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Abstract. A Task Graph (TG) is a model of a parallel program that
consists of many subtasks that can be executed simultaneously on differ-
ent processing elements. Subtasks exchange data via an interconnection
network. The dependencies between subtasks are described by means
of a Directed Acyclic Graph. Unfortunately, due to their characteris-
tics, scheduling a TG requires dedicated or uninterruptible resources.
Moreover, scheduling a TG by itself results in a low resource utilization
because of the dependencies among the subtasks. Therefore, in order to
solve the above problems, we propose a scheduling approach for TGs
by using advance reservation in a cluster environment. In addition, to
improve resource utilization, we also propose a scheduling solution by
interweaving one or more TGs within the same reservation block and/or
backfilling with independent jobs.

1 Introduction

A Task Graph (TG) is a model of a parallel program that consists of many
subtasks that can be executed simultaneously on different processing elements
(PEs). Subtasks exchange data via an interconnection network. The dependen-
cies between subtasks are described by means of a Directed Acyclic Graph
(DAG). Executing a TG is determined by two factors: a node weight that denotes
the computation time of each subtask, and an edge weight that corresponds to
the communication time between dependent subtasks [1]. Thus, to run these
TGs, we need a target system that is tightly coupled by fast interconnection
networks. Typically, cluster computers provide an appropriate infrastructure for
running parallel programs.

Scheduling TGs in a cluster environment is a challenging process because of
the following constraints: Firstly, a TG requires a fixed number of processors for
execution. Hence, a user needs to reserve the exact number of PEs. Secondly, due
to communication overhead between the subtasks on different PEs, each subtask
must be completed within a specific time period. Finally, each subtask needs to



wait for its parent subtasks to finish executing in order to satisfy the required
dependencies.
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Fig. 1. Illustration of a task graph (left) and its schedule (right) on 3 PEs.

Scheduling a TG on a resource can be visualized by a time-space diagram as
shown in Figure 1. In this figure, a TG consists of 9 subtasks (T 0− T 8), and as
an example it was scheduled using 4 target processing elements (TPEs). Each
subtask has a node weight of 1 time unit, and its edge weight is also shown on
Figure 1 (left) in a number next to the arrow line. In order to minimize the
schedule length (overall computation time) and the communication costs of a
TG, its subtasks must be assigned to appropriate PEs and they must be started
after their parent subtasks. In this example, T 6 depends on T 4 and T 5, so it
must wait for both subtasks to finish and it will be scheduled on PE0 in order
to minimize the communication cost. However, this schedule does not make an
efficient use of the given TPEs. Although this schedule assigned the subtasks to
3 PEs, only 2 PEs are actually needed. In general, the right number of schedule’s
PEs can not be determined in advance. Thus, the resulting schedules might not
be able to make an efficient use of the available PEs. Therefore, in this paper, we
will talk about how this problem can be improved upon by means of an advanced
reservation-based scheduling.

If we consider DAGs with different node and edge weights, the general schedul-
ing problem is NP-complete [2]. Thus, in practice, heuristics are most often
used to compute optimized (but not optimal) schedules. Unfortunately, time-
optimized algorithms do not make an efficient use of the given PEs. In this
context, the efficiency is measured by the ratio of the total node weight in re-
lation to the overall available processing time. As an example, in Figure 1, the
efficiency of this TG schedule is 9/18 or 50%, which is quite low because PE1
and PE2 are mostly idling. If there are no idle PEs at all time, then the efficiency
can be said to be optimal (100%).

In [3], a comprehensive test bench (comprised of 36,000 TGs with up to 250
nodes), is used to evaluate the schedule’s efficiency of several popular heuristics,
such as such as DLS [4], ETF [5], HLFET [6] and MCP [7]. Essentially, it reveals
that the efficiency of the DAG-schedules is mostly below 60%, which means a



lot of the provided computing power is wasted. The main reason is due to the
constraints of the schedule as demonstrated in the previous example.

The contribution of this paper is as follows. We propose an approach to
schedule TGs by using advance reservation in a cluster environment. Moreover,
to improve the efficiency or to maximize the CPU utilization, we also propose a
scheduling solution by interweaving one or more TGs within the same reservation
block and/or backfilling with other independent jobs.

