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Abstract 

 
This paper presents the design, implementation and evaluation of a dataflow system, including 

a dataflow programming model and a dataflow engine, for coarse-grained distributed data inten-

sive applications. The dataflow programming model provides users with a transparent interface 

for application programming and execution management in a parallel and distributed computing 

environment. The dataflow engine dispatches the tasks onto candidate distributed computing re-

sources in the system, and manages failures and load balancing problems in a transparent man-

ner. The system has been implemented over .NET platform and deployed in a Windows Desktop 

Grid. This paper uses two benchmarks to demonstrate the scalability and fault tolerance proper-

ties of our system.

1. Introduction 

The growing popularity of distributed comput-

ing systems, such as P2P [18] and Grid com-

puting [11], amplifies the scale and heteroge-

neity of network computing model. This is 

leading to use of distributed computing in e-

Science [33] and e-Business [26] applications. 

However, programming on distributed re-

sources, especially for parallel applications, is 

more difficult than programming on central-

ized environment. In particular, a distributed 

systems programmer must take extra care with 

data sharing conflicts, deadlock avoidance, 

and fault tolerance. Programmers lacking ex-

periences face newfound difficulties with ab-

stractions such as processes, threads, and mes-

sage passing. A major goal of our work is to 

ease programming by simplifying the abstrac-

tions.  

There are many research systems that sim-

plify distributed computing. These include 

BOINC [4], XtremWeb [10], Alchemi [1], 

SETI@Home [18], Folding@Home [8] and 

JNGI [17]. These systems divide a job into a 

number of independent tasks. Applications 

that can be parallelized in this way are called 

“embarrassingly parallel”. Embarrassingly 

parallel applications can easily utilize distrib-

uted resources, however many algorithms can 

not be expressed as independent tasks because 

of internal data dependencies.  

The work presented in this paper provides 

support for more complex applications by ex-

ploiting the data dependency relationship dur-

ing the computing process. Many resource-

intensive applications consist of multiple 

modules, each of which receives input data, 

performs computations and generates output.. 

Scientific data-intensive examples include ge-

nomics [28], simulation [16], data mining [24] 

and graph computing [32]. In many cases for 

these applications, a module’s output becomes 

other modules’ input. Generally, we can use 

dataflow [34] to describe such a computing 

model.  

A computing job can be decomposed into a 

data dependency graph of computing tasks, 

which can be automatically parallelized and 
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scheduled across distributed computing re-

sources. 

This paper presents a dataflow program-

ming model used to compose a dataflow graph 

for specifying the data dependency relation-

ship within a distributed application. Under 

the dataflow interface, we use a dataflow en-

gine to explore the dataflow graph to schedule 

tasks across distributed resources and auto-

matically handle the cumbersome problems, 

such as scalable performance, fault tolerance, 

load balancing, etc. In particular, the dataflow 

engine is responsible for maintaining the data-

flow graph, updating availability status of data 

and scheduling tasks onto workers in a fault 

tolerant manner. Within this process, users do 

not need to worry about the details of proc-

esses, threads and explicit communication. 

The main contributions of this work are: 

1) A simple and powerful dataflow pro-

gramming model, which supports the compo-

sition of parallel applications for deployment 

in a distributed environment. The users can 

create a dataflow graph in a simple manner 

programmatically, based on which data needed 

and generated during execution is partitioned 

into suitable granularity. Each partition is ab-

stracted as a vertex in the graph. Each vertex is 

identified by a unique name, through which 

the dependency relationship is specified. Also, 

users need to specify the execution module for 

each vertex, which is used to generate output 

vertices from available input vertices. A stor-

age layer is responsible for holding vertices 

generated during execution. 

2) An architecture and runtime machinery 

that supports scheduling of the dataflow com-

putation in dynamic environments, and han-

dles failures transparently. This system is es-

pecially designed for Desktop Grid environ-

ments. We use two methods for handling fail-

ures: re-scheduling and replication. 

3) A detailed analysis of dataflow model 

using two sample applications over a Desktop 

Grid. We have investigated scalability, fault 

tolerance and execution overhead.  

The remainder of this paper is organized 

as follows. Section 2 provides a discussion on 

related work. Section 3 describes the dataflow 

programming model with several examples. 

Section 4 presents the architecture and the de-

sign with a prototype implementation of the 

dataflow system over .NET platform. Section 

5 reports the experimental evaluation of the 

system. Section 6 concludes the paper with 

pointer to future work. 

2. Related work 

Dataflow concept was first presented by Den-

nis et al. [13] [34] and has led to a lot of re-

search. As the pure dataflow is fine-grained, 

its practical implementation has been found to 

be an arduous task[2]. Thus optimized ver-

sions of dataflow models have also been pre-

sented, including dynamic dataflow model[3] 

and synchronous dataflow model[20]. 

