routing shares a close knit relationship with the architecture;
from a static approach as employed by client-server architectures to a dynamic and
evolving approach as employed by Peer-to-Peer.

3.1 System Function

In this section we identify categories of distributed storage systems (Figure 1). The cat-
egories are based on application functional requirements.We identify the following: (a)
Archival, (b) General purpose Filesystem, (c) Publish/Share, (d) Performance, (e)Federa-
tion Middlewareand (f)Custom.

Systems which fall under the archival category provide the user with the ability to
backup and retrieve data. Consequently, their main objective is to provide persistent non-
volatile storage. Achieving reliability, even in the eventof failure, supersedes all other ob-
jectives and data replication is a key instrument in achieving this. Systems in this category
are rarely required to make updates, their workloads followa write-once and read-many
pattern. Updates to an item are made possible by removing theold item and creating a new
item and whilst this may seem inefficient, it is adequate for the expected workload. Having
a write-once/read-many workload eliminates the likelihood of any inconsistencies arising

A Taxonomy of Distributed Storage Systems · 5

due to concurrent updates, hence systems in this category either assume consistency or
enforce a simple consistency model. Examples of storage systems in this category include
PAST [Druschel and Rowstron 2001] and CFS [Dabek et al. 2001].

Systems in the general purpose filesystem category aim to provide the user with persis-
tent non-volatile storage with a filesystem like interface.This interface provides a layer of
transparency to the user and applications which access it. The storage behaves and thus
complies to most, if not all, of the POSIX API standards [IEEE/ANSI Std. 1003.1] allow-
ing existing applications to utilise storage without the need for modification or a re-build.
Whilst systems in this category have ease of access advantage, enforcing the level of con-
sistency required by a POSIX compliant filesystem is a non-trivial matter, often met with
compromises. Systems which fall into this category includeNFS [Sandberg et al. 1985],
Coda [Satyanarayanan 1990; Satyanarayanan et al. 1990], xFS [Anderson et al. 1996],
Farsite [Adya et al. 2002] and Ivy [Muthitacharoen et al. 2002].

Unlike the previous two categories where the storage service aims to be persistent, the
publish/share category is somewhat volatile as the main objective is to provide a capability
to share or publish files. The volatility of storage is usually dependent on the popularity of
the file. This category of systems can be split into two further categories: (i)Anonymity
and Anti-censorshipand (ii) File Sharing. Systems in the anonymity and anti-censorship
category focus on protecting user identity. While the storage is volatile, it has mechanisms
to protect files from being censored. Systems in this category usually follow the strictest
sense of Peer-to-Peer, avoiding any form of centralisation(discussed in greater detail in
Section 3.2). Examples of systems which fall into this category include Free Haven [Din-
gledine et al. 2000], Freenet [Clarke et al. 2001] and Publius [Waldman et al. 2000]. The
main objective for systems in the file sharing category is to provide the capability to share
files amongst users. The system most famous for doing so, Napster [Oram 2001], inspired
the subsequent development of other systems in this category; Gnutella [Oram 2001], Mo-
joNation [Wilcox-O’Hearn 2002] and BitTorrent [Hasan et al. 2005] to name a few.

DSSs in the performance category are typically used by applications which require a
high level of performance. A large proportion of systems in this category would be clas-
sified as Parallel File Systems (PFSs). PFSs typically operate within a computer cluster,
satisfying storage requirements of large I/O-intensive parallel applications. Clusters com-
prise of nodes interconnected by a high bandwidth and low latency network (e.g. Myrinet).
These systems typically stripe data across multiple nodes to aggregate bandwidth. It is
common for systems in this category to achieve speeds in the GB/sec bracket, speeds
unattainable by other categories of DSSs. Commercial systems use fibre channel or iSCSI
to connect storage nodes together to create a Storage Area Network (SAN), providing a
high performance storage service. To best utilise the high performance potential, DSSs
in this category are specifically tuned to the application workload and provide an inter-
face which mimics a general purpose filesystem interface. However, a custom interface
(e.g. MPI-IO) that is more suited to parallel application development may also be adopted.
Systems which fall into this category include PPFS [James V.Huber et al. 1995], Zebra
[Hartman and Ousterhout 2001], PVFS [Carns et al. 2000], Lustre [Braam 2002], GPFS
[Schmuck and Haskin 2002], Frangipani [Thekkath et al. 1997], PIOUS [Moyer and Sun-
deram 1994] and Galley [Nieuwejaar and Kotz 1996].

Global connectivity offered by the Internet allows institutions to integrate vast arrays
of storage systems. As each storage system has varying capabilities and interfaces, the

6 · Martin Placek and Rajkumar Buyya

Architecture

Client-Server

Peer-to-Peer

Globally Centralised

Locally Centralised

Pure Peer to Peer

Globally Centralised

Locally Centralised

Fig. 2. architecture taxonomy

development of federation middleware is required to make interoperation possible in a
heterogeneous environment. Middleware in this category isdiscussed in greater detail in
Section 3.8. Systems which fall into this category are not directly responsible for storing
data, instead they are responsible for high-level objectives such as cross domain security,
providing a homogeneous interface, managing replicas and the processing of data. Gener-
ally speaking, much of the research into Data Grids [Chervenak et al. 2000; Hoschek et al.
2000; Venugopal et al. 2006; Baru et al. 1998] is relevant to federation middleware.

Finally, the custom category has been created for storage systems that possess a unique
set of functional requirements. Systems in this category may fit into a combination of
the above system categories and exhibit unique behaviour. Google File System (GFS)
[Ghemawat et al. 2003] and OceanStore [Kubiatowicz et al. 2000; Rhea et al. 2003], are
examples of such systems. GFS has been built with a particular functional purpose which
is reflected in its design (Section 4.7). OceanStore aims to be a global storage utility, pro-
viding many interfaces including a general purpose filesystem. To ensure scalability and
resilience in the event of failure, OceanStore employs Peer-to-Peer mechanisms to dis-
tribute and archive data. Freeloader [Vazhkudai et al. 2005] combines storage scavenging
and striping, achieving good parallel bandwidth on shared resources. The array of features
offered by Freeloader, OceanStore and the purpose built GFSall exhibit unique qualities
and are consequently classified as custom.

3.2 Storage Architecture

In this section our focus turns to distributed storage system architectures. The architec-
ture determines the application’s operational boundaries, ultimately forging behaviour and
functionality. There are two main categories of architectures (Figure 2),client-serverand
Peer-to-Peer.The roles which an entity may embrace within a client-serverarchitecture
are very clear, an entity may exclusively behave as either a client or a server, but cannot be
both [Schollmeier 2001]. On the contrary, participants within a Peer-to-Peer architecture
may adopt both a client and a server role. A Peer-to-Peer architecture in its strictest sense
is completely symmetrical, each entity is as capable as the next. The rest of this section
discusses both categories in greater detail.

A client-server based architecture revolves around the server providing a service to re-
questing clients. This architecture has been widely adopted by distributed storage systems
past and present [Sandberg et al. 1985; Anderson et al. 1996;Morris et al. 1986; Satya-
narayanan 1990; Thekkath et al. 1997; Vazhkudai et al. 2005;Ghemawat et al. 2003].

A Taxonomy of Distributed Storage Systems · 7

In a client-server architecture, there is no ambiguity concerning who is in control, the
server is the central point, responsible for authentication, consistency, replication, backup
and servicing requesting clients. A client-server architecture may exhibit varying levels
of centralisation and we have identified two categoriesGlobally CentralisedandLocally
Centralised. A globally centralised architecture contains a single central entity being the
server, this results in a highly centralised architecture which has limited scalability and
is susceptible to failure. To alleviate problems associated with a single central server, a
locally centralised architecture distributes responsibilities across multiple servers allow-
ing these systems [Anderson et al. 1996; Satyanarayanan 1990; Thekkath et al. 1997;
Vazhkudai et al. 2005; Ghemawat et al. 2003] to be more resilient to outages, scale better
and aggregate performance. However, even a locally centralised architecture is inherently
centralised, making it vulnerable to failure and scalability bottlenecks. A client-server ar-
chitecture is suited to a controlled environment, either trusted or partially trusted (Section
3.3). Operating in a controlled environment allows the focus to shift to performance, strong
consistency and providing a POSIX file I/O interface.

To meet the challenges associated with operating in an ad-hoc untrusted environment
such as the Internet, a new generation of systems adopting a Peer-to-Peer architecture
have emerged. In a Peer-to-Peer architecture every node hasthe potential to behave as a
server and a client, and join and leave as they wish. Routing continually adapts to what is
an ever changing environment. Strengths of the Peer-to-Peer approach include resilience
to outages, high scalability and an ability to service an unrestricted public user-base. These
strengths vary depending on the category of Peer-to-Peer a system adopts.

There are three main categories of Peer-to-Peer architectures,Globally Centralised, Lo-
cally CentralisedandPure Peer-to-Peer.Each of these categories have a varying degree of
centralisation, from being globally centralised to locally centralised to having little or no
centralisation with pure Peer-to-Peer. One of the early Peer-to-Peer publishing packages,
Napster [Oram 2001] is an example of a system employing a globally centralised architec-
ture. Here, peers are required to contact a central server containing details of other peers
and respective files. Unfortunately, this reliance on a globally central index server limits
scalability and proves to be a Single Point of Failure (SPF).

Locally centralised architectures were inspired by the shortcomings of early Peer-to-
Peer efforts. Gnutella [Oram 2001] initially relied on broadcasting to relay queries al-
though this proved to be a bottleneck, with as much as 50% [D. Dimitri 2002] of the traffic
attributed to queries. To overcome this scalability bottleneck, a locally centralised archi-
tecture employs a few hosts with high performance and reliable characteristics to behave
assuper nodes. These super nodes maintain a repository of meta-data whicha community
of local nodes may query and update. Super nodes communicateamongst each other form-
ing bridges between communities, allowing local nodes to submit queries to a super node
rather than broadcasting to the entire community. Whilst super nodes introduce an element
of centralisation, in sufficient numbers, they avoid becoming points of failure. Examples of
Peer-to-Peer systems which use a locally centralised architecture include FastTrack [Ding
Choon-Hoong and Buyya 2005; Hasan et al. 2005], Clippee [Albrecht et al. 2003], Bittor-
rent [Hasan et al. 2005] and eDonkey [Tutschku 2004].

Without any central entities, a pure Peer-to-Peer architecture exhibits symmetrical har-
mony between all entities. The symmetrical nature ensures that it is the most scalable of
the three and proves to be very capable at adapting to a dynamic environment. Whilst on

8 · Martin Placek and Rajkumar Buyya

Centralised

Decentralised

Client
Server
Globally
Centralised

P2P
Globally
Centralised

P2P
Locally
Centralised

P2P
’pure’

AFS NFS

Coda

Napster

Gnutella

Fastrack
OpenFT

Freenet

xFS

BitTorrent

Client
Server
Locally
Centralised

Fig. 3. architecture evolution

the surface it may seem that this is the architecture of choice, adhering to a pure Peer-to-
Peer philosophy is challenging. Achieving a symmetrical relationship between nodes is
made difficult in the presence of an asymmetric [Oram 2001] network such as the Internet.
User connections on the Internet are usually biased towardsdownloads, sometimes by as
much as 600% (1.5Mb down/256Kb up). This bias discourages users from sharing their
resource, which in turn hinders the quality of service provided by the Peer-to-Peer system.
The way in which nodes join [Wilcox-O’Hearn 2002] a Peer-to-Peer network also poses
a challenge. For example, if every node were to join the network through one node, this
would introduce a SPF, something which Peer-to-Peer networks need to avoid. Finally
the lack of centralisation and the ad-hoc networking in a Peer-to-Peer system operation,
the need for establishing trust and accountability becomesessential, which is difficult to
do without ironically introducing some level of centralisation or neighbourhood knowl-
edge. Systems which closely follow a pure Peer-to-Peer architecture include Free Haven
[Dingledine et al. 2000], Freenet [Clarke et al. 2001] and Ivy [Muthitacharoen et al. 2002].

The choice of architecture has a major influence on system functionality, determining
operational boundaries and its effectiveness to operate ina particular environment. As
well as functional aspects, the architecture also has a bearing on the mechanisms a sys-
tem may employ to achieve consistency, routing and security. A centralised architecture is
suited to controlled environments and while it may lack the scalability of its Peer-to-Peer
counterpart, it has the ability to provide a consistent Quality of Service (QoS). By contrast
a Peer-to-Peer architecture is naturally suited to a dynamic environment, key advantages
include unparallelled scalability and the ability to adaptto a dynamic operating environ-
ment. Our discussion of architectures in this section has been presented in a chronological
order. We can see that the evolution of architectures adopted by DSSs have gradually
moved away from centralised to more decentralised approaches (Figure 3), adapting to
challenges associated with operating across a dynamic global network.

A Taxonomy of Distributed Storage Systems · 9

Operating
Environment

Trusted

Untrusted

Partially Trusted
Usage

Patterns

Application

User/Application

User

Fig. 4. operating environment and usage taxonomy

3.3 Operating Environment

This section discusses the possible target environments which distributed storage systems
may operate in. While examining each operating environment, a discussion of the influence
on architecture and the resulting workload is made. We have identified three main types of
environments, (a)Trusted, (b) Partially Trustedand (c)Untrusted, as shown in Figure 4.

A trusted environment is dedicated and quarantined off fromother networks. This makes
the environment very controlled and predictable. Users arerestricted and therefore ac-
countable. Its controlled nature ensures a high level of QoSand trust, although in general
scalability is limited. Administration is carried out under a common domain and therefore
security is simpler compared to environments that stretch beyond the boundaries of an in-
stitution. Due to the controlled nature of a trusted environment, workload analysis can be
conducted without the need to consider the unpredictable behaviour exhibited by external
entities. As the workload is primarily influenced by the application, the storage system can
be optimised to suit the workload. As the storage system’s main goal is performance, less
emphasis is given to adhering to the standard POSIX File I/O Interface [IEEE/ANSI Std.
1003.1]. A cluster is a good example of a trusted environment.

Distributed storage systems which operate in a partially trusted environment are exposed
to a combination of trusted and untrusted nodes. These nodesoperate within the bounds
of an organisation. The user base is also limited to the personnel within the organisation.
Whilst a level of trust can be assumed, security must accommodate for “the enemy within”
[Shafer 2002; Rudis and Kostenbader 2003]. This environment is not as controlled as
a trusted environment as many other applications may need toshare the same resources
and as such this introduces a level of unpredictability. As the network is a shared resource,
DSSs need to utilise it conscientiously so as not to impede other users. In a partially trusted
environment, DSSs are primarily designed for maximum compatibility and the provision
of a general purpose filesystem interface.

In an untrusted environment, every aspect (nodes and network infrastructure) is un-
trusted and open to the public. An environment which best likens itself to this is the
Internet. In an open environment where accountability is difficult if not impossible [Oram
2001], a system can be subjected to a multitude of attacks [Dingledine 2000]. With the
emergence of Peer-to-Peer systems allowing every host to beas capable as the next, it is
important to understand user behaviour and the possible perils. Some lessons learnt include
a very transient user base (also referred to as churn) [Wilcox-O’Hearn 2002],tragedy of
the commons[Hardin 1968] and theSlashdot effect[Adler 1999].

Early research [Satyanarayanan 1992; Spasojevic and Satyanarayanan 1996] discusses
issues associated with scaling up client-server distributed storage systems (Andrew [Morris
et al. 1986] and Coda [Satyanarayanan 1990]) across a WAN. Some of the problems identi-

10 · Martin Placek and Rajkumar Buyya

fied include (i) a lower level of trust existent between users, (ii) coordination of administra-
tion is difficult, (iii) network performance is degraded andfailures are more common than
what is found in a LAN environment. DSSs need to overcome challenging constraints im-
posed by an untrusted environment. Achieving a robust and secure storage service whilst
operating in an untrusted environment is a source of ongoingresearch.

Our survey of DSSs has found the operating environment has a major influence on sys-
tem design and the predictability of workload. A trusted environment has the advantage
of being sheltered from the unpredictable entities otherwise present in partially trusted and
untrusted environments. The predictability and controlled nature of a trusted environment
is suitable for a client-server architecture. In contrast,the dynamic nature of a partially
trusted or untrusted environment requires that a more ad-hoc approach to architecture be
employed, such as Peer-to-Peer.

3.4 Usage Patterns

Collection and analysis of usage data including various fileoperations and attributes plays
an important role in the design and tuning of DSSs. Empiricalstudies serve to provide
an important insight into usage trends, identifying possible challenges and the necessary
research to overcome them. In our investigation, we found usage patterns to be closely
related to the operating environment (Figure 4) and for thisreason our discussion of usage
patterns is organised based on operating environments. This section summarises empirical
studies based on DSSs which operate in a partially trusted environment, a trusted environ-
ment and finally in an untrusted environment.

3.4.1 Partially Trusted. A study [Noble and Satyanarayanan 1994] focusing on the us-
age patterns of the Coda [Satyanarayanan 1990] (Section 4.4) storage system makes some
interesting observations regarding file usage whilst disconnected from the file server. Coda
employs an optimistic approach to consistency (Section 3.5) permitting users to continue
to work on locally cached files even without network connectivity. During the study, the
authors found there to be a surprisingly high occurrence ofintegration failuresor change
conflicts. A change conflict occurs when a user reconnects to merge their changes with
files that have already been modified during the period the user was disconnected. A file
server attempting to merge a conflicting change will fail to do so, requiring the users to
merge their changes manually. Whilst some of these change conflicts were due to servers
disappearing during the process of merging changes, there still remained a high proportion
of conflicts. This occurrence suggested that disconnected users do not work on widely
distinct files as previously thought, this is an important realisation for DSSs adopting an
optimistic approach to consistency.

