
 1

A Dataflow System for Unreliable Computing Environments

Chao Jin, Zheng Zhang
*
, Lex Stein

*
, and Rajkumar Buyya

GRIDS Laboratory, Dept. of CCSE

The University of Melbourne, Australia

{chaojin, raj}@csse.unimelb.edu.au

System Research Group
*

Microsoft Research Asia, China

{Zheng.Zhang, Lex.Stein}@microsoft.com

Abstract

This paper presents the design, implementation and evaluation of a dataflow system, including

a dataflow programming model and a dataflow engine, for coarse-grained distributed data inten-

sive applications. The dataflow programming model provides users with a transparent interface

for application programming and execution management in a parallel and distributed computing

environment. The dataflow engine dispatches the tasks onto candidate distributed computing re-

sources in the system, and manages failures and load balancing problems in a transparent man-

ner. The system has been implemented over .NET platform and deployed in a Windows Desktop

Grid. This paper uses two benchmarks to demonstrate the scalability and fault tolerance proper-

ties of our system.

1. Introduction

The growing popularity of distributed comput-

ing systems, such as P2P [18] and Grid com-

puting [11], amplifies the scale and heteroge-

neity of network computing model. This is

leading to use of distributed computing in e-

Science [33] and e-Business [26] applications.

However, programming on distributed re-

sources, especially for parallel applications, is

more difficult than programming on central-

ized environment. In particular, a distributed

systems programmer must take extra care with

data sharing conflicts, deadlock avoidance,

and fault tolerance. Programmers lacking ex-

periences face newfound difficulties with ab-

stractions such as processes, threads, and mes-

sage passing. A major goal of our work is to

ease programming by simplifying the abstrac-

tions.

There are many research systems that sim-

plify distributed computing. These include

BOINC [4], XtremWeb [10], Alchemi [1],

SETI@Home [18], Folding@Home [8] and

JNGI [17]. These systems divide a job into a

number of independent tasks. Applications

that can be parallelized in this way are called

“embarrassingly parallel”. Embarrassingly

parallel applications can easily utilize distrib-

uted resources, however many algorithms can

not be expressed as independent tasks because

of internal data dependencies.

The work presented in this paper provides

support for more complex applications by ex-

ploiting the data dependency relationship dur-

ing the computing process. Many resource-

intensive applications consist of multiple

modules, each of which receives input data,

performs computations and generates output..

Scientific data-intensive examples include ge-

nomics [28], simulation [16], data mining [24]

and graph computing [32]. In many cases for

these applications, a module’s output becomes

other modules’ input. Generally, we can use

dataflow [34] to describe such a computing

model.

A computing job can be decomposed into a

data dependency graph of computing tasks,

which can be automatically parallelized and

 2

scheduled across distributed computing re-

sources.

This paper presents a dataflow program-

ming model used to compose a dataflow graph

for specifying the data dependency relation-

ship within a distributed application. Under

the dataflow interface, we use a dataflow en-

gine to explore the dataflow graph to schedule

tasks across distributed resources and auto-

matically handle the cumbersome problems,

such as scalable performance, fault tolerance,

load balancing, etc. In particular, the dataflow

engine is responsible for maintaining the data-

flow graph, updating availability status of data

and scheduling tasks onto workers in a fault

tolerant manner. Within this process, users do

not need to worry about the details of proc-

esses, threads and explicit communication.

The main contributions of this work are:

1) A simple and powerful dataflow pro-

gramming model, which supports the compo-

sition of parallel applications for deployment

in a distributed environment. The users can

create a dataflow graph in a simple manner

programmatically, based on which data needed

and generated during execution is partitioned

into suitable granularity. Each partition is ab-

stracted as a vertex in the graph. Each vertex is

identified by a unique name, through which

the dependency relationship is specified. Also,

users need to specify the execution module for

each vertex, which is used to generate output

vertices from available input vertices. A stor-

age layer is responsible for holding vertices

generated during execution.

2) An architecture and runtime machinery

that supports scheduling of the dataflow com-

putation in dynamic environments, and han-

dles failures transparently. This system is es-

pecially designed for Desktop Grid environ-

ments. We use two methods for handling fail-

ures: re-scheduling and replication.

3) A detailed analysis of dataflow model

using two sample applications over a Desktop

Grid. We have investigated scalability, fault

tolerance and execution overhead.

The remainder of this paper is organized

as follows. Section 2 provides a discussion on

related work. Section 3 describes the dataflow

programming model with several examples.

Section 4 presents the architecture and the de-

sign with a prototype implementation of the

dataflow system over .NET platform. Section

5 reports the experimental evaluation of the

system. Section 6 concludes the paper with

pointer to future work.

2. Related work

Dataflow concept was first presented by Den-

nis et al. [13] [34] and has led to a lot of re-

search. As the pure dataflow is fine-grained,

its practical implementation has been found to

be an arduous task[2]. Thus optimized ver-

sions of dataflow models have also been pre-

sented, including dynamic dataflow model[3]

and synchronous dataflow model[20].

However, the dataflow concept still attracts a

great interest because it is a natural way to

express parallel applications and plays an

important role in applications such as digital

signal processing for coarse-grained parallel

applications [23].

Grid computing platforms such as Condor

[15][6] provide mechanisms for workflow

scheduling. Condor can manage resources in a

single cluster, multiple clusters and even clus-

ters distributed in a Grid-like environment.

