
Extending GridSim with an Architecture for Failure Detection

Agustı́n Caminero 1, Anthony Sulistio 2, Blanca Caminero 1,
Carmen Carrión 1, and Rajkumar Buyya 2

1Department of Computing Systems 2Dept. of Computer Sc. & Software Eng.
The University of Castilla La Mancha, Spain The University of Melbourne, Australia
{agustin, blanca, carmen}@dsi.uclm.es {anthony, raj}@csse.unimelb.edu.au

Abstract

Grid technologies are emerging as the next generation
of distributed computing, allowing the aggregation of re-
sources that are geographically distributed across different
locations. However, these resources are independent and
managed separately by various organizations with different
policies. This will have a major impact to users who submit
their jobs to the Grid, as they have to deal with issues such
as policy heterogeneity, security and fault tolerance. More-
over, the changes of Grid conditions, such as resources that
may become unavailable for a period of time due to main-
tenance and/or suffer failures, would significantly affect the
Quality of Service (QoS) requirements of users. Therefore,
it is essential for users to take into account the effects of
resource failures during jobs execution.

In this paper, we present our work on introducing re-
source failures and failure detection into the GridSim sim-
ulation toolkit. As we need to conduct repeatable and con-
trolled experiments, it is easier to use simulation as a means
of studying complex scenarios. We also give a detailed
description of the overall design and a use case scenario
demonstrating the conditions of resources varied over time.

1 Introduction

Grid systems are the next generation of distributed com-
puting systems. They are highly heterogeneous environ-
ments and consist of a series of independent organizations
sharing their resources, creating what is known as Virtual
Organization (VO) [5]. In Grid systems, each organization
keeps its own independence and autonomy, since it is an
essential issue for the creation of a real Grid. Therefore,
each organization can decide its own policy and whether to
join/leave a VO at any time. Such decisions will certainly
affect users in submitting and executing their jobs.

Another important issue concerning users is that the
number of resources can fluctuate significantly over time.
The availability of resources may vary due to changes in
their working conditions, such as network congestion, par-
tial failures or even the connection or disconnection of com-
puting resources. With many resources in a Grid, the re-
source or network failures are the rule rather than the ex-
ception. Hence, they should be taken into account in order
to provide a reliable service [11].

Supporting fault tolerance is one of the main technical
challenges in designing Grid environments. This is because
production Grid systems must be able to tolerate resource
failures, while at the same time effectively exploiting the
resources in a scalable and transparent manner. Therefore,
in order to cope with these challenges, from the fault toler-
ance point of view, the system must have failure detection
and recovery schemes. Such a scenario can be described
in Figure 1. A failure detector monitors the components of
the system (step 1), and notifies a local Grid Information
Service (GIS) entity when a failure occurs in any of them
(step 2). Then, a recovery scheme is being applied in or-
der to restart a failed job on another computational resource
dynamically. An example of such a scheme is the failure
monitor notifies users that resource Res2 is out of order
(step 3). Hence, users can resubmit their jobs to other re-
sources. As demonstrated in this example, both detection
and recovery schemes must be an integral part of the Grid
computing infrastructure [13, 18]. Therefore, it is important
to conduct thorough study and evaluation of new reliability
models, error detection and recovery techniques before they
can be deployed in production Grid environments.

To test new detection and recovery schemes in a Grid en-
vironment like the above scenario, a lot of work is required
to set up the testbeds on many distributed sites. Even if au-
tomated tools exist to do this work, it would still be very
difficult to produce performance evaluation in a repeatable
and controlled manner, due to the inherent heterogeneity of
the Grid. In addition, Grid testbeds are limited and creating

Figure 1. An example of resource failure sce-
nario.

an adequately-sized testbed is expensive and time consum-
ing. Therefore, it is easier to use simulation as a means of
studying complex scenarios.

To address the above issues, we have incorporated fail-
ure detection and recovery scheme into GridSim [2, 25].
We opted to work on GridSim because it has a complete set
of features for simulating realistic Grid testbeds. Such fea-
tures are modeling heterogeneous computational resources
of variable performance, scheduling jobs based on time- or
spaced-shared policy, differentiated network service, and
workload trace-based simulation from real supercomput-
ers [25]. More importantly, GridSim allows the flexibility
and extensibility to incorporate new components into its ex-
isting infrastructure.