A survey [Douceur and Bolosky 1999] conducted across 4800 workstations within Mi-
crosoft found only half of the filesystem storage capacity tobe utilised. These results
inspired a subsequent feasibility study [Bolosky et al. 2000] on accessing this untapped
storage. The feasibility study focused on machine availability, filesystem measurements
and machine load. The results supported earlier findings with only 53% of disk space be-
ing used, half of the machines remained available for over 95% of the time, machine’s cpu
load average to be 18% and 70% of the time the machine’s disks were idle. The results of
the feasibility study found that developing a storage system which utilised available stor-
age from shared workstations was in fact possible and consequently led to the development
of Farsite [Adya et al. 2002] (Section 4.3).

A Taxonomy of Distributed Storage Systems · 11

A number of other empirical studies relevant to the partially trusted category include:
A comparatively early study [Spasojevic and Satyanarayanan 1996] primarily focusing on
the use of AFS [Howard et al. 1988] whilst another study adopted a developer’s perspec-
tive [Gill et al. 1994], analysing source code and object fileattributes. That study found
more read-write sharing to be present in an industrial environment than typically found in
an academic environment. DSSs operating in a partially trusted environment aim to pro-
vide an all-purpose solution, servicing a wide array of applications and users. Due to the
general nature of these storage systems, studies analysingusage patterns are influenced by
a combination of user and application behaviour.

3.4.2 Untrusted.Usage patterns of applications designed to operate in an untrusted
environment are primarily influenced by user behaviour. Applications which adopt a Peer-
to-Peer approach serve as primary examples, empowering every user with the ability to
provide a service. With these type of systems, it is therefore important to understand
user behaviour and the resulting consequences. Past experience from deploying MojoNa-
tion [Wilcox-O’Hearn 2002] show how flash crowds have the ability to cripple a system
with any element of centralisation in its architecture. When MojoNation was publicised on
Slashdot, their downloads skyrocketed from 300 to 10,000 a day. Even though MojoNation
employs a Peer-to-Peer architecture for its day-to-day operation, a central server assigned
to handling new MojoNation users was overwhelmed, rendering it unavailable. Further
observations include: a very transient user base with 80% to84% of users being con-
nected once and for less than an hour and users with high-bandwidth and highly-available
resources being least likely to stay connected for considerable lengths of time.

Systems adopting a Peer-to-Peer philosophy rely on users cooperating and sharing their
services, unfortunately there are many disincentives [Feldman et al. 2003] resulting in
Peer-to-Peer systems being vulnerable to free-riding, where users mainly consume services
without providing any in return. Studies show that [Oram 2001; Feldman et al. 2003;
Hughes et al. 2005] the primary reason for this behaviour is due to the asymmetrical nature
of users’ connections, being very biased towards downloading. A usage study of Gnutella
[Hughes et al. 2005] found that 85% of users were free-riding. To discourage this and
promote cooperation, the next generation of Peer-to-Peer systems (Maze [Yang et al. 2005],
Bittorrent [Bittorrent]) provide incentives for users to contribute services.

3.4.3 Trusted. Unlike the previous two categories, storage systems operating in a trusted
environment (e.g. clusters) service a workload primarily influenced by application be-
haviour. A trusted environment is dedicated, making it predictable and controlled, elim-
inating variables otherwise found in shared environments,leaving the application as the
main influence of usage patterns. Currently the vastly superior performance of CPU and
memory over network infrastructure has resulted in networking being the bottleneck for
many parallel applications, especially if heavily relianton storage. Hence, understanding
the application’s workload and tuning the storage system tosuit plays an important role
in improving storage performance, reducing the network bottleneck and realising a system
running closer to its full potential. A usage pattern study [Crandall et al. 1995] of various
parallel applications found that each application had its own unique access pattern. The
study concluded that understanding an application’s access pattern and tuning the stor-
age system (caching and prefetching) to suite was the key to realising the full potential of
parallel filesystems.

12 · Martin Placek and Rajkumar Buyya

The Google File System (GFS) [Ghemawat et al. 2003] (Section4.7) is another example
highlighting the importance of understanding an application’s usage pattern and the advan-
tages of designing a storage system accordingly. The authors of the GFS made a number
of key observations on the type of workload their storage system would need to service
and consequently designed the system to accommodate this. The GFS typical file size was
expected to be in the order of GB’s and the application workload would consist of large
continuous reads and writes. Based on this workload, they adopted a relaxed consistency
model with a large chunk size of 64MB. Choosing a large chunk size proved beneficial as
(i) the client spent less time issuing chunk look up requests, (ii) the meta-data server had
less chunk requests to process and consequently chunk entries to store and manage.

3.5 Consistency

The emergence and subsequent wide proliferation of the Internet and mobile computing
has been a paradox of sorts. Whilst networks are becoming increasingly pervasive, the
connectivity offered is unreliable, unpredictable and uncontrollable. The resultant effect
is a network that imposes challenging operational constraints on distributed applications.
More specific to storage systems, the Internet and mobile computing increase availability
and the risk of concurrent access and unexpected outages have the potential to partition
networks, further challenging data consistency. This section discusses various mechanisms
employed by DSSs to ensure data remains consistent even in the presence of events which
challenge it. Our discussion of consistency begins from a database viewpoint outlining
principles and terminology and continues with a discussionof various approaches storage
systems employ.

3.5.1 Principles and Terminology.In this section we shall cover the underlying prin-
ciples and terminology relevant to consistency. The topic has received much attention in
the area of transactions and databases and thus we shall drawupon these works [Gray and
Reuter 1993; Date 2002] to provide a brief introduction. Whilst terminology used to de-
scribe consistency in databases (transactions and tables)may differ to DSSs (file operations
and files) the concepts are universal. Consistency ensures the state of the system remains
consistent or correct even when faced with events (e.g. concurrent writers, outages) which
would otherwise result in an inconsistent or corrupted state. The ACID principles, serial-
izability, levels of isolation and locking are all important terms which lay the foundations
for consistency and we shall now discuss each briefly.

The ACID (Atomic, Consistent, Isolation, Durability) [Haerder and Reuter 1983] princi-
ples describe a set of axioms, that if enforced, will ensure the system remains in a consistent
state. A system is deemed to uphold ACID principles if:

(1) Atomic: Transaction is atomic, that is, all changes are completed ornone are.(all or
nothing).

(2) Consistency:Transactions preserve consistency. Assuming a database isin a consis-
tent state to begin with, a transaction must ensure that uponcompletion the database
remains in a consistent state.

(3) Isolation: Operations performed within the life-cycle of a transaction must be per-
formed independently and unbeknown to other transactions running concurrently. The
strictest sense of isolation is referred to as serializability (see below). A system may
guarantee varying degrees of isolation each with their trade-offs.

A Taxonomy of Distributed Storage Systems · 13

(4) Durablity: Once a transaction has completed the system must guarantee that any mod-
ifications done are permanent even in the face of subsequent failures.

Serializability is a term used to describe acriterion of correctness. A set of transactions
is deemed serializable if their result issomeserial execution of the same transactions. In
other words, even though the execution of these transactions may have been interleaved,
as long as the final result is achieved by some serial order of execution, their execution is
deemed serializable and thus correct. To guarantee a transaction is serializable, its execu-
tion needs to adhere to the two-phase locking [Eswaran et al.1976] theorem. The theorem
outlines the following two axioms on acquiring and releasing locks:

(1) Before executing any operations on data, a transaction must acquire a lock on that
object.

(2) Upon releasing a lock, the transaction must not acquire any more locks.

Serializability achieves maximum isolation, with no interference allowed amongst exe-
cuting transactions. The ANSI/ISO SQL standard (SQL92) identifies four degrees of iso-
lation. To offer varying levels of isolation, transactionsmay violate the two-phase locking
theorem and release locks early and acquire new locks. Violating the two-phase locking
protocol relaxes the degree of isolation allowing for a greater level of concurrency and
performance at the cost of correctness. The SQL standard identifies the following three
possible ways in which serializability may be violated:

(1) Dirty Read:Uncommitted modifications are visible by other transactions. Transaction
A inserts a record, Transaction B is able to read the record, Transaction A than executes
a rollback leaving Transaction B with a record which no longer exists.

(2) Non-Repeatable Read:Subsequent reads may return modified records. Transaction
A executes a query on table A. Transaction B may insert, update and delete records
in table A. Assuming Transaction B has committed its changes, when Transaction A
repeats the query on Table A changes made by Transaction B will be visible.

(3) Phantom Read:Subsequent read may return additional (phantom) records. Transac-
tion A executes a query on table A. Transaction B than insertsa record into table A
and commits. Transaction A then executes, repeats its original query of table A and
finds an additional record.

Therefore a database typically supports the following fourlevels of consistency, with
repeatable read usually being the default:

(1) Serializability: To achieve serializability, transactions executing concurrently must
execute in complete isolation and must not interfere with each other. Transactions
must adhere to the two-phase locking protocol to achieve serializability. Whilst this
offers the highest level of isolation possible, a subsequent penalty is poor concurrency.

(2) Repeatable Read:Repeatable read ensures that data retrieved from an earlierquery
will not be changed for the life of that transaction. Therefore subsequent executions of
the same query will always return the same records unmodified, although additional
(phantom) records are possible. Repeatable Read employs shared read locks which
only covers existing data queried. Other transactions are allowed to ’insert’ records
giving rise toPhantom Reads.

14 · Martin Placek and Rajkumar Buyya

possibility
of inconsistency

Strong

Optimisitic

Consistency

per
for

man
ce,

 av
ail

abi
lit

y

Fig. 5. strong vs optimistic consistency

(3) Read Committed:Transactions release read locks early (upon completion of read),
allowing other transactions to make changes to data. When a transaction repeats a
read, it reacquires a read lock although results may have been modified, resulting in a
Non-Repeatable Read.

(4) Read Uncommitted:Write locks are released early (upon completion of write), allow-
ing modifications to be immediately visible by other transactions. As data is made
visible before it has been committed, other transactions are effectively performing
Dirty Readson data which may be rolled back.

3.5.2 Approaches.Thus far our discussion of consistency has been in the context of
databases and transactions, which have been used to convey the general principles. There
are two ways of approaching consistency,Strongor Optimistic, each method with its re-
spective trade offs (Figure 5).

Strong consistency also known as pessimistic, ensures thatdata will always remain and
be accessed in a consistent state, thus holding true to the ACID principles. A couple of
methods which aim to achieve strong consistency include onecopy serializability [Bern-
stein and Goodman 1983], locking and leasing. The main advantage of adopting a strong
approach is that data will always remain in a consistent state. The disadvantages include
limited concurrency and availability, resulting in a system with poor performance that is
potentially complex if a distributed locking mechanism is employed. The other approach
to consistency is optimistic consistency [Kung and Robinson 1981] which is also known
as weak consistency. It is considered weak as it allows a system to operate whilst in an
inconsistent state. Allowing concurrent access to partitioned replicas has the potential for
inconsistent reads and modifications that fail to merge due to conflicting changes. The ad-
vantages associated with an optimistic approach include excellent concurrency, availabil-
ity and consequently good scalable performance. The main drawbacks being inconsistent
views and the risk of change conflicts which require user intervention to resolve.

3.5.3 Strong Consistency.The primary aim of strong consistency is to ensure data is
viewed and always remains in a consistent state. To maintainstrong consistency, locking
mechanisms need to be employed. Put simply, a piece of data islocked to restrict user
access. Much discussion and work [Ries and Stonebraker 1977; 1979; Gray et al. 1994]
has gone into applying locks and choosing an appropriate grain size. Choosing a large

A Taxonomy of Distributed Storage Systems · 15

Table I. strong consistency - impact on architecture and environment

System Architecture Environment

Frangipani Client-Server Partially Trusted
NFS Client-Server Partially Trusted

Farsite Locally Centralised
Peer-to-Peer

Partially Trusted

grain to lock has the advantage of lowering the frequency at which locking be initiated, the
disadvantages include increasing the probability of dealing with lock contention and low
concurrency. Choosing a small grain to lock has the advantage of high concurrency, but
carries an overhead associated with frequently acquiring locks. These grain size trade-offs
are universal and also apply to a distributed storage environment.

In a distributed environment the performance penalty associated with employing a lock-
ing infrastructure is high. Distributed storage systems which support replication face the
prospect of implementing a distributed locking service (Frangipani [Thekkath et al. 1997]
and OceanStore [Kubiatowicz et al. 2000]) which incurs further performance penalties;
a polynomial number of messages need to be exchanged betweenthe group of machines
using a Byzantine agreement (see Section 3.6). With these high overheads the choice to
use a large block size is justified: e.g. 64MB used by the GFS [Ghemawat et al. 2003].
However, careful analysis of storage workload is required as any performance gained from
choosing a large block size would be annulled by the resulting lock contention otherwise
present in a highly concurrent workload.

A locking infrastructure requires a central authority to manage and oversee lock re-
quests. Therefore, DSSs choosing to employ locking to achieve consistency are restricted
to architectures which contain varying degrees of centralisation (Table I). A client-server
architecture is ideal, leaving the server to be the central entity which enforces locking.
Implementing a locking mechanism over a Peer-to-Peer architecture is a more involved
process, which becomes impossible in a pure Peer-to-Peer architecture. Systems which
choose to support strong consistency mostly operate in a partially trusted environment.
The relatively controlled and reliable nature of a partially trusted environment suites the
requirements imposed by strong consistency.

3.5.4 Optimistic Consistency.The primary purpose is to keep data consistent without
imposing the restrictions associated with strong consistency. Optimistic consistency al-
lows multiple readers and writers to work on data without theneed for a central locking
mechanism. Studies of storage workloads [Kistler and Satyanarayanan 1991; Gill et al.
1994] show that it is very rare for modifications to result in achange conflict and as such
the measures used to enforce strong consistency are perceived asoverkill and unnecessary.
Taking an optimistic approach to consistency is not unreasonable and in the rare event that
a conflict should occur users will need to resolve conflicts manually.

An optimistic approach to consistency accommodates a dynamic environment, allowing
for continuous operation even in the presence of partitioned replicas, this is particularly
suited to unreliable connectivity of WANs (e.g. Internet).There are no limits imposed
on the choice of architecture when adopting an optimistic approach and, as it is highly
concurrent, it is well suited to a pure Peer-to-Peer architecture.

Examples of DSSs which employ an optimistic consistency model include: xFS [Ander-
son et al. 1996], Coda [Satyanarayanan 1990] and Ivy [Muthitacharoen et al. 2002]. Both
Ivy and xFS employ a log structured filesystem, recording every filesystem operation into

16 · Martin Placek and Rajkumar Buyya

Security

Access Control List (ACL)

Node ID AssignementReputation

Routing Table Maintenance

Secure Message ForwardingByzantine Agreement

Onion Routing

Probabilistic Routing

P2P Network Overlay

Fig. 6. security taxonomy

a log. By traversing the log it is possible to generate every version of the filesystem and
if a change conflict arises it is possible to rollback to a consistent version. Coda allows
the client to have a persistent cache, which enables the userto continue to function even
when without a connection to the file server. Once a user reconnects, the client software
will synchronise with the server’s.

3.6 Security

Security is an integral part of DSSs, serving under many guises from authentication and
data verification to anonymity and resilience to Denial-of-Service (DoS) attacks. In this
section we shall discuss how system functionality (Section3.1), architecture (Section 3.2)
and operating environment (Section 3.3) all have an impact on security and the various
methods (Figure 6) employed to enforce it. To illustrate, a storage system used to share
public documents within a trusted environment need not enforce the level of security other-
wise required by a system used to store sensitive information in an untrusted environment.

Systems which tend to operate within the confines of a single administrative domain
use ACL (Access Control List) to authenticate users and firewalls to restrict external ac-
cess. These security methods are effective in controlled environments (partially trusted or
trusted). Due to the controlled nature of these environments, the potential user base and
hardware is restricted to within the bounds of an institution, allowing for some level of
trust to be assumed. On the contrary, untrusted environments such as the Internet expose
systems to a global public user base, where any assumptions of trust are void. Storage
systems which operate in an untrusted environment are exposed to a multitude of attacks
[Douceur 2002; Dingledine 2000]. Defending against these is non-trivial and the source of
much ongoing research.

The choice of architecture influences the methods used to defend against attacks. Archi-
tectures which accommodate a level of centralisation such as client-server or centralised
Peer-to-Peer have the potential to either employ ACL or gather neighbourhood knowl-
edge to establish reputations amongst an uncontrolled public user base. However, security
methods applicable to a centralised architecture are inadequate in a pure Peer-to-Peer set-
ting [Harrington and Jensen 2003]. Systems adopting a pure Peer-to-Peer architecture
have little, if any, element of centralisation and because of their autonomous nature are
faced with further challenges in maintaining security [Castro et al. 2002; Sit and Morris

A Taxonomy of Distributed Storage Systems · 17

2002]. Current Peer-to-Peer systems employ network overlays (Section 3.9) as their means
to communicate and query other hosts. Securing a Peer-to-Peer network overlay [Castro
et al. 2002] decomposes into the following key factors:

(1) Node Id Assignment:When a new node joins a Peer-to-Peer network it is assigned
a random 128bit number which becomes the node’s id. Allowinga node to assign
itself an id is considered insecure, making the system vulnerable to various attacks,
including (i) attackers may assign themselves ids close to the document hash, allow-
ing them to control access to the document, (ii) attackers may assign themselves ids
contained in a user’s routing table, effectively controlling that user’s activities within
the Peer-to-Peer network. Freenet [Clarke et al. 2001] attempts to overcome this prob-
lem by involving a chain of random nodes in the Peer-to-Peer network to prevent users
from controlling node id selection. Assuming the user does not have control of node
id selection, this still leaves the problem of users trying to dominate the network by
obtaining a large number of node ids, this kind of attack is also known as the Sybil
[Douceur 2002] attack. A centralised solution is proposed in [Castro et al. 2002],
where a trusted entity is responsible for generating node ids and charging a fee to pre-
vent the Sybil attack. Unfortunately this introduces centralisation and a SPF which
ultimately could be used to control the Peer-to-Peer network itself.