However, Condor works at the granularity of a

single job. Within each job, there may be mul-

tiple processes cooperating with message pass-

ing middleware. Condor does not focus on the

programming difficulties associated with the

data communication within one job, but em-

phasizes on the high level problem of match-

ing the available computing power with the

requirements of jobs. Furthermore, workflow

research falls into the control flow category,

which has a different interface and program-

ming model to that of dataflow work. Most

other Grid platforms, for example, Globus

[11] and Nimrod [5], share similar interests as

to Condor system.

 3

River [25] provides a dataflow program-

ming environment for scientific database like

applications [21][29] on clusters of computers

through a visual interface. River uses a dis-

tributed queue and graduated declustering to

provide maximum performance even in the

face of non-uniformities in hardware, software

and workload. However the dataflow interface

in River is coupled with components and the

granularity of data is not fine enough for effi-

cient scheduling. Furthermore, River does not

focus on the fault tolerance problem in dy-

namic environment.

MapReduce [14] is a cluster middleware

designed to help programmers to transform

and aggregate key-value pairs by automating

parallelism and failure recovery. Their pro-

gramming model is specific to the needs of

Google. Actually each MapReduce computing

can be easily expressed as a dataflow graph.

BAD-FS [12] is a distributed file system

designed for batch processing applications.

Through exposing explicit policy control, it

supports I/O-intensive batch workload through

batch-pipeline model. Although BAD-FS

shares some similarity with our proposal on

how to deal with failures and achieve efficient

scheduling, it aims to support batch applica-

tions with scheduling on task granularity and

does not focus on how to reduce the difficul-

ties for programming in distributed environ-

ment.

Kepler [27] is a system for scientific

workflows. It provides a graph interface for

programming. Its visual programming model

is especially suitable for a small number of

components. In comparison, language support

for composing the dataflow graph and pro-

gramming model is more flexible and more

suitable to partition large scale data and

schedule the execution on them over distrib-

uted resources.

3. Programming Model

Dataflow programming model abstracts the

process of computation as a dataflow graph

consisting of vertices and directed edges.

The vertex embodies two entities:

a) The data created during the computation

or the initial input data from users;

b) The execution module to generate the

corresponding vertex data.

The directed edge connects vertices within

the dataflow graph, which indicates the de-

pendency relationship between vertices. Gen-

erally we expect the dataflow graph to be a

Directed Acyclic Graph (DAG).

We call a vertex an initial vertex if there

are no edges pointing to it and it has edges

pointing to other vertices; correspondingly, a

vertex is called a result vertex if it has no

edges pointing to other vertices and there are

some edges pointing to it. Generally, an initial

vertex does not have an associated execution

module.

Given a vertex, x, its neighbor vertices

which have edges pointing to it are its inputs.

If all its inputs are ready (i.e. the data of the

input vertices are available), its execution

module will be triggered automatically to gen-

erate its data. Then the generated data may be

now available as the input for other vertices.

In the beginning, we assume all the initial ver-

tices should be available. A reliable storage

system holds all the data for vertices.

Our current programming model focuses on

supporting a static dataflow graph, which

means the number of vertices and their rela-

tionships are known before execution.

3.1 Namespace for vertices

Each vertex has a unique name in the dataflow

graph. The name consists of 3 parts: Category,

Version and Space. Thus, the name is denoted

as <C, T, S>. Category denotes different kinds

of vertices; Version denotes the index for the

vertex along the time axis during the comput-

 4

ing process; Space denotes the vertex’s index

along the space axis during execution. In the

following text, we call vertex name as name.

In particular, Category is a string; the type of

Version is integer and the type of Space is in-

teger array.

As an example, Figure 1 illustrates a one

dimensional cellular automata application

with 5 cells. Each vertex represents a cell.

Version 0 means the initial status of cells.

Through the execution, each cell updates its

status two times, as the result of Version 1 and

Version 2 respectively. Each update is based

on its right neighbor and its own status at the

last step. For example, <CA, 1, 2> denotes the

second vertex in Version 1. Actually, the data

relationship could be specified as:
<CA, t, s>←{<CA, t-1, s>, <CA, t-1, s+1>}.

 T

Space

0

1

2

1 2 3 4 5

V
er

si
o
n

Initial Vertex

Result Vertex

Vertex

<CA, 1, 2>

Figure 1 The dataflow graph for a one dimensional

Cellular Automata computation. Each vertex represents

a Cell. Each cell updates its status two times and the

updating takes its own status and the status of its right

neighbor in the last step as inputs.

Another example is an iterative matrix and

vector multiplication, V
t
=M*V

t-1
. To parallel-

ize the execution, we partition the matrix and

vector into rows of m pieces with each piece

being denoted as a vertex. To name them,

Category = M denotes the matrix vertices and

Category = V denotes the vector vertices. For

i-th vector vertex, the data relationship should

be specified as:

<V, t, i>←{<M, 0, i>, <V, t-1, j>} (j=1…m).

3.2 Dataflow library API

3.2.1 Specifying Execution Module

Besides the data dependency relationship, us-

ers also need to specify instructions/code to be

executed, which we refer to as the execution

module, to generate the output for each vertex.

Users can inherit the Module class in dataflow

library to write execution code for each vertex.

To do that, users need to implement 3 virtual

functions:
• ModuleName SetName()

• void Compute(Vertex[] inputs)

• byte[] SetResult()

SetName() is used to specify a name for the

execution module, which will be used as an

identifier during editing the data dependency

graph. Each different module should have a

unique name.

Compute() is implemented by users for

generating output data taking input data from

other vertices. The input data is denoted by the

input parameter inputs. Each element of inputs

consists of two parts: a name and a data

buffer.

SetResult() is called by the system to get

the output data after Compute() is finished.

