
A Set Coverage-based Ma
Scheduling Distributed Data-

on Global G
Srikumar Venugopal and Raj

Grid Computing and Distributed System
Department of Computer Science and

The University of Melbourn
{srikumar, raj}@csse.uni

Abstract— Data-intensive Grid applications need access to
large datasets that may each be replicated on different resources.
Minimizing the overhead of transferring these datasets to the
resources where the applications are executed requires that
appropriate computational and data resources be selected. In this
paper, we introduce a heuristic for the selection of resources based
on a solution to the Set Covering Problem (SCP). We then pair
this mapping heuristic with the well-known MinMin scheduling
algorithm and conduct performance evaluation through extensive
simulations.

I. INTRODUCTION

Grids [1] aggregate computational, storage and network

resources to provide pervasive access to their combined ca-

pabilities. In addition, Data Grids [2], [3] provide services

such as low latency transport protocols and data replication

mechanisms to distributed data-intensive applications that need

to access, process and transfer large datasets stored in dis-

tributed repositories. Such applications are commonly used by

communities of researchers in domains such as high-energy

physics, astronomy and biology.

The work in this paper is concerned with scheduling data-

intensive applications that can be considered as a collection

of tasks without interdependencies, each of which requires

multiple datasets, onto a set of Grid resources. An astronomy

image-processing application following this model is described

by Yamamoto, et al. [4]. Each task is translated into a job

that is scheduled on to a computational resource and requests

datasets from the storage resources (or datahosts). Each of

these datasets may be replicated at several locations that are

connected to each other and to the computational sites (or com-
pute resources) through networks of varying capability. This

scenario is illustrated in Figure 1. For a job, the scheduling

strategy has to select a set of resources consisting of a compute

resource for execution and a subset of data hosts such that each

dataset required for the job can be accessed from one of the

data hosts in the set. We term this as the mapping problem

and in this paper, present a heuristic based on a solution to the

SCP. We evaluate it against other heuristics through extensive

simulations.

Comp

The

the rel

applica

in this

followi

evaluat

conclu

Prev

have b

assignm

data-in

it is to

at that

introdu

heurist

files be

data is

Howev

that di

a Clos

though

solutio

resourc

11-4244-0344-8/06/$20.00 2006 IEEE
pping Heuristic for
Intensive Applications
rids

kumar Buyya

s (GRIDS) Laboratory
Software Engineering
e, Australia
melb.edu.au

...
.

Data Hosts

...
.

...
.

...
.

...
.

...
.

ute Jobs Datasets

<<submit>> <<requires>>

<<replicated>>
f1

f2

fk

j

d1

d2

dP

Fig. 1: Mapping Problem.

rest of the paper is structured as follows: we present

ated work followed by the resource model and the

tion model that we target in the research presented

paper. The mapping heuristic is presented in the

ng section and is succeeded by details of experimental

ion and the consequent results. Finally, we present our

sions.

II. RELATED WORK

ious publications ([5]–[8]) on scheduling in Data Grids

een more concerned with the relationship between job

ent and data replication. That is, they assign a single

tensive job to a compute resource based on how close

the data required and if the data is not available

resource, then initiate replication. Casanova, et.al [9]

ce a new heuristic XSufferage – based on the Sufferage
ic in [10] – that takes into consideration sharing of

tween tasks. For a task, it favors a resource where the

already present over one where it has to be copied.

er, the source of all the files for the tasks is the resource

spatches the jobs. Mohamed and Epema [11] present

e-to-Files algorithm for a similar application model,

restricted to one dataset per job, that searches the entire

n space for a combination of computational and storage

es to minimize execution time.

Grid Computing Conference 2006

The application model in this paper is, however, closer to

that of Giersch, et. al [12] who consider the general problem

of scheduling tasks requiring multiple files that are available

from multiple sources and prove that this problem is NP-

complete. However, the approach followed in their paper is

that of scheduling the jobs first and then replicating the data

so as to minimize access time. Khanna, et. al [13] propose

a hypergraph-based approach for scheduling a set of similar

tasks with a view to minimize the I/O overhead by considering

the sharing of files between the tasks. However, they do not

take into account the aspect of replication as the files have

only single sources.

The work in this paper is distinct from the related work

because it considers: a) the problem of selecting a resource

set for a job requiring multiple datasets in an environment

where the data is available from multiple sources due to

prior replication and b) the selection of computational and

data resources for such a resource set to be interconnected.

In a previous publication [14], we have introduced a greedy

mapping heuristic for deadline and budget-based scheduling of

applications following this model. In this paper however, we

concentrate on the objective of reducing the total makespan of

such applications.