The main contribution of this work is the implementation
of an extension to GridSim. This extension allows GridSim
to simulate the failure of computing resources, and includes
a failure detection mechanism, essential to provide a com-
plete simulation environment. Most of the parameters of
this extension are configurable, allowing researchers to sim-
ulate a wide variety of failure patterns. To evaluate our de-
sign, we simulate a failure scenario by constructing an EU
DataGrid testbed into the experiment [9].

The rest of this paper is organized as follows: Section 2
reviews efforts in order to provide Grid systems with reli-
ability. Also, existing methods for failure detections and
several Grid simulation tools are mentioned. Section 3 ex-
plains the GridSim toolkit, which is a simulation tool that
has been extended to provide the failure functionality. Sec-
tion 4 describes the failure functionality, including the ac-
tual implementation using GridSim. Section 5 shows a use
case scenario, where we demonstrate the usefulness of our
work. Finally, Section 6 concludes the paper and suggests
some guidelines for future work.

2 Related Work

Reliability in Grid computing is a key research topic,
being covered by several research projects. Phoenix [13]

detects failures by scanning scheduler log files. It can di-
agnose execution and data transfer errors. Moreover, it
can follow different user defined failure-handling strategies.
However, the applicability of Phoenix is limited to those
systems in which log files can be interpreted.

Application failures can also be handled on a work-
flow level, where individual tasks may be run alternatively
should another task fail. The system in [12] relies on infor-
mation from a resource broker, but it can also be combined
with heartbeat monitors. Pierre [21] utilizes the peer-to-
peer (P2P) technologies to perform node management in a
decentralized manner. Krepska et al. [14] present a service
for a reliable application execution, which keeps track of
an application’s life cycle, from submission by the user to
successful completion of its execution. This service uses a
push method (explained next) in order to keep track of the
execution of applications.

2.1 Existing Resource Failure Detections

In general, computing resource failure can occur in hard-
ware, operating systems, and Grid middleware components,
as well as network connections. On the failure of a resource,
rescheduling and migration of jobs submitted to the failed
resource should be done [11]. According to the work in [8],
there are two methods for detecting resource failures, i.e.
push and pull.

The push method uses some form of “heartbeat” mes-
sages to renew a soft-state availability registration [6]. Each
monitored resource periodically sends a message to a cen-
tral server indicating its availability. Missing a heartbeat
after a certain time interval (timeout) T indicates that this
resource has failed. Although this method is robust when
the central server is running on a highly available system,
it is inextricably convolving network failure and host fail-
ure. A missing heartbeat or set of heartbeats can either be
interpreted as the failure in the monitored resource or the
loss of network connection. A real implementation using
the heartbeat method can be found at [24].

The pull method works by sending a message or a polling
request to the monitored resources. On receiving these mes-
sages, the resources will send them back, so that the sender
knows that each of them is alive. However, if T expires
before the sender receives the reply message, it means that
the resource is not available at this moment. Hence, the
sender will keep an up-to-date list of available resources.
However, the push and pull methods can not differentiate
between network and resource failure. The pull method has
been implemented in the Gridbus Broker [26] and the Grid-
Way [11] meta-scheduler.

2.2 Simulation Tools

As we mentioned previously, simulations are essential
for carrying out research experiments in Grid systems. A
number of simulation tools for Grids exist, such as Grid-
Sim [2], OptorSim [1], SimGrid [16] and MicroGrid [17].
OptorSim has been developed as part of the EU DataGrid
project [9], and it aims to study the effectiveness of data
replication strategies. SimGrid is an event driven simula-
tor, which provides functionality to simulate infrastructures
and applications based on their features. Finally, Micro-
Grid provides on-line emulation of large-scale network and
Grid resources. However, MicroGrid is actually an emu-
lator, meaning that actual application code is executed on
the virtual Grid modeled after Globus. To the best of our
knowledge the above tools do not provide mechanisms to
simulate computing resources failure.

3 The GridSim Toolkit

The GridSim toolkit [2, 25] is one of the most widely
used Grid simulation tools. It has been used for simulating
and evaluating VO-based resource allocation [4], workflow
scheduling [22], and dynamic resource provisioning tech-
niques [23] in global Grids.

It supports modeling and simulation of heterogeneous
Grid resources (both time- and space-shared), users, appli-
cations, brokers and schedulers in a Grid computing envi-
ronment. It provides primitives for the creation of applica-
tion tasks, mapping of tasks to resources, and their manage-
ment so that resource schedulers can be simulated to study
the involved scheduling algorithms. GridSim adopts a mul-
tilayered design architecture, as shown in Figure 2 [25].