(2) Routing Table Maintenance:Every node within a Peer-to-Peer network overlay main-
tains a routing table that is dynamically updated as nodes join and leave the network.
An attacker may attempt to influence routing tables, resulting in traffic being redi-
rected through their faulty nodes. Network overlays which use proximity information
to improve routing efficiency are particularly vulnerable to this type of attack. To
avoid this, strong constraints need to be placed upon routing tables. By restricting
route entries to only point to neighbours close in the node idspace (CAN and Chord),
attackers cannot use network proximity to influence routingtables. Whilst this results
in a Peer-to-Peer network that is not susceptible to such an attack, it also disables any
advantages gained from using network proximity based routing.

(3) Secure Message Forwarding:All Peer-to-Peer network overlays provide a means of
sending a message to a particular node. It is not uncommon fora message to be
forwarded numerous times in the process of being routed to the target node. If any
nodes along this route are faulty, this message will not reach the desired destination.
A faulty node may choose not to pass on the message or pretend to be the destined node
id. To overcome this, [Castro et al. 2002] proposes a failuretest method to determine
if a route works and suggests the use of a redundant routing path when this test fails.

The rest of this section discusses a few methods commonly used by DSSs to establish
trust, enforce privacy, verify and protect data. A simple but effective way of ensuring data
validity is through the use of cryptographic hash functionssuch as the Secure Hash Al-
gorithm (SHA) [National Institute of Standards and Technology 1995] or Message Digest
algorithm (MD5) [Rivest 1992]. These algorithms calculatea unique hash which can be
used to check data integrity. Due to the unique nature of the hash, distributed storage pro-
grams also use it as a unique identifier for that block of data.To protect data and provide
confidentiality the use of the Public Key Infrastructure (PKI) allows data encryption and
restricted access to audiences holding the correct keys.

The Byzantine agreement protocol [Castro and Liskov 2000] enables the establishment
of trust within an untrusted environment. The algorithm is based on a voting scheme, where

18 · Martin Placek and Rajkumar Buyya

Autonomic
Management

Adaptive

Biological
Approach

Consistency

Caching

Configure

Optimise

Protect

Heal

Self

Market Models

Fig. 7. autonomic management taxonomy

a Byzantine agreement is only possible when more than two thirds of participating nodes
operate correctly. The protocol itself is quite network intensive with messages passed
between nodes increasing in polynomial fashion with respect to the number of participants.
Hence the number of participants which form a Byzantine group are limited and all require
good connectivity. OceanStore [Kubiatowicz et al. 2000] and Farsite [Adya et al. 2002]
are both examples of systems which have successfully employed the Byzantine protocol to
establish trust. Another way to establish trust is via a reputation scheme, rewarding good
behaviour with credits and penalising bad behaviour. Free Haven [Dingledine et al. 2000]
and MojoNation [Wilcox-O’Hearn 2002] use digital currencyto encourage participating
users to behave.

Systems such as Free Haven [Dingledine et al. 2000] and Freenet [Clarke et al. 2001]
both aim to provide users with anonymity and anti-censorship. These class of systems
need to be resilient to many different attacks from potentially powerful adversaries whilst
ensuring they do not compromise the very thing they were designed to protect. Introducing
any degree of centralisation and neighbourhood intelligence into these systems is treated
with caution [Dingledine et al. 2003; Marti and Garcia-Molina 2003] as this makes the
system vulnerable to attacks. Onion routing [Oram 2001; Dingledine et al. 2004; Syverson
et al. 1997] and probabilistic routing [Dingledine et al. 2000] are two methods employed
to provide anonymous and censorship resistant communications medium.

3.7 Autonomic Management

The evolution of DSSs has seen an improvement in availability, performance and resilience
in the face of increasingly challenging constraints. To realise these improvements DSSs
have grown to incorporate newer algorithms and more components, increasing their com-
plexity and the knowledge required to manage them. With thistrend set to continue, re-
search into addressing and managing complexity (Figure 7) has led to the emergence of
autonomic computing [Horn 2001; Kephart and Chess 2003]. The autonomic comput-
ing initiative has identified thecomplexity crisisas a bottleneck, threatening to slow the
continuous development of newer and more complex systems.

Distributed Storage Systems are no exception, evolving into large scale complex systems

A Taxonomy of Distributed Storage Systems · 19

with a plethora of configurable attributes, making administration and management a daunt-
ing and error prone task [Barrett et al. 2003]. To address this challenge, autonomic comput-
ing aims to simplify and automate the management of large scale complex systems. The
autonomic computing vision, initially defined by eight characteristics [Horn 2001], was
later distilled into four [Kephart and Chess 2003]; self-configuration, self-optimisation,
self-healing and self-protection, all of which fall under the umbrella of self management.
We discuss each of the four aspects of autonomic behaviour and how they translate to auto-
nomic storage in Table II. Another approach to autonomic computing takes a more ad-hoc
approach, drawing inspiration from biological models [Staab et al. 2003]. Both of these
approaches are radical by nature, having broad long-term goals requiring many years of
research to be fully realised. In the mean time, research [Ferguson et al. 1996; Wolski
et al. 2001; Buyya 2002; Weglarz et al. 2004] with more immediate goals discuss the use
of market models to autonomically manage resource allocation in computer systems. More
specifically, examples of such storage systems and the market models employed are listed
below and discussed in greater detail in Section 4.

(1) Mungi [Heiser et al. 1998]:is a Single-Address-Space Operating System (SASOS)
which employs a commodity market model to manage storage quota.

(2) Stanford Archival Repository Project [Cooper and Garcia-Molina 2002]: apply a bar-
tering mechanism, where institutions barter amongst each other for distributed storage
services for the purpose of archiving and preserving information.

(3) MojoNation [Wilcox-O’Hearn 2002]:uses digital currency (Mojo) to encourage users
to share and barter resources on its network, users which contribute are rewarded with
Mojo which can be redeemed for services.

(4) OceanStore [Kubiatowicz et al. 2000]:is a globally scalable storage utility, providing
paying users with a durable, highly available storage service by utilising untrusted
infrastructure.

(5) Storage Exchange [Placek and Buyya 2006]:applies a sealed Double Auction market
model allowing institutions to trade distributed storage services. The Storage Ex-
change provides a framework for storage services to be brokered autonomically based
on immediate requirements.

As distributed storage systems are continuing to evolve into grander, more complex
systems, autonomic computing is set to play an important role, sheltering developers and
administrators from the burdens associated with complexity.

3.8 Federation

Global connectivity provided by the Internet has allowed any host to communicate and
interact with any other host. The capability for institutions to integrate systems, share re-
sources and knowledge across institutional and geographicboundaries is available. Whilst
the possibilities are endless, the middleware necessary tofederate resources across institu-
tional and geographic boundaries has sparked research in Grid computing [Foster 2001].
Grid computing is faced with many challenges including: supporting cross domain admin-
istration, security, integration of heterogeneous systems, resource discovery, the manage-
ment and scheduling of resources in a large scale and dynamicenvironment.

In relation to distributed storage, federation involves understanding the data being stored,
its semantics and associated meta-data. The need for managing data has been identi-

20 · Martin Placek and Rajkumar Buyya

Table II. autonomic computing and distributed storage

1.Self-configuration: Autonomic systems are configured with high-level policies,which trans-
late to business-level objectives.

Large DSSs are governed by a myriad of configurable attributes, requiring experts to trans-
late complex business rules into these configurables. Storage Policies [Devarakonda et al.
2003] provide a means by which high-level objectives can be defined. The autonomic com-
ponent is responsible for translating these high-level objectives into low level configurables,
simplifying the process of configuration.

2.Self-optimisation: Continually searching for ways to optimise operation.

Due to the complex nature and ever changing environment under which DSSs operate in,
finding an operational optimum is a challenging task. A couple of approaches have been
proposed, introspection [Kubiatowicz et al. 2000], and recently a more ad-hoc approach
[Staab et al. 2003] inspired by the self-organising behaviour found in biological systems.
The process of introspection is a structured three stage cyclical process: data is collected,
analysed and acted upon. To illustrate, a system samples workload data and upon analysis
finds the user to be mostly reading data, the system can then optimise operation by heavily
caching on the client side, improving performance for the user and reducing the load on the
file server.
Several efforts focusing on self-optimisation include GLOMAR [Cuce and Zaslavsky
2002], HAC [Castro et al. 1997] and a couple of proposals [Li et al. ; Li et al. 2005] which
apply data mining principles to optimise storage access. GLOMAR is an adaptable con-
sistency mechanism that selects an optimum consistency mechanism based upon the user’s
connectivity. HAC (Hybrid Adaptive Caching) proposes an adaptable caching mechanism
which optimises caching to suit locality and application workload.

3.Self-healing: Being able to recover from component failure.

Large scale distributed storage systems consist of many components and therefore occur-
rence of failure is to be expected. In an autonomic system, mechanisms to detect and re-
cover from failure are important. For example, DSSs which employ replication to achieve
redundancy and better availability need recovery mechanisms when replicas become in-
consistent.

4.Self-protection: Be able to protect itself from malicious behaviour or cascading failures.

Systems which operate on the Internet are particularly vulnerable to a wide array of at-
tacks. Self-protection is especially important to these systems. To illustrate, Peer-to-Peer
systems are designed to operate in an untrusted environmentand by design adapt well to
change be-it malicious or otherwise. Systems which focus onproviding anonymity and
anti-censorship (Freenet [Clarke et al. 2001] and Free Haven [Dingledine et al. 2000])
accommodate for a large array of attacks aimed to disrupt services and propose various
methods to protect themselves.

fied across various scientific disciplines (Ecological [Jones 1998], High Energy Physics
[Holtman 2001], Medicinal [Buyya 2001]). Currently most institutions maintain their own
repository of scientific data, making this data available tothe wider research community
would encourage collaboration. Sharing data across institutions requires middleware to
federate heterogeneous storage systems into a single homogeneous interface which may
be used to access data. Users need not be concerned about datalocation, replication and
various data formats and can instead focus on what is important, making use of the data.
The Data Grid [Chervenak et al. 2000] and SRB [Baru et al. 1998; Rajasekar et al. 2002]
(Section 4.8) are examples of current research being carried out into federating storage
services.

A Taxonomy of Distributed Storage Systems · 21

3.9 Routing and Network Overlays

The evolution of routing has evolved in step with distributed storage architecture. Early
DSSs [Morris et al. 1986; Howard et al. 1988; Sandberg et al. 1985] that were based
on a client-server architecture, employed a static approach to routing. A client would be
configured with the destination address of the server, allowing the client to access storage
services in one hop. The server address would seldom change and if so would require the
client to be re-configured.

The next phase of evolution in routing was inspired by research into Peer-to-Peer sys-
tems, which itself underwent many stages of development. Early systems like Napster
[Oram 2001] adopted a centralised approach, where Peer-to-Peer clients were configured
with the address of a central Peer-to-Peer meta-server. This meta-server was responsible
for managing a large dynamic routing table which mapped filenames to their stored lo-
cations. Clients now required three hops to reach the destined data source: one to query
the meta-server for the host address storing the data of interest, another hop for the re-
ply and finally a third hop to the host containing the data. Thecentralisation introduced
by the meta-server proved to be a scalability and reliability bottleneck, inspiring the next
generation of Peer-to-Peer systems.

A method of broadcasting queries [Oram 2001] was employed byGnutella to abate cen-
tralisation, although this inadvertently flooded the network. Peer-to-Peer clients would
broadcast their queries to immediately known peers which inturn would forward the
queries to their known list of peers. This cycle of broadcasting flooded the network to
the point where 50% of the traffic was attributed to queries [D. Dimitri 2002]. To limit
the flooding, a Time To Live (TTL) attribute was attached to queries, this attribute was
decremented with every hop. Unfortunately a TTL meant searches would fail to find data
even though it was present on the network. The problem of flooding inspired the use of
super nodes (FastTrack [Ding Choon-Hoong and Buyya 2005]).Super nodes are respon-
sible for maintaining routing knowledge for a neighbourhood of nodes and serving their
queries. The use of super nodes reduced the traffic spent on queries but resulted in a locally
centralised architecture.

The next generation of Peer-to-Peer systems brought routing to the forefront of research.
The introduction of Distributed Hash Tables (DHT) spawned much research [Plaxton et al.
1997; Zhao et al. 2003; Stoica et al. 2001; Rowstron and Druschel 2001; Ratnasamy et al.
2000; Dabek et al. 2003; Maymounkov and Mazieres 2002] into network overlays. Routing
tables were no longer the property of a centralised meta-server or super nodes, routing
tables now belonged to every peer on the network.

Each peer is assigned a hash id, some methods use a random hash, others hash the IP
address of the node [Zhao et al. 2003; Rowstron and Druschel 2001]. Each data entity
is referenced by a hash of its payload and upon insertion is routed towards nodes with
the most similar hash id. A Peer-to-Peer network overlay is able to route a peer’s storage
request withinlogN hops, whereN is the number of nodes in the network. Whilst this
may not perform as well as an approach with constant lookup time, network overlays scale
well and continue to operate in an unreliable and dynamic environment. A comparison
(Table III) of all discussed routing algorithms, suggest that each has a varying capability
regarding performance. Variables listed in Table III are described in detail in [Lua et al.
2005], which also provides a detailed description and comparison of network overlays.

Continuous research and development into network overlayshas seen them evolve to

22 · Martin Placek and Rajkumar Buyya

Table III. comparison of routing mechanisms

System Model Hops to Data

AFS, NFS Client-Server O(1)

Napster Central Meta-Server O(3)

Gnutella Broadcasting O(TTL)

Chord Uni-Dimensional
Circular ID space

O(logN)

CAN multi-dimensional space O(d.N
1

d)

Tapestry Plaxton-style Global Mesh O(logbN)

Pastry Plaxton-style Global Mesh O(logcN)

Kademlia X-OR based
Look-up Mechanism

O(logeN)

Where:
N : the number of nodes in the network
d: the number of dimensions
b: base of the chosen peer identifier
c: number of bits used for the base of the chosen identifier
e: number of bits in the Node ID

Table IV. routing and architecture taxonomy

Centralised Decentralised

Static 1. Client-Server 2. Replicated Servers
NFS [Sandberg et al. 1985] xFS [Anderson et al. 1996], Coda

[Satyanarayanan 1990]
Dynamic 3. Centralised Peer-to-Peer 4. Peer-to-Peer Network Overlay

Napster [Oram 2001] Ivy [Muthitacharoen et al. 2002]
OceanStore [Kubiatowicz et al.
2000]

support an increasing number of services. Some of these services include providing stronger
consistency [Lynch et al. 2002], better query capability [Harren et al. 2002; Triantafil-
lou and Pitoura 2003], anonymity [Freedman and Morris 2002]and censorship resistance
[Hazel and Wiley 2002]. To consolidate the vast array of research, [Dabek et al. 2003]
proposes a standard interface for network overlays. The authors hope that standardising
will help facilitate further innovation in network overlays and integrate existing Peer-to-
Peer networks. Currently, a user requires a different client to log into every Peer-to-Peer
network, if the standard is embraced, it would serve to integrate various networks, allowing
a single client to operate across multiple networks concurrently.

An interesting observation in the evolution of routing is the shift from (1) static cen-
tralised routing tables, to (2) static decentralised to (3)dynamic centralised and finally to
(4) dynamic decentralised (Figure IV). The shift from centralised to decentralised has seen
the move from one static server to multiple static servers, replicating storage, providing
better redundancy and load balancing. The shift from staticto dynamic routing has re-
sulted in storage systems being able to cope with a dynamic environment where each host
is capable of providing services. The more recent advance being dynamic decentralised
routing tables which has moved the management of routing tables to thefringesof the
network, giving rise to Peer-to-Peer network overlays.

A Taxonomy of Distributed Storage Systems · 23

4. SURVEY

Our survey covers a variety of storage systems, exposing thereader to an array of different
problems and solutions. For each surveyed system, we address the underlying operational
behaviour, leading into the architecture and algorithms employed in the design and devel-
opment. Our survey covers systems from the past and present,Table V lists all the surveyed
systems tracing back to those characteristics discussed inthe taxonomy.

4.1 OceanStore

OceanStore [Kubiatowicz et al. 2000] is a globally scalablestorage utility, allowing con-
sumers to purchase and utilise a persistent distributed storage service. Providing a storage
utility inherently means that data must be highly available, secure, easy to access and sup-
port guarantees on Quality of Service (QoS). To allow users to access their data easily
from any geographic location, data is cached in geographically distant locations, in effect,
travelling with the user and thus giving rise to the termnomadic data. OceanStore pro-
vides a transparent, easily accessible filesystem interface, hiding any underlying system
complexities whilst enabling existing applications to utilise storage services.