III. MODEL

A. Resource Model

We model the target data-intensive computing environment

based on existing production testbeds such as the European

DataGrid testbed [3] or the United States Grid3 testbed [15].

As an example, Figure 2 shows a subset of European DataGrid

Testbed 1 derived from Bell, et. al [6]. The resources in the

figure are spread across 7 countries and belong to different

autonomous administrative domains.

Imperial College

RAL

Lyon

 NorduGrid

NIKHEF

CERN

 Milano

 Torino

Catania

Padova
Bologna

45Mb/s

45Mb/s

100Mb/s

100Mb/s

155Mb/s

10Gb/s

10Gb/s

10Gb/s
10Gb/s

10Gb/s

155Mb/s

10Gb/s

155Mb/s

2.5Gb/s

2.5Gb/s 2.5Gb/s

622Mb/s

155Mb/s

2.5Gb/s

2.5Gb/s

1Gb/s

1Gb/s

2.5Gb/s

- Router

- Site

Fig. 2: European Data Grid Testbed 1 [6].

In such Grid networks, we consider a data-intensive com-

puting environment to consist of a set of M compute resources

R = {rm}M
m=1

and a set of P data hosts,D = {dp}
P
p=1

. A

compu

such a

connec

by a b

that is

a stora

to the

to a co

propert

second

from th

topolog

resourc

given b

betwee

to acce

site is l

a separ

hard di

machin

of mag

through

bandw

Data

on the

a strate

such as

storage

is avai

Broker

B. App

The

interde

job j, j
dataset

hosts, D
of data

are not

numbe

set is d

compu

is the d

dataset

numbe

2

te resource is a high performance computing platform

s a cluster consisting of processing nodes that are

ted in a private local area network and are managed

atch job submission system hosted at the “head” node

connected to the public Internet. A data host can be

ge resource such as a Mass Storage Facility connected

Internet or may be simply a storage device attached

mpute resource in which case, it inherits the network

ies of the latter. It is important to note that even in the

case, the data host is considered as a separate entity

e compute resource. We consider the logical network

y wherein each resource is connected to every other

e by a distinct logical network link whose capacity is

y the bottleneck bandwidth of the physical network

n the resources. The time taken by a compute resource

ss a dataset located on the storage resource at the same

imited only by the intra-site bandwidth if the storage is

ate physical machine or by the bandwidth between the

sk and other peripherals if the storage is on the compute

e itself. In both cases, it is considered to be an order

nitude lower than the time taken to access a dataset

the Internet from other sites as there is contention for

idth among the various sites.

is organised in the form of datasets that are replicated

data hosts by a separate replication process that follows

gy (e.g. [6]) that takes into consideration various factors

locality of access, load on the data host and available

space. Information about the datasets and their location

lable through a catalog such as the Storage Resource

Metadata Catalog [16].

lication Model

application is composed of a set of N jobs without

pendencies, J = {ji}
N
i=1

. Typically, N � M . Each

∈ J requires a subset F j = {f j
k}

K
k=1

of a set of

s, F , which are each replicated on a subset of P data

= {dp}
P
p=1

. For a dataset f ∈ F , Df ⊆ D is the set

hosts on which f is replicated. These sets of data hosts

pairwise disjoint, that is, a data host can provide any

r of datasets at the same time. For a job j, a resource
enoted by Sj = {{r}, {dl}

L
l=1

} where r ∈ R is the

te resource selected for executing the job and dl ∈ D
f

j

k

ata host selected for accessing f j
k ∈ F j . Since multiple

s can be retrieved from one data host, L ≤ K , the

r of datasets required by the job.

Tw

f1T

Tc

f3T

fkT

...

Time

f2T

Fig. 3: Job Execution Stages and Times.

Figure 3 shows a generic example of a data-intensive job

with the times involved in various stages shown along a

horizontal time-axis. The gray colors show overlaps between

computation and data transfer operations. Tw is the time spent

in waiting in the queue on the compute resource and Tc is

the time spent by the job in purely computational operations

(also called computation time). Tw and Tc are functions of

the load and processing speed of the compute resource. Tfi

is the time required to transfer the file fi from its data host

to the compute resource and is dependent on the available

bandwidth between the two. The completion time for the job,

Tj , is the wallclock time taken for the job to finish execution

and is a function of Tw, Tc and Tfi
. For large datasets, the

data transfer time impacts the completion time significantly.