GridSim is based on SimJava [10], a general purpose
discrete-event simulation package implemented in Java.
Therefore, the first layer at the bottom of Figure 2 is man-
aged by SimJava for handling the interaction or events
among GridSim components. All components in GridSim
communicate with each other through message passing op-
erations defined by SimJava. The second layer models
the core elements of the distributed infrastructure, namely
Grid resources such as clusters, storage repositories and
network links. These core components are absolutely es-
sential to create simulations in GridSim. The third and
fourth layers are concerned with modeling and simulation
of services specific to Computational and Data Grids re-
spectively. Some of the services provide functions common
to both types of Grids, such as information about available
resources and managing job submission. For Data Grids,
job management also incorporates managing data transfers
between computational and storage resources. Replica cat-
alogues are information services specifically implemented
for Data Grids. The fifth layer contains components that aid

Figure 2. Architecture of GridSim.

Figure 3. Interactions among entities.

users in implementing their own schedulers and resource
brokers so that they can test their own algorithms and strate-
gies. The layer above this helps users define their own sce-
narios and configurations for validating their algorithms.

In this paper, we incorporate failure detections to all lay-
ers of the GridSim architecture, except for the first layer
(SimJava kernel) and the third layer (Data Grids). Work
on introducing resource failures for Data Grids components
will be considered as a future work. The discussion related
to the failure architecture will be presented next.

4 Designing and Implementing Resource
Failures into GridSim

4.1 Designing Resource Failures

In our model, we use the pull method, and the interac-
tions among entities are depicted in Figure 3. These entities
are briefly described as follows:

Computing resources: execute users’ jobs.

Algorithm 1 Resource Failure Detection Algorithm used
by GIS.

repeat
poll the resources in my list of available resources
if a resource does not respond then

remove it from the list
inform other GIS entities about the failure

end if
wait for T

GIS
polling seconds

until simulation is over

Algorithm 2 Resource Failure Detection Algorithm used
by Users.

repeat
poll the resources which are running my jobs
if a resource does not respond then

ask the GIS for a list of resources
choose one of them
resubmit the jobs

end if
wait for T

user
polling seconds

until all my jobs have been successfully executed

GIS: maintains an up-to-date list of available resources.
GIS entities of the same VO can interact and exchange the
information of available resources. This process can be
summarized in Algorithm 1.

Users: contact a GIS entity for a list of available re-
sources in order to know where to run their jobs. The func-
tionality of this entity can be summarized in Algorithm 2.

For enabling an efficient polling mechanism, User Data-
gram Protocol (UDP) is used by these entities. This is due
to the fact that UDP requires a less significant network la-
tency in comparison with a Transmission Control Protocol
(TCP), although UDP does not provide retransmission of
lost packets.

Figure 4 shows a scenario of a user that has a job in
execution prior to a resource failure. The sequential steps
are shown in a box with a number inside. First, Resource 1
and Resource 2 register to GIS (step 1). Then, GIS creates
a list of available resources. In order to keep that list
up-to-date, GIS polls the resources periodically (step 2).
When User wants to run a job, he/she contacts GIS in order
to get a list of available resources (step 3). Upon receiving
the user’s request, GIS returns its list. In that moment, User
will choose Resource 1 for example, based on the features
of the resource and the job specification. When User has
chosen the resource, he/she submits the job to Resource 1
and starts a regular polling mechanism.

In the event of a failure affecting Resource 1, GIS is
able to detect this problem due to the polling mechanism

Figure 4. A sequence diagram showing a sce-
nario of a failure detection.

in place (step 4). Hence, GIS removes the failed resource
from the list. During a routine poll, User discovers that
Resource 1 has failed. As a result, User ask GIS for a list of
resources (step 5). When Resource 1 recovers, it registers
itself again to GIS (step 6). With this approach, GIS is able
to maintain an up-to-date list of available resources.

If the failure only affects some of the machines in a re-
source, what happens next depends on the allocation pol-
icy of this resource. If the resource runs a space-shared
(first come first serve) allocation policy, the jobs that are
currently running on the failed machines will be terminated
and sent back to users. However, when the resource runs
a time-shared (round-robin) allocation policy, no jobs will
be failed, as their execution will continue in the remain-
ing machines of the resource. For both allocation policies,
the remaining machines are responsible for responding to
polling requests from users and GIS. Moreover, they are re-
quired to inform the GIS about such failure. This way, the
GIS can have accurate information on the current status of
the resource.

