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Abstract: Computational Grids and peer-to-peer (P2P) 
networks enable the sharing, selection, and aggregation 
of geographically distributed resources for solving 
large-scale problems in science, engineering, and 
commerce. The management and composition of 
resources and services for scheduling applications, 
however, becomes a complex undertaking. We have 
proposed a computational economy framework for 
regulating the supply and demand for resources and 
allocating them for applications based on the users’ 
quality of services requirements. The framework 
requires economy driven deadline and budget 
constrained (DBC) scheduling algorithms for 
allocating resources to application jobs in such a way 
that the users’ requirements are met. In this paper, we 
propose a new scheduling algorithm, called DBC cost-
time optimisation, which extends the DBC cost-
optimisation algorithm to optimise for time, keeping 
the cost of computation at the minimum. The 
superiority of this new scheduling algorithm, in 
achieving lower job completion time, is demonstrated 
by simulating the World-Wide Grid and scheduling 
task-farming applications for different deadline and 
budget scenarios using both this new and the cost 
optimisation scheduling algorithms. 

1 Introduction 
Computational Grids [1] and peer-to-peer (P2P) 
computing [2] networks are emerging as next 
generation computing platforms for solving large-scale 
computational and data intensive problems in science, 
engineering, and commerce. They enable the sharing, 
selection and aggregation of a wide variety of 
geographically distributed resources including 

supercomputers, storage systems, databases, data 
sources, and specialized devices owned by different 
organizations. However, resource management and 
application scheduling is a complex undertaking due to 
large-scale heterogeneity present in resources, 
management policies, users, and applications 
requirements in these environments [14]. 

The resources are heterogeneous in terms of their 
architecture, power, configuration, and availability. 
They are owned and managed by different 
organizations with different access policies and cost 
models that vary with time, users, and priorities. 
Different applications have different computational 
models that vary with the nature of the problem. The 
resource owners and consumers/end-users have 
different goals, objectives, strategies, and demand 
patterns. In our earlier work [5][6], we investigated the 
use of economics as a metaphor for management of 
resources in Grid computing environments. The 
computational economy framework provides a 
mechanism for regulating the supply-and-demand for 
resources and allocating them to applications based on 
the users’ quality of services requirements [14]. It also 
offers an incentive to resource owners for sharing 
resources on the Grid and end-users trade-off between 
the timeframe for result delivery and computational 
expenses.  

A Grid scheduler, often called resource broker, acts 
as an interface between the user and distributed 
resources and hides the complexities of Grid 
computing [4]. It performs resource discovery, 
negotiates for access costs using trading services, maps 
jobs to resources (scheduling), stages the application 
and data for processing (deployment), starts job 
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execution, and finally gathers the results. It is also 
responsible for monitoring and tracking application 
execution progress along with adapting to the changes 
in Grid runtime environment, variation in resource 
share availability, and failures.  

In our Grid economy framework, the resource 
brokers use economy driven deadline and budget 
constrained (DBC) scheduling algorithms for 
allocating resources to application jobs in such a way 
that the users’ requirements are met. In our early work 
[6], we developed three scheduling algorithms for cost, 
time, and time-variant optimisation strategies that 
support deadline and budget constraints. We 
implemented them within the Nimrod-G broker and 
explored their capability for scheduling task-farming or 
parameter-sweep and data-intensive computing 
applications such as drug design [10] on the WWG 
(World-Wide Grid) [7] testbed resources. To meet 
users’ quality of service requirements, the broker leases 
Grid resources and services dynamically at runtime 
depending on their capability, cost, and availability.  

In this work, we propose a new scheduling 
algorithm, called DBC cost-time optimisation, which 
extends the DBC cost-optimisation algorithm to 
optimise for time keeping the cost of computation at 
the minimum. Resources with the same cost are 
grouped together and time-optimisation scheduling 
strategy is applied while allocating jobs to a group. We 
demonstrate the ability of this new scheduling 
algorithm by implementing it within the economic Grid 
resource broker simulator built using the GridSim 
toolkit [3]. The performance of this new algorithm is 
evaluated by scheduling a synthetic task farming 
application on simulated WWG testbed resources for 
different deadline and budget scenarios. We then 
compare and contrast the results of scheduling with the 
cost optimisation algorithm. 

A number of projects are investigating scheduling 
on distributed systems [14]. They include Grid 
scheduling systems such as AppLeS [11] and NetSolve 
[12], which use system-centric scheduling strategies; 
and REXEC [13], which supports computational 
economy-based resource management in a single 
administrative domain cluster computing 
environments. 