While the transfer time is determined by the manner in which

the dataset is processed by the job, it is also influenced by

the selection of data hosts. For example, many applications

request and receive required datasets in parallel before starting

computation. In this case, Tj = Tw + max1≤i≤K(Tfi
) + Tc

However, the number of simultaneous transfers determines the

bandwidth available at the receiver end for each transfer and

therefore, the Tfi
. Transfer times can be minimized by locating

a compute resource associated with a data host that has the

maximum number of datasets required by the job so that the

bulk of the data access is local. This would also benefit the

case where the job accesses datasets sequentially.

Our aim here is to select a resource set that produces the

Minimum Completion Time (MCT) for a job. We adopt the

strategy of finding the resource set with the least number of

data hosts required to access the datasets required for a job

and then, finding a suitable compute resource to execute it. In

doing so, we try to maximise the local access of datasets and

thus, reduce the transfer times. We experimentally show that

this approach produces schedules that are competitive with the

best and is reasonably fast as well.

IV. SCHEDULING

The scheduler forms a part of a larger application execution

framework such as a resource broker (e.g. [17], [18]). The re-

source broker is able to identify resources that meet minimum

requirements of the application such as architecture (instruc-

tion set), operating system, storage threshold and data access

permissions and these are provided as suitable candidates for

job execution to the scheduler.

Figure 4 lists a generic scheduling algorithm for scheduling

a set of jobs on a set of distributed compute resources. Each

of the steps can be implemented independently of each other

and therefore, many strategies are possible. In this paper, we

concentrate on the process within the for loop, that is, finding

the appropriate resource set for a job.

A. Mapping Heuristic

For a job j ∈ J , consider a graph Gj = (V, E) where

V = (
⋃

f∈F j{Df}) ∪ F j and E is the set of all directed

edges {d, f} such that d ∈ Df . Our aim here is to find the

minimum set H of data hosts such that there exists an edge

wh

en

j

(a

Fig. 5:

graph

domina

from a

set H ′

the min
possibl

interest

such th

5(c) ill

3 datas

{d1, d2

a possi

hosts s

From

A for

Such a

the pro

now eq

such th

of the

Set Co
Chri

gorithm

Problem

heurist

smalles

3

ile there exists unsubmitted jobs do
Update the resource performance data based on job scheduled
in previous intervals
Update network data between resources based on current
conditions
foreach unsubmitted job do

Find the MCT and the resource set that guarantees the
MCT. Assign resource set to job (See Section 4.1)

end
repeat

Heuristically submit each jobs to the compute resource
mapped to it in previous loop

until all jobs are submitted or no more jobs can be submitted
Wait until the next scheduling event.

d
Fig. 4: A Generic Scheduling Algorithm.

f
2

f
3

f
1

)

f
1

f
2

f
3

d1

d2

d3

d4

(b)

f
1

f
2

f
3

d1

d2

d3

d4

(c)

(a) Job j dependendent on 3 datasets. (b) Directed

of data resources and data sets for job j. (c) A

ting set for the data graph.

member of H to f for every f ∈ Fj in G and no other

⊂ H satisfies that requirement. The set H is called

imal dominating vertex set for graph G. However, it is

e that more than one such set exists for a graph. Our

is in finding a minimal dominating set of datahosts

at the completion time for j is reduced. Figures 5(a)-

ustrate this with an example of a job j that requires

ets f1, f2 and f3 that are replicated on data host sets

}, {d2, d3} and {d1, d4} respectively. Figure 5(c) shows

ble dominating set for the graph of datasets and data

hown in Figure 5(b).

Figure 5(b), we can build a reduced adjacency matrix

graph G wherein aik = 1 if data host di contains fk.

n adjacency matrix is shown in Figure 6(a). Therefore,

blem of finding the minimum dominating sets for G is

uivalent to finding the sets of the least number of rows

at every column contains an entry of 1 in at least one

rows. This problem has been studied extensively as the

vering Problem [19].

stofides [20] provides an approximate tree search al-

for finding a solution to the general Set Covering

. Based on this algorithm, we propose a mapping

ic to find a minimum dominating set that ensures the

t makespan. The heuristic is listed in Figure 7.

⎛
⎜⎜⎜⎝

f1 f2 f3

d1 1 0 1

d2 1 1 0

d3 0 1 0

d4 0 0 1

⎞
⎟⎟⎟⎠

(a)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1 f2 f3

d1 1 0 1

d2 1 1 0

− − − −
d2 1 1 0

d3 0 1 0

− − − −
d1 1 0 1

d4 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b)

Fig. 6: (a) Adjacency Matrix. (b) Tableau.