3.2.2 Composing Dataflow Graph

The dataflow API provides two functions for

composing the static data dependency graph:
• CreateVertex(vertex, ModuleName)

• Dependency(vertex, InputVertex).

CreateVertex() is used to specify the name

and corresponding execution module for each

vertex, denoted by vertex and ModuleName

respectively. The dataflow library will main-

tain the internal data structure for created ver-

tex, such as its dependent vertices list.

Dependency(x, y) is used to add y as a de-

pendent vertex of vertex x. The dataflow li-

brary will add x to y’s dependent vertices list,

which is created when calling CreateVertex()

for x.

 5

Given two vertices, x and y, to specify their

dependency relationship, users should first call

CreatVertex() for x and y respectively and then

call Dependency() to specify their relationship.

Two functions are provided to set the initial

and result vertices as follows:

• SetInitialVertex(vertex, file)

• SetResultVertex(vertex, file)

Generally the initial vertices are some input

files from users and the result vertices are the

final execution result.

3.3 Example

Given the matrix vector iterative multiplica-

tion example, V
t
=M*V

t-1
. We partition the ma-

trix and vector by rows into m pieces respec-

tively, as . The correspond-

ing dataflow graph is illustrated by Figure 2.

For this computing, users may use two ba-

sic execution modules: multiplication of ma-

trix and vector pieces and sum of m multipli-

cation results.

M0 V
t
0 M1 V

t
1 Mm-1 V

t
m-1

V
t+1

i

Multiplication

Sum

Matrix Piece Vector Piece Multiplication Result

I
t
i,0 I

t
i,1 I

t
i,m-1

Figure 2 Dataflow graph for the i-th vector piece

Figure 3 Multiplication Module

Figure 3 and Figure 4 show the two basic

modules. In Multiplication module, inputs for

Compute() should be Mi and Vi
t-1

, and result

should be their multiplication. In Sum module,

inputs for Compute() should be m multiplica-

tions from Multiplication module, and result

should be Vi
t
.

It depends on the user to combine these 2

modules into one execution module.

Figure 4 Sum Module.

Given m partitions and T iterations, Figure

5 illustrates how to edit the data dependency

graph for this example.

Figure 5 Composition of the dataflow graph.

Finally users set the input files for the ma-

trix and vector pieces through SetInitialVer-

class Multiple : Module {
 byte[] result;

 override string SetName() {
 return “multiple”;
 }

 override void Compute(Vertex[] inputs) {
 /*unpack matrix & vector piece
 from inputs*/
 /*compute multiplication*/
 /*put result into result*/
 }

 override byte[] SetResult() {
 return result;
 }
}

for (int i = 0; i < m; i++)
 //m pieces matrix vertices
 CreateVertex(name(“M”,0,i), null);

for (int i = 0; i < m; i++)
 //m pieces vector vertices
 CreateVertex(name (“V”,0,i), null);

for (int t = 0; t < T; t++) { //T iteration
 for (int i = 0; i < m; i++) {
 matriV = name (“M”, 0, i);
 for (int j = 0; j < m; j++) {
 /*multiplication result*/

 interV = name (“I”, t, i, j);
 CreateVertex(interV, “Multiplication”);

 vecV = Vertex(“V”, t-1, j);
 Dependency(interV, matriV);
 Dependency(interV, vecV);
 }

 sumV = Vertex(“V”, t, i); //sum result
 CreateVertex(sumV, “Sum”);
 for (int j = 0; j < m; j++) {
 interV = Vertex(“I”, t-1, i, j);
 Dependency(sumV, interV);
 }
 }
}

class Sum : Module {
 byte[] result;

 override string SetName() {
 return “sum”;
 }

 override void Compute(Vertex[] inputs) {
 /*unpack m multiplication piece
 from inputs*/
 /*compute sum*/
 /*put result into result*/
 }

 override byte[] SetResult() {
 return result;
 }
}

∑
=

−

==

m

j

t

ji

t

i miVMV
1

1
)...1(*

 6

tex(). Also users need to specify to collect the

final version of vector as the result through

SetResultVertex().

4. Architecture and Design

The design of a dataflow system should take

into account the features of its target execution

environment. For example, in a Grid environ-

ment, which generally consists of multiple su-

percomputing nodes and high bandwidth net-

work across different geographic locations, we

need to handle large latency across wide area

networks and make the granularity of tasks so

that computation to communication ratio is

high; in desktop computing or volunteer com-

puting environments, that generally consist of

large number of dynamic commodity PCs

across WAN, it is better to consider the high

failure rate of contributing PCs and the granu-

larity of tasks should be small enough for

commodity PCs.

This section describes an architecture de-

signed for a Windows Desktop Grid consisting

of commodity PCs based on .NET platform.

The environment consists of idle desktops that

are used for computing but drop out of the dis-

tributed system as soon as interactive pro-

grams are started by the users on them. Such

nodes can rejoin the system when they are idle

again. So it is important to handle the frequent

machine entries and exits. In our design, we

take the exit of a node as a failure.

4.1 System Overview

The dataflow system consists of a single

master and multiple workers as illustrated in

Figure 6. The master is responsible for accept-

ing jobs from users, organizing multiple work-

ers to work cooperatively, sending executing

requests to workers and handling failures of

workers. Each worker contributes CPU and

disk resources to the dataflow system and

waits for executing requests from the master.

The shared disk space among the workers is

organized by the master as a distributed data-

flow storage system, which holds the vertex

data during execution.