4.1.1 Architecture.OceanStore employs a 2-tier based architecture (Figure 8),the first
is the super-tier, responsible for providing an interface,consistency mechanisms and au-
tonomic operation. It achieves this by maintaining a primary replica amongst an “inner
ring” of powerful, well connected servers. The second tier,the archival-tier, is responsi-
ble for archiving data and providing additional replication by utilising nodes which may
not be as well connected or powerful. A hierarchy exists between the tiers, the super-tier
constitutes of super nodes, which form a Byzantine agreement [Castro and Liskov 2000]
enabling the collective to take charge and make decisions. The archival-tier receives data
from the super-tier which it stores, providing an archival service. The nodes within an
archival-tier need not be well connected or provide high computational speed, as it neither
performs high computational tasks or service requests directly made by user applications.
The super-tier is a centralised point, as it forms a gateway for users to access their files, but
as OceanStore can accommodate multiple cooperating super-tiers, we classify its architec-
ture as locally centralised.

Any requests to modify data are serviced by the super-tier, and hence it is responsible
for ensuring data consistency [Bindel and Rhea 2000]. The super-tier maintains a primary
replica which it distributes amongst its nodes. Modifications consist of information regard-
ing the changes made to an object and the resulting state of the object, similar to that of the
Bayou System [Demers et al. 1994]. Once updates are committed to the primary replica,
these changes are distributed to the secondary replicas. Before data is distributed to sec-
ondary replicas, erasure codes [Blömer et al. 1995] are employed to achieve redundancy.
Erasure codes provide redundancy more efficiently then otherwise possible by replication
[Weatherspoon et al. 2001].

The super-tier utilises Tapestry [Zhao et al. 2003], for distributing the primary replica.
Tapestry is a Peer-to-Peer network overlay responsible forproviding a simple API capable
of servicing data requests and updates, whilst taking care of routing and data distribution
to achieve availability across a dynamic environment. Further information on network
overlays can be found in Section 3.9.

Data objects are stored (read-only), referenced by indirect blocks, in principle very much
like a log structured filesystem [Rosenblum and Ousterhout 1992]. These indirect blocks

24
·

M
ar

tin
P

la
ce

k
an

d
R

aj
ku

m
ar

B
uy

ya
System System

Function
Architecture Operating

Environment
Consistency Routing Interfaces Scalability

OceanStore Custom Locally
Centralised
Peer-to-Peer

Untrusted Optimistic Dynamic
DHT
(Tapestry)

POSIX and
custom

Large
(global)

Free Haven Publish/Share Pure
Peer-to-Peer

Untrusted N/A
(WORM)

Dynamic
Broadcast

Custom Large
(global)

Farsite General pur-
pose Filesys-
tem

Locally
Centralised
Peer-to-Peer

Partially
Trusted

Strong Dynamic
DHT

POSIX Medium
(institution)

Coda General pur-
pose Filesys-
tem

Locally
Centralised

Partially
Trusted

Optimistic Static POSIX Medium
(institution)

Ivy General pur-
pose Filesys-
tem

Pure
Peer-to-Peer

Trusted Optimistic Dynamic
DHT
(Dhash)

POSIX Medium
(small groups)

Frangipani Performance Locally
Centralised

Trusted Strong Static
Petal

POSIX Medium
(small groups)

GFS Custom Locally
Centralised

Trusted Optimistic Static Incomplete
POSIX

Large
(institution)

SRB Federation
Middleware

Locally
Centralised

Trusted Strong Static Incomplete
POSIX

Large
(global)

Freeloader Custom Locally
Centralised

Partially
Trusted

N/A
(WORM)

Dynamic Incomplete
POSIX

Medium
(institution)

PVFS Performance Locally
Centralised

Trusted Strong Static POSIX, MPI-
I/O

Medium
(institution)

StorageExchange General pur-
pose Filesys-
tem

Globally
Centralised

Untrusted Strong Static POSIX Large
(institution)

Table V. distributed storage systems surveyed

A Taxonomy of Distributed Storage Systems · 25

User Application

Super Node

Super Node
Super Node

Super Node Super Node

Node

Node

Node

Node

Node

Node

Node

NodeNode

Super Tier

Archival Tier

Fig. 8. OceanStore architecture

themselves are referenced by a root index. Therefore, when an update is made to a data
object, a new pointer is created in the root index, which points to a series of indirect blocks,
which finally point to a combination of old unchanged data objects and newly created data
objects containing the modifications. This logging mechanism enables every version of
the data object to be recreated, enabling the user to recreate past versions of the file, hence
the provision of a rollback facility. Unfortunately, providing this feature bears a high cost
in space overhead. Indirect blocks are indexed by a cryptographically secure hash of the
filename and the owner’s public key, whereas data blocks are indexed by a content hash.

Finally, the concept of introspection is introduced as a means of providing autonomic
operation. A three-step cycle of Computation, Observationand Optimisation is proposed.
Computation is considered as normal operation, which can berecorded and analysed (Ob-
servation). Based on these Observations, Optimisations can be put in place.

4.1.2 Implementation.A prototype named Pond [Rhea et al. 2003] has been developed
and released as open source under the BSD license and is available for download1. SEDA
[Welsh et al. 2001] (Staged Event-Driven Architecture) wasutilised to provide a means of
implementing an event driven architecture. Java was the overall language of choice due to
its portability, strong typing and garbage collection. A problem with the unpredictability
of the garbage collection was highlighted as an issue, as it was found to pause execution
for an unacceptable amount of time posing a performance problem.

4.1.3 Summary.The authors of OceanStore set themselves a very challengingset of
requirements covering many areas of research. OceanStore aims to provide a storage util-
ity with a transparent filesystem like interface, providingQoS typical of a LAN whilst
operating in a untrusted environment. Providing a storage utility implies the need for

1OceanStore Homepage: http://oceanstore.cs.berkeley.edu

26 · Martin Placek and Rajkumar Buyya

accountability and thus a payment system. Providing accountability within a distributed
untrusted environment is a challenging task and it would have been interesting to see how
that would have been incorporated into the architecture.

The prototype [Rhea et al. 2003] has been tested in a controlled environment and showed
promising benchmark results. Pond provides an excellent insight into the challenges of
building a system of this calibre. Challenges identified include performance bottlenecks
in erasure codes, providing further autonomic operation, increased stability, fault tolerance
and security [Eaton and Weis].

4.2 Free Haven

Free Haven [Dingledine et al. 2000] [Oram 2001] is a distributed storage system which
provides a means to publish data anonymously and securely. The aim is to provide indi-
viduals with an anonymous communication channel, allowingthem to publish and reach
out to an audience without the fear of persecution from government bodies or powerful
private organisations who would otherwise censor the information. The authors motiva-
tion for providing an anonymous communication medium is based on the shortcomings in
existing Peer-to-Peer publication systems, where system operators (Napster [Oram 2001])
or users themselves (Gnutella [Oram 2001]) were being persecuted for breach of copyright
laws. Performance and availability are secondary with the primary focus being on pro-
tecting user identity. Protecting user identity enables individuals to distribute and access
material anonymously. Dingldine [Dingledine 2000] provides a detailed classification of
various types of anonymity. Further objectives include (i)persistence: to prevent censor-
ship despite attacks from powerful adversaries, (ii) flexibility: accommodate for a dynamic
environment and (iii) accountability: to establish synergy in an otherwise untrusted envi-
ronment.

4.2.1 Architecture.Free Haven is based upon a pure Peer-to-Peer design philosophy.
With no hierarchy, every node is equal to the next and transactions are carried out in a
symmetric and balanced manner. Free Haven utilises a re-mailer network [Danezis et al.
2002], which provides an anonymous communications medium by utilising onion routing
(Figure 9). Queries are broadcast with the use of onion routing making it difficult for
adversaries to trace routes. Each user is assigned a pseudonym to which a reputation is
assigned. Servers are only known by their pseudonyms makingthem difficult to locate.
Reputations are assigned to each pseudonym and are tracked automatically. In the rest of
this section we shall provide an overall high-level walk-through and discuss reputation and
the process of trading.

The primary purpose of the anonymous communication medium is to ensure the mes-
sages relayed cannot be traced to the source or destination,protecting user identity. The
anonymous communication medium can utilise onion routing or a re-mailer, both work on
a similar set of principles. Nodes communicate by forwarding messages randomly amongst
each other using different pseudonyms at each hop making it difficult for adversaries to de-
termine a message’s origin or destination. Figure 9 shows a peer client G communicating
to H along a route that involves nodes A, B, C, D, I and J. Only node A is able to map G’s
pseudonym to its IP, as once the message is passed beyond A only pseudonyms are used.
Even though peer client G may need only to communicate with H,the route taken may
visit other peer clients (I and J) along the way, again to makethe process of finding a users
true identity more difficult.

A Taxonomy of Distributed Storage Systems · 27

G

peer client

peer client

peer client

peer client

peer client

peer client

Anonymous Communication Medium
(Onion Router/Remailer)

IP: xx.xx.xx.xx

Psuedonym: anon host

A

BC
D

E

F

H

I

J

Fig. 9. Free Haven architecture

A reputation mechanism is used to provide an incentive for users to participate in an
honest manner. Reputation makes the users accountable, providing a means to punish or
even exclude users who misbehave. The process of integrating a reputation mechanism
requires careful consideration [Dingledine et al. 2003; Marti and Garcia-Molina 2003], so
as not to compromise the very thing the system was designed toprotect, user identity. The
amount of data which a server may store is governed by reputation, making it difficult
for users to clog the system with garbage. Reputation is calculated based upon the trades
a server makes with other servers. A successful trade increases the server’s reputation.
Trades made amongst servers consist of two equally sized contracts, which are negotiated
and (if successful) traded. The size of the contract is basedon the file size and the duration
for which the file is to be stored. Therefore, the size of contract equates to the file size
multiplied by the duration. As such, the larger the file and the longer the period it is to
be stored, the more expensive the contract. Servers within the Free Haven environment
are continually making trades to: provide a cloak of anonymity for publishers, create a
moving target, provide longer lasting shares, and allow servers to join and leave, amongst
other reasons.

The process of confirming a trade is made difficult by the fact that it is done in an un-
trusted environment. Detecting malicious behaviour, where servers may falsely deny they
received a trade or present false information about anotherserver to reduce its reputation.
To address these problems, a buddy system is introduced which involves each server hav-
ing a shadow to look over and certify trades. When negotiation of a contract is finalised,
each server sends a receipt acknowledging the trade. This receipt is then sent from each
server to the other and to their respective buddies. Each buddy will receive the same receipt
twice. Once from the server which created the trade and once from the accepting server.
This enables the buddies to oversee the contract and detect any malicious behaviour.

4.2.2 Implementation.Free Haven has not been released, the website details the prob-
lems and areas which need to be addressed and as such development is in a state of hiber-

28 · Martin Placek and Rajkumar Buyya

nation2. The problems discussed involve:

(1) Reputation:Flaws have been identified in the current reputation system with a need to
incorporate verifiable transactions.

(2) Protocol: The underlying protocol is based on broadcasting messages,this was found
to be too inefficient.

(3) Anonymous Communication:At the moment there is no anonymous communications
medium. An enhanced version of the onion routing protocol isproposed [Dingledine
et al. 2004], detailing how anonymity could be integrated atthe TCP level rather than
at the message level. Although weaker anonymity is traded against lower latency in
this situation.

Releases of both the anonymous re-mailer Mixminion [Danezis et al. 2002] and Tor
[Dingledine et al. 2004] can be found on the Free Haven website.

4.2.3 Summary.Free Haven aims to operate in a globally untrusted environment pro-
viding the user with the ability to anonymously publish data. Free Haven sacrifices effi-
ciency and convenience in its pursuit of anonymity, persistence, flexibility and account-
ability. The persistence of data published is based on duration as apposed to popularity (as
in many other publishing systems), this is an important unique feature as it prevents pop-
ular files frompushing outother files and as such cannot be used by adversaries to censor
information.

As Free Haven aims to resist censorship and provide strong persistence, even under
attacks from strong opponents, its design was based on detailed consideration [Dingledine
2000] of possible attacks. The documented attacks are applicable to any system operating
in an untrusted environment. The concepts applied by Free Haven to achieve anonymity
could be applied by other systems aiming to protect user privacy.

4.3 Farsite

The goal of Farsite [Adya et al. 2002] is to provide a secure, scalable file system by util-
ising unused storage from user workstations, whilst operating within the boundaries of an
institution. Farsite aims to provide a transparent, easy touse file system interface, hiding
its underlying complexities. From the administrators perspective, it aims to simplify effort
required to manage the system. Tasks such as backing up are made redundant through
replication, available storage space is proportionate to the free space on user machines.
This autonomic behaviour aims to reduce the cost of ownership by simplifying the admin-
istration and better utilising existing hardware. If a needfor further storage is required, the
option of adding dedicated workstations to the network can be achieved without introduc-
ing down time. Due to its ability to utilise existing infrastructure, Farsite can be seen as a
cheaper solution to a SAN, but only if a trade-off in performance is acceptable.

4.3.1 Architecture.The architecture is based on the following three concepts: client,
directory group and a file host (Figure 10). A node may adopt any, or all of these roles. The
client is responsible for providing a filesystem like interface. Nodes which participate in a
directory group do so in a Byzantine agreement, these nodes are responsible for establish-
ing trust, enforcing consistency, storing meta-data and monitoring operational behaviour.

2Free Haven Homepage: http://www.freehaven.net/

A Taxonomy of Distributed Storage Systems · 29

client

Node

Node
Node

Node Node

Node

Node

Node

Node

Node

Node

Node

NodeNode

directory group

file host

Fig. 10. Farsite architecture

They can also, as required, execute choirs and exhibit a degree of autonomic operation.
The file host role consists of providing storage space for filedata. We shall now discuss
each role in greater detail.

The client provides an interface which emulates the behaviour of a traditional local
filesystem, providing users with the ability to access the system in a transparent, easy
to use manner. The directory group begins as a set of nodes assigned the root names-
pace for which they have to service client requests. As the namespace grows, a part of
the namespace is delegated to another directory group. Eachgroup establishes trust and
redundancy via the Byzantine protocol. Every node in this group maintains a replica of
the meta-data. The directory group behaves like a gateway for client requests, ensuring
consistency by utilising leases. Autonomic behaviour extends to managing replication, by
relocating replicas to maintain file availability. File availability is based on the availability
of replicas and therefore files which have a higher availability than the mean availability
have their replicas swapped with replicas which have lower availability, this establishes a
uniform level of availability across all files.

The meta-data stored by the directory group includes certificates, lease information, di-
rectory structure, Access Control Lists (ACL) and a routingtable, consisting of filenames,
content hash and file location. There are three main types of certificates, a namespace cer-
tificate which associates the root of a file-system namespacewith the directory group, a
user certificate which associates the user with his public key, to provide a means to autho-
rise a user against an ACL and a machine certificate which is similar to the user certificate
except it is used to authorise and identify the machine as a unique resource. Certificates are
signed by trusted authorities, which are used to establish achain of trust. A user’s private
key is encrypted with a symmetric key derived from the user’spassword.

Farsite utilises leases to ensure consistency. The granularity of leases is variable, in that
they may cover anything from a single file to a directory tree.There are four main types of
leases, content leases, name leases, mode leases and accessleases. Content leases govern

30 · Martin Placek and Rajkumar Buyya

what access modes are allowed. There are two types of contentleases, read-write which
permits a client to perform both read and write operations and a read-only lease that guar-
antees the client that data read is not stale. Name leases provide clients with control over
a filenames in a directory. Mode leases are application levelleases, enabling applications
to have exclusive read, write or delete modes. Access leasesare used to support Microsoft
Windows deletion semantics, which state that a file can be marked to be deleted, but can
only be deleted after all open handles are released. A file that is marked for deletion cannot
accept new file handles, but applications which already holda file handle have the capabil-
ity of resetting the delete flag. To support this there are three types of access leases; public,
protected and private. A public lease being the least restrictive of the three, indicates the
lease holder has the file open. A protected lease is the same asthe public lease with the
extra condition that any lease request made by clients must first contact the lease holder.
Finally the private lease is the same as the protected lease but with a further condition that
any access lease request by a client will be refused.

4.3.2 Implementation.Unfortunately Farsite is closed source and because of this,lim-
ited information is available3. The authors break down the code into two main com-
ponents, user and kernel level, both developed in C. User level component is responsible
for the backend jobs, including managing cache, fetching files, replication, validation of
data, lease management and upholding the Byzantine protocol. Kernel level component is
mainly responsible for providing a filesystem like interface for the user. Whilst Farsite has
implemented some of its proposed algorithms, others remainto be completed, including
those related to scalability and crash recovery.

4.3.3 Summary.Farsite aims to operate in a controlled environment, withinan insti-
tution. The controlled nature of this environment means that nodes are assumed to be
interconnected by a high bandwidth, low latency network andwhilst some level of mali-
cious behaviour is expected, on the whole, most machines areassumed, to be available and
functioning correctly. As a level of trust is assumed we classify the operating environment
as partially trusted. Farsite bases its workload model on typical desktop machine operating
in an academic or corporate environment and thus assumes files are not being updated or
read by many concurrent users. Farsite maintains a databaseof content hashes of every file
and utilises it to detect duplicate files and increase its storage efficiency. On the whole Far-
site aims to provide distributed storage utilising existing infrastructure within an institution
whilst minimising administration costs, through autonomic operation.