The rest of this paper is organized as follows. 
Section 2 presents the GridSim broker architecture and 
internal components that simulate and manage the 
execution of task farming applications along with 
scheduling algorithm. The simulation of heterogeneous 
resources with different capabilities and access costs, 
creation of synthetic application, and evaluation of 
proposed cost-time optimisation scheduling algorithm 
against the cost optimisation algorithm are discussed in 
Section 3. The final section summarises the paper 

along with suggestions for future work. 

2 Grid Broker Simulation and DBC 
Cost-Time Optimisation Algorithm 

The GridSim toolkit [3] is used to simulate Grid 
environment and a Nimrod-G like deadline and budget 
constrained scheduling system called economic Grid 
resource broker. The simulated Grid environment 
contains multiple resources and user entities with 
different requirements. The user and broker entities 
extend the GridSim class. All the users create 
experiments that each of which contains application 
specification (a set of Gridlets that represent 
application jobs with different processing) and quality 
of service requirements (deadline and budget 
constraints with optimisation strategy). When the 
simulation starts, the user entity creates an instance of 
its own broker entity and passes a request for 
processing application jobs. 

2.1 Broker Architecture 
The broker entity architecture and its interaction with 
other entities is shown in Figure 1. The key 
components of the broker are: experiment interface, 
resource discovery and trading, scheduling flow 
manager backed with scheduling heuristics and 
algorithms, Gridlets dispatcher, and Gridlets receptor. 
A detailed discussion on the broker implementation 
using the GridSim toolkit can be found in [3]. 
However, to enable the understanding of the broker 
framework in which the new scheduling algorithm is 
implemented, we briefly present its operational model: 

1. The user entity creates an experiment that contains 
application description (a list of Gridlets to be 
processed) and user requirements to the broker via 
the experiment interface. 

2. The broker resource discovery and trading module 
interacts with the GridSim GIS entity to identify 
contact information of resources and then interacts 
with resources to establish their configuration and 
access cost. It creates a Broker Resource list that 
acts as a placeholder for maintaining resource 
properties, a list of Gridlets committed for 
execution on the resource, and the resource 
performance data as predicted through the 
measurement and extrapolation methodology. 

3. The scheduling flow manager selects an 
appropriate scheduling algorithm for mapping 
Gridlets to resources depending on the user 
requirements (deadline and budget limits; and 
optimisation strategy—cost, cost-time, time, or 
time variant). Gridlets that are mapped to a 
specific resource are added to the Gridlets list in 
the Broker Resource.  
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4. For each of the resources, the dispatcher selects the 
number of Gridlets that can be staged for 
execution according to the usage policy to avoid 
overloading resources with single user jobs. 

5. The dispatcher then submits Gridlets to resources 
using the GridSim’s asynchronous service.  

6. When the Gridlet processing completes, the 
resource returns it to the broker’s Gridlet receptor 
module, which then measures and updates the 

runtime parameter, resource or MI share available 
to the user. It aids in predicting the job 
consumption rate for making scheduling decisions. 

7. The steps, 3–6, continue until all the Gridlets are 
processed or the broker exceeds the deadline or 
budget limits. At the end, the broker returns 
updated experiment data along with processed 
Gridlets back to the user entity. 
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 Figure 1: Economic Grid resource broker architecture and its interaction with other entities. 

2.2 Deadline and Budget Constrained 
Cost-Time Optimisation Scheduling 
Algorithm 

We have simulated deadline and budget constrained 
(DBC) scheduling algorithms, cost-optimisation [3], 
time-optimisation, and time-variant optimisation, 
presented in [6]. A new scheduling algorithm, called 
cost-time optimisation, proposed in this paper is shown 
in Figure 2. It extends the cost-optimisation algorithm 
to optimise the time without incurring additional 
processing expenses. This is accomplished by applying 
the time-optimisation algorithm to schedule task-
farming or parameter-sweep application jobs on 
distributed resources having the same processing cost. 
The performance evaluation of this new algorithm is 
presented in the next section. 

3 Scheduling Simulation and 
Performance Evaluation 

To simulate application scheduling in GridSim 
environment using the economic Grid broker requires 
the modeling and creation of GridSim resources and 

applications that model jobs as Gridlets. In this section, 
we present resource and application modeling along 
with the results of scheduling experiments with quality 
of services driven application processing.  