Dataflow

Executor

 .NET Platform

Dataflow

Executor

 .NET Platform

User

Master

Desktop Grid

Dataflow Model

Worker 1

Dataflow

Executor

 .NET Platform

Worker 2 Worker n

.NET Platform

Dataflow Engine

Dataflow Map

Figure 6 Architecture of Dataflow system

After the user submits a dataflow task, in-

cluding initial files, data dependency graph

and execution modules to the master, the mas-

ter will send the initial files as initial vertices

to distributed storage across workers. When

the initial vertices are available from the

storage, the execution of the dataflow graph is

started and the master explores the data de-

pendency graph to check ready tasks. A vertex

is read, if all of its input vertices are available,

and it will be dispatched to a worker for exe-

cuting. Its output data will be kept in the data-

flow storage and the master will schedule new

ready tasks as and when new vertex data be-

comes available.

After the execution finishes, the result ver-

tex data is stored in result files specified by

the user. These can be collected by the user

from the master.

Granularity of vertex data is important for

the scheduling efficiency. The partitioning of

data depends on many parameters, such as ap-

plication properties and hardware environ-

ment. According to our physical settings, we

suggest each vertex not be larger than 100M

bytes. A vertex size that is too small will also

impact the performance.

 7

4.2 The Structure of the Master

The master is responsible for monitoring the

status of each worker, dispatching ready tasks

to suitable workers and tracking the progress

of each job according to the data dependency

graph. On the master, there are 4 key compo-

nents: membership, registry, dataflow graph

and scheduling.

• Membership component: maintains the list

of available worker nodes. When some

nodes join or leave the system, the list is

correspondingly. It provides the list of

available workers to other components on

querying.

• Registry component: maintains the location

information for available vertex data. In

addition, it maintains a list of indices for

available vertex data. Each vertex has an

index, which lists workers that hold its

data. Each time a new vertex is generated,

it will be kept in the dataflow storage on

some worker, and then the worker will no-

tify the registry component the availability

of the new vertex. When registry finds new

available vertex, it will notify the Dataflow

Graph component to explore the ready

tasks. Also the registry is responsible for

replicating the vertex data to improve the

reliability of execution.

• Dataflow Graph component: maintains the

data dependency graph for each job, keeps

track of the availability of each vertex and

explores ready tasks according to available

vertices. When it finds ready tasks, it will

send them to the scheduler component;

• Scheduler component: dispatches ready

tasks to suitable workers for executing. For

each task, the master notifies workers of

inputs & initiates the associated execution

module to generate the output data. While

dispatching a task, the scheduler gives

more weight to locality of data to reduce

remote data transfers as much as possible.

4.3 The Structure of a Worker

Each worker works in a peer to peer fashion.

To cooperate with the master and achieve

dataflow computing, each worker involved in

the dataflow computing has two functions:

executing upon requests from master and stor-

ing the vertex data. Correspondingly there are

2 important components on each worker: ex-

ecutor and storage.

• Executor component: receives executing

requests from the master, fetches input data

from the storage component, generates out-

put data to the storage component and noti-

fies the master about the available vertex of

the output data.

• Storage component: is responsible for

managing and holding vertex data gener-

ated by executors and providing it upon re-

quests. The storage component checks if

the request could be met from the local re-

pository. If the data requested by the execu-

tor is not locally available, it transparently

fetches it from the remote worker hosting

one copy through its storage component.

Actually the storage components across

workers run as a distributed storage service.

To handles failures, upon request from

master, the storage component can replicate

some vertices to improve the reliability and

availability.

4.4 System Interaction

Each dataflow cluster has a single master,

which maintains a list of the available work-

ers. When the worker node joins the dataflow

system, it first needs to register itself to the

master node. Then the Membership compo-

nent on the master node monitors the avail-

ability of each worker through a heartbeat sig-

nal every 5 seconds. The heartbeat signal car-

ries the status information about the worker,

such as CPU, memory and disk usage. If mas-

ter can not receive the heart beat from some

worker for 3 times, it will take that worker as

unavailable; if the heartbeat indicates the

worker is dominated by other users, that

 8

worker is also taken as unavailable by the

master. Besides heartbeats, the worker status

information is also carried in the control flow

data from workers to the master, such as pub-

lishing index.

After the user specifies the dataflow graph

and the execution module for their computa-

tion, he can submit them with the initial vertex

files as a whole task to the master node.

Executor

Storage

Executor

Storage

Executor

Storage

Scheduler DAG Registry

Master

Worker 1

Control Flow

Publishing Traffic

Data Traffic

Worker 2 Worker n

Figure 7 Components Interaction

Upon receiving submission from users, the

master node will create an instance as a thread

for each execution module. Based on .NET

platform, the master node first load the execu-

tion module, then serialized it as an object,

and finally sends to the object to workers

when dispatching vertices executing as tasks.

To begin the execution of each dataflow

job, master node first sends the initial vertex

to workers. When a worker receives the vertex,

it will first keep it in local instance of the data-

flow storage, and then notifies the registry

component that it has received the vertex

through an index publishing message which

carries the size of the vertex data.

After the registry component receives a pub-

lishing message for vertex x, it first adds an

entry into x’s index and then checks with the

dataflow graph component to check if there is

a vertex execution waiting for the availability

of the data specified in the publishing mes-

sage. If so, the ready vertex will be scheduled

as an executing task. The scheduling compo-

nent sends the request of executing task to

candidate workers. To choose candidate work-

ers, the scheduling component mainly consid-

ers the location of input data to reduce band-

width traffic and the CPU status of workers.