However, the dataflow concept still attracts a 

great interest because it is a natural way to 

express parallel applications and plays an 

important role in applications such as digital 

signal processing for coarse-grained parallel 

applications [23].  

Grid computing platforms such as Condor 

[15][6] provide mechanisms for workflow 

scheduling. Condor can manage resources in a 

single cluster, multiple clusters and even clus-

ters distributed in a Grid-like environment. 

However, Condor works at the granularity of a 

single job. Within each job, there may be mul-

tiple processes cooperating with message pass-

ing middleware. Condor does not focus on the 

programming difficulties associated with the 

data communication within one job, but em-

phasizes on the high level problem of match-

ing the available computing power with the 

requirements of jobs. Furthermore, workflow 

research falls into the control flow category, 

which has a different interface and program-

ming model to that of dataflow work. Most 

other Grid platforms, for example, Globus 

[11] and Nimrod [5], share similar interests as 

to Condor system. 
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River [25] provides a dataflow program-

ming environment for scientific database like 

applications [21][29] on clusters of computers 

through a visual interface. River uses a dis-

tributed queue and graduated declustering to 

provide maximum performance even in the 

face of non-uniformities in hardware, software 

and workload. However the dataflow interface 

in River is coupled with components and the 

granularity of data is not fine enough for effi-

cient scheduling. Furthermore, River does not 

focus on the fault tolerance problem in dy-

namic environment. 

MapReduce [14] is a cluster middleware 

designed to help programmers to transform 

and aggregate key-value pairs by automating 

parallelism and failure recovery. Their pro-

gramming model is specific to the needs of 

Google. Actually each MapReduce computing 

can be easily expressed as a dataflow graph. 

BAD-FS [12] is a distributed file system 

designed for batch processing applications. 

Through exposing explicit policy control, it 

supports I/O-intensive batch workload through 

batch-pipeline model. Although BAD-FS 

shares some similarity with our proposal on 

how to deal with failures and achieve efficient 

scheduling, it aims to support batch applica-

tions with scheduling on task granularity and 

does not focus on how to reduce the difficul-

ties for programming in distributed environ-

ment. 

Kepler [27] is a system for scientific 

workflows. It provides a graph interface for 

programming. Its visual programming model 

is especially suitable for a small number of 

components. In comparison, language support 

for composing the dataflow graph and pro-

gramming model is more flexible and more 

suitable to partition large scale data and 

schedule the execution on them over distrib-

uted resources. 

3. Programming Model 

Dataflow programming model abstracts the 

process of computation as a dataflow graph 

consisting of vertices and directed edges. 

The vertex embodies two entities: 

a) The data created during the computation 

or the initial input data from users; 

b) The execution module to generate the 

corresponding vertex data. 

The directed edge connects vertices within 

the dataflow graph, which indicates the de-

pendency relationship between vertices. Gen-

erally we expect the dataflow graph to be a 

Directed Acyclic Graph (DAG). 

We call a vertex an initial vertex if there 

are no edges pointing to it and it has edges 

pointing to other vertices; correspondingly, a 

vertex is called a result vertex if it has no 

edges pointing to other vertices and there are 

some edges pointing to it. Generally, an initial 

vertex does not have an associated execution 

module. 

Given a vertex, x, its neighbor vertices 

which have edges pointing to it are its inputs. 

If all its inputs are ready (i.e. the data of the 

input vertices are available), its execution 

module will be triggered automatically to gen-

erate its data. Then the generated data may be 

now available as the input for other vertices. 

In the beginning, we assume all the initial ver-

tices should be available. A reliable storage 

system holds all the data for vertices. 

Our current programming model focuses on 

supporting a static dataflow graph, which 

means the number of vertices and their rela-

tionships are known before execution. 

3.1 Namespace for vertices 

Each vertex has a unique name in the dataflow 

graph. The name consists of 3 parts: Category, 

Version and Space. Thus, the name is denoted 

as <C, T, S>. Category denotes different kinds 

of vertices; Version denotes the index for the 

vertex along the time axis during the comput-
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ing process; Space denotes the vertex’s index 

along the space axis during execution. In the 

following text, we call vertex name as name. 

In particular, Category is a string; the type of 

Version is integer and the type of Space is in-

teger array. 

As an example, Figure 1 illustrates a one 

dimensional cellular automata application 

with 5 cells. Each vertex represents a cell. 

Version 0 means the initial status of cells. 

Through the execution, each cell updates its 

status two times, as the result of Version 1 and 

Version 2 respectively. Each update is based 

on its right neighbor and its own status at the 

last step. For example, <CA, 1, 2> denotes the 

second vertex in Version 1. Actually, the data 

relationship could be specified as: 
<CA, t, s>←{<CA, t-1, s>, <CA, t-1, s+1>}. 
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Figure 1 The dataflow graph for a one dimensional 

Cellular Automata computation. Each vertex represents 

a Cell. Each cell updates its status two times and the 

updating takes its own status and the status of its right 

neighbor in the last step as inputs.  