At the start of the process, from the adjacency matrix, we

create a tableau T consisting of K blocks of rows, where

the kth block consists of rows corresponding to data hosts

that contain fk. An example of a tableau generated from the

adjacency matrix of Figure 6(a) is shown in Figure 6(b). The

set of data hosts B keeps track of the current solution set of

datahosts, the set E contains the datasets already covered by

the solution set and the variable z keeps track of the makespan

offered by the current solution set. The final solution set is

stored in Bfinal. During execution, the blocks are searched

sequentially starting from the kth block where k is the smallest

index, 1 ≤ k ≤ K such that fk /∈ E. Within the kth block,

let dk
q mark the data host under consideration where q is a

row pointer within block k. We add dk
q to B and all the

datasets for which the corresponding row contains 1, to E as

they are already covered by dk
q . These datasets are removed

from consideration and the process then moves to the next

uncovered block until E = Fj , that is, all the datasets have

been covered. The function MCT (B) computes the expected

completion time for each compute resource combined with the

solution set B and returns with the minimum of the completion

time so found.

Through the recursive procedure outlined in the listing, the

heuristic then backtracks and discovers other solution sets. The

solution set that guarantees minimum makespan is then chosen

as the final . The search terminates when the first block is

exhausted. Therefore, before the tableau is created, we sort

the rows of the adjacency matrix (that is, the data hosts) in

the descending order of the number of columns with 1’s (or

the number of datasets contained). Also, in the tableau, the

same sorting order is applied to the rows in each block. As

the minimal dominating sets would obviously contain at least

one of the datahosts with the maximum number of datasets,

this increases the chances of more dominating sets being in

the path of the search function within the proposed heuristic.

Overall, the running time of the mapping heuristic is given by

O(MK2) where MK2 is the number of resource sets that are

searched by the heuristic to find one that provides the least

completion time.

Be
Fo1.
fo
So2.
of
Cr3.
so
Se4.

Sj5.
is
En

Se
Fi6.
bl
th
wh7.

8.

9.

10.
11.
12.

13.

14.
15.

en16.

MC
Fi17.
m
Fig

Othe

include

Com
ensures

job firs

bandw

approa

hosts. T

Gree
through

data ho

nearest

iteratio

is bette

data ho

was pr

O(KP
Brut

for a p

the MC

the heu

that th

searche

unreaso

exampl

hosts a

will co

4

gin Main
r a job j, create the adjacency matrix A with data hosts
rming the rows and datasets forming the columns.
rt the rows of A in the descending order of the number
1’s in a row.
eate the tableau T from sorted A and begin with initial
lution set Bfinal = φ, B = φ, E = φ and z = ∞
arch(Bfinal, B, T, E, z)
← {{r}, Bfinal} where r ∈ R such that MCT (Bfinal)

minimum
d Main

arch(Bfinal, B, T, E, z)
nd the minimum k, such that fk /∈ E. Let Tk be the
ock of rows in T corresponding to fk. Set a pointer q to
e top of Tk.

ile q does not reach the end of Tk do
FT ← {fi|tqi = 1, 1 ≤ i ≤ K}
B ← B ∪ {dk

q}, E ← E ∪ FT

if E = F j then
if z > MCT (B) then

Bfinal ← B, z ← MCT (B)
else Search(Bfinal, B, T, E, z)
B ← B − {dk

q}, E ← E − FT

Increment q
d

T(B)
nd r ∈ R such that the resource set Sj

= {{r}, B} gives
inimum completion time
. 7: Listing for SCP-based Mapping Heuristic.

r heuristics that are possible or have been proposed

the ones described below:

pute-First - In this mapping, a compute resource that

minimum computation time (Tc) is selected for the

t followed by choosing data hosts that have the best

idths to the selected resource. This is in contrast to our

ch that places more importance on selection of data

he running time of this heuristic is O(MK).
dy - This heuristic builds the resource set by iterating

the list of datasets and making a greedy choice for the

st for accessing each dataset, followed by choosing the

compute resource for that data host. At the end of each

n, it checks whether the compute resource so selected

r than the one selected in previous iteration when the

sts selected previously are considered. This heuristic

esented in [14]. The running time of this heuristic is

).
e Force - In this case, all the possible resource sets

articular job are generated and the one guaranteeing

T is chosen for the job. This is a generalisation of

ristic presented in [11]. While this heuristic guarantees

e resource set selected will be the best for the job, it

s through MP K resource sets at a time. This leads to

nably large search spaces for higher values of K . For

e, for a job requiring 5 datasets with 20 possible data

nd 20 available compute resources, the search space

nsist of (20 ∗ 205) = 64 ∗ 106 resource sets.