4.4 Coda

Coda [Satyanarayanan 1990; Satyanarayanan et al. 1990; Kistler and Satyanarayanan 1991]
provides a filesystem like interface to storage that is distributed within an institution. Coda
clients continue to function even in the face of network outages, as a local copy of the
user’s files is stored on their workstation. As well as providing better resilience to network
outages, having a local copy increases performance and proves to be particularly useful to
the ever growing group of mobile users taking advantage of laptops. Coda was designed
to take advantage of Conventional Off The Shelf (COTS) hardware, proving to be a cost
competitive solution compared with expensive hardware required by traditional fileservers
or SANs. Upgrades simply require the addition of another server, without affecting the

3Farsite Homepage: http://research.microsoft.com/Farsite/

A Taxonomy of Distributed Storage Systems · 31

Vice Servers

Vice Server B

/volA/

/volB/

Vice Server A

/volA/

Vice Server C

/volA/

/volB/

Venus Client

/mnt/volA

Venus Client Cache

Fig. 11. Coda architecture

operation of existing servers, therefore eliminating unavailability due to upgrades. Coda
has been designed to operate within an institution and its servers are assumed to be con-
nected by a high bandwidth, low latency network in what we deem to be a partially trusted
environment.

4.4.1 Architecture.Coda is divided into two main components (Figure 11), the server
(Vice) and the client (Venus). Many Vice servers can be configured to host the same Coda
filesystem in effect replicating the filesystem. Each Vice server that hosts the filesystem
is part of a Volume Storage Group (VSG). Referring to Figure 11, we can see that Vice
Servers A, B and C form a VSG for volume A, whilst only Vice Servers B and C form a
VSG for volume B. The Venus client software enables the user to mount the Coda volume,
providing a transparent filesystem interface. Venus has knowledge of all available Vice
servers and broadcasts its requests to them. Venus caches frequently accessed files allowing
users to operate on cached files even when disconnected from Vice servers.

The architecture of Coda is heavily oriented around the client. The client is left with
the majority of the responsibilities, reducing the burden and complexity of the Vice server.
Therefore, the client is left with the responsibility for detecting inconsistencies and broad-
casting changes to all Coda servers. This itself could proveto be a bottleneck as the system
scales up.

Clients have two modes of operations, a connected mode when the Client has connectiv-
ity to the Server and a disconnected mode when the client loses connectivity to the server.
Disconnected mode enables the user to continue operation even whilst losing connectivity
with the network. Coda is able to provide this mode by cachingfiles locally on the user’s
machine. Whilst caching was initially seen as a means to improve performance, it has the
added advantage of increasing availability. Files are cached locally based upon the Least
Recently Used (LRU) algorithm, much like traditional caching algorithm. Allowing client
side caching and disconnected operation raises issues relating to consistency.

There are two possible scenarios leading to data inconsistency in the Coda environment.
The first is in the event that a client enters disconnected operation, the second being when
a Coda server loses connectivity with other Coda servers. When a client switches to dis-

32 · Martin Placek and Rajkumar Buyya

connected operation the user is still able to make changes asif they were still connected,
completely oblivious to the fact they have lost connectivity. Whilst the user makes changes
a log keeps all the changes they make to their files. Upon reconnection an attempt to merge
their changes with the Coda server is attempted by replayingthe log of their changes. If
the merge fails and a conflict is detected, manual intervention is required to resolve the
conflict.

Coda’s approach to consistency is optimistic as it allows data replicas to become incon-
sistent. To illustrate, disconnected users are permitted to make changes and hence their
local replica becomes inconsistent with the server’s, onlywhen the user reconnects are all
replicas returned to a consistent state. The choice to use anoptimistic approach was based
on analysing a users’ workload profile [Kistler and Satyanarayanan 1991] and observing
that it was an unlikely occurrence for them to make modifications where a conflict would
arise. With this in mind, the advantages to be gained by optimistic concurrency control far
outweigh the disadvantages.

When a Coda server loses connectivity with other servers, the responsibility of detecting
inconsistencies is left with the client. When a client requests a file, it first requests the file
version from each of the Coda servers. If it detects a discrepancy in the version numbers,
it notifies the Coda server with the latest version of the file.It is only then that changes are
replicated amongst the Coda servers.

4.4.2 Implementation.Coda was written in C and consists of two main components,
the Vice server and the Venus client (Figure 12). Venus consists of two main modules, the
Coda FS kernel module and the cache manager. The Coda FS kernel module is written to
interface the Linux VFS (virtual file system) enabling it to behave like any other filesystem.
When a client program accesses data on a Coda mount point, VFSreceives these I/O
requests and routes them to the Coda FS kernel module. The Coda FS kernel module than
forwards these requests to cache manager, which, based on connectivity and cache status,
can choose to service these requests by either logging them to local store or contacting the
Vice servers. Vice consists of one main component which provides an RPC interface for
Venus to utilise in the event of cache misses or meta-data requests.

Coda is an open source effort and is available for download4. Whilst Coda itself is
written in C, the distribution is accompanied by a host of utilities written in shell and
Perl for recovery and conflict resolution. Current development efforts include: making
Coda available to a wider community by porting it to various popular platforms, reliability,
robustness, setting up a mailing group and extending the available documentation.

4.4.3 Summary.Coda aims to provide all the benefits associated with conventional file
servers whilst utilising a decentralised architecture. Coda is resilient to network outages
by employing an optimistic approach to consistency, which allows clients to operate on
locally cached data whilst disconnected from the server. Utilising an optimistic consistency
model is a key component in providing maximum data availability, although this creates
the possibility for consistency conflicts to arise. Knowledge gained from the usage of Coda
[Kistler and Satyanarayanan 1991] has shown that the occurrence of conflicts are unlikely
and therefore the advantages gained by utilising an optimistic consistency model outweigh
the disadvantages. Coda’s ability to provide disconnectedoperation is a key unique feature,
which will grow in popularity with mobile computing.

4Coda Homepage: http://www.coda.cs.cmu.edu/

A Taxonomy of Distributed Storage Systems · 33

Ext2 FS NTFS VFAT

cache
manager

Client Program

/mnt/volA/

Local Disk

Vice
Coda Server

VFS

RPC

kernel space

 Local Disk

Coda Client

Venus

Coda FS

Fig. 12. Coda implementation architecture

4.5 Ivy

Ivy [Muthitacharoen et al. 2002] employs a Peer-to-Peer architecture to provide a dis-
tributed storage service with a filesystem like interface. Unlike many existing Peer-to-Peer
storage systems (Gnutella [Oram 2001], Napster [Oram 2001]) which focus on publish-
ing or at best only supporting the owner of the file to make modifications, Ivy supports
read-write capability and an interface which is indifferent to any other mounted filesys-
tem. Ivy is suited to small cooperative groups of geographically distant users. Due to its
restrictive user policy, a user is able to choose which otherusers to trust. In the event a
trusted user node is compromised and changes made are malicious, a rollback mechanism
is provided to undo any unwanted changes. Ivy is designed to be utilised by small groups
of cooperative users in an otherwise untrusted environment.

4.5.1 Architecture. Ivy’s architecture has no hierarchy, with every node being identi-
cal and capable of operating as both a client and server. Due to its symmetrical nature,
the architecture is considered pure Peer-to-Peer. Each node consists of two main compo-
nents Chord/Dhash and the Ivy server(Figure 13). Chord/Dhash is used for providing a
reliable Peer-to-Peer distributed storage mechanism. TheIvy server interfaces to Dhash, to

34 · Martin Placek and Rajkumar Buyya

Comms (Chord/Dhash)
 - get/put blocks
 - route table
 NodeB - hashID,IP
 NodeC - hashID,IP

Ivy Node A

Ivy Server
 - cache
 - log records

NFS
 - mount point
 - kernel space

Aplications

Comms (Chord/Dhash)
 - get/put blocks
 - route table
 NodeA - hashID,IP
 NodeC - hashID,IP

Ivy Node B

Ivy Server
 - cache
 - log records

NFS
 - mount point
 - kernel space

Aplications

Comms (Chord/Dhash)
 - get/put blocks
 - route table
 NodeA - hashID,IP
 NodeB - hashID,IP

Ivy Node C

Ivy Server
 - cache
 - log records

NFS
 - mount point
 - kernel space

Aplications

Ivy Node E

Ivy Node D

Ivy Node F

Fig. 13. Ivy architecture

send and receive data from peer nodes, and to the NFS loop-back to provide a filesystem
interface.

Ivy uses a log based structure whereby every user has their own log and view of the
filesystem. Logs contain user data and the changes made to thefilesystem. These logs are
stored in a distributed fashion utilising Chord/DHash [Stoica et al. 2001], a Peer-to-Peer
network overlay (Section 3.9), used for its ability to reliably store and retrieve blocks of
data across a network of computers.

The log contains a linked list data structure, where every record represents one NFS
operation. Log records are immutable and kept indefinitely enabling users to roll back
any unwanted changes, much like a log structured filesystem [Rosenblum and Ousterhout
1992]. Whilst Ivy supports file permission attributes, all users are able to read any log in
the Ivy system. It is advised that if a user wishes to restrictaccess to their files they use en-
cryption. Log records store minimal information to minimise the possibility of concurrent
updates and consistency issues.

To create a filesystem within Ivy, a group of users agree upon which set of logs will be
trusted and therefore used to generate the filesystem. For every log deemed to be part of
the filesystem, an entry pointing to its log head is created inthe view array. The view array
is the root index and is traversed by all the users to generatea snapshot of the filesystem. A
filesystem may comprise of multiple logs which in turn can be used to record modifications
concurrently. As Ivy supports concurrent writes, consistency conflicts can occur.

Ivy aims to provide close-to-open consistency and as such modifications completed by
users are immediately visible to operations which other participants may initiate. This
feature cannot be upheld when nodes in the Ivy filesystem loseconnectivity or become
partitioned. To achieve close-to-open consistency, everyIvy server that is performing a
modification waits until Dhash has acknowledged the receiptof new log records before
announcing completion. For every NFS operation, Ivy requests Dhash for the latest view
array. Modifications which result in consistency conflicts require the use of thelc com-

A Taxonomy of Distributed Storage Systems · 35

mand, which detects conflicts by traversing the logs, looking for entries with concurrent
version vectors which affect the same file or directory entry. Users are expected to resolve
these conflicts by analysing the differences and merging thechanges.

Whilst an optimistic approach to consistency is used with respect to file modifications,
a more strict strategy (utilising locking) is in place for file creation. Ivy aims to support
exclusive creation, its reason for doing so extends to applications which rely upon these
semantics to implement their own locking. Ivy can only guarantee exclusive creation when
the network is fully available. As each user has to fetch every other user’s log, performance
degrades as the number of users increase. Consequently, Ivy’s scalability is limited and
hence the system is only suited to small groups of users.

4.5.2 Implementation.Ivy is distributed as open source under the GPL agreement and
is available for download5. Source code is written using a combination of C and C++. The
SFS tool kit is utilised for event-driven programming. Performance benchmarks conducted
in a dedicated controlled environment and with replicationswitched off in Chord/DHash,
showed promising results where Ivy was only a factor of 2 to 3 times slower than NFS.

4.5.3 Summary.Ivy uniquely provides a distributed storage service with a filesystem
like interface, whilst employing a pure Peer-to-Peer architecture. Every user stores a log of
their modifications and at a specified time interval generates a snapshot, a process which re-
quires them to retrieve logs from all participating users. Whilst the transfer of logs from ev-
ery user may prove to be a performance bottleneck, users havethe ability to make changes
to the filesystem without concern to the state of another participant’s logs. Ivy logs and
stores every change a user makes which enables users to rollback any unwanted changes,
although this comes at a high cost in storage overhead. Ivy utilises an optimistic approach
to consistency allowing users to make concurrent changes tothe same piece of data, pro-
viding users with maximum flexibility whilst avoiding locking issues. Although, like any
other systems which adopts an optimistic approach to consistency, the system can reach an
inconsistent state requiring user intervention to resolve. Overall, Ivy can be seen as an ex-
tension of CFS [Dabek et al. 2001], which, like Ivy, utilisesChord/DHash for distributing
its storage but only supports a limited write-once/read-many interface.

4.6 Frangipani

Frangipani [Thekkath et al. 1997] is best utilised by a cooperative group of users with a
requirement for high performance distributed storage. It offers users excellent performance
as it stripes data between servers, increasing performancealong with the number of active
servers. Frangipani can also be configured to replicate and thus offer redundancy and
resilience to failures. It provides a filesystem like interface that is completely transparent to
users and applications. Frangipani is designed to operate and scale within an institution and
thus machines are assumed to be interconnected by a secure, high bandwidth network under
a common administrative domain. The operating environmentby nature mirrors a cluster
and can be considered a trusted environment. Frangipani wasdesigned with the goal of
minimising administration costs. Administration is kept simple even as more components
are added. Upgrades simply consist of registering new machines to the network without
disrupting operation.

5Ivy Homepage: http://www.pdos.lcs.mit.edu/ivy/

36 · Martin Placek and Rajkumar Buyya

Petal Servers

Frangipani Server

/mnt/volA

Frangipani
File Server Module

Petal device driver

Distributed Locking
Service

Application

Fig. 14. Frangipani architecture

4.6.1 Architecture.Frangipani consists of the following main components: Petal Server,
Distributed Locking Service and the Frangipani File ServerModule (Figure 14). The Petal
Server [Thekkath and Lee 1996] is responsible for providinga common virtual disk inter-
face to storage that is distributed in nature. As Petal Server nodes are added, the virtual
disk scales in throughput and capacity. The Petal device driver mimics the behaviour of a
local disk, hiding its distributed nature.

The Distributed Locking Service is responsible for enforcing consistency, thus changes
made to the same block of data by multiple Frangipani serversare serialised ensuring data
is always kept in a consistent state. The locking service is an independent component of the
system, it may reside with Petal or Frangipani Servers or even on an independent machine.
It was designed to be distributed, enabling the service to beinstantiated across multiple
nodes with the aim of introducing redundancy and load balancing.

The locking service employs a multiple reader, single writer locking philosophy. It
employs a file locking granularity where files, directories and symbolic links are lockable
entities. When there is a lock conflict, the locking service sends requests to the holders
of the conflicting locks to either release or downgrade. The are two main types of locks,
a read lock and a write lock. A read lock allows a server to readthe data associated with
the lock and cache it locally. If it is asked to release its lock, it must invalidate its cache.
A write lock permits the server to read and write to the associated data. If it is asked to
downgrade, the server must write any cached modifications and downgrade to a read lock.
If it is asked to release the lock, it must also invalidate itscache.

The third component is the Frangipani File Server Module, which interfaces with the
kernel and the Petal device driver to provide a filesystem like interface. Frangipani File
Server communicates with the Distributed Locking Service to acquire locks and ensure
consistency, and with Petal Servers for block-level storage capability. Frangipani File
Server communicates with Petal Servers via the Petal devicedriver module which is re-
sponsible for routing data requests to the correct Petal Server. It is the responsibility of

A Taxonomy of Distributed Storage Systems · 37

Frangipani File Server Module to abstract the block-level storage provided by the Petal de-
vice driver and present a file level interface to the kernel, which in turn provides a filesys-
tem interface.

Frangipani utilises write-ahead redo logging of meta-datato aid in failure recovery. The
logged data is written into a special area of space allocatedwithin Petal Server. When
the failure of a Frangipani File Server is detected, any redologs written to a Petal Server
are used by the recovery daemon to perform updates and upon completion releases locks
owned by the failed server.

4.6.2 Implementation.Frangipani was implemented on top of the Petal system, em-
ploying Petal’s low-level distributed storage services. Frangipani was developed on a
DIGITAL Unix 4 environment. Through careful design considerations, involving a clean
interface between Petal Server and Frangipani File Server,the authors were able to build
the system within a few months. Unfortunately, because of Frangipani’s close integra-
tion to the kernel, its implementation is tied to the platform, making it unportable to other
operating systems. The product has no active web page and seems that its has no active
developer/user base. Frangipani is closed source and unfortunately in an archived state.

4.6.3 Summary.Frangipani provides a distributed filesystem that is scalable in both
size and performance. It is designed to be utilised within the bounds of an institution
where servers are assumed to be connected by a secure high bandwidth network. Perfor-
mance tests carried out by the authors have shown that Frangipani is a very capable system.
A benchmark on read performance showed Frangipani was able to provide a near linear
performance increase with respect to the number of Petal Servers. The only limiting factor
was the underlying network, with benchmark results tapering off as they approached the
limit imposed by network capacity.

An interesting experiment was conducted, showing the effects of locking contention
on performance. The experiment consisted of a server writing a file while other servers
read the file. The frequent lock contention resulted in a dramatic performance drop, in
the factors of 15 to 20. In summary, the impressive benchmarkresults demonstrate that
Frangipani is a capable high performance distributed storage system, whilst being resilient
to component failure.

4.7 GFS

The Google File System [Ghemawat et al. 2003] is a distributed storage solution which
scales in performance and capacity whilst being resilient to hardware failures. GFS is
successfully being utilised by Google to meet their vast storage requirements. It has proven
to scale to hundreds of terabytes of storage, utilising thousands of nodes, whilst meeting
requests from hundreds of clients. GFS design was primarilyinfluenced by application
workload. In brief, GFS is tailored to a workload that consists of handling large files (>
1GB) where modifications are mainly appended, possibly performed by many applications.
With this workload in mind, the authors propose interestingunique algorithms. Existing
applications may need to be customised to work with GFS as thecustom interface provided
does not fully comply to POSIX file I/O. Whilst GFS has proven to be scalable, its intended
use is within the bounds of an institution and in a Trusted Environment.