The rest of this paper is organized as follows. Section 2 mentions some related
work in this area. Section 3 describes the proposed model, whereas Section 4
evaluates the effectiveness of the scheduling solution. Finally, Section 5 concludes
the paper and gives some future work.

2 Related Work

Some systems are available for running DAG applications in the Grid or cluster
computing environment, such as Condor [8, 9], GrADS [10], Pegasus [11], Tav-
erna [12] and ICENI [13]. However, only ICENI provides a reservation capability
in its scheduler [14]. In comparison to our work, the scheduler inside ICENI does
not consider backfilling other independent jobs with the reserved DAG applica-
tions. Hence, ICENI resource scheduler does not consider the efficiency of the
reserved applications towards CPU utilization.

With regards to the efficiency analysis of functional parallel programs, i.e.
executing two or more tasks concurrently, there are only few works done so far.
In [15], the authors analyze the efficiency of TG schedules, such as ECPFD [16],
DLS [4] and BSA [17] with respect of different Communication-to-Computation
(CCR) values. The authors report that a resource efficiency drops down if the
CCR value is increased and it also depends on the network topology. Moreover,
they find that for coarse grained parallel programs (low CCR), the efficiency
achieved is lower than 50%. In [15], the efficiency is defined as speedup of a TG
schedule divided by number of processors, where the speedup denotes a ratio of
measured parallel execution time to sequential execution time. However, it can
be easily shown that this definition of efficiency is equivalent to the one already
given in the previous section. Hence, the above findings are similar with [3] as
mentioned earlier, except that in [15], the experiments were conducted on a real
system because the model accuracy should be evaluated. Therefore, the main
goal of our work is to increase the scheduling efficiency of these TGs.

3 Description of the Model

3.1 System Model

Figure 2 shows the open queueing network model of a resource applied for our
work. In this model, there are two queues: one is reserved for TGs while the other
one is for parallel and independent jobs. Each queue has a finite buffer with size
S to store objects waiting to be processed by one of P independent CPUs or



PEs. All PEs are connected by a high-speed network. PEs in a resource can be
homogeneous or heterogeneous. For this paper, we assume that a resource has
homogeneous PEs, each having the same processing power.
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Fig. 2. Overall model where a user submits a set of task graphs on a resource.

In this model, as shown in Figure 2, we assume that we have already known
the optimal schedules for each TG in the queue and that their run times are also
identified. With this assumption, the resource scheduler only needs to reserve and
run these TGs. Moreover, the resource scheduler can perform futher optimization
methods that will be discussed later on.

3.2 User Model

A user provides the following parameters during submission:

– TG = {T 1, T 2, ..., Tn} : Task Graph (TG) that consists of a set of dependent
subtasks, where each subtasks has a node and edge weight.

– List = {TG1, TG2, ..., TGk} : a collection of TGs.
– PE : number of CPUs requested.
– start : reservation start time.
– finish : reservation finish time.

A user needs to make a reservation by specifying a tuple < PE, start, finish >

to a resource. Once a reservation has been confirmed, then the user sends List

to the resource before the start time, otherwise the reservation will be cancelled.
More details on the states of Advance Reservation can be found on [18].

3.3 Scheduling Model

The aim of our reservation-based scheduler is to improve the efficiency of each
TG. Therefore, for executing TGs, we propose the following approaches:

1. Rearranging subtasks: This is done by rearranging all subtasks in a TG

based on the total number of subtasks executed on each PE. For example,
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(b) a moving operation.
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Fig. 4. Combining the execution of two TG by interweaving.

we relocate all subtasks of PE0, PE1 and PE2 as depicted in Figure 1 to
PE2, PE0 and PE1 respectively as shown in Figure 3(a). This fundamental
step is required as a basis for the next step.

2. Moving subtasks: This is done by moving one or more subtasks from one
PE to another as long as there are empty slots. For example, we move T 1
and T 8 as mentioned in Figure 3(a) from PE0 to PE1 and PE2 respectively
as shown in Figure 3(b). With this approach, the best case scenario would
result in the reduction of the schedule’s PEs (SPEs). Hence, the available
PEs can be used to run another TG by interweaving and/or backfilling with
independent jobs as discussed in the next step.

3. Interweaving TGs: This can be done by combining two or more TGs from
List and still keeping the original allocation and dependencies untouched.