The execution request carries the serialized

object of corresponding execution module,

and the location information of the input ver-

tex data. After receiving it, the worker first

fetches the input data, and then un-serializes

the execution object and executes it. After the

execution is finished, the master collects the

final results and stores them as files according

to users’ request.

In the current implementation, the master

pushes the initial vertices to workers. After the

execution starts, the worker pulls available

input data from other peers (workers). That

means the worker node that needs some input

data will actively to fetch them. To improve

the scalability, the request does not contain the

input data. Upon receiving an executing re-

quest, if the input data is not kept locally, the

worker need to fetch them from other workers

according to the location specified in the re-

quest. By conducting data transfer in this P2P

manner, we aim to increase the scalability of

the system.

The storage component on each worker is

responsible for maintaining the vertex data

generated during execution. Whenever the ex-

ecutor component receives an executing re-

quest from master node, it sends a fetch re-

quest to the local storage component. The

storage component first checks if the request

can be served by local cache. If there is a local

copy of the requested data, this is returned to

the executor component; if not, it will contact

remote storage component to fetch data re-

motely according to the location specified in

the executing request. After all the input data

is available on the worker node, the executor

component creates a thread instance for the

execution module based on the serialized ob-

ject from the master, feeds it with the input

vertices and starts the thread. After the compu-

tation finishes, the executor component calls

the SetResult() to save the result vertex into

 9

local storage component and then publish an

index message to notify the registry compo-

nent on the master.

Dataflow storage maintains a cache in

memory. After remotely fetching or after a

SetResult(), all the vertices first will be kept in

the cache and dumped to disk asynchronously

when there is a need to reduce memory space.

Keeping hot data in memory could improve

the performance. Worker schedules the exe-

cuting and network traffic of multiple tasks as

a pipeline to optimize the performance.

4.5 Fault Tolerance

Since the dataflow system is deployed in

Desktop Grid environments, we need to han-

dle node failures to ensure the availability of

computation. In the shared environment, we

face two kinds of failure: physical failure and

soft failure. Physical failure means some node

cannot work for some time due to due to soft-

ware or hardware problems. Soft failure oc-

curs when a higher priority users demands

node resources and the dataflow system yields.

Under soft failure, the node still works, but for

the time being cannot contribute its resources

to the dataflow system. During soft failure, a

node’s CPU and network interface are no

longer available to the dataflow system, but

the local vertex storage is not reclaimed.

When the node leaves soft failure and rejoins

the system, those vertices are once again

available. However, in our current design, we

use same mechanisms handling soft failures as

handling physical failures.

4.5.1 Worker Failure

The master node monitors status for each task

dispatched to workers. Each vertex task has 4

statuses: unavailable, executing, available and

lost. Unavailable and lost means no any copy

exists in the dataflow storage for the vertex.

the difference between these two statuses is

unavailable is specified to the vertex which is

never generated before, while lost means the

vertex has been generated before but now lost

due to worker failures. Available means that at

least one copy for the vertex is held by some

storage component in the dataflow system.

Executing the vertex has been scheduled to

some worker but still not finished.

The failure of one worker makes tasks

which it is processing to be lost and the master

needs to re-schedule the lost tasks. Further-

more, since the vertex data on the failure

worker will not be accessible again, the master

node will need to regenerate them if there are

some unavailable tasks are eventually depend-

ent on them.

When the master detects that a worker has

failed, it notifies the registry component to

remove the failed worker from indices. During

the removing process, status of some of the

vertices will change from available to lost. For

the lost vertices, if they are directly dependent

by some executing or unavailable vertex tasks,

we need to regenerate them to continue the

execution. The rescheduled tasks may be de-

pendent on other lost vertices, and eventually

cause domino effects. For some extreme cases,

the master node may need to re-send the initial

vertices to continue the execution.

Generally, rescheduling due to the domino

effect will takes considerable time. The system

replicates vertices between workers to reduce

rescheduling. This is a feature triggered by the

configuration of the master. If replication fea-

ture is set, the registry component will choose

candidate workers to replicate the vertex after

it receives the first publishing message for that

vertex. Replication algorithm needs to take

load balancing into consideration.

Replication causes additional overhead. If

we take vertices under same version as a

checkpoint for the execution, it is not neces-

sary for us to replicate every checkpoint. It is

better for users to specify a replication step. It

is called as n step replication if users want to

replicate the vertices every n versions. Under

failure cases, there is a tradeoff between repli-

cation steps and executing time.

 10

4.5.2 Master Failure

Generally master is running over a dedicated

node, it may experience physical failures, but

seldom has soft failures. To handle these two

kinds of failures, the master frequently writes

its internal status, including data structure in

registry component, scheduler component and

graph component to disk and then replicate the

internal status to other node. After the master

node fails, we could use the backup version to

start a new master and continue the computa-

tion.

4.6 Scheduling and Granularity

There is a lot of ongoing research on schedul-

ing complex DAG tasks effectively. Generally,

we could borrow their results and choose suit-

able algorithms for our applications. In the

current implementation, the scheduling of

tasks is performed by the master giving prior-

ity to locality of data [22] and performance

history of workers [31]. Exploring the data-

flow graph, the scheduler component on the

master takes each vertex as the basic schedul-

ing unit.

To begin execution, the scheduler compo-

nent distributes the initial vertices across

available workers. For an efficient distribu-

tion, the size of each initial vertex data and

computing power, i.e. CPU frequency, are

taken as the measure for load balancing. Fur-

thermore, the dataflow library provides ways

for user to combine some vertices as a unit for

distribution.