Another example is an iterative matrix and 

vector multiplication, V
t
=M*V

t-1
. To parallel-

ize the execution, we partition the matrix and 

vector into rows of m pieces with each piece 

being denoted as a vertex. To name them, 

Category = M denotes the matrix vertices and 

Category = V denotes the vector vertices. For 

i-th vector vertex, the data relationship should 

be specified as: 

<V, t, i>←{<M, 0, i>, <V, t-1, j>} (j=1…m). 

3.2 Dataflow library API 

3.2.1 Specifying Execution Module 

Besides the data dependency relationship, us-

ers also need to specify instructions/code to be 

executed, which we refer to as the execution 

module, to generate the output for each vertex. 

Users can inherit the Module class in dataflow 

library to write execution code for each vertex. 

To do that, users need to implement 3 virtual 

functions: 
• ModuleName SetName() 

• void Compute(Vertex[] inputs) 

• byte[] SetResult() 

SetName() is used to specify a name for the 

execution module, which will be used as an 

identifier during editing the data dependency 

graph. Each different module should have a 

unique name. 

Compute() is implemented by users for 

generating output data taking input data from 

other vertices. The input data is denoted by the 

input parameter inputs. Each element of inputs 

consists of two parts: a name and a data 

buffer. 

SetResult() is called by the system to get 

the output data after Compute() is finished. 

3.2.2 Composing Dataflow Graph 

The dataflow API provides two functions for 

composing the static data dependency graph: 
• CreateVertex(vertex, ModuleName) 

• Dependency(vertex, InputVertex). 

CreateVertex() is used to specify the name 

and corresponding execution module for each 

vertex, denoted by vertex and ModuleName 

respectively. The dataflow library will main-

tain the internal data structure for created ver-

tex, such as its dependent vertices list. 

Dependency(x, y) is used to add y as a de-

pendent vertex of vertex x. The dataflow li-

brary will add x to y’s dependent vertices list, 

which is created when calling CreateVertex() 

for x. 
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Given two vertices, x and y, to specify their 

dependency relationship, users should first call 

CreatVertex() for x and y respectively and then 

call Dependency() to specify their relationship. 

Two functions are provided to set the initial 

and result vertices as follows: 

• SetInitialVertex(vertex, file) 

• SetResultVertex(vertex, file) 

Generally the initial vertices are some input 

files from users and the result vertices are the 

final execution result. 

3.3 Example 

Given the matrix vector iterative multiplica-

tion example, V
t
=M*V

t-1
. We partition the ma-

trix and vector by rows into m pieces respec-

tively, as                . The correspond-

ing dataflow graph is illustrated by Figure 2. 

For this computing, users may use two ba-

sic execution modules: multiplication of ma-

trix and vector pieces and sum of m multipli-

cation results. 
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Figure 2 Dataflow graph for the i-th vector piece 

 
Figure 3 Multiplication Module 

Figure 3 and Figure 4 show the two basic 

modules. In Multiplication module, inputs for 

Compute() should be Mi and Vi
t-1

, and result 

should be their multiplication. In Sum module, 

inputs for Compute() should be m multiplica-

tions from Multiplication module, and result 

should be Vi
t
.  

It depends on the user to combine these 2 

modules into one execution module. 

 
Figure 4  Sum Module. 

Given m partitions and T iterations, Figure 

5 illustrates how to edit the data dependency 

graph for this example. 

 
Figure 5  Composition of the dataflow graph. 

Finally users set the input files for the ma-

trix and vector pieces through SetInitialVer-

class Multiple : Module { 
   byte[] result; 

   override string SetName() { 
         return “multiple”; 
   } 

   override void Compute(Vertex[] inputs) { 
      /*unpack matrix & vector piece 
        from inputs*/ 
 /*compute multiplication*/ 
 /*put result into result*/ 
   } 

   override byte[] SetResult() { 
        return result; 
   } 
} 

for (int i = 0; i < m; i++) 
   //m pieces matrix vertices 
   CreateVertex(name(“M”,0,i), null); 

for (int i = 0; i < m; i++) 
   //m pieces vector vertices 
   CreateVertex(name (“V”,0,i), null); 

for (int t = 0; t < T; t++) { //T iteration 
   for (int i = 0; i < m; i++) { 
      matriV = name (“M”, 0, i); 
      for (int j = 0; j < m; j++) { 
        /*multiplication  result*/ 

        interV = name (“I”, t, i, j);  
        CreateVertex(interV, “Multiplication”);   