A point to note is that the sets of datasets required by

2 or more jobs in the same set are not mutually exclusive.

Any dataset that is transferred during from one resource to

another is retained at the receiver and therefore, this presents

an additional source of data to successive jobs requiring access

to that dataset.

While the mapping heuristic finds a resource set for a single

job, we wish to minimize the total makespan [10], the total

time from the start of the scheduling to the completion of

the last job, of the application consisting of N such data-

intensive jobs. To that end, we apply the well-known MinMin

heuristic, proposed in [10], to schedule the entire set of jobs.

The MinMin heuristic submits the job with the smallest MCT

to the compute resource (already selected by the mapping

heuristic for the job) that guarantees it.

V. EXPERIMENTS

We have used GridSim with its new Data Grid capabili-

ties [21] to simulate the data-intensive environment and eval-

uate the performance of scheduling algorithms. For evaluation,

we have used the EU DataGrid topology based on the testbed

shown in Figure 2. The details of the Grid resources used

in our evaluation is shown in Table I. The resources in

the actual testbed have gone through several configuration

changes, not all of which are publicly available, and hence

it was impossible to model their layout and CPU capability

accurately. Instead, it was decided to create a configuration for

each resource such that the modelled testbed in whole would

reflect the heterogeneity of platforms and capabilities that is

normally the characteristic of Grid resources. All the resources

were simulated as clusters with a batch job management

system using space-shared policy, as a front-end to single

CPU processing nodes. The CPUs are rated in terms of MIPS

(Million Instructions Per Sec). The resource at CERN was

considered as a pure data source (data host) in our evaluation

and hence, no jobs were submitted to it. To model resource

contention caused by multiple users, we associate a mean
load with each resource. The load factor is the ratio of the

number of CPUs that are occupied to the total number of

CPUs available within a resource. During the simulation, for

each resource, we derive the instantaneous resource load from

a Gaussian distribution with its mean as the load shown in

Table I.

Similarly, we model the variability of the available network

bandwidth by associating an availability factor with a link

which is the ratio of the available bandwidth to the total

bandwidth. During simulation, the instantaneous measure is

derived from another Gaussian distribution centered around

a mean availability factor assigned at random to each of the

links.

Within this evaluation, we consider a universal set of

datasets, each of which are replicated on one or more of the

resources. Studies of similar environments [22] have shown

that the size of the datasets follow a heavy-tailed distribution

in which there are larger numbers of smaller size files and vice

TABLE

testbed
Reso
catio

RAL
Impe
(UK
Nord
NIK
(Net
Lyon
CER
Mila
Torin
Cata
Pado
Bolo

versa. T

tributed

[1GB,
factors

strategy

evaluat

of file

• U
on

sc

an

• Zi
in

fil

a
w

Th

th

di

in

th

G

Hencef

describ

of data

which

dataset

evaluat

On t

termine

applica

the nu

compu

Instruc

random

compar

althoug

An exp

5

I: Simulated configuration of resources within EDG

.
urce Name (Lo-
n)

No. of
Nodes

CPU
Rating
(MIPS)

Storage
(TB)

Load

(UK) 41 1140 2.75 0.9
rial College

)
52 1330 1.80 0.95

uGrid (Norway) 17 1176 1.00 0.9
HEF
herlands)

18 1166 0.50 0.9

(France) 12 1320 1.35 0.8
N (Switzerland) – – 12 –
no (Italy) 7 1,000 0.35 0.5
o (Italy) 4 1330 0.10 0.5

nia (Italy) 5 1200 0.25 0.6
va (Italy) 13 1,000 0.05 0.4
gna (Italy) 20 1140 5.00 0.8

herefore, we generate the set of datasets with sizes dis-

according to the logarithmic distribution in the interval

6GB]. The distribution of datasets depends on many

itself including variations in popularity, the replication

employed and the nature of the fabric. Within our

ion, we have used two commonly considered patterns

distribution:

niform : Here, the distribution of datasets is modeled

a uniform random probability distribution. In this

enario, each file is equally likely to be replicated at

y site.

pf : Zipf-like distributions follow a power law model

which the probability of occurence of the ith ranked

e in a list of files is inversely proportional to i−a where

≤ 1. In other words, a few files are distributed widely

hereas most of files are found in one or two places.

is models a scenario where the files are replicated on

e basis of popularity. It has been shown that Zipf-like

stributions holds true in cases such as requests for pages

World Wide Web where a few of the sites are visited

e most [23]. This scenario has been evaluated for a Data

rid environment in related publications [24].