For example, in Figure 4, two TGs that require the same number of PEs
are interlocked. In general, the number of PEs do not matter. Each TG has
an earliest task to start with. Without the loss of generality, this TG can
be placed on a PE that will be availabe next. Due to the time relation in
a schedule, we can now look if the second earliest TG “row” can be placed
on another PE. If yes, we can proceed in this way until the second TG is
completely placed. If there are no PEs available to fit the time relations, we



delay all the previously placed task rows of that schedule appropriately. Of
course this will create gaps of idle processor-cycles. But these gaps can be
hopefully closed by the following backfilling step.

4. Backfilling a TG or remaining gaps between interweaved TGs: This
can be done if there are smaller independent jobs that can be fit in and ex-
ecuted without delaying any of the subtasks of a TG.

In this step, we try to close the gaps by using (independent) jobs from
another queue. In contrast to the interweaving step, the best fitting jobs
should be selected out of this queue. We start with the first gap and look for
the job that has an estimated schedule length lower or (best) equal to the
gap’s length. Jobs that can not be used to fill enough gaps must be scheduled
after all the parallel programs are executed. As an example, there is enough
gap on PE0 in Figure 4 to put 2 small independent jobs, each runs for 1
time unit.

4 Performance Evaluation

In order to evaluate the performance of our advanced reservation-based scheduler
(AR), we compare it with two standard algorithms, i.e. First Come First Serve
(FCFS) and EASY backfilling (Backfill) [19]. We use GridSim toolkit [18] to
conduct the experiment with different parameters. We simulate the experiment
with three different target systems that consist of clusters with varying number
of processors, i.e. 16, 32 and 64 PEs. Then, we run the experiment by submitting
both TGs and other jobs (taken from a workload trace) into these systems.

4.1 Experimental Setup

Test Bench Structure In this experiment, we use the same test bench (created
by a task graph generator), as discussed in [1] and [3], to evaluate the perfor-
mance of our scheduler. Therefore, we briefly describe the structure of the test
bench. More detailed explanation of the test bench can be found in [1].

TGs with various properties are synthesized by a graph generator whose
input parameters are varied. The directory tree that represents the structure of
test bench are shown in Figure 5. The total number of TGs at each level within a
path of the tree is shown on the right side. The parameters of a TG is described
as follows (from top to bottom level in Figure 5):

– Graph Size (GS): denotes the number of nodes or subtasks for each TG. In
Figure 5, The parameters of a generated TG are grouped into three cate-
gories: 7 to 12 nodes (GS7 12), 13 to 18 nodes (GS13 18) and 19 to 24 nodes
(GS19 24).

– Meshing Degree (MD) or Number of Sons (NoS): denotes the number of de-
pendencies between the subtasks of each TG. When a TG has a low, medium
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Fig. 5. Structure of the test bench.

and strong meshing degree, the NoS in Figure 5 are NoS Low, NoS Avg and
NoS High respectively. TGs with random meshing degrees are represented
as NoS Rand.

– Edge Length (EL): denotes the distance between connected nodes. When a
TG has a short, average and long edge length, Figure 5 depicts the notation
as EL Short, EL Avg and EL Long respectively. TGs with random edges are
represented as EL Rand.

– Node- and Edge-weight: denotes the Computation-to-Communication Ratio
with a combination of heavy (H), light (L) and random (R) weightings for
the node and edge.

From this test bench, we also use the optimal schedules for the branches
of GS7 12 and GS13 18 for both 2 and 4 TPEs. Each branch contains 2,400
task graphs, hence the maximum number of task graphs that we use is 9,600.
These optimal schedules were computed and cross-checked by two independent
informed search algorithms (branch-and-bound and A∗) [1]. Note that at the time
of conducting this experiment, the optimal schedules of GS19 24 for 4 TPEs are
not yet completed. Therefore, we do not incorporate the schedules of GS19 24
for 2 TPEs into the experiment for consistency.