4.7.1 Architecture. In the process of designing GFS, the authors focused on a selection
of requirements and constraints. GFS was designed to utilise Commodity Off The Shelf

38 · Martin Placek and Rajkumar Buyya

Application

Client Module (API)

Master Server

Chunk Servers

Chunk Server Chunk Server Chunk Server

(meta data) (chunk data)

(monitor/maintenance)

-mapping
 (logical file -> chunk)
 (chunk -> chunk server)

-replication

Fig. 15. GFS architecture

(COTS) hardware. COTS hardware has the advantage of being inexpensive, although fail-
ure is common and therefore GFS must accommodate for this. Common file size will be
in the order of Gigabytes. Workload profile, whether readingor writing, is almost always
handled in a sequential streaming manner, as apposed to random. Reads consist of either
large streaming reads (MB+) or small random reads. Writes mainly consist of appending
data, with particular attention made to supporting multiple clients writing records to the
same file.

Bearing all these constraints and requirements in mind, GFSproposes an interesting so-
lution. Replication is used to accommodate for node failures. As most of the workload
is based upon streaming, caching is non-existent, this in turn simplifies the consistency,
allowing a more “relaxed model”. A special atomic append operation is proposed to sup-
port multiple concurrent clients appending without the need to provide synchronisation
mechanisms. Having described the core concepts behind GFS,we shall now discuss the
architecture.

GFS has three main components (Figure 15), a Master Server, Chunk Servers and a
Client Module. For an application to utilise the GFS, the Client Module needs to be linked
in at compile time. This allows the application to communicate with the Master Server
and respective Chunk Servers for its storage needs. A MasterServer is responsible for
maintaining meta-data. Meta-data includes namespace, access control information, map-
ping information used to establish links between filenames,chunks (which make up files
contents) and their respective Chunk Server locations. TheMaster Server plays an impor-
tant role in providing autonomic management of the storage the Chunk Servers provide.
It monitors the state of each Chunk Server and in the event of failure, maintains a level
of replication by using remaining available replicas to replicate any chunks that have have
been lost in the failure. The Chunk Servers are responsible for servicing data retrieval and
storage requests from the Client Module and the Master Server.

Having a single Master Server introduces a Single Point of Failure (SPF) and conse-
quently a performance and reliability hot-spot. In response to these challenges, the Master

A Taxonomy of Distributed Storage Systems · 39

Server replicates its meta-data across other servers, providing redundancy and a means to
recover in the event of failure. To avoid the Master Server becoming a performance hot-
spot, the Client Module interaction with the Master Server is kept to a minimum. Upon
receiving the Chunk Server location from the Master Server,the Client Module fetches
the file data directly from the corresponding Chunk Server. The choice of using a large
chunk size of 64MB also reduces the frequency with which the Master Server needs to be
contacted.

A large chunk size also has the following advantages: it is particularly suited to a work-
load consisting of large streaming reads or appends such as GFS, lower network overhead
as it allows the Client Module to sustain an established TCP connection with a Chunk
Server for a longer period. A disadvantage normally associated with a large chunk size is
the wasted space, which GFS avoids by storing chunks as files on a Linux filesystem.

GFS follows an optimistic consistency model, which suites their application require-
ments well and allows for a simple solution whilst enabling multiple concurrent writers to
append to a particular file. This feature is particularly suited to storage requirements of
distributed applications, enabling them to append their results in parallel to a single file.

GFS supports two types of file modifications, writes and record appends. Writes consist
of data being written at a specified offset.“A record append causes data to be appended
atomically at least once even in the presence of concurrent mutations, but at an offset of
GFS’s choosing.”Adopting an optimistic approach to consistency (as apposedto imple-
menting distributed locking) introduces the possibility that not all replicas are byte-wise
identical, allowing for duplicate records or records that may need to be padded. Therefore,
the client is left with the responsibility of handling padded records or duplicate records.
The authors acknowledge that consistency and concurrency issues do exist, but that their
approach has served them well.

4.7.2 Implementation.Unfortunately, due to the commercial nature of GFS the source
code has not been released and limited information is available. The authors discuss the
Client Module utilises RPC for data requests. A discussion into the challenges which they
have encountered whilst interfacing to the Linux kernel is also documented. This suggests
that a large portion of code, if not all, was written in C.

4.7.3 Summary.GFS was designed to suit a particular application workload,rather
than focusing on building a POSIX-compliant filesystem. GFSis tailored to the following
workload: handling large files, supporting mostly large streaming reads/writes and sup-
porting multiple concurrent appends. This is reflected in the subsequent design decisions,
large chunk size, no requirement for caching (due to streaming nature) and a relaxed con-
sistency model. GFS maintains replication allowing it to continue operation even in the
event of failure. The choice of using a centralised approachsimplified the design. A single
Master Server approach meant that it was fully aware of the state of its Chunk Servers and
allowed it to make sophisticated chunk placement and replication choices. Benchmarks
have shown GFS to scale well providing impressive aggregatethroughput for both read
and write operations. GFS is a commercial product successfully being used to meet the
storage requirements within Google.

4.8 SRB

Data can be stored under many types of platforms in many different formats. Federating
this heterogeneous environment is the primary job of the Storage Resource Broker (SRB)

40 · Martin Placek and Rajkumar Buyya

[Baru et al. 1998; Rajasekar et al. 2002]. The SRB provides a uniform interface for appli-
cations to access data stored in a heterogeneous environment. SRB aims to simplify the
operating environment under which scientific applicationsaccess their data. Applications
accessing data via the SRB need not concern themselves with locations or data formats,
instead they are able to access data with high level ad-hoc queries. Whilst providing a
uniform interface, the SRB also enables applications to access data across a wide area
network, increasing data availability. The SRB was designed and developed to provide a
consistent and transparent means for scientific applications to access scientific data stored
across a variety of resources (filesystems, databases and archival systems).

4.8.1 Architecture.The SRB architecture consists of the following main components;
the SRB server, Meta-data Catalog (MCAT) and Physical Storage Resources (PSRs). The
SRB server is middleware which sits between the PSRs and the applications which access
it (Figure 16). MCAT manages meta-data on stored data collections, PSRs and an Access
Control List (ACL). PSRs refer to the Physical Storage Resource itself, which could be a
database, a filesystem or any other type of storage resource for which a driver has been
developed. Applications read and write data via the SRB server, issuing requests which
conform to the SRB server API. Data stored via the SRB needs tobe accompanied by an
description which is stored in MCAT. The SRB server receivesrequests from applications,
consults the MCAT to map the request to the correct PSR, retrieves the data from the PSR
and finally forwards the result back to the application. SRB servers have a federation mode
of operation where one SRB server behaves as a client of another SRB server. This allows
applications to retrieve data from PSRs that may not necessarily be under the control of the
SRB server they communicate with.

Oracle DB2 MySQL Ext2 fs FAT fs

SRB server

Application

MCAT

PSR PSR PSR PSR PSR

Fig. 16. SRB architecture

Now that we have a high level understanding of how the major components of SRB
work together, we shall provide more details about security, MCAT and the data structures
used to manage stored data. Security is broken down into two main areas, authentication
and encryption between the application and the SRB server and amongst the SRB servers.
The SRB server supports password-based authentication with data encryption based on
SEA [Schroeder 1999], which employs public and private keysmechanisms and a sym-
metric key encryption algorithm (RC5). When SRB servers operate in federated mode,
the communication between them is also encrypted using the same mechanisms. During
authentication the SRB server queries MCAT for authentication details. Data access is con-
trolled by a ticketing scheme whereby users with appropriate access privileges may issue

A Taxonomy of Distributed Storage Systems · 41

tickets to access objects to other users. These tickets may expire based on duration or the
number of times they have been used to access data.

MCAT organises data in a collection hierarchy. The hierarchy is governed by the fol-
lowing axioms: A collection contains zero or more sub-collections or data items. A sub-
collection may contain zero or more data items or other sub-collections. A data item is
a file or a binary object. This hierarchy scheme extends to data access control. Users,
be-it registered or unregistered, are issued with a ticket for every collection they wish to
access. This ticket will grant them access to the collectionand the subsequent data objects
contained within the hierarchy of that collection. PSRs arealso organised in a hierarchical
manner, where one or more PSRs can belong to a single Logical Storage Resource (LSR).
PSRs which belong to the same LSR may be heterogeneous in nature, and therefore the
LSR is responsible for providing uniform access to a heterogeneous set of PSRs. Data
written to a LSR is replicated across all PSRs and can be read from any PSR as its final
representation is identical.

As data is replicated amongst PSRs, there is a possibility for inconsistencies to arise
when a PSR fails on a write. SRB handles this scenario by setting the “inconsistent”
flag for that replica, preventing any application from accessing dirty data. Replicas which
become inconsistent can re-synchronise by issuing a replicate command, which duplicates
data from an up-to-date replica.

When a client connects to an SRB server, it sends a connect request. Upon receiving
a connect request, the SRB server will authenticate the client and fork off an SRB agent.
The SRB agent will then handle all subsequent communicationwith the client. SRB allows
different SRB servers to communicate between each other, allowing the federation of data
across different SRB servers. The SRB agent will query MCAT to map high level data
requests to their physical stored locations and if the data request can be serviced by local
PSRs the SRB agent will initiate contact with the PSR which isknown to have the data.

4.8.2 Implementation.SRB binaries and source code are available for download6.
Downloading the software requires registration, upon which a public key can be used to
decrypt and install SRB. SRB is currently being used across the United States, a major
installation being the BIRN Data Grid, hosting 27.8 TB of data across 16 sites. SRB has
been developed using a combination of C and Java, providing many modules and portals
which support a multitude of platforms, including the web.

4.8.3 Summary.SRB was built to provide a uniform homogeneous storage interface
across multiple administrative domains which contain heterogeneous storage solutions and
data formats. The homogeneous interface provided by SRB aims to simplify data stor-
age and retrieval for scientific applications which have to deal with many data-sets. This
simplification removes the need for scientists to individually implement modules to ac-
cess data in different formats or platforms. The authors of SRB have identified a possible
centralisation bottleneck associated with the MCAT serverand wish to do a performance
impact study with a large number of concurrent users.

4.9 Freeloader

Scientific experiments have the potential to generate largedata-sets, beyond the storage
capability of end-user workstations, typically requiringa temporary storing hold as scien-

6SRB Homepage: http://www.sdsc.edu/srb/

42 · Martin Placek and Rajkumar Buyya

Application

Freeloader Client

Freeloader Manager

Benefactors

Benefactor
host

Benefactor
host

Benefactor
host

(meta data)

read/write requests
(Morsels:
 - size: 1MB
 - striped across
 benefactor hosts

(monitor/maintenance)

-mapping
 (dataset -> Morsels)
 (Morsels -> chunk server)

-replication
-Morsels Checksums
-Encryption (keys)

Fig. 17. Freeloader architecture

tists analyse the results. Freeloader [Vazhkudai et al. 2005] aims to provide an inexpensive
way to meet these storage requirements whilst providing good performance. Freeloader is
able to provide inexpensive, mass-storage by aggregating scavenged storage from existing
workstations and through the use of striping, is able to aggregate network bandwidth pro-
viding an inexpensive but fast alternative to storage offered by a file server. Freeloader is
intended to operate within a partially trusted environmentand scale well within the bounds
of an institution.

4.9.1 Architecture.Freeloader was designed with the following assumptions in mind:
(i) usage pattern is expected to follow a write-once/read-many profile, (ii) scientists will
have a primary copy of their data stored in another repository, (iii) data stored is tempo-
rary (days-weeks) in nature, before new data is generated. Freeloader aims to fulfill these
assumptions rather than being a general purpose filesystem.Data is stored in 1MB chunks
calledMorsels, this size was found to be ideal for GB-TB data-sets.

Freeloader consists of three main components (Figure 17); Freeloader Client, Freeloader
Manager and Benefactor. The Freeloader Client is responsible for servicing user storage
requests, in doing so communicates with the Freeloader Manager and respective Benefac-
tors. A Benefactor is a host which donates its available storage, whilst servicing Freeloader
Clients’ storage requests and meta-data requests from the Freeloader Manager. The Freeloader
Manager component is responsible for maintaining system meta-data whilst overseeing the
overall operation of the system. The overall architecture of Freeloader shares many sim-
ilarities to GFS [Ghemawat et al. 2003] and PVFS [Carns et al.2000], even though each
system has distinct operational objectives and algorithms. We now discuss each of the
main components in greater detail.

The Freeloader Client is responsible for servicing application storage requests by trans-
lating incoming function calls to requests, which are then routed to the Manager or Bene-
factor depending on the operation. Before a Freeloader Client is able to read/write data,
it needs to contact the Freeloader Manager for details on thenodes which it is able to

A Taxonomy of Distributed Storage Systems · 43

read/write data to/from. The Freeloader Client receives pairs of values containing chunk
id and the Benefactor id. The Freeloader Client is then able to route its storage request to
the correct Benefactor. When retrieving data-sets, the Freeloader Client will issue requests
for chunks in parallel, aggregating network transfer from Benefactors. Whilst retrieving
chunks, the Freeloader Client assembles them and presents astream of data to the applica-
tion.

Benefactor hosts run a daemon which is responsible for advertising its presence to the
Freeloader Manager whilst servicing requests from Freeloader Clients and the Freeloader
Manager. The Benefactor utilises local storage to store chunks; chunks relating to the same
data-set are stored in the same file. The Benefactor servicesoperations to create and delete
data-sets from the Freeloader Manager and put and get operations from the Freeloader
Client. The Benefactor monitors the local host’s performance allowing it to throttle its
service so as not to impede the host’s operation.

The Freeloader Manager component is responsible for storing and maintaining the sys-
tem’s meta-data. The meta-data includes chunk ids and theirBenefactor locations, replica-
tion, checksums for each of the chunks and the necessary datato support client side encryp-
tion. The Freeloader Manager is responsible for chunk allocation utilising two algorithms:
round robin and asymmetric striping. The round robin approach consists of striping data
evenly across Benefactors, but as resource availability will vary from Benefactor to Bene-
factor, the algorithm has been altered to bias Benefactors with more available storage. The
asymmetric approach involves striping data across Benefactors and the Freeloader Client
itself, storing part of the data set locally. A local/remoteratio determines the proportion
of chunks which are to be stored locally and on remote Benefactors. The ratio which
yields optimal performance,roughly corresponds to the local I/O rate and aggregate net-
work transfer rate from the remote Benefactors. Although this ratio may result in optimal
operation, constraints imposed by limited local storage may not permit this ratio.

4.9.2 Implementation.The TCP Protocol is used to transfer chunks between the Freeloader
Client and Benefactor, due to its reliability and its congestion/flow control mechanisms it
was deemed suitable for larger transfers. The rest of the communication between the com-
ponents is performed in UDP, as the messages are short and bursty in nature. An application
utilising storage services will need to call the Freeloaderlibrary which implements some
of the standard UNIX file I/O functions.

Benchmarks show the capability of asymmetric striping to aggregate disk I/O perfor-
mance up to network capacity. A machine with a local disk speed throughput of 30MB/Sec
was able to attain approx 95MB/Sec whilst striping data across remote nodes. At the mo-
ment, Freeloader has not been released, although it is documented that the Freeloader
Client library has been written in C and implements the standard I/O function calls. Oth-
erwise, it is unclear what languages were used to develop theBenefactor and Freeloader
Manager components.

4.9.3 Summary.Freeloader’s target audience includes scientists engagedin high per-
formance computing that seek an inexpensive alternative tostoring data whilst providing
performance associated with a parallel filesystem. Freeloader is designed to accommo-
date a transient flow of scientific data which exhibits a write-once/read-many workload. In
doing so, it utilises existing infrastructure to aggregatestorage and network bandwidth to
achieve a fast, inexpensive storage solution providing scientists with an alternative to more

44 · Martin Placek and Rajkumar Buyya

PVFS Manager

Cluster I/O Nodes

PVFS Client

PVFS I/O daemons

(meta data, create, delete)

read/write requests

(monitor/maintenance)

-allocate/map
 (file -> blocks)
 (blocks -> PVFS I/O
 daemons)

Computational Nodes

Application

PVFS I/O daemons

Fig. 18. PVFS architecture

expensive storage solutions like SANs.

4.10 PVFS

PVFS [Carns et al. 2000] is a parallel filesystem designed to operate on Linux clusters. The
authors identify an absence of production quality, high-performance parallel filesystem
for Linux clusters. Without a high-performance storage solution, Linux clusters cannot
be used for large I/O intensive parallel applications. PVFSwas designed to address this
limitation and provide a platform for which further research into parallel filesystems. PVFS
is designed to operate within the bounds of an institution ina trusted environment.

4.10.1 Architecture.PVFS was designed with three operational goals in mind, (i) pro-
vide high-performance access and support concurrent read/write operations from multiple
processes to a common file, (ii) provide multiple interfaces/API’s, (iii) allow existing ap-
plications which utilise POSIX file I/O to utilise PVFS without the need to modify or
recompile. The PVFS architecture is designed to operate as aclient-server system (Figure
18). There are three main components which make up the PVFS system: PVFS Manager,
PVFS Client and PVFS I/O daemon. A typical cluster environment has multiple nodes
dedicated to storage and computation. Nodes responsible for storage run the PVFS I/O
daemon and nodes responsible for computation will have the PVFS Client installed. An
extra node is dedicated to running the PVFS Manager.

The PVFS Manager is responsible for storing meta-data and answering location requests
from PVFS Clients. Meta-data stored by the PVFS Manager include filenames and at-
tributes such as file size, permissions and striping attributes (segment size, segment count,
segment location). The PVFS Manager does not service read/write requests, instead, this
is the responsibility of the I/O daemon. Striping chunks of data across multiple I/O nodes
allows parallel access. The PVFS Manager is responsible forenforcing a cluster wide
consistent namespace. To avoid overheads associated with distributed locking and the pos-
sibilities of lock contention, PVFS employs a minimalisticapproach to consistency with

A Taxonomy of Distributed Storage Systems · 45

meta-data operations being atomic. Beyond enforcing atomic meta-data operations, PVFS
does not implement any other consistency mechanisms. APIs provided by PVFS include a
custom PVFS API, a UNIX POSIX I/O API and MPI-IO.