4.2 Implementing Resource Failures into
GridSim

We have implemented the computing resource failure
functionality on GridSim version 4.0 [7]. In order to
provide GridSim with this new functionality, several new
classes have been developed. The new classes are depicted
in Figure 5 in italic-bold font. We will explain them next:
GridUserFailure: as its name suggests, this class

implements the behavior of the users of our grid environ-
ment. Its functionality can be summarized as follows: (1)
creation of jobs; (2) submission of jobs to resources; (3)
poll the resources used to run its jobs; (4) on the failure of a
job, choose another resource and re-submit the failed job to
it; (5) receive successful jobs.
GridResourceWithFailure: based on Grid-

Sim’s GridResource class, this class interacts with
RegionalGISWithFailure to set machines as failed
or working. It also interacts with classes implementing
AllocPolicyWithFailure to set jobs as failed.
AllocPolicyWithFailure: it is an interface class,

which provides some functions to deal with resource fail-
ures. Each allocation policy implementing this interface
will have a different behavior with regard to the failures.
SpaceSharedWithFailure: based on the

SpaceShared class, one of the allocation policies
available in GridSim. It extends AllocPolicy and
implements AllocPolicyWithFailure. It behaves
exactly like First Come First Serve (FCFS), and executes
each job to one Processing Element (PE).

If there are still working machines in a resource on an
event of a failure, then only running jobs in the failed ma-
chines will be sent back to their users. Moreover, these jobs
will be marked as failed. If there are no working machines,
then all jobs in this resource will be marked as failed and
sent back to their users with a special tag. This tag is used
to notify the affected users that this resource is out of order.
In a real grid, a more realistic behavior would be not send-
ing failed jobs back to their users. However, GridSim does
not deal well with entities or users in this case, waiting for
an event or a job that never arrives. Therefore, to overcome
this problem, we introduce this special tag.
TimeSharedWithFailure: this class is based on

the TimeShared class, another allocation policy that ex-
ists in GridSim. It extends AllocPolicy and implements
AllocPolicyWithFailure. It behaves similar to a
round robin algorithm, except that all jobs are executed at
the same time. On the event of a failure, if there are still
working machines in this resource, then no jobs will be
marked as failed, since they are not allocated to a specific
machine. However, if there are no working machines in this
resource, then its behavior will be the same as explained for
the previous class.

RegionalGISWithFailure: this class is based on
GridSim’s RegionalGIS class. However, the only dif-
ference is that RegionalGISWithFailure provides
a support for resource failures, with new parameters:
NumResPattern, ResPattern, TimePattern and
LengthPattern. These parameters are used to gener-
ate number of resources that will fail, which resource will
fail, when and how long the failure will be respectively. The
NumResPattern can also be reused to choose number of
machines that are failed on each resource. These parameters
are random number generators based on either continuous,
discrete or variate distributions. As a result, a wide variety
of failure patterns can be studied.
AvailabilityInfo: This class is used to implement

the polling mechanism. The user and GIS send objects
of this class to resources, which in turn send them back,
as mentioned previously. When a resource still has some
working machines left, it will send these objects back with
no delay. However, when all machines are out of order, the
resource sends these objects back with some delay with a
special tag. This is done to simulate a situation, where if a
resource does not reply to the given poll before a specified
time out, then it is interpreted as not available. This method
is used to overcome the same problem in GridSim, i.e. wait-
ing for events that never arrive, as mentioned previously.
GridletSubmission: This class is used to keep

track of each job, so that the user knows whether this job
has already been submitted or not.
FailureMsg: This class is used as a communica-

tion message between RegionalGISWithFailure and
GridResourcesWithFailure.
Variate, LCGRandom, HyperExponential and

Weibull: These classes are random number generators,
adapted from JSIM [19] simulation tool.

5 Use Case Scenario

In this section, we provide a scenario of the new resource
failure functionality. We have created an experiment based
on the EU DataGRID Testbed 1, as shown in Figure 6 [9].