Workload Trace We also take two workload traces from the Parallel Work-
load Archive [20] for our experiment. We use the trace logs from DAS2 fs4 (Dis-
tributed ASCI Supercomputer-2 or DAS in short) cluster of Utrecht University,
Netherlands and LPC (Laboratoire de Physique Corpusculaire) cluster of Uni-
versite Blaise-Pascal, Clermont-Ferrand, France. The DAS cluster has 64 CPUs
with 33,795 jobs, whereas the LPC cluster has 140 CPUs with 244,821 jobs. The
detailed analysis for DAS and LPC workload traces can be found in [21] and [22]
respectively. Since both original logs recorded several months of run-time period



with thousands of jobs, we limit the number of submitted jobs to be 1000, which
is roughly a 5-days period from each log. If the job requires more than the total
PEs of a resource, we set this job to the maximum number of PEs.

In order to submit 2,400 TGs within the 5-days period, a Poisson distribution
is used. 4 TGs arrive in approximately 10 minutes for conducting the FCFS and
Backfill experiments. When using the AR scheduler, we set the limit of each
reservation slot to contain only 5 TGs from the same leaf of the test bench tree
from Figure 5. Hence, only 480 reservations were created during the experiment,
where every 30 minutes a new reservation is requested. If there are no available
PEs, then the resource scheduler will reserve the next available ones.

4.2 Results
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Fig. 6. Total completion time on the DAS trace with 4 TPEs (lower is better).

Figure 6 and 7 show a huge gain for using AR scheduler for the total com-
pletion time on 4 TPEs for both the DAS and LPC trace respectively, especially
on a resource that has 16 PEs. Note that for 2 TPEs, the results are similar,
hence they are being omitted in this paper.

There are two main reasons that the AR scheduler manages to complete much
earlier. The first reason is because a set of TGs in a single reservation slot can
be interweaved successfully, as shown in Table 1. For TGs on a GS7 12 branch
fot 4 TPEs, the initial reservation duration time is reduced up to 23.74% on the
HNode LEdge branch. For TGs on a GS13 18 branch for 4 TPEs, the maximum
reduction is 26.31% on the HNode HEdge branch. In constrast, the reduction is
much smaller for 2 TPEs on the same branches. The reduction in the reservation
duration time can also be referred to as an increase in the efficiency of scheduling
TGs in this experiment. Overall, these results show that the achievable reduction
depends on the size of the TGs and their graph properties as well.
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Fig. 7. Total completion time on the LPC trace with 4 TPEs (lower is better).

Table 1. Average percentage of reduction in a reservation duration time

Task Graph 2 TPEs (% reduction) 4 TPEs (% reduction)
Parameters GS7 12 GS13 18 Avg GS7 12 GS13 18 Avg

MD Low 2.06 2.15 2.10 14.99 22.80 18.89

MD Avg 6.59 7.73 7.16 13.68 19.87 16.78

MD High 9.66 9.61 9.64 12.33 16.55 14.44

MD Rand 5.35 4.68 5.02 15.80 23.54 19.67

EL Long 0.21 0.00 0.11 9.52 11.85 10.69

EL Short 11.92 13.99 12.96 16.89 23.04 19.96

EL Avg 3.64 3.03 3.34 13.83 22.55 18.19

EL Rand 7.89 7.15 7.52 16.55 25.32 20.94

LNode LEdge 4.02 3.99 4.00 8.42 10.94 9.68

LNode HEdge 6.80 8.01 7.41 9.73 12.62 11.17

HNode LEdge 5.75 5.47 5.61 23.74 25.72 24.73

HNode HEdge 7.57 6.69 7.13 18.78 26.31 22.55

RNode REdge 5.67 6.05 5.86 12.26 24.60 18.43



Table 2. Average of total backfill time on the DAS trace (in seconds)