During the computation, the scheduler col-

lects the related performance information for

each execution module, such as the input data

size and time consumed. Based on this history

information, we can predict the execution time

for the execution module which has been

scheduled. This prediction is important to

achieve an efficient scheduling in heterogene-

ous environment.

Granularity is important for the efficiency

of scheduling. Our philosophy is to use homo-

geneous granularity of vertices to manipulate

the power in heterogeneous environment. So it

is better for users to partition the initial data

into homogeneous vertices with similar data

size.

5. Performance Evaluation

In this section, we evaluate the performance of

the dataflow system through two experiments

running in a Windows Desktop Grid, which is

deployed in Melbourne University and shared

by students and researchers. One experiment

consists of a matrix multiplication: one square

matrix multiplied with another square matrix.

The other experiment involves an iterative ma-

trix vector multiplication.

These two programs are example applica-

tions for the dataflow system. Generally this

kind of parallel program is performed through

MPI applications. However, with dataflow

system, users need not concern about specify-

ing the explicit communications involved in

MPI-based applications. Similar coarse-

grained programs could also be easily handled

by dataflow system.

5.1 Environment Configuration

The evaluation is executed in a Desktop Grid

with 9 nodes. During testing, one machine

works as master and the other 8 machines

work as workers. Each machine has a single

Pentium 4 processor, 500MB of memory,

160GB IDE disk (10GB is contributed for

dataflow storage), 1 Gbps Ethernet network

and ran Windows XP.

5.2 Testing Programs

We use two examples as testing programs for

the evaluation. These examples are built using

the dataflow API.

 11

5.2.1 Matrix Multiplication

Each matrix consists of 4000 by 4000 ran-

domly generated integers . Each matrix needs

about 64M bytes. Each matrix is partitioned

into square blocks with different granularity.

In the testing, we choose two granularities:

250 by 250 square block (16*16 blocks with

255KB per block) and 125 by 125 square

block (32*32 blocks with 63KB per block).

For 16*16 blocks partition, there are 512

initial vertices for the two matrix and 256 re-

sult vertices for the result matrix. For 32*32

blocks partition, there are 2,048 initial vertices

for the two matrix and 1024 result vertices as

the result matrix.

5.2.2 Matrix Vector Iterative Multiplica-

tion

The matrix consists of 16000 by 16000 inte-

gers, and the vector consists of 16000 integers.

All the integers are generated randomly. The

matrix uses about 1GB and the vector uses

64KB. The benchmark iterates 50. The matrix

and vector are partitioned by rows. Two

granularities for partition are adopted in the

evaluation: 24 stripes and 32 stripes.

For 24 stripes, the matrix and the vector are

respectively partitioned by rows into 24

pieces. Each matrix one is about 41 MB and

each vector one is about 2.6 KB. There are 48

initial vertices. During the computation, 1200

vertices are generated. Finally 48 result verti-

ces are collected as the result vector.

For 32 stripes, the matrix and the vector are

respectively partitioned into 32 pieces. Each

matrix one is about 31 MB and each vector

one is about 2 KB. There are 64 initial verti-

ces. During the computation, there are 1600

vertices are generated. Finally, 32 result verti-

ces are collected as the result vector.

As example programs, the multiplication

code is not specially optimized for perform-

ance purpose.

5.3 Scalability of Performance

The performance scalability evaluation does

not include the time consumed for sending

initial vertex data and collecting result vertex

data as these two actions need to transfer data

across single master which is sequential be-

havior.

2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Workers #

S
p

e
e

d
u

p

Scalability of Performance for Matrix Vector Multiplication

Ideal Case
Matrix * Vector (24)
Matrix * Vector (32)

2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Workers #

S
p
e
e
d
u
p

Scalability of Performance for Matrix Multiplication

Ideal Case
Matrix * Matrix (16)
Matrix * Matrix (32)

Figure 8 Scalability of Performance

Figure 8 illustrates the speedup of perform-

ance with an increasing number of workers.

The execution time on two workers is used as

the speedup baseline, because the matrix vec-

tor example cannot be run on a single worker

as there is not enough memory to hold the in-

put and intermediate vertices. We can see that

under same vertex partition settings as more

workers are involved in the computation, bet-

ter performance is obtained. On the other

hand, overheads such as connections with the

master also increase with the number of work-

 12

ers. So the speedup line is not ideal. In most

cases, the efficiency of speedup is over 80%.

Table 1 shows the speedup ratio of matrix vec-

tor multiplication with 24 partitions and ma-

trix multiplication with 256 partitions. The

speedup ratio for matrix multiplication is a

little higher. The reason is that the ratio of

computation to communication for matrix

multiplication is a little higher than vector ma-

trix multiplication, as illustrated by Figure 9.

Worker # 3 4 5 6 7 8

M*V(24) 1.37 1.78 1.99 2.71 2.80 3.39

M*M(256) 1.44 1.88 2.32 2.53 3.07 3.48

Table 1 Speedup Ratio

2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

200

Workers #

T
im

e
(s

)

Time Decouple vs Workers# (Matrix*Vector 24)

Network Traffic
Computing

2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

Workers #

T
im

e
(s

)

Time Decouple vs Workers# (Matrix*Matrix 256)

Network Traffic
Computing

Figure 9 Computation and Network load decouple. For

each workers setting, average load decouple is shown.

Matrix multiplication has bigger ratio of computation

vs. network traffic.

One expectation of partition granularity

is that more partitions will introduce addi-

tional overhead during execution. Figure 8 is

consistent with this, especially for the matrix

multiplication application as the number of

vertices for 32*32 partitions is 4 times bigger

than that for 16*16 partitions for matrix mul-

tiplication, while the vertex number for matrix

vector multiplication is nearly same under 24

and 32 partitions.