        vecV = Vertex(“V”, t-1, j); 
        Dependency(interV, matriV); 
        Dependency(interV, vecV); 
      } 

      sumV = Vertex(“V”, t, i); //sum result 
      CreateVertex(sumV, “Sum”); 
      for (int j = 0; j < m; j++) { 
        interV = Vertex(“I”, t-1, i, j);  
        Dependency(sumV, interV); 
      } 
   }  
} 
 

class Sum : Module { 
   byte[] result; 

   override string SetName() { 
         return “sum”; 
   } 

   override void Compute(Vertex[] inputs) { 
      /*unpack m multiplication piece 
        from inputs*/ 
 /*compute sum*/ 
 /*put result into result*/ 
   } 

   override byte[] SetResult() { 
        return result; 
   } 
} 

∑
=

−

==

m

j

t

ji

t

i miVMV
1

1
)...1(*



 6 

tex(). Also users need to specify to collect the 

final version of vector as the result through 

SetResultVertex(). 

4. Architecture and Design 

The design of a dataflow system should take 

into account the features of its target execution 

environment. For example, in a Grid environ-

ment, which generally consists of multiple su-

percomputing nodes and high bandwidth net-

work across different geographic locations, we 

need to handle large latency across wide area 

networks and make the granularity of tasks so 

that computation to communication ratio is 

high; in desktop computing or volunteer com-

puting environments, that generally consist of 

large number of dynamic commodity PCs 

across WAN, it is better to consider the high 

failure rate of contributing PCs and the granu-

larity of tasks should be small enough for 

commodity PCs. 

This section describes an architecture de-

signed for a Windows Desktop Grid consisting 

of commodity PCs based on .NET platform. 

The environment consists of idle desktops that 

are used for computing but drop out of the dis-

tributed system as soon as interactive pro-

grams are started by the users on them. Such 

nodes can rejoin the system when they are idle 

again. So it is important to handle the frequent 

machine entries and exits. In our design, we 

take the exit of a node as a failure. 

4.1  System Overview 

The dataflow system consists of a single 

master and multiple workers as illustrated in 

Figure 6. The master is responsible for accept-

ing jobs from users, organizing multiple work-

ers to work cooperatively, sending executing 

requests to workers and handling failures of 

workers. Each worker contributes CPU and 

disk resources to the dataflow system and 

waits for executing requests from the master. 

The shared disk space among the workers is 

organized by the master as a distributed data-

flow storage system, which holds the vertex 

data during execution. 

 

Dataflow 

Executor 

 .NET Platform

 

Dataflow 

Executor 

 .NET Platform 

 

User 

Master 

Desktop Grid 

Dataflow Model 

 

Worker 1 

Dataflow 

Executor 

 .NET Platform 

 

Worker 2 Worker n 

.NET Platform

 

Dataflow Engine 
 

Dataflow Map 

Figure 6 Architecture of Dataflow system 

After the user submits a dataflow task, in-

cluding initial files, data dependency graph 

and execution modules to the master, the mas-

ter will send the initial files as initial vertices 

to distributed storage across workers. When 

the initial vertices are available from the  

storage, the execution of the dataflow graph is 

started and the master explores the data de-

pendency graph to check ready tasks. A vertex 

is read, if all of its input vertices are available, 

and it will be dispatched to a worker for exe-

cuting. Its output data will be kept in the data-

flow storage and the master will schedule new 

ready tasks as and when new vertex data be-

comes available. 

After the execution finishes, the result ver-

tex data is stored in result files specified by 

the user. These can be collected by the user 

from the master. 

Granularity of vertex data is important for 

the scheduling efficiency. The partitioning of 

data depends on many parameters, such as ap-

plication properties and hardware environ-

ment. According to our physical settings, we 

suggest each vertex not be larger than 100M 

bytes. A vertex size that is too small will also 

impact the performance. 
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4.2 The Structure of the Master 

The master is responsible for monitoring the 

status of each worker, dispatching ready tasks 

to suitable workers and tracking the progress 

of each job according to the data dependency 

graph. On the master, there are 4 key compo-

nents: membership, registry, dataflow graph 

and scheduling.  

• Membership component: maintains the list 

of available worker nodes. When some 

nodes join or leave the system, the list is 

correspondingly. It provides the list of 

available workers to other components on 

querying. 

• Registry component: maintains the location 

information for available vertex data. In 

addition, it maintains a list of indices for 

available vertex data. Each vertex has an 

index, which lists workers that hold its 

data. Each time a new vertex is generated, 

it will be kept in the dataflow storage on 

some worker, and then the worker will no-

tify the registry component the availability 

of the new vertex. When registry finds new 

available vertex, it will notify the Dataflow 

Graph component to explore the ready 

tasks. Also the registry is responsible for 

replicating the vertex data to improve the 

reliability of execution.  