The PVFS Client is responsible for servicing storage requests from the application.
Upon receiving a storage request, it will contact the PVFS Manager to determine which
PVFS I/O daemons to contact. The PVFS Client than contacts the PVFS I/O daemons
and issues read/write request. The PVFS Client library implements the standard suite of
UNIX POSIX I/O API and when in place, traps any system I/O calls. The PVFS Client
library than determines if the call should be handled by itself, or passed onto the kernel.
This ensures that existing applications need not be modifiedor recompiled. The PVFS I/O
daemon is responsible for servicing storage requests from PVFS Clients whilst utilising
local disk to store PVFS files.

4.10.2 Implementation.PVFS is distributed as open source under the GPL agreement
and is available for download7. All components have been developed using C. PVFS uses
TCP for all its communication so as to avoid any dependencieson custom communication
protocols. Benchmarks conducted with 32 I/O daemons and 64MB files have shown to
achieve 700MB/Sec using Myrinet and 225MB/Sec using 100Mbits/Sec Ethernet. PVFS
is in use by the NASA Goddard Space Flight Centre, Oak Ridge National Laboratory and
Argonne National Laboratory.

4.10.3 Summary.PVFS is a high-performance parallel filesystem designed to operate
on a Linux clusters. It provides an inexpensive alternativeutilising Commodity Off The
Shelf (COTS) products allowing large I/O intensive applications to be run on Linux clus-
ters. Benchmarks provided indeed show that PVFS provides a high-performance storage
service. Some future work identified include a migration away from TCP, as it is deemed
to be a performance bottleneck. Other areas of future research include: scheduling algo-
rithms for I/O daemons, benchmarks show a performance flat spot, potential for further
tuning and replication.

4.11 Storage Exchange

The Storage Exchange(SX) [Placek and Buyya 2006] is a platform allowing storage to be
treated as a tradeable resource. Organisations with varying storage requirements can use
the SX platform to trade and exchange storage services. Organisations have the ability to
federate their storage, be-it dedicated or scavenged and advertise it to a global storage mar-
ket. The storage exchange platform has been designed to operate on a global network such
as the Internet, allowing organisations across geographicand administrative boundaries to
participate. Consumers and providers of storage use the storage exchange to advertise their
requirements, which employs a Double Auction market model to efficiently allocate trades.
Organisations may trade storage based on their current requirements, an organisation that
is running low on storage it may purchase storage, alternatively if it finds that there is an
abundance of storage it has the ability to lease out the excess storage.

4.11.1 Architecture.The storage exchange employs are hierarchical architecture (Fig-
ure 19) consisting of the following four main components: (i) Storage Client: provides
an interface for the user to access storage services, (ii) Storage Provider: harnesses avail-

7PVFS Homepage: http://www.pvfs.org/

46 · Martin Placek and Rajkumar Buyya

Producer Consumer

Storage
Broker

Storage
Broker

Producer/Consumer

Storage
Broker

Storage
Client

Storage
Client

Storage
Exchange

Storage
Provider

Storage
Provider

Storage
Provider

Storage
Provider

Storage
Provider

Storage
Provider

Storage
Provider

Fig. 19. storage exchange architecture

able storage on installed host whilst servicing requests from Storage Client, (iii) Storage
Broker: manages inhouse storage capacity and trades storage based upon storage service
requirements of institution, and finally the (iv) Storage Exchange: a trading platform used
by Storage Brokers to trade storage. We shall now discuss each of the components in
greater detail:

Storage Provider: The storage provider is deployed on hosts within an organisation
chosen to contribute their available storage. Whilst we envision the Storage Provider to be
used to scavenge available storage from workstations, there is no reason why it can not be
installed on servers or dedicated hosts. The Storage Provider is responsible for keeping the
organisations broker up-to-date with various usage statistics and service incoming storage
requests initiated by Storage Clients.

Storage Client: An organisation wishing to utilise a negotiated storage contract will
need to use a Storage Client. A user will configure the StorageClient with the storage
contract details. The Storage Client then uses these details to authenticate itself with the
provider’s Storage Broker and upon successful authentication the Storage Client requests a
mount for the volume. The provider’s Storage Broker then looks up the Storage Providers
responsible for servicing the storage contract and instructs them to connect to the Storage
Client. Once the Storage Providers establish a connection with the Storage Client, the
Storage Client then provides a filesystem like interface, much like an NFS[Sandberg et al.
1985] mount point. The filesystem interface provided by the Storage Client allows appli-
cations to access the storage service like any other file system and therefore applications
need not be modified or to be linked with special libraries.

Storage Broker: For an organisation to be able to participate in the SX platform they
will need to use a Storage Broker. The Storage Broker enablesthe organisation to trade
and utilise storage services from other organisations. TheStorage Broker needs to be con-
figured to reflect how it should best serve the organisations interests. From a consumer’s
perspective the Storage Broker will need to know the organisations storage requirements
and the budget it is allowed to spend in the process of acquiring them. From the Provider’s

A Taxonomy of Distributed Storage Systems · 47

perspective the Storage Broker needs to be aware of the available storage and the financial
goals it is required to reach. Upon configuration, a Storage Broker will contact the storage
exchange with its requirements.

Storage Exchange (SX):The Storage Exchange component provides a platform for
Storage Brokers to advertise their storage services and requirements. The SX is a trusted
entity responsible for executing a market model and determining how storage services are
traded. When requests for storage are allocated to available storage services the Storage
Exchange generates a storage contract. The storage contract contains a configuration of the
storage policy forming a contract binding the provider to fulfil the service at the determined
price. In a situation where either the provider or consumer breaches a storage contract, the
SX will keep a record of reputation for each organisation which can be used to influence
future trade allocations.

4.11.2 Implementation.The storage provider and storage client components have been
written in C. The storage client utilises the FUSE library [FUSE 2000] to provide a local
mount point of the storage volume in user space. The Storage Broker and Storage Ex-
change have both been written in Java. Storage Providers support replication, allowing
volumes to be replicated across multiple storage providers, ensuring better reliability and
availability. Communication between components is carried out via TCP socket communi-
cation. The storage exchange accepts offers from storage brokers and employs a clearing
algorithm to allocate trades. Performance evaluation provided [Placek and Buyya 2006]
focuses on the storage exchange and comparing the differentclearing algorithms it em-
ploys.

4.11.3 Summary.The SX platform provides organisations with various storage ser-
vices and requirements the capability to trade and exchangethese services. The platform
aims to federate storage services, allowing organisationsto find storage services which
better meet their requirements whilst better utilising their available infrastructure. Organi-
sations are able to scavenge storage services across their network of workstations and with
the use of the SX platform lease it out globally. The Storage Exchange has much scope
for future research, laying a foundation for further investigation into utilising economic
principles to achieve autonomic management [Pattnaik et al. 2003] of storage services.

5. CONCLUSION

This paper discusses a wide range of topics and areas of research relevant to distributed
storage systems. We begin by proposing an abstract model, which gives an overall view,
demonstrating how each topic fits into the big scheme of things. The abstract model is sub-
sequently used as a road map for the work discussed throughout the taxonomy sections.
The taxonomy has two main sections to it, one section coversSystem Widetopics the other
Core. System-Widecovers storage functionality, architecture, operating environment and
usage patterns. Topics included in theCore section focus on autonomic storage, Feder-
ation, Consistency, Security and finally Routing and Network Overlays. The taxonomy
sections are followed by the survey, which covers a wide range of systems, from systems
which provide storage utility on a global scale (OceanStore) to systems which provide high
level of accessibility to mobile users (Coda). Each system has been selected for its unique
properties serving to exemplify topics discussed through our taxonomy section. Table V
demonstrates how each surveyed system traces back to our taxonomy and abstract model.

48 · Martin Placek and Rajkumar Buyya

Throughout our investigation we observe various relationships amongst topics covered.
In the taxonomy we see that distributed storage functionality, architecture, operating envi-
ronment, usage patterns, routing and consistency all sharevarious points of dependencies.
To illustrate, we observe that a system providing strong consistency requires the underly-
ing architecture to have some level of central control and predictability such that strong
consistency can be enforced. In contrast, systems which adopt an architecture with little or
no centralisation, may only support an optimistic approachto consistency or avoid dealing
with issues of consistency altogether by supporting a WORM usage pattern. These class of
systems typically provide publishing capability scaling to a dynamic global audience and
as such employ an architecture with limited centralisationto suite.

Whilst these are some of the issues facing current development of DSSs, there are
many emerging challenges on the horizon, two challenges include increasing in complex-
ity [Staab et al. 2003; Kephart and Chess 2003; Horn 2001] andglobal federation of re-
sources [Foster 2001; Venugopal et al. 2006; Rajasekar et al. 2002] which have given rise
to autonomic computing and Grid computing respectively. Autonomic computing aims to
overcome the burden imposed by complexity through abstracting it away from users and
developers. Whereas Grid computing allows institutions tocollaborate and share resources
across geographic and administrative boundaries. Whilst these are emerging areas of re-
search, the more established issues including consistency, routing and security, are no less
important. Hence they will continue to evolve and serve a keyrole in the development of
Distributed Storage Systems.

Future research and development of DSS is very much dependent on the underlying
network infrastructure. To illustrate, the advent of the Internet saw a subsequent flurry of
research aiming to harness new possibilities which come with global connectivity. With
networking predicted to undergo another quantum leap, outpacing development of compu-
tational and storage [Stix 2001] devices, it is certain thatthis radical change will result in
yet another wave of research, seeking to better utilise the advances in network infrastruc-
ture. Laying the foundation for exciting and innovative research into Distributed Storage
Systems.

REFERENCES

ADLER, S. 1999. The slashdot effect – an analysis of three Internetpublications.

ADYA , A., BOLOSKY, W. J., CASTRO, M., CERMAK , G., CHAIKEN , R., DOUCEUR, J. R., HOWELL, J.,
LORCH, J. R., THEIMER, M., AND WATTENHOFER, R. P. 2002. Farsite: federated, available, and reliable
storage for an incompletely trusted environment.SIGOPS Operating Systems Review 36,SI, 1–14.

ALBRECHT, K., ARNOLD, R.,AND WATTENHOFER, R. 2003. Clippee: A large-scale client/peer system.

ANDERSON, T., DAHLIN , M., NEEFE, J., PATTERSON, D., ROSELLI, D., AND WANG, R. 1996. Serverless
Network File Systems.ACM Transactions on Computer Systems 14,1 (Feb.), 41–79.

ANDROUTSELLIS-THEOTOKIS, S. AND SPINELLIS, D. 2004. A survey of peer-to-peer content distribution
technologies.ACM Computing Surveys 36,4, 335–371.

BARRETT, R., CHEN, Y.-Y. M., AND MAGLIO , P. P. 2003. System administrators are users, too: designing
workspaces for managing internet-scale systems. InCHI ’03: CHI ’03 extended abstracts on Human factors
in computing systems. ACM Press, New York, NY, USA, 1068–1069.

BARU, C., MOORE, R., RAJASEKAR, A., AND WAN , M. 1998. The sdsc storage resource broker. InCASCON
’98: Proceedings of the 1998 conference of the Centre for Advanced Studies on Collaborative research. IBM
Press, 5.

BERNSTEIN, P. A. AND GOODMAN, N. 1983. The failure and recovery problem for replicated databases. In
PODC ’83: Proceedings of the second annual ACM symposium on Principles of distributed computing. ACM
Press, New York, NY, USA, 114–122.

A Taxonomy of Distributed Storage Systems · 49

BINDEL , D. AND RHEA, S. 2000. The design of the oceanstore consistency mechanism.

BITTORRENT. http://www.bittorrent.com/protocol.html.

BLÖMER, J., KALFANE , M., KARP, R., KARPINSKI, M., LUBY, M., AND ZUCKERMAN, D. 1995. An xor-
based erasure-resilient coding scheme. Tech. Rep. TR-95-048, International Computer Science Institute,
Berkeley, USA, Berkley.

BOLOSKY, W. J., DOUCEUR, J. R., ELY, D., AND THEIMER, M. 2000. Feasibility of a serverless distributed
file system deployed on an existing set of desktop pcs. InSIGMETRICS ’00: Proceedings of the 2000 ACM
SIGMETRICS international conference on Measurement and modeling of computer systems. ACM Press, New
York, NY, USA, 34–43.

BORGHOFF, U. M. AND NAST-KOLB, K. 1989. Distributed systems: A comprehensive survey. Tech. Rep.
TUM-I8909, Postfach 20 24 20, D-8000 München 2, Germany.

BRAAM , P. J. 2002. The lustre storage architecture. Cluster File Systems Inc. Architecture, design, and manual
for Lustre. http://www.lustre.org/docs/lustre.pdf.

BUYYA , R. 2001. The virtual laboratory project: Molecular modeling for drug design on grid. InIEEE Dis-
tributed Systems Online.

BUYYA , R. 2002. Economic-based distributed resource managementand scheduling for grid computing. Ph.D.
thesis, Monash University, Melbourne, Australia.

CARNS, P. H., LIGON III, W. B., ROSS, R. B.,AND THAKUR , R. 2000. PVFS: A parallel file system for linux
clusters. InProceedings of the 4th Annual Linux Showcase and Conference. USENIX Association, Atlanta,
GA, 317–327.

CASTRO, M., ADYA , A., L ISKOV, B., AND MYERS, A. C. 1997. HAC: Hybrid adaptive caching for distributed
storage systems. InACM Symposium on Operating Systems Principles (SOSP). Saint Malo, France, 102–115.

CASTRO, M., DRUSHEL, P., GANESH, A., ROWSTRON, A., AND WALLACH , D. 2002. Secure routing for
structured peer-to-peer overlay networks.

CASTRO, M. AND L ISKOV, B. 2000. Proactive recovery in a Byzantine-Fault-Tolerant system. InIn Proc. of
Sigmetrics. 273–288.

CHERVENAK, A., FOSTER, I., KESSELMAN, C., SALISBURY, C., AND TUECKE, S. 2000. The data grid:
Towards an architecture for the distributed management andanalysis of large scientific datasets. InJournal of
Network and Computer Applications. Vol. 23.

CLARKE , I., SANDBERG, O., WILEY, B., AND HONG, T. W. 2001. Freenet: A distributed anonymous infor-
mation storage and retrieval system.Lecture Notes in Computer Science 2009, 46+.

COOPER, B. F. AND GARCIA-MOLINA , H. 2002. Peer-to-peer data trading to preserve information. ACM
Transactions on Information Systems 20,2, 133–170.

CRANDALL , P. E., AYDT, R. A., CHIEN, A. A., AND REED, D. A. 1995. Input/output characteristics of scalable
parallel applications. InProceedings of Supercomputing ’95. IEEE Computer Society Press, San Diego, CA.

CUCE, S. AND ZASLAVSKY, A. B. 2002. Adaptable consistency control mechanism for a mobility enabled file
system. InMDM ’02: Proceedings of the Third International Conferenceon Mobile Data Management. IEEE
Computer Society, Washington, DC, USA, 27–34.

D. DIMITRI , G. ANTONIO, K. B. 2002. Analysis of peer-to-peer network security using gnutella.

DABEK , F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. 2001. Wide-area cooperative
storage with CFS. InProceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP ’01).
Chateau Lake Louise, Banff, Canada.

DABEK , F., ZHAO, B., DRUSCHEL, P.,AND STOICA, I. 2003. Towards a common api for structured peer-to-
peer overlays.

DANEZIS, G., DINGLEDINE, R., AND MATHEWSON, N. 2002. Mixminion: Design of a Type III Anonymous
Remailer Protocol. InProceedings of the 2003 IEEE Symposium on Security and Privacy. 2–15.

DATE, C. J. 2002.Introduction to Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

DEMERS, A. J., PETERSEN, K., SPREITZER, M. J., TERRY, D. B., THEIMER, M. M., AND WELCH, B. B.
1994. The bayou architecture: Support for data sharing among mobile users. InProceedings IEEE Workshop
on Mobile Computing Systems & Applications. Santa Cruz, California, 2–7.

50 · Martin Placek and Rajkumar Buyya

DEVARAKONDA , M., SEGAL, A., AND CHESS, D. 2003. A toolkit-based approach to policy-managed storage.
In POLICY ’03: Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and
Networks. IEEE Computer Society, Washington, DC, USA, 89.

DING CHOON-HOONG, S. N. AND BUYYA , R. 2005. Peer-to-peer networks for content sharing. InPeer-to-
Peer Computing: Evolution of a Disruptive Technology, R. Subramanian and B. Goodman, Eds. Idea Group
Publishing, Hershey, PA, USA, 28–65.

DINGLEDINE, R. 2000. The free haven project: Design and deployment of ananonymous secure data haven.
Master’s thesis, MIT.

DINGLEDINE, R., FREEDMAN, M. J.,AND MOLNAR, D. 2000. The free haven project: Distributed anonymous
storage service. InWorkshop on Design Issues in Anonymity and Unobservability. Number 2009 in LNCS.
67–95.

DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. 2003. Reputation in p2p anonymity systems.

DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. 2004. Tor: The Second-Generation Onion Router. In
Proceedings of the Seventh USENIX Security Symposium.

DOUCEUR, J. 2002. The sybil attack.