Table 1 summarizes the characteristics of simulated re-
sources, which were obtained from a real LCG testbed [15].
The parameters regarding to a CPU rating is defined in
the form of MIPS (Million Instructions Per Second) as
per SPEC (Standard Performance Evaluation Corporation)
benchmark. Moreover, the number of nodes for each re-
source have been scaled down by 10, because of mem-
ory limitation on the computer we ran the experiments on.
The complete experiments would require more than 2GB of
memory. Finally, each resource node has four CPUs.

For this experiment, we have five VO domains and each
resource belongs to one of them as shown in Table 1. The
VO mapping is done by taking into account a geographical

Figure 5. Classes created for the failure functionality.

Resource Name (Location) # Nodes CPU Rating Policy VO

RAL (UK) 41 49,000 Space-Shared 2

Imp. College (UK) 52 62,000 Space-Shared 2

NorduGrid (Norway) 17 20,000 Space-Shared 3

NIKHEF (Netherlands) 18 21,000 Space-Shared 3

Lyon (France) 12 14,000 Space-Shared 0

CERN (Switzerland) 59 70,000 Space-Shared 0

Milano (Italy) 5 70,000 Space-Shared 1

Torino (Italy) 2 3,000 Time-Shared 1

Rome (Italy) 5 6,000 Space-Shared 1

Padova (Italy) 1 1,000 Time-Shared 4

Bologna (Italy) 67 80,000 Space-Shared 4

Table 1. Resource specifications.

User (Location) # Users Primary VO Secondary VO

RAL (UK) 12 2 4

Imperial College (UK) 16 2 0

NorduGrid (Norway) 4 3 2

NIKHEF (Netherlands) 8 3 4

Lyon (France) 12 0 1

CERN (Switzerland) 24 0 1

Milano (Italy) 4 1 2

Torino (Italy) 2 1 3

Rome (Italy) 4 1 4

Padova (Italy) 2 4 3

Bologna (Italy) 12 4 0

Table 2. Allocation of VO domains to users.

proximity among the resources. We created 100 users and
distributed them among the VOs, as shown in Table 2. Each
user has 10 jobs and each job takes about 10 minutes if it is
run on the CERN resource. Each user belongs to two dif-
ferent VOs and submits jobs to resources from the primary
VO. The secondary VO is chosen at random and it is used
only when all of resources from the primary VO have failed.

To simplify the experiment setup, some parameters are
identical for all network elements, such as the Maximum

Figure 6. EU DataGRID Testbed 1.

Transfer Unit (MTU) of links is 1,500 bytes and the latency
is 10 milliseconds.

As mentioned previously, the GIS uses a probabilistic
distribution on deciding how many resources fail. There-
fore, we use a hyperexponential distribution for generating a
failure model, since it is suitable for representing availabil-
ity of resources in different computing environments [20].
The mean of this distribution is set to be a half of the total
CPUs of each VO domain. We assume that each VO con-
tains only one GIS entity.

We have modeled the dynamic behavior of the Grid sys-
tem, as shown in Figure 7 (a). This figure depicts the total
availability for each VO varied throughout the simulation
time due to resource failures. VO 0 and VO 1 suffered a big
drop compared to others due to a fact that powerful CPUs
suffered a failure.

Figure 7 (b) shows the period of a resource failure on
each VO. For simplicity, we assume that failed machines in
the same resource have the same start and finish period. In
addition, each resource has given a failure notice only once.

Figure 7 (c) shows an event from User 0 of VO 0. Ini-

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 1 10 100 1000 10000 100000

To
ta

l A
va

ila
bi

lit
y

(1
e+

06
 M

IP
S

)

Simulation Time (seconds)

VO_0
VO_1
VO_2
VO_3
VO_4

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21
 23
 25

 100 1000 10000 100000

N
um

be
r o

f F
ai

le
d

M
ac

hi
ne

s

Simulation Time (seconds)

CERN (VO_0)
Milano (VO_1)

RAL (VO_2)
NorduGrid (VO_3)

Bologna (VO_4)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400

N
um

be
r o

f J
ob

s

Simulation Time (seconds)

Max. number of jobs

Re−submission of failed job
Succedeed job reception

(a) Total availability of each VO domain (b) Period of a resource failure in each VO (c) Time-line of User 0

Figure 7. Time-lines showing the progress of resources and User 0 from VO 0.