• Dataflow Graph component: maintains the 

data dependency graph for each job, keeps 

track of the availability of each vertex and 

explores ready tasks according to available 

vertices. When it finds ready tasks, it will 

send them to the scheduler component; 

• Scheduler component: dispatches ready 

tasks to suitable workers for executing. For 

each task, the master notifies workers of 

inputs & initiates the associated execution 

module to generate the output data. While 

dispatching a task, the scheduler gives 

more weight to locality of data to reduce 

remote data transfers as much as possible.  

4.3 The Structure of a Worker 

Each worker works in a peer to peer fashion. 

To cooperate with the master and achieve 

dataflow computing, each worker involved in 

the dataflow computing has two functions: 

executing upon requests from master and stor-

ing the vertex data. Correspondingly there are 

2 important components on each worker: ex-

ecutor and storage. 

• Executor component: receives executing 

requests from the master, fetches input data 

from the storage component, generates out-

put data to the storage component and noti-

fies the master about the available vertex of 

the output data. 

• Storage component: is responsible for 

managing and holding vertex data gener-

ated by executors and providing it upon re-

quests. The storage component checks if 

the request could be met from the local re-

pository. If the data requested by the execu-

tor is not locally available, it transparently 

fetches it from the remote worker hosting 

one copy through its storage component. 

Actually the storage components across 

workers run as a distributed storage service. 

To handles failures, upon request from 

master, the storage component can replicate 

some vertices to improve the reliability and 

availability. 

4.4 System Interaction 

Each dataflow cluster has a single master, 

which maintains a list of the available work-

ers. When the worker node joins the dataflow 

system, it first needs to register itself to the 

master node. Then the Membership compo-

nent on the master node monitors the avail-

ability of each worker through a heartbeat sig-

nal every 5 seconds. The heartbeat signal car-

ries the status information about the worker, 

such as CPU, memory and disk usage. If mas-

ter can not receive the heart beat from some 

worker for 3 times, it will take that worker as 

unavailable; if the heartbeat indicates the 

worker is dominated by other users, that 
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worker is also taken as unavailable by the 

master. Besides heartbeats, the worker status 

information is also carried in the control flow 

data from workers to the master, such as pub-

lishing index. 

After the user specifies the dataflow graph 

and the execution module for their computa-

tion, he can submit them with the initial vertex 

files as a whole task to the master node. 

 

Executor 

Storage 

Executor 

Storage 

Executor 

Storage 

Scheduler DAG Registry 

Master 

Worker 1 

Control Flow 

Publishing Traffic 

Data Traffic 

 

Worker 2 Worker n  

Figure 7 Components Interaction 

Upon receiving submission from users, the 

master node will create an instance as a thread 

for each execution module. Based on .NET 

platform, the master node first load the execu-

tion module, then serialized it as an object, 

and finally sends to the object to workers 

when dispatching vertices executing as tasks. 

To begin the execution of each dataflow 

job, master node first sends the initial vertex 

to workers. When a worker receives the vertex, 

it will first keep it in local instance of the data-

flow storage, and then notifies the registry 

component that it has received the vertex 

through an index publishing message which 

carries the size of the vertex data. 

After the registry component receives a pub-

lishing message for vertex x, it first adds an 

entry into x’s index and then checks with the 

dataflow graph component to check if there is 

a vertex execution waiting for the availability 

of the data specified in the publishing mes-

sage. If so, the ready vertex will be scheduled 

as an executing task. The scheduling compo-

nent sends the request of executing task to 

candidate workers. To choose candidate work-

ers, the scheduling component mainly consid-

ers the location of input data to reduce band-

width traffic and the CPU status of workers. 

The execution request carries the serialized 

object of corresponding execution module, 

and the location information of the input ver-

tex data. After receiving it, the worker first 

fetches the input data, and then un-serializes 

the execution object and executes it. After the 

execution is finished, the master collects the 

final results and stores them as files according 

to users’ request. 

In the current implementation, the master 

pushes the initial vertices to workers. After the 

execution starts, the worker pulls available 

input data from other peers (workers). That 

means the worker node that needs some input 

data will actively to fetch them. To improve 

the scalability, the request does not contain the 

input data. Upon receiving an executing re-

quest, if the input data is not kept locally, the 

worker need to fetch them from other workers 

according to the location specified in the re-

quest. By conducting data transfer in this P2P 

manner, we aim to increase the scalability of 

the system. 

The storage component on each worker is 

responsible for maintaining the vertex data 

generated during execution. Whenever the ex-

ecutor component receives an executing re-

quest from master node, it sends a fetch re-

quest to the local storage component. The 

storage component first checks if the request 

can be served by local cache. If there is a local 

copy of the requested data, this is returned to 

the executor component; if not, it will contact 

remote storage component to fetch data re-

motely according to the location specified in 

the executing request. After all the input data 

is available on the worker node, the executor 

component creates a thread instance for the 

execution module based on the serialized ob-

ject from the master, feeds it with the input 

vertices and starts the thread. After the compu-

tation finishes, the executor component calls 

the SetResult() to save the result vertex into 
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local storage component and then publish an 

index message to notify the registry compo-

nent on the master. 