orth, we will consider the distribution applied to be

ed by the variable Dist. We also control the distribution

sets through a parameter called the degree of replication
is the maximum possible number of copies of any

in a Data Grid. The degree of replication in our

ion is 5.

he application side, there are three variables that de-

the performance of the application: the size of the

tion or the number of jobs in the application (N),

mber of datasets required by each job (K) and the

tational size of a job (Size(j)) expressed in Million

tions (MI). For each job, K datasets are selected at

from the universal set of datasets. For the purpose of

ison, we keep K a constant among all the jobs in a set

h this is not a condition imposed on the heuristic itself.

eriment is described by the tuple (N, K, Size, Dist)

for which all the heuristics are evaluated. At the beginning

of each experiment, the set of datasets, their distribution

among the resources and the set of jobs are generated. This

configuration is then kept constant while each of the four

mapping heuristics are evaluated in turn. We have conducted

50 such experiments with different values for N, K, Size
and Dist and in the next section, we present results of our

evaluation.

A. Results

TABLE II: Summary of Evaluations
Mapping
Heuristic

Geometric
Mean

Avg. deg. Avg. rank

Compute-First 37593.71 69.01 (19.4) 3.63 (0.48)
Greedy 36927.44 71.86 (50.55) 3.23 (0.71)
SCP 24011.17 7.68 (10.42) 1.67 (0.6)
Brute Force 23218.49 3.87 (6.46) 1.47 (0.58)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(S

im
. U

ni
ts

)

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

(a) Size=300000 MI,K=3, Dist=Uniform

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(S

im
. U

ni
ts

)

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

(b) Size=300000 MI,K=3, Dist=Zipf

Fig. 8: Makespan vs Number of Jobs.

The results of our evaluations are summarised in Table II

and are based on the methodology provided in [9]. SCP refers

to the heuristic proposed in this paper. For each mapping

heurist

of the

the bes

(Avg. r
mean i

accord

set, nu

dation

of that

experim

average

all exp

is give

This is

best he

means

ranking

the heu

lower t

popula

The

6

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5

T
im

e
(S

im
. U

ni
ts

)

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

(a) N=600,Size=300000 MI, Dist=Uniform

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4 5

T
im

e
(S

im
. U

ni
ts

)

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

(b) N=600,Size=300000 MI, Dist=Zipf

Fig. 9: Makespan vs Datasets per Job.

ic, the table contains three values: 1) Geometric Mean
makespans, 2) Average degradation (Avg. deg.) from

t heuristic in an experiment and 3) Average ranking

ank) of each heuristic in an experiment. The geometric

s used as the makespans vary in orders of magnitude

ing to parameters such as number of jobs per application

mber of files per job and the size of each job. Degra-

for a heuristic is the difference between the makespan

heuristic and that of the best heuristic for a particular

ent and expressed as a percentage of the latter. The

degradation is computed as an arithmetic mean over

eriments and the standard deviation of the population

n in the parantheses next to the means in the table.

the measure of how far a heuristic is away from the

uristic for an experiment. A lower number certainly

that the application is on an average the best one. The

is in the ascending order of makespans produced by

ristics for each experiment, that is, lower the makespan,

he rank of the heuristic. The standard deviation of the

tion is provided alongside the averages in the table.

three values together provide a consolidated view of the

 0

 10000

 20000

 30000

 40000

 50000

 60000

 100000 200000 300000 400000 500000 600000

T
im

e
(S

im
. U

ni
ts

)

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

(a) N=600, K=3, Dist=Uniform

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000 200000 300000 400000 500000 600000

T
im

e
(S

im
. U

ni
ts

)

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

(b) N=600, K=5, Dist=Uniform

Fig. 10: Makespan vs Job Size.

performance of each heuristic. For example, we can see that on

an average Compute-First and Greedy both perform worse than

either SCP or Brute Force. However, the standard deviation of

the population is much higher in the case of Greedy than that

of Compute-First. Therefore, it can also be said that Compute-

First can be expected to perform worst most of time. Indeed,

in a few of the experiments, Greedy performed as good or

even better than SCP while Compute-First never came close

to the performance of the other heuristics.

As expected, between SCP and Brute Force, the latter is

the clear winner having a consistently lower score than the

former. However, the computational complexity of Brute Force

means that as the number of datasets per job increases, the

number of resource sets that need to be considered by the

Brute Force heuristic increases dramatically. The geometric

mean and average rank of SCP is close to that of Brute Force

heuristic. The average rank is less than 2 for both heuristics

which implies that in many scenarios, SCP provides a better

performance than Brute Force.