VO # CPUs # Failed CPUs # Jobs # Failed Jobs MFT

VO 0 71 25 360 219 2.76 hours

VO 1 12 5 100 20 103.36 hours

VO 2 93 24 280 96 5.25 hours

VO 3 35 35 120 120 15.82 hours

VO 4 68 6 140 96 9.50 hours

Table 3. Resource failure statistics.

tially, the user submits 10 jobs to resources from VO 0. At
around 100 seconds of simulation time, a failure is happen-
ing at CERN and the user detects this problem. Unfortu-
nately, one of the failed machines is running the user’s job.
Hence, this job is being migrated to another machine. The
same scenario applies to other four jobs. In the end, all jobs
are completed successfully, where some of them finished at
time 600 seconds and the rest at time 1200 seconds. The
time difference is because the last four jobs were resubmit-
ted to a busy resource, hence they were queued.

Table 3 presents statistics regarding the number of failed
machines, Mean Failure Time (MFT), and how many jobs
have failed because of that. For VO 4, there is a large num-
ber of failed jobs compared to the number of failed ma-
chines. This is due to a failure of the whole resource that
belongs to this VO. More precisely, all the machines in
Padova failed, hence all the jobs waiting or being executed
in Padova also failed. Similarly, we can see that for an exact
period of time, all NorduGrid and NIKHEF machines failed
in VO 3 (also shown in Figure 7 (b)). Hence, users of VO 3
have to submit all of their affected jobs to their secondary
VO. In the end, all jobs were successfully executed.

6 Conclusion and Future Work

Grid systems is a hot topic in distributed systems re-
search at this moment. In order to carry out this research
efficiently, simulations are absolutely essential. Hence, sim-

ulation tools should cover the main features of real Grid sys-
tems, but up to now it is not easy to find a simulation tool
covering resource failures and detection mechanisms.

Failures can be modeled in several levels. At a resource
broker level, where historical data are kept so that resources
which were reliable in the past will be rated highly. At a task
level, where repetition, replication and checkpointing are
used. Finally, at a workflow level, where execution of alter-
native tasks, workflow-level redundancy and user-defined
exception handling are introduced [12].

In this paper, we have presented an extension to Grid-
Sim, which is one of the most widely used simulation tools.
Failure models are created by means of probabilistic dis-
tributions with fully configurable parameters, so that re-
searchers will be able to decide how these failures take
place. By means of this new functionality, researchers will
be able to create more realistic Grid models. In turn, this
will help them exploring their research projects to different
fields of Grid computing, such as Grid scheduling, fault tol-
erance, and resource discovery. To support the usefulness
of our work, we have presented simulation results based on
a real Grid testbed. The results show that we have been able
to efficiently simulate failure of computing resources.

As for future work, we are planning to use the improved
simulation tool to carry out research aimed at providing net-
work QoS in Grids. This will be done by integrating this
functionality into the network broker outlined in [3]. Also,
in order to make our research more realistic, new exten-
sions regarding network link failures and finite buffers will
be added to GridSim.

Software Availability

The latest GridSim toolkit with the resource failure func-
tionalities can be downloaded from the following website:

http://www.gridbus.org/gridsim/

Acknowledgement

This work has been jointly supported by the Span-
ish MEC and European Commission FEDER funds un-
der grants “Consolider Ingenio-2010 CSD2006-00046” and
“TIN2006-15516-C04-02”; by JCCM under grants PBC-
05-007-01, PBC-05-005-01 and José Castillejo. This re-
search is also partially funded by the Australian Research
Council and the Department of Education, Science and
Training. We would like to thank Chee Shin Yeo and anony-
mous reviewers for their comments on the paper.

References

[1] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar,
K. Stockinger, and F. Zini. Simulation of dynamic grid
replication strategies in OptorSim. In Proc. of the 3rd Intl.
Workshop on Grid Computing (GRID’02), Baltimore, USA,
2002.

[2] R. Buyya and M. Murshed. GridSim: A Toolkit for the Mod-
eling and Simulation of Distributed Resource Management
and Scheduling for Grid Computing. Concurrency & Com-
putation: Prac. & Exp., 14:1175–1220, Nov-Dec 2002.

[3] A. Caminero, C. Carrion, and B. Caminero. On the improve-
ment of the network QoS in a grid environment. In Proc. of
the 4th Intl. Workshop on Middleware for Grid Computing
(MGC’06), Melbourne, Australia, 2006.

[4] E. Elmroth and P. Gardfjall. Design and evaluation of a de-
centralized system for grid-wide fairshare scheduling. In
Proc. of the 1st Intl. Conference on e-Science and Grid Com-
puting, Melbourne, Australia, 2005.