Dataflow storage maintains a cache in 

memory. After remotely fetching or after a 

SetResult(), all the vertices first will be kept in 

the cache and dumped to disk asynchronously 

when there is a need to reduce memory space. 

Keeping hot data in memory could improve 

the performance. Worker schedules the exe-

cuting and network traffic of multiple tasks as 

a pipeline to optimize the performance.  

4.5 Fault Tolerance 

Since the dataflow system is deployed in 

Desktop Grid environments, we need to han-

dle node failures to ensure the availability of 

computation. In the shared environment, we 

face two kinds of failure: physical failure and 

soft failure. Physical failure means some node 

cannot work for some time due to due to soft-

ware or hardware problems. Soft failure oc-

curs when a higher priority users demands 

node resources and the dataflow system yields. 

Under soft failure, the node still works, but for 

the time being cannot contribute its resources 

to the dataflow system. During soft failure, a 

node’s CPU and network interface are no 

longer available to the dataflow system, but 

the local vertex storage is not reclaimed. 

When the node leaves soft failure and rejoins 

the system, those vertices are once again 

available. However, in our current design, we 

use same mechanisms handling soft failures as 

handling physical failures. 

4.5.1 Worker Failure 

The master node monitors status for each task 

dispatched to workers. Each vertex task has 4 

statuses: unavailable, executing, available and 

lost. Unavailable and lost means no any copy 

exists in the dataflow storage for the vertex. 

the difference between these two statuses is 

unavailable is specified to the vertex which is 

never generated before, while lost means the 

vertex has been generated before but now lost 

due to worker failures. Available means that at 

least one copy for the vertex is held by some 

storage component in the dataflow system. 

Executing the vertex has been scheduled to 

some worker but still not finished. 

The failure of one worker makes tasks 

which it is processing to be lost and the master 

needs to re-schedule the lost tasks. Further-

more, since the vertex data on the failure 

worker will not be accessible again, the master 

node will need to regenerate them if there are 

some unavailable tasks are eventually depend-

ent on them. 

When the master detects that a worker has 

failed, it notifies the registry component to 

remove the failed worker from indices. During 

the removing process, status of some of the 

vertices will change from available to lost. For 

the lost vertices, if they are directly dependent 

by some executing or unavailable vertex tasks, 

we need to regenerate them to continue the 

execution. The rescheduled tasks may be de-

pendent on other lost vertices, and eventually 

cause domino effects. For some extreme cases, 

the master node may need to re-send the initial 

vertices to continue the execution. 

Generally, rescheduling due to the domino 

effect will takes considerable time. The system 

replicates vertices between workers to reduce 

rescheduling. This is a feature triggered by the 

configuration of the master. If replication fea-

ture is set, the registry component will choose 

candidate workers to replicate the vertex after 

it receives the first publishing message for that 

vertex. Replication algorithm needs to take 

load balancing into consideration. 

Replication causes additional overhead. If 

we take vertices under same version as a 

checkpoint for the execution, it is not neces-

sary for us to replicate every checkpoint. It is 

better for users to specify a replication step. It 

is called as n step replication if users want to 

replicate the vertices every n versions. Under 

failure cases, there is a tradeoff between repli-

cation steps and executing time. 
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4.5.2 Master Failure 

Generally master is running over a dedicated 

node, it may experience physical failures, but 

seldom has soft failures. To handle these two 

kinds of failures, the master frequently writes 

its internal status, including data structure in 

registry component, scheduler component and 

graph component to disk and then replicate the 

internal status to other node. After the master 

node fails, we could use the backup version to 

start a new master and continue the computa-

tion. 

4.6 Scheduling and Granularity 

There is a lot of ongoing research on schedul-

ing complex DAG tasks effectively. Generally, 

we could borrow their results and choose suit-

able algorithms for our applications. In the 

current implementation, the scheduling of 

tasks is performed by the master giving prior-

ity to locality of data [22] and performance 

history of workers [31]. Exploring the data-

flow graph, the scheduler component on the 

master takes each vertex as the basic schedul-

ing unit. 

To begin execution, the scheduler compo-

nent distributes the initial vertices across 

available workers. For an efficient distribu-

tion, the size of each initial vertex data and 

computing power, i.e. CPU frequency, are 

taken as the measure for load balancing. Fur-

thermore, the dataflow library provides ways 

for user to combine some vertices as a unit for 

distribution. 