This view is reinforced from the graphs in Figures 8-10

which show the effect of varying one of the variables, all

others

perform

in alm

visible

accordi

comes

SCP. T

most o

there is

distribu

resourc

jobs in

heurist

We h

with a

are eac

We hav

Set Co

propos

approa

exhaus

of mag

As p

SCP m

such a

perform

depend

needs t

We w

the use

Kyong

anonym

improv

[1] I. F
Inf
199

[2] A.
Da
ana
Ap

[3] W.
K.
in
Co
Ge

[4] N.
As
IEE
Pit

[5] K.
Sch
of
put
US

7

kept constant. SCP and Brute-force give almost similar

ance while either Greedy or Compute-First is the worst

ost all cases. The effect of job distribution is most

on the Greedy heuristic. When the files are distributed

ng to the Zipf distribution, the performance of Greedy

close to or in some cases, becomes as competitive as

his is due to the fact that in Zipf distribution, there are

f the datasets are not replicated widely and therefore,

not as much choice of data hosts as there is in Uniform

tion. In such a case, Greedy is able to form minimal

e sets. Also, it can be seen that as the number of

creases, the makespan of Compute-First and Greedy

ic rise more steeply than the other two.

VI. CONCLUSION AND FUTURE WORK

ave presented the problem of mapping an application

collection of jobs that require multiple datasets that

h replicated on multiple data hosts to Grid resources.

e also proposed a heuristic based on a solution to the

vering Problem. We have shown via simulation that the

ed heuristic is better than Compute-First and Greedy

ches and leads to schedules that are competitive with the

tive search (Brute Force) approach while being orders

nitude faster.

art of immediate future work, we plan to evaluate the

apping heuristic using other task scheduling algorithms

s Max-min, Sufferage and Genetic Algorithms. The

ance of the SCP-based heuristic in scenarios involving

ent tasks such as Directed Acyclic Graphs (DAGs) also

o be investigated.

ACKNOWLEDGEMENT

ould like to thank Anthony Sulistio for his help with

of GridSim. We would also like to thank Tianchi Ma,

Hoon Kim and Chee Shin Yeo (GRIDS Lab), and the

ous reviewers for their comments that have helped

e the quality of this paper.

REFERENCES

oster and C. Kesselman, The Grid: Blueprint for a Future Computing
rastructure. San Francisco, USA: Morgan Kaufmann Publishers,
9.

Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The
ta Grid: Towards an architecture for the distributed management and
lysis of large scientific datasets,” Journal of Network and Computer

plications, vol. 23, no. 3, pp. 187–200, 2000.
Hoschek, F. J. Jaen-Martinez, A. Samar, H. Stockinger, and

Stockinger, “Data Management in an International Data Grid Project,”
Proceedings of the 1st IEEE/ACM International Workshop on Grid
mputing (GRID ’00). Bangalore, India: Springer-Verlag, Berlin,
rmany, Dec. 2000.
Yamamoto, O. Tatebe, and S. Sekiguchi, “Parallel and Distributed

tronomical Data Analysis on Grid Datafarm,” in Proceedings of 5th
E/ACM International Workshop on Grid Computing (Grid 2004).

tsburgh, USA: IEEE CS Press,Los Alamitos, CA, USA, Nov. 2004.
Ranganathan and I. Foster, “Decoupling Computation and Data
eduling in Distributed Data-Intensive Applications,” in Proceedings

the 11th IEEE Symposium on High Performance Distributed Com-
ing (HPDC). Edinburgh, UK: IEEE CS Press, Los Alamitos, CA,
A, July 2002.

[6] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger,
and F. Zini, “Simulation of Dynamic Grid Replication Strategies in
OptorSim,” in Proceedings of the 3rd International Workshop on Grid
Computing(GRID 02). Baltimore,MD,USA: Springer-Verlag, Berlin,
Germany, 2002, pp. 46–57.

[7] A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita, “Performance
Analysis of Scheduling and Replication Algorithms on Grid Datafarm
Architecture for High-Energy Physics Applications,” in Proceedings of
the 12th IEEE international Symposium on High Performance Dis-
tributed Computing (HPDC-12). Seattle, USA: IEEE CS Press, Los
Alamitos, CA, USA, June 2003.

[8] T. Phan, K. Ranganathan, and R. Sion, “Evolving toward the perfect
schedule: Co-scheduling job assignments and data replication in wide-
area systems using a genetic algorithm,” in Proceedings of the 11th
Workshop on Job Scheduling Strategies for Parallel Processing. Cam-
bridge, MA: Springer-Verlag, Berlin, Germany, June 2005.