[5] I. Foster. The anatomy of the Grid: Enabling scalable virtual
organizations. In Proc. of the 1st Intl. Symposium on Cluster
Computing and the Grid (CCGrid), Australia, 2001.

[6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Com-
puting: Making the Global Infrastructure a Reality, chapter
The Physiology of the Grid. Wiley InterScience, 2003.

[7] GridSim Project. http://www.gridbus.org/gridsim, 2007.
[8] N. Hayashibara, A. Cherif, and T. Katayama. Failure de-

tectors for large-scale distributed systems. In Proc. of the
21th Symp. on Reliable Distributed Systems, (SRDS), Japan,
2002.

[9] W. Hoschek, F. J. Jaén-Martı́nez, A. Samar, H. Stockinger,
and K. Stockinger. Data management in an international
data grid project. In Proc. of the 1st Intl. Workshop on Grid
Computing, Bangalore, India, 2000.

[10] F. Howell and R. McNab. SimJava: A discrete event simula-
tion library for Java. In Proc. of the Intl. Conference on Web-
Based Modeling and Simulation., San Diego, USA, 1998.

[11] E. Huedo, R. S. Montero, and I. M. Llorente. A frame-
work for adaptive execution in grids. Softw. Pract. Exper.,
34(7):631–651, 2004.

[12] S. Hwang and C. Kesselman. A flexible framework for fault
tolerance in the grid. Journal of Grid Computing, 1(3):251–
272, 2003.

[13] G. Kola, T. Kosar, and M. Livny. Phoenix: Making data-
intensive grid applications fault-tolerant. In Proc. of the 5th
Intl. Workshop on Grid Computing, Pittsburgh, USA, 2004.

[14] E. Krepska, T. Kielmann, R. Sirvent, and R. M. Badia. A ser-
vice for reliable execution of grid applications. In Achieve-
ments in European Research on Grid Systems. Springer Ver-
lag, 2007.

[15] LCG Computing Fabric Area.
http://lcg-computing-fabric.web.cern.ch, 2007.

[16] A. Legrand, L. Marchal, and H. Casanova. Scheduling dis-
tributed applications: The SimGrid simulation framework.
In Proc. of the 3rd Intl. Symposium on Cluster Computing
and the Grid (CCGrid), Tokyo, Japan, 2003.

[17] X. Liu. Scalable Online Simulation for Modeling Grid Dy-
namics. PhD thesis, Univ. of California at San Diego, 2004.

[18] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauvé. Faults
in grids: Why are they so bad and what can be done about
it? In Proc. of the 4th Intl. Workshop on Grid Computing,
Phoenix, USA, 2003.

[19] J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao. JSIM:
A JAVA-based simulation and animation environment. In
Proc. of the 30th Annual Simulation Symposium (ANSS’97),
Atlanta, USA, 1997.

[20] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine
availability in enterprise and wide-area distributed comput-
ing environments. In Proc. of the 11th Intl. Euro-Par Con-
ference, Lisbon, Portugal, 2005.

[21] G. Pierre. How CN and P2P technologies may help build
next-generation grids. In Proc. of the 2nd Workshop on Use
of P2P, GRID and Agents for the Development of Content
Networks (UPGRADE-CN), Monterey, CA, USA, 2007.

[22] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,
R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and
M. Samidi. Scheduling data-intensive workflows onto
storage-constrained distributed resources. In Proc. of the
Intl. Symposium on Cluster Computing and the Grid (CC-
Grid), Rio de Janeiro, Brazil, 2007.

[23] G. Singh, C. Kesselman, and E. Deelman. A provisioning
model and its comparison with best-effort for performance-
cost optimization in grids. In Proceedings of Intl. Sympo-
sium on High Performance Distributed Computing (HPDC),
Monterey Bay, California, 2007.

[24] P. Stelling, C. DeMatteis, I. T. Foster, C. Kesselman, C. A.
Lee, and G. von Laszewski. A fault detection service for
wide area distributed computations. Cluster Computing,
2(2):117–128, 1999.

[25] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On
incorporating differentiated levels of network service into
GridSim. Future Generation Computer Systems, 23(4):606–
615, May 2007.

[26] S. Venugopal, R. Buyya, and L. J. Winton. A Grid service
broker for scheduling e-Science applications on global data
Grids. Concurrency and Computation: Practice and Expe-
rience, 18(6):685–699, May 2006.