During the computation, the scheduler col-

lects the related performance information for 

each execution module, such as the input data 

size and time consumed. Based on this history 

information, we can predict the execution time 

for the execution module which has been 

scheduled. This prediction is important to 

achieve an efficient scheduling in heterogene-

ous environment. 

Granularity is important for the efficiency 

of scheduling. Our philosophy is to use homo-

geneous granularity of vertices to manipulate 

the power in heterogeneous environment. So it 

is better for users to partition the initial data 

into homogeneous vertices with similar data 

size.  

5. Performance Evaluation 

In this section, we evaluate the performance of 

the dataflow system through two experiments 

running in a Windows Desktop Grid, which is 

deployed in Melbourne University and shared 

by students and researchers. One experiment 

consists of a matrix multiplication: one square 

matrix multiplied with another square matrix. 

The other experiment involves an iterative ma-

trix vector multiplication. 

These two programs are example applica-

tions for the dataflow system. Generally this 

kind of parallel program is performed through 

MPI applications. However, with dataflow 

system, users need not concern about specify-

ing the explicit communications involved in 

MPI-based applications. Similar coarse-

grained programs could also be easily handled 

by dataflow system. 

5.1 Environment Configuration 

The evaluation is executed in a Desktop Grid 

with 9 nodes. During testing, one machine 

works as master and the other 8 machines 

work as workers. Each machine has a single 

Pentium 4 processor, 500MB of memory, 

160GB IDE disk (10GB is contributed for 

dataflow storage), 1 Gbps Ethernet network 

and ran Windows XP. 

5.2 Testing Programs 

We use two examples as testing programs for 

the evaluation. These examples are built using 

the dataflow API. 
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5.2.1 Matrix Multiplication 

Each matrix consists of 4000 by 4000 ran-

domly generated integers . Each matrix needs 

about 64M bytes. Each matrix is partitioned 

into square blocks with different granularity. 

In the testing, we choose two granularities: 

250 by 250 square block (16*16 blocks with 

255KB per block) and 125 by 125 square 

block (32*32 blocks with 63KB per block). 

For 16*16 blocks partition, there are 512 

initial vertices for the two matrix and 256 re-

sult vertices for the result matrix. For 32*32 

blocks partition, there are 2,048 initial vertices 

for the two matrix and 1024 result vertices as 

the result matrix.  

5.2.2 Matrix Vector Iterative Multiplica-

tion 

The matrix consists of 16000 by 16000 inte-

gers, and the vector consists of 16000 integers. 

All the integers are generated randomly. The 

matrix uses about 1GB and the vector uses 

64KB. The benchmark iterates 50. The matrix 

and vector are partitioned by rows. Two 

granularities for partition are adopted in the 

evaluation: 24 stripes and 32 stripes. 

For 24 stripes, the matrix and the vector are 

respectively partitioned by rows into 24 

pieces. Each matrix one is about 41 MB and 

each vector one is about 2.6 KB. There are 48 

initial vertices. During the computation, 1200 

vertices are generated. Finally 48 result verti-

ces are collected as the result vector. 

For 32 stripes, the matrix and the vector are 

respectively partitioned into 32 pieces. Each 

matrix one is about 31 MB and each vector 

one is about 2 KB. There are 64 initial verti-

ces. During the computation, there are 1600 

vertices are generated. Finally, 32 result verti-

ces are collected as the result vector. 

As example programs, the multiplication 

code is not specially optimized for perform-

ance purpose. 

5.3 Scalability of Performance 

The performance scalability evaluation does 

not include the time consumed for sending 

initial vertex data and collecting result vertex 

data as these two actions need to transfer data 

across single master which is sequential be-

havior. 

2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Workers #

S
p

e
e

d
u

p

Scalability of Performance for Matrix Vector Multiplication

Ideal Case
Matrix * Vector (24)
Matrix * Vector (32)

 

2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Workers #

S
p
e
e
d
u
p

Scalability of Performance for Matrix Multiplication

Ideal Case
Matrix * Matrix (16)
Matrix * Matrix (32)

 
Figure 8 Scalability of Performance 

Figure 8 illustrates the speedup of perform-

ance with an increasing number of workers. 

The execution time on two workers is used as 

the speedup baseline, because the matrix vec-

tor example cannot be run on a single worker 

as there is not enough memory to hold the in-

put and intermediate vertices. We can see that 

under same vertex partition settings as more 

workers are involved in the computation, bet-

ter performance is obtained. On the other 

hand, overheads such as connections with the 

master also increase with the number of work-
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ers. So the speedup line is not ideal. In most 

cases, the efficiency of speedup is over 80%. 

Table 1 shows the speedup ratio of matrix vec-

tor multiplication with 24 partitions and ma-

trix multiplication with 256 partitions. The 

speedup ratio for matrix multiplication is a 

little higher. The reason is that the ratio of 

computation to communication for matrix 

multiplication is a little higher than vector ma-

trix multiplication, as illustrated by Figure 9. 