5.4 Impact of Replication

This section discusses the performance im-

pacts of vertex replication. As vertex replica-

tion consumes additional network bandwidth,

it will increase the time for whole computation

as expected. This however depends on the

number of vertices and data size for replica-

tion. We use iterative matrix vector multipli-

cation with 24 partitions and 50 iterations.

There are 1200 vertices generated with 3.1

MB as the total size.

As Figure 10 illustrates the comparative

performance under 1 and 2 step replication.

4 4.5 5 5.5 6 6.5 7 7.5 8
70

80

90

100

110

120

130

140

150

Workers #

T
im

e
(s

)

Replication Overhead for Matrix*Vector

No Replication
Replication (Step = 1)
Replication (Step = 2)

Figure 10 Replication overhead.

Generally the replication overhead is not

big and the performance under replication is

not impacted heavily. This is because the rep-

licated data is not too big, only 3.1MB and we

set the replication as low priority for contend-

ing the network bandwidth. An interesting

phenomenon is sometimes the performance

under replication is even better than the case

without replication. This is because actively

replication decreases the competition during

peak traffic.

 13

5.5 Handling Worker Failure

This section evaluates the mechanisms dealing

with worker failure in the dataflow system.

We use iterative matrix vector multiplication

with 24 partitions and 100 iterations. In total,

2400 vertices are generated during the testing.

Vertices created by the computation are nearly

same size. So Figure 11 measures the number

of vertices created during execution. This

number is collected on the master node by the

registry component. There are 8 workers and 1

master involved in the testing.

The testing compares how rescheduling and

replication deal with worker failures. The test-

ing first checks the dynamic number of verti-

ces created by the computation without worker

failures and without vertex replication as the

first line illustrated in Figure 11.

The whole computation lasts about 4 min-

utes, depending on the dataflow configuration

and physical setting. The initial phase where

the line is a little inclined, is when the master

node sends initial vertices to multiple workers.

Because it is actually a sequential process, so

the line is nearly flat. After all initial vertices

are available in the dataflow storage, the exe-

cution begins and the slope of vertices number

line correspondingly increases. After all of the

vertices are created, the line changes to flat.

Next we add one worker failure in the test-

ing. At first we have 1 master node and 8

worker nodes involved in the execution. Dur-

ing the computation, we unplug the network

cable of one worker to simulate the worker

failure at around the 4
th

 minute. First we do

not take any replication and then one worker

failure causes some vertices to be lost, illus-

trated by the 2
nd

 line in Figure 11. After the

master node finds the failure, it will first dis-

patch live workers to regenerate lost vertices

and then continue the execution. So in the 2
nd

line of Figure 11, there is a big drop at the

230
th

 second. After a while, however the verti-

ces number increases back again due to the re-

execution to generate lost vertices. Because

only 7 workers left for execution, so the slope

is smaller than before the drop point.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

Time (second)

V
e

rt
e

x
 #

Replication and Re−execution

No Failure
Failure
Failure (Step = 1)
Failure (Step = 2)

Figure 11 Handling worker failures with replication

and re-execution.

Next we add replication mechanism to

handle the failure. We test for two settings: 1

step and 2 step replication. With 1 step repli-

cation, after one worker failure, the line

changes to flat, because the master needs to

resend some initial vertices to continue the

computation. For 2 step replication, after one

worker failure, there is a small drop first and

then the line changes to flat, because one

worker failure makes some non-replicated ver-

tices lost. Eventually we find replication

mechanism effectively reduces the time con-

sumed for regenerating lost vertices.

6. Conclusion and Future Work

This paper presents a dataflow computing

platform within shared cluster environment.

Through a static dataflow interface, users can

freely express their data parallel applications

and easily deploy applications in distributed

environment.

The mechanisms adopted in our dataflow

system support scalable performance and

transparent fault tolerance based on the

evaluation of example applications.

Next we plan to incorporate the dataflow

programming model and the dataflow engine

 14

into Alchemi[1], and then extend this comput-

ing platform into larger scale distributed envi-

ronment, such as Grids and P2P networks.

Acknowledgement

We would like to thank Yu Chen, Krishna

Nadiminti, Srikumar Venugopal, Hussein

Gibbins, Marcos Dias de Assuncao, and

Marco A. S. Netto for their support during the

implementation and improving the quality of

this paper.

References

[1] A. Luther, R. Buyya, R. Ranjan, and S.Venugopal,

Alchemi: A .NET-Based Enterprise Grid Comput-

ing System, Proceedings of the 6
th

 International

Conference on Internet Computing, 2005, CSREA

Press, Las Vegas, USA.

[2] Arvind and Culler, D. E.. The tagged token data-

flow architecture (preliminary version). Tech.

Rep. Laboratory for Computer Science, MIT,

Cambridge, MA., 1983.

[3] Arvind and Nikhil, R. S., Executing a program on

the MIT tagged-token dataflow architecture. IEEE

Trans. Compute. 39, 3, 300–318, 1990.

[4] Berkeley open infrastructure for network comput-

ing. http://boinc.berkeley.edu

[5] D. Abranson, J. Giddy, and L. Kotler, High Per-

formance Parametric Modeling with Nimod/G:

Killer Application for the Global Grid?,

IPDPS’2000, 2000.

[6] D. Thain, T.Tannenbaum, and M. Livny. Distrib-

uted computing in practice: The Condor experi-

ence. Concurrency and Computation: Practice and

Experience, 2004.