DOUCEUR, J. R.AND BOLOSKY, W. J. 1999. A large-scale study of file-system contents. InProceedings of
the 1999 ACM SIGMETRICS international conference on Measurement and modeling of computer systems.
ACM Press, 59–70.

DRUSCHEL, P. AND ROWSTRON, A. 2001. PAST: A large-scale, persistent peer-to-peer storage utility. In
HotOS VIII. Schloss Elmau, Germany, 75–80.

EATON, P.AND WEIS, S. Examining the security of a file system interface to oceanstore.

ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. 1976. The notions of consistency and
predicate locks in a database system.Communications of the ACM 19,11, 624–633.

FELDMAN , M., LAI , K., CHUANG, J.,AND STOICA, I. 2003. Quantifying disincentives in peer-to-peer net-
works. In1st Workshop on Economics of Peer-to-Peer Systems.

FERGUSON, D. F., NIKOLAOU , C., SAIRAMESH, J.,AND YEMINI , Y. 1996. Economic models for allocating
resources in computer systems. 156–183.

FOSTER, I. T. 2001. The anatomy of the grid: Enabling scalable virtual organizations. InEuro-Par ’01: Pro-
ceedings of the 7th International Euro-Par Conference Manchester on Parallel Processing. Springer-Verlag,
London, UK, 1–4.

FREEDMAN, M. J. AND MORRIS, R. 2002. Tarzan: a peer-to-peer anonymizing network layer. In CCS ’02:
Proceedings of the 9th ACM conference on Computer and communications security. ACM Press, New York,
NY, USA, 193–206.

FUSE. 2000. http://sourceforge.net/projects/fuse/.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. 2003. The google file system. InProceedings of the
nineteenth ACM symposium on Operating systems principles. ACM Press, 29–43.

GILL , D. S., ZHOU, S., AND SANDHU , H. S. 1994. A case study of file system workload in a large-scale
distributed environment. InProceedings of the 1994 ACM SIGMETRICS conference on Measurement and
modeling of computer systems. ACM Press, 276–277.

GRAY, J. AND REUTER, A. 1993.Transaction Processing: Concepts and Techniques. Morgan Kaufmann.

GRAY, J. N., LORIE, R. A., PUTZOLU, G. R.,AND TRAIGER, I. L. 1994. Granularity of locks and degrees of
consistency in a shared data base. 181–208.

HAERDER, T. AND REUTER, A. 1983. Principles of transaction-oriented database recovery. ACM Computing
Survey 15,4, 287–317.

HARDIN , G. 1968. Tragedy of the commons.Science 162,3859, 1243–1248.

HARREN, M., HELLERSTEIN, J., HUEBSCH, R., LOO, B., SHENKER, S., AND STOICA, I. 2002. Complex
queries in dht-based peer-to-peer networks.

HARRINGTON, A. AND JENSEN, C. 2003. Cryptographic access control in a distributed filesystem. InSACMAT
’03: Proceedings of the eighth ACM symposium on Access control models and technologies. ACM Press, New
York, NY, USA, 158–165.

HARTMAN , J. H.AND OUSTERHOUT, J. K. 2001. The Zebra striped network file system. InHigh Performance
Mass Storage and Parallel I/O: Technologies and Applications, H. Jin, T. Cortes, and R. Buyya, Eds. IEEE
Computer Society Press and Wiley, New York, NY, 309–329.

A Taxonomy of Distributed Storage Systems · 51

HASAN, R., ANWAR, Z., YURCIK, W., BRUMBAUGH, L., AND CAMPBELL , R. 2005. A survey of peer-to-peer
storage techniques for distributed file systems. InIEEE International Conference on Information Technology
(ITCC). IEEE.

HAZEL , S. AND WILEY, B. 2002. Achord: A variant of the chord lookup service for use in censorship resistant
peer-to-peer publishing systems.

HEISER, G., ELPHINSTONE, K., VOCHTELOO, J., RUSSELL, S.,AND L IEDTKE, J. 1998. The Mungi single-
address-space operating system.Software Practice and Experience 28,9, 901–928.

HOLTMAN , K. 2001. Cms data grid system overview and requirements.

HORN, P. 2001. Autonomic computing: Ibm’s perspective on the state of information technology.

HOSCHEK, W., JAEN-MARTINEZ, F. J., SAMAR , A., STOCKINGER, H., AND STOCKINGER, K. 2000. Data
Management in an International Data Grid Project. InProceedings of the 1st IEEE/ACM International Work-
shop on Grid Computing (GRID ’00). Springer-Verlag, London, UK, Bangalore, India.

HOWARD, J. H., KAZAR , M. L., MENEES, S. G., NICHOLS, D. A., SATYANARAYANAN , M., SIDEBOTHAM ,
R. N., AND WEST, M. J. 1988. Scale and performance in a distributed file system. ACM Transactions
Computing Systems 6,1, 51–81.

HUGHES, D., COULSON, G., AND J.WALKERDINE. 2005. Freeriding on gnutella revisited: the bell tolls? In
IEEE Distributed Systems Online.

IEEE/ANSI STD. 1003.1.Portable operating system interface (POSIX)-part 1: System application program
interface (API) [C language], 1996 editon.

JAMES V. HUBER, J., CHIEN, A. A., ELFORD, C. L., BLUMENTHAL , D. S.,AND REED, D. A. 1995. Ppfs:
a high performance portable parallel file system. InICS ’95: Proceedings of the 9th international conference
on Supercomputing. ACM Press, New York, NY, USA, 385–394.

JONES, M. B. 1998. Web-based data management. InData and Information Management in the Ecological
Sciences: A resource Guide, S. S. W.K Michener, J.H Porter, Ed. University of New Mexico, Albuquerque,
New Mexico.

KEPHART, J. O.AND CHESS, D. M. 2003. The vision of autonomic computing.Computer 36,1, 41–50.

K ISTLER, J. J.AND SATYANARAYANAN , M. 1991. Disconnected operation in the coda file system. InThir-
teenth ACM Symposium on Operating Systems Principles. Vol. 25. ACM Press, Asilomar Conference Center,
Pacific Grove, U.S., 213–225.

KUBIATOWICZ , J., BINDEL , D., CHEN, Y., EATON, P., GEELS, D., GUMMADI , R., RHEA, S., WEATHER-
SPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. Oceanstore: An architecture for global-scale
persistent storage. InProceedings of ACM ASPLOS. ACM.

KUNG, H. T. AND ROBINSON, J. T. 1981. On optimistic methods for concurrency control.ACM Transactions
on Database Systems 6,2, 213–226.

LEVY, E. AND SILBERSCHATZ, A. 1990. Distributed file systems: concepts and examples.ACM Computing
Survey 22,4, 321–374.

L I , Z., CHEN, Z.,AND ZHOU, Y. 2005. Mining block correlations to improve storage performance.Transactions
on Storage 1,2, 213–245.

L I , Z., SRINIVASAN , S. M., CHEN, Z., ZHOU, Y., TZVETKOV, P., YAN , X., AND HAN , J. Using data mining
for discovering patterns in autonomic storage systems.

LUA , K., CROWCROFT, J., PIAS, M., SHARMA , R., AND L IM , S. 2005. A survey and comparison of peer-to-
peer overlay network schemes.Communications Surveys & Tutorials, IEEE, 72–93.

LYNCH, N. A., MALKHI , D., AND RATAJCZAK , D. 2002. Atomic data access in distributed hash tables. In
IPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer Systems. Springer-Verlag,
London, UK, 295–305.

MARTI , S. AND GARCIA-MOLINA , H. 2003. Identity crisis: Anonymity vs. reputation in p2p systems. In
Peer-to-Peer Computing. IEEE Computer Society, 134–141.

MAYMOUNKOV, P. AND MAZIERES, D. 2002. Kademlia: A peer-to-peer information system based on the
xor metric. InIPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer Systems.
Springer-Verlag, London, UK, 53–65.

M ILOJICIC, D. S., KALOGERAKI , V., LUKOSE, R., NAGARAJA, K., PRUYNE, J., RICHARD, B., ROLLINS,
S.,AND XU, Z. Peer-to-peer computing.

52 · Martin Placek and Rajkumar Buyya

MORRIS, J. H., SATYANARAYANAN , M., CONNER, M. H., HOWARD, J. H., ROSENTHAL, D. S.,AND SMITH ,
F. D. 1986. Andrew: a distributed personal computing environment.Communications of the ACM 29,3, 184–
201.

MOYER, S. A. AND SUNDERAM, V. S. 1994. PIOUS: A scalable parallel I/O system for distributed computing
environments. InProceedings of the Scalable High-Performance Computing Conference. 71–78.

MUTHITACHAROEN, A., MORRIS, R., GIL , T. M., AND CHEN, B. 2002. Ivy: A read/write peer-to-peer file
system. InProceedings of 5th Symposium on Operating Systems Design and Implementation. USENIX.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. 1995. FIPS PUB 180-1: Secure Hash Standard.
Supersedes FIPS PUB 180 1993 May 11.

NIEUWEJAAR, N. AND KOTZ, D. 1996. The Galley parallel file system. InProceedings of the 10th ACM
International Conference on Supercomputing. ACM Press, Philadelphia, PA, 374–381.

NOBLE, B. D. AND SATYANARAYANAN , M. 1994. An empirical study of a highly available file system. New
York, NY, USA.

ORAM , A. 2001. Peer-to-Peer : Harnessing the Power of Disruptive Technologies. O’Reilly & Associates,
Sebastopol, CA.

PATTNAIK , P., EKANADHAM , K., AND JANN , J. 2003.Grid Computing: Making the Global Infrastructure a
Reality. Wiley Press, New York, NY, USA, Chapter Autonomic Computing and GRID.

PLACEK , M. AND BUYYA , R. 2006. Storage exchange: A global trading platform for storage services. In12th
International European Parallel Computing Conference (EuroPar). LNCS. Springer-Verlag, Berlin, Germany,
Dresden, Germany.

PLAXTON , C. G., RAJARAMAN , R., AND RICHA , A. W. 1997. Accessing nearby copies of replicated objects
in a distributed environment. InACM Symposium on Parallel Algorithms and Architectures. 311–320.

RAJASEKAR, A., WAN , M., AND MOORE, R. 2002. Mysrb & srb: Components of a data grid.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. 2000. A scalable content ad-
dressable network. Tech. Rep. TR-00-010, Berkeley, CA.

REED, D. A., MENDES, C. L., DA LU, C., FOSTER, I., AND KESSELMAN, C. 2003. The Grid 2: Blueprint
for a New Computing Infrastructure - Application Tuning andAdaptation, Second ed. Morgan Kaufman, San
Francisco, CA. pp.513-532.

RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H., ZHAO, B., AND KUBIATOWICZ , J. 2003. Pond: The
oceanstore prototype. InProceedings of the Conference on File and Storage Technologies. USENIX.

RIES, D. R. AND STONEBRAKER, M. 1977. Effects of locking granularity in a database management system.
ACM Transactions on Database Systems 2,3, 233–246.

RIES, D. R. AND STONEBRAKER, M. R. 1979. Locking granularity revisited.ACM Transactions on Database
Systems 4,2, 210–227.

RIVEST, R. L. 1992. The MD5 Message Digest Algorithm. RFC 1321.

ROSENBLUM, M. AND OUSTERHOUT, J. K. 1992. The design and implementation of a log-structured file
system.ACM Transactions on Computer Systems 10,1, 26–52.

ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems Platforms (Mid-
dleware).Lecture Notes in Computer Science 2218, 329–350.

RUDIS, B. AND KOSTENBADER, P. 2003. The enemy within: Firewalls and backdoors.

SANDBERG, R., GOLDBERG, D., KLEIMAN , S., WALSH, D.,AND LYON, B. 1985. Design and implementation
of the Sun Network Filesystem. InProc. Summer 1985 USENIX Conf.Portland OR (USA), 119–130.

SATYANARAYANAN , M. 1989. A survey of distributed file systems. Tech. Rep. CMU-CS-89-116, Pittsburgh,
Pennsylvania.

SATYANARAYANAN , M. 1990. Scalable, secure, and highly available distributed file access.Computer 23,5,
9–18, 20–21.

SATYANARAYANAN , M. 1992. The influence of scale on distributed file system design. IEEE Transactions on
Software Engineering 18,1, 1–8.

SATYANARAYANAN , M., K ISTLER, J. J., KUMAR , P., OKASAKI , M. E., SIEGEL, E. H.,AND STEERE, D. C.
1990. Coda: A highly available file system for a distributed workstation environment.IEEE Transactions on
Computers 39,4, 447–459.

A Taxonomy of Distributed Storage Systems · 53

SCHMUCK, F. AND HASKIN , R. 2002. GPFS: A shared-disk file system for large computingclusters. InProc.
of the First Conference on File and Storage Technologies (FAST). 231–244.

SCHOLLMEIER, R. 2001. A definition of peer-to-peer networking for the classification of peer-to-peer architec-
tures and applications. InPeer-to-Peer Computing. IEEE Computer Society, 101–102.

SCHROEDER, W. 1999. The sdsc encryption/authentication (sea) system. Concurrency - Practice and Experi-
ence 11,15, 913–931.

SHAFER, S. T. 2002. Corporate espionage the enemy within. Red Herring.
SIT, E. AND MORRIS, R. 2002. Security considerations for peer-to-peer distributed hash tables.
SPASOJEVIC, M. AND SATYANARAYANAN , M. 1996. An empirical study of a wide-area distributed file system.

ACM Transactions on Computer Systems 14,2, 200–222.
STAAB , S., HEYLIGHEN, F., GERSHENSON, C., FLAKE , G. W., PENNOCK, D. M., FAIN , D. C., ROURE,

D. D., ABERER, K., SHEN, W.-M., DOUSSE, O.,AND THIRAN , P. 2003. Neurons, viscose fluids, freshwater
polyp hydra-and self-organizing information systems.IEEE Intelligent Systems 18,4, 72–86.

STIX , G. 2001. The ultimate optical networks: The triumph of the light. Scientific American 284,1, 80–86.
STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, F., AND BALAKRISHNAN , H. 2001. Chord: A scalable

Peer-To-Peer lookup service for internet applications. InProceedings of the 2001 ACM SIGCOMM Confer-
ence. 149–160.

SYVERSON, P. F., GOLDSCHLAG, D. M., AND REED, M. G. 1997. Anonymous connections and onion routing.
In IEEE Symposium on Security and Privacy. Oakland, California, 44–54.

THEKKATH , C. A. AND LEE, E. K. 1996. Petal: Distributed virtual disks. InProc. 7th Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Systems. 84–92.

THEKKATH , C. A., MANN , T., AND LEE, E. K. 1997. Frangipani: A scalable distributed file system.In
Symposium on Operating Systems Principles. 224–237.

TRIANTAFILLOU , P. AND PITOURA, T. 2003. Towards a unifying framework for complex query processing
over structured peer-to-peer data networks. InDBISP2P, K. Aberer, V. Kalogeraki, and M. Koubarakis, Eds.
Lecture Notes in Computer Science, vol. 2944. Springer, 169–183.

TUTSCHKU, K. 2004. A measurement-based traffic profile of the edonkey filesharing service. InPAM,
C. Barakat and I. Pratt, Eds. Lecture Notes in Computer Science, vol. 3015. Springer, 12–21.

VAZHKUDAI , S. S., MA , X., FREEH, V. W., TAMMINEEDI , J. W. S. N., ,AND SCOTT., S. L. 2005. Freeloader:
Scavenging desktop storage resources for scientific data. In IEEE/ACM Supercomputing 2005 (SC|05). IEEE
Computer Society, Seattle, WA.

VENUGOPAL, S., BUYYA , R., AND RAMAMOHANARAO , K. 2006. A taxonomy of data grids for distributed
data sharing, management, and processing.ACM Computing Survey 28.

WALDMAN , M., RUBIN , A., AND CRANOR, L. 2000. Publiues: a robust tamper-evident censorship-resistant
web publishing system. InProceedings of the Nineth USENIX Security Symposium. USENIX Association,
Denver, CO, USA.

WEATHERSPOON, H., WELLS, C., EATON, P., ZHAO, B., AND KUBIATOWICZ , J. 2001. Silverback: A global-
scale archival system.

WEGLARZ, J., NABRZYSKI , J.,AND SCHOPF, J., Eds. 2004.Grid resource management: state of the art and
future trends. Kluwer Academic Publishers, Norwell, MA, USA.

WELSH, M., CULLER, D., AND BREWER, E. 2001. Seda: an architecture for well-conditioned, scalable internet
services. InSOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems principles. ACM
Press, New York, NY, USA, 230–243.

WILCOX-O’HEARN, B. 2002. Experiences deploying a large-scale emergent network. In Revised Papers from
the First International Workshop on Peer-to-Peer Systems. Springer-Verlag, 104–110.

WOLSKI, R., PLANK , J. S., BREVIK , J.,AND BRYAN , T. 2001. G-commerce: Market formulations controlling
resource allocation on the computational grid. InInternational Parallel and Distributed Processing Symposium
(IPDPS). IEEEE, San Francisco.

YANG, M., ZHANG, Z., LI , X., AND DAI , Y. 2005. An empirical study of free-riding behavior in the maze p2p
file-sharing system. In4th International Workshop on Peer-To-Peer Systems. Ithaca, New York, USA.

ZHAO, B. Y., HUANG, L., STRIBLING , J., RHEA, S. C., JOSEPH, A. D., AND KUBIATOWICZ , J. D. 2003.
Tapestry: A global-scale overlay for rapid service deployment. IEEE Journal on Selected Areas in Communi-
cations. Special Issue on Service Overlay Networks, to appear.