[9] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
for Scheduling Parameter Sweep Applications in Grid environments,”
in Proceedings of the 9th Heterogeneous Computing Systems Workshop
(HCW 2000). Cancun, Mexico: IEEE CS Press, Los Alamitos, CA,
USA, 2000.

[10] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic Mapping of a Class of Independent Tasks onto Heterogeneous
Computing Systems,” Journal of Parallel and Distributed Computing,
vol. 59, pp. 107–131, Nov 1999.

[11] H. Mohamed and D. Epema, “An evaluation of the close-to-files pro-
cessor and data co-allocation policy in multiclusters,” in Proceedings of
the 2004 IEEE International Conference on Cluster Computing. San
Diego, CA, USA: IEEE CS Press,Los Alamitos, CA, USA, Sept. 2004.

[12] A. Giersch, Y. Robert, and F. Vivien, “Scheduling tasks sharing files
from distributed repositories,” in Proceedings of the 10th International
Euro-Par Conference (EuroPar ’04). Pisa, Italy: Springer-Verlag,
Berlin, Germany, Sept. 2004.

[13] G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek, P. Wyckoff,
J. Saltz, and P. Sadayappan, “A hypergraph partitioning-based approach
for scheduling of tasks with batch-shared I/O,” in Proceedings of the
2005 IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2005). Cardiff, UK: IEEE CS Press, May 2005.

[14] S. Venugopal and R. Buyya, “A Deadline and Budget Constrained
Scheduling Algorithm for e-Science Applications on Data Grids,” in
Proceedings of the 6th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP-2005), ser. Lecture Notes
in Computer Science, vol. 3719. Melbourne, Australia.: Springer-
Verlag, Berlin, Germany, Oct. 2005.

[15] R. Gardner et al., “The Grid2003 Production Grid: Principles and
Practice,” in Proceedings of the 13th Symposium on High Performance
Distributed Computing (HPDC 13). Honolulu, HI, USA: IEEE CS
Press, Los Alamitos, CA, USA, June 2004.

[16] A. Rajasekar, M. Wan, and R. Moore, “MySRB & SRB: Components of
a Data Grid,” in Proceedings of the 11 th IEEE International Symposium
on High Performance Distributed Computing (HPDC-11). Edinburgh,
UK: IEEE CS Press,Los Alamitos, CA, USA, 2002.

[17] E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski, “GridLab: a grid
application toolkit and testbed,” Future Gener. Comput. Syst., vol. 18,
no. 8, pp. 1143–1153, 2002.

[18] S. Venugopal, R. Buyya, and L. Winton, “A Grid Service Broker for
Scheduling Distributed Data-Oriented Applications on Global Grids,” in
Proceedings of the 2nd Workshop on Middleware in Grid Computing
(MGC 04). Toronto, Canada: ACM Press, New York, USA, Oct. 2004.

[19] E. Balas and M. W. Padberg, “On the Set-Covering Problem,” Opera-
tions Research, vol. 20, no. 6, pp. 1152–1161, 1972.

[20] N. Christofides, Graph Theory: An Algorithmic Approach. Academic
Publishers, London, UK, 1975, ch. Independent and Dominating Sets –
The Set Covering Problem, pp. 30 – 57, iSBN 012 1743350 0.

[21] A. Sulistio, U. Cibej, B. Robic, and R. Buyya, “A Tool for Modelling and
Simulation of Data Grids with Integration of Data Storage, Replication
and Analysis,” University of Melbourne, Australia, Tech. Rep. GRIDS-
TR-2005-13, Nov. 2005.

[22] K. Park, G. Kim, and M. Crovella, “On the relationship between file
sizes, transport protocols, and self-similar network traffic,” in Proceed-
ings of the 1996 International Conference on Network Protocols (ICNP
’96). Atlanta, GA, USA: IEEE CS Press, 1996.

[23] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: evidence and implications,” in Proceedings

of
mu

[24] D.
K.
sat
Wo
CS

8

the 18th Annual Joint Conference of the IEEE Computer and Com-
nications Societies (INFOCOM ’99.), New York, NY, USA, 1999.
G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson,
Stockinger, and F. Zini, “Evaluating Scheduling and Replica Optimi-
ion Strategies in OptorSim,” in Proceedings of the 4th International
rkshop on Grid Computing (Grid2003). Phoenix, AZ, USA: IEEE
Press, Los Alamitos, CA, USA, Nov. 2003.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author