[7] Fagg, G., Angskun, T., Bosilca, G., et al Scalable

Fault Tolerant MPI: Extending the Recovery Al-

gorithm, 12th Euro PVM/MPI, 2005.

[8] Stanford Folding at Home distributed computing,

http://folding.stanford.edu/download.html

[9] G. Bosilca, A. Bouteiller, F. Cappello, et al

MPICH-V: Toward a scalable fault tolerant MPI

for volatile nodes. IEEE/ACM SC'02, November

2002.

[10] G. Fedak, C. Germain, V. N′eri, F. Cappello,

Xtremweb: A generic global computing system,

First IEEE/ACM International Symposium on

Cluster Computing and the Grid, 2001.

[11] I.Foster and C.Kesselman, The Grid Blueprint for

a Future Computing Infrastructure, Morgan

Kaumann Publishers, USA, 1999.

[12] J. Bent, D. Thain, A.C. Arpaci-Dusseau et al. Ex-

plicit control in a batch-aware distributed file sys-

tem. 1
st
 USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI), 2004.

[13] J. B. Dennis and D. P. Misunas, A Preliminary

Architecture for a Basic Data-Flow Processor,

The Second IEEE Symposium on Computer Ar-

chitecture, 1975

[14] J. Dean and S. Ghemawat, MapReduce: Simplified

Data Processing on Large Clusters, OSDI’04, San

Francisco, CA, 2004.

[15] J. Frey, T. Tannenbaum, Ian Foster, et al. Condor-

G: A Computation Management Agent for Multi-

Institutional Grids, Proceedings of 10
th

 IEEE

Symposium on High Performance Distributed

Computing, 2001.

[16] J.F.Cantin and M.D.Hill. Cache Performance for

Selected SPEC CPU2000 Benchmarks. Computer

Architecture news (CAN), 2001.

[17] J. Verbeke, N. Nadgir, G. Ruetsch, I. Sharapov,

Framework for peer-topeer distributed computing

in a heterogeneous, decentralized environment,

Third International Workshop on Grid Computing,

2002.

[18] Korpela, E. et al, 2001. SETI@home-massively

distributed computing for SETI. Computing in

Science & Engineering, Vol. 3, No. 1, pp. 78.

[19] L.G.Valiant. A bridging model for parallel com-

putation. Communications of the ACM,

33(8):103-111, 1997.

[20] LEE, E. AND MESSERSCHMITT, D., Static

scheduling of synchronous dataflow programs for

digital signal processing. IEEE Trans. Comput. C-

36, 1, 24–35, 1987.

[21] M. Stonebraker, J.Chen, N.Nathan, et al. Tioga:

providing data management support for scientific

visualization applications. In International Con-

ference on Very Large Data Bases (VLDB), 1993.

[22] Polychronopoulos, C. D. and Kuck, D. J. Guided

self-scheduling: A practical scheduling scheme for

parallel supercomputers. IEEE Transactions on

Computers 36, 12, 1425–1439, 1987.

[23] Ptolemy II,

http://ptolemy.eecs.berkeley.edu/ptolemyII/

[24] R.Agrawal, T.Imielinski, and A.Swami. Database

mining: A Performance Perspective. IEEE Trans-

actions on Knowledge and Data Engineering,

5(6):914-925, 1993.

 15

[25] R.H.Arpaci-Dusseau, Eric Anderson, Noah

Treuhaft, et al. Cluster I/O with River: Making the

fast case common. In Proceedings of the Sixth

Workshop o Input/Output I Parallel ad Distributed

Systems (IOPADS’99), pages 10-22, 1999.

[26] R. Kalakota and M. Robison, E-business: road-

map for success, Addison-Wesley Longman Pub-

lishing Co., Inc. Boston, MA, USA, 1999.

[27] S. Bowers, B. Ludaescher, A. H.H. Ngu, T.

Critchlow, Enabling Scientific Workflow Reuse

through Structured Composition of Dataflow and

Control-Flow, IEEE Workshop on Workflow and

Data Flow for Scientific Applications (SciFlow),

2006.

[28] S.F. Altschul, T.L. Madden, A.A. Schaffer et al.

Gapped BLAST and PSI-BLAST: a new genera-

tion of protein database search programs. In Nu-

cleic Acids Research, pages 3389-3402, 1997.

[29] S.Kubica, T.Robey, and C.Moorman. Data paral-

lel programming with the Khoros Data Services

Library. Lecture odes in Computer Science,

1388:963-973, 1998.

[30] S. Louca, N. Neophytou, A. Lachanas, P. Evripi-

dou, MPI-ft: Portable fault tolerance scheme for

MPI, In Parallel Processing Letters, 10(4), pp 371-

382, World Scientific Company, 2000.

[31] Smith, W., Taylor, V.E. & Foster, I.T. Using Run-

Time Predictions to Estimate Queue Wait Times

and Improve Scheduler Performance, Proceedings

of the Job Scheduling Strategies for Parallel Proc-

essing (IPPS/SPDP '99/JSSPP '99), Springer-

Verlag, 1999, 202-219.

[32] T.L.Lancaster. The Renderman Web site.

http://www.renderman.org, 2002.

[33] T. Hey, and A. E. Trefethen, The UK e-Science

Core Programme and the Grid, Journal of Future

Generation Computer Systems, 18(8): 1017-1031,

Elsevier, Oct 2002.

[34] W. M. Johnston, J. R. P. Hanna, and R. J. Millar.

Advances in Dataflow Programming Languages.

ACM Computing Surveys, 36(1):1–34, March

2004