Task Graph 2 TPEs 4 TPEs
Parameters GS7 12 GS13 18 Avg GS7 12 GS13 18 Avg

MD Low 1,089.00 432.00 760.50 711.33 209.67 460.50

MD Avg 4,499.00 2,301.33 3,400.17 2,121.33 2,585.33 2,353.33

MD High 598.67 145.00 371.83 197.67 614.33 406.00

MD Rand 943.33 1,041.67 992.50 698.67 644.33 671.50

EL Long 2,834.67 1,627.33 2,231.00 1,574.33 491.33 1,032.83

EL Short 1,811.33 1,114.00 1,462.67 467.33 2,469.33 1,468.33

EL Avg 2,263.67 379.67 1,321.67 777.33 329.00 553.17

EL Rand 220.33 799.00 509.67 910.00 764.00 837.00

LNode LEdge 1,760.67 865.33 1,313.00 981.33 329.67 655.50

LNode HEdge 602.67 74.67 338.67 436.67 9.33 223.00

HNode LEdge 620.67 102.00 361.33 201.67 146.67 174.17

HNode HEdge 1,259.67 382.00 820.83 509.33 962.67 736.00

RNode REdge 2,886.33 2,496.00 2,691.17 1,600.00 2,605.33 2,102.67

The second reason is because there are many small independent jobs that
can be used to fill in the “gaps” within a reservation slot, as depicted in Table 2
and 3. However, on average, the AR scheduler manages to backfill more jobs
from the LPC trace into the reservation slot compare to the DAS trace. This is
due to the characteristics of workload jobs themselves. The first 1000 jobs from
the LPC trace are primarily independent jobs that require only 1 PE with an
average runtime of 23.11 seconds. In contrast, the first 1000 jobs from the DAS
trace contain a mixture of independent and parallel jobs that require on average
9.15 PEs with an average runtime of 3676.70 seconds. These phenomena also
explain why the total completion time on the DAS trace took much longer than
the LPC one.

An interesting observation to note from Figure 6 and 7 is that, the total
completion time for the AR scheduler is the same for a resource with 16, 32 and
64 PEs. The FCFS and Backfill algorithm only manage to finish within the same
time as the AR scheduler when a resource has 64 PEs. Hence, the AR scheduler
executes these jobs and TGs more efficiently.

5 Conclusion and Future Work

In this paper, we have presented a novel approach to schedule TGs by using
advance reservation in a cluster environment. In addition, to improve resource
utilization, we proposed a scheduling solution (AR scheduler) by interweaving
one or more TGs within the same reservation block and/or backfilling with other
independent jobs.

The results showed that the AR scheduler performs better than the standard
FCFS and Easy backfilling algorithms for reducing both the reservation duration
time and the total completion time. The AR scheduler managed to interweave



Table 3. Average of total backfill time on the LPC trace (in seconds)

Task Graph 2 TPEs 4 TPEs
Parameters GS7 12 GS13 18 Avg GS7 12 GS13 18 Avg

MD Low 2,451.67 1,640.67 2,046.17 1,136.00 815.67 975.83

MD Avg 883.00 474.00 678.50 718.00 2,874.33 1,796.17

MD High 1,902.33 1,916.67 1,909.50 2,334.00 678.00 1,506.00

MD Rand 2,474.67 1,698.67 2,086.67 2,172.00 1,020.33 1,596.17

EL Long 2,018.67 1,611.33 1,815.00 1,889.00 1,419.33 1,654.17

EL Short 1,830.67 1,835.00 1,832.83 1,610.00 1,846.33 1,728.17

EL Avg 2,469.00 1,213.67 1,841.33 1,218.33 455.00 836.67

EL Rand 1,393.33 1,070.00 1,231.67 1,642.67 1,667.67 1,655.17

LNode LEdge 1,578.33 978.00 1,278.17 1,459.33 1,419.00 1,439.17

LNode HEdge 1,126.33 1,051.33 1,088.83 1,387.67 541.67 964.67

HNode LEdge 2,114.33 683.00 1,398.67 828.00 940.33 884.17

HNode HEdge 1,121.67 1,529.33 1,325.50 838.00 1,011.00 924.50

RNode REdge 1,771.00 1,488.33 1,629.67 1,847.00 1,476.33 1,661.67

a set of task graphs with a reduction of up to 23.74% and 26.31% on 7–12
nodes and 13–18 nodes with 4 target processing elements (TPEs) respectively.
However, much smaller reduction is noticed for 2 TPEs on same nodes. These
results also showed that the achievable reduction depends on the size of the task
graphs and their graph properties as well. Finally, the results showed that when
there are many small independent jobs, the AR scheduler accomplished to fill
these jobs into the reservation blocks.

An extension to this work is to consider scheduling task graphs with an econ-
omy model in order to see how efficient the AR scheduler is in terms of resource
profits and user costs. Moreover, the AR scheduler can be extended to interweave
task graphs from different reservation slots within a specified time block.
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