Worker # 3 4 5 6 7 8 

M*V(24) 1.37 1.78 1.99 2.71 2.80 3.39 

M*M(256) 1.44 1.88 2.32 2.53 3.07 3.48 

Table 1 Speedup Ratio 
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Figure 9 Computation and Network load decouple. For 

each workers setting, average load decouple is shown. 

Matrix multiplication has bigger ratio of computation 

vs. network traffic. 

One expectation of partition granularity   

is that more partitions will introduce addi-

tional overhead during execution. Figure 8 is 

consistent with this, especially for the matrix 

multiplication application as the number of 

vertices for 32*32 partitions is 4 times bigger 

than that for 16*16 partitions for matrix mul-

tiplication, while the vertex number for matrix 

vector multiplication is nearly same under 24 

and 32 partitions. 

5.4 Impact of Replication 

This section discusses the performance im-

pacts of vertex replication. As vertex replica-

tion consumes additional network bandwidth, 

it will increase the time for whole computation 

as expected. This however depends on the 

number of vertices and data size for replica-

tion. We use iterative matrix vector multipli-

cation with 24 partitions and 50 iterations. 

There are 1200 vertices generated with 3.1 

MB as the total size. 

As Figure 10 illustrates the comparative 

performance under 1 and 2 step replication. 
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Figure 10 Replication overhead. 

Generally the replication overhead is not 

big and the performance under replication is 

not impacted heavily. This is because the rep-

licated data is not too big, only 3.1MB and we 

set the replication as low priority for contend-

ing the network bandwidth. An interesting 

phenomenon is sometimes the performance 

under replication is even better than the case 

without replication. This is because actively 

replication decreases the competition during 

peak traffic. 
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5.5 Handling Worker Failure 

This section evaluates the mechanisms dealing 

with worker failure in the dataflow system. 

We use iterative matrix vector multiplication 

with 24 partitions and 100 iterations. In total, 

2400 vertices are generated during the testing. 

Vertices created by the computation are nearly 

same size. So Figure 11 measures the number 

of vertices created during execution. This 

number is collected on the master node by the 

registry component. There are 8 workers and 1 

master involved in the testing. 

The testing compares how rescheduling and 

replication deal with worker failures. The test-

ing first checks the dynamic number of verti-

ces created by the computation without worker 

failures and without vertex replication as the 

first line illustrated in Figure 11. 

The whole computation lasts about 4 min-

utes, depending on the dataflow configuration 

and physical setting. The initial phase where 

the line is a little inclined, is when the master 

node sends initial vertices to multiple workers. 

Because it is actually a sequential process, so 

the line is nearly flat. After all initial vertices 

are available in the dataflow storage, the exe-

cution begins and the slope of vertices number 

line correspondingly increases. After all of the 

vertices are created, the line changes to flat.  

Next we add one worker failure in the test-

ing. At first we have 1 master node and 8 

worker nodes involved in the execution. Dur-

ing the computation, we unplug the network 

cable of one worker to simulate the worker 

failure at around the 4
th

 minute. First we do 

not take any replication and then one worker 

failure causes some vertices to be lost, illus-

trated by the 2
nd

 line in Figure 11. After the 

master node finds the failure, it will first dis-

patch live workers to regenerate lost vertices 

and then continue the execution. So in the 2
nd

 

line of Figure 11, there is a big drop at the 

230
th

 second. After a while, however the verti-

ces number increases back again due to the re-

execution to generate lost vertices. Because 

only 7 workers left for execution, so the slope 

is smaller than before the drop point. 
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Figure 11 Handling worker failures with replication 

and re-execution. 

Next we add replication mechanism to 

handle the failure. We test for two settings: 1 

step and 2 step replication. With 1 step repli-

cation, after one worker failure, the line 

changes to flat, because the master needs to 

resend some initial vertices to continue the 

computation. For 2 step replication, after one 

worker failure, there is a small drop first and 

then the line changes to flat, because one 

worker failure makes some non-replicated ver-

tices lost. Eventually we find replication 

mechanism effectively reduces the time con-

sumed for regenerating lost vertices.  

6. Conclusion and Future Work 

This paper presents a dataflow computing 

platform within shared cluster environment. 

Through a static dataflow interface, users can 

freely express their data parallel applications 

and easily deploy applications in distributed 

environment. 

The mechanisms adopted in our dataflow 

system support scalable performance and 

transparent fault tolerance based on the 

evaluation of example applications. 

Next we plan to incorporate the dataflow 

programming model and the dataflow engine 
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into Alchemi[1], and then extend this comput-

ing platform into larger scale distributed envi-

ronment, such as Grids and P2P networks. 
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