3.1 Resource Modeling 
We modeled and simulated a number of time- and 

space-shared resources with different characteristics, 
configuration, and capability as those in the WWG 
testbed. We have selected the latest CPUs models 
AlphaServer ES40, Sun Netra 20, Intel VC820 (800EB 
MHz, Pentium III), and SGI Origin 3200 1X 500MHz 
R14k released by their manufacturers Compaq, Sun, 
Intel, and SGI respectively. The processing capability 
of these PEs in simulation time-unit is modeled after 
the base value of SPEC CPU (INT) 2000 benchmark 
ratings published in [8]. To enable the users to model 
and express their application processing requirements 
in terms of MI (million instructions) or MIPS (million 
instructions per second) on the standard machine, we 
assume the MIPS rating of PEs is same as the SPEC 
rating. Table 1 shows the characteristics of resources 
simulated and their PE cost per time unit in G$ (Grid 
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dollar). The simulated resources resemble the WWG 
testbed resources used in the Nimrod-G scheduling 
experiments reported in [9]. The access cost of PE in 
G$/time-unit not necessarily reflects the cost of 
processing when PEs have different capability. The 
brokers need to translate it into the G$ per MI for each 

resource. Such translation helps in identifying the 
relative cost of resources for processing Gridlets on 
them. It can be noted some of the resources in Table 1 
have the same MIPS per G$. For example, both R4 and 
R8 have the same cost and so resources R2, R3, and 
R10. 

 

Figure 2: Deadline and budget constrained (DBC) scheduling with cost-time optimisation. 

Algorithm: DBC_Scheduling_with_Cost_Time_Optimisation() 
1. RESOURCE DISCOVERY: Identify the resources and their capability using the Grid information 

services. 
2. RESOURCE TRADING: Identify the cost of all resources and the capability to be delivered per cost-

unit. The resource cost can be expressed in units such as processing cost-per-MI, cost-per-job, CPU cost 
per time unit, etc. and the scheduler needs to choose suitable unit for comparison. 

3. If the user supplies D and B-factors, then determine the absolute deadline and budget based on the 
capability of resources and their cost, and the application processing requirements (e.g., total MI 
required). 

4. SCHEDULING: Repeat while there exists unprocessed jobs and the current time and processing 
expenses are within the deadline and budget limits. [It is triggered for each scheduling event or whenever 
a job completes. The event period is a function of deadline, job processing time, rescheduling overhead, 
resource share variation, etc.]: 

[SCHEDULE ADVISOR with Policy] 
a. For each resource, predict and establish the job consumption rate or the available resource share 

through the measure and extrapolation strategy taking into account the time taken to process previous 
jobs. 

b. SORT the resources by increasing order of cost. If two or more resources have the same cost, order 
them such that powerful ones (e.g., higher job consumption rate or resource share availability, but the 
first time based on the total theoretical capability, say the total MIPS) are preferred first. 

c. Create resource groups containing resources with the same cost. 
d. SORT the resource groups with the increasing order of cost. 
e. If any of the resource has jobs assigned to it in the previous scheduling event, but not dispatched to 

the resource for execution and there is variation in resource availability, then move appropriate 
number of jobs to the Unassigned-Jobs-List. This helps in updating the whole schedule based on the 
latest resource availability information. 

f. Repeat the following steps for each resource group as long as there exists unassigned jobs:  
i. Repeat the following steps for each job in the Unassigned-Jobs-List depending on the processing 

cost and the budget availability: [It uses the time optimisation strategy.] 

• Select a job from the Unassigned-Jobs-List. 

• For each resource, calculate/predict the job completion time taking into account previously 
assigned jobs and the job completion rate and resource share availability. 

• Sort resources by the increasing order of completion time. 

• Assign the job to the first resource and remove it from the Unassigned-Jobs-List if the predicted 
job completion time is less than the deadline. 

5. [DISPATCHER with Policy] 
Repeat the following steps for each resource if it has jobs to be dispatched: 

• Identify the number of jobs that can be submitted without overloading the resource. Our 
default policy is to dispatch jobs as long as the number of user jobs deployed (active or in 
queue) is less than the number of PEs in the resource. 
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Table 1: World-Wide Grid testbed resources simulated using GridSim. 

Resource 
Name in 

Simulation 

Simulated Resource 
Characteristics 

Vendor, Resource Type, 
Node OS, No of PEs 

Equivalent Resource 
in Worldwide Grid 

(Hostname, 
Location) 

A PE 
SPEC/ 
MIPS 
Rating 

Resource 
Manager 

Type 

Price 
(G$/PE 

time 
unit) 

MIPS 
per G$ 

R0 
Compaq, AlphaServer, CPU, 

OSF1, 4 
VPAC, Melb, 

Australia 515 Time-shared 8 64.37 

R1 Sun, Ultra, Solaris, 4 AIST, Tokyo, Japan 377 Time-shared 4 94.25 

R2 Sun, Ultra, Solaris, 4 AIST, Tokyo, Japan 377 Time-shared 3 125.66 

R3 Sun, Ultra, Solaris, 2 AIST, Tokyo, Japan 377 Time-shared 3 125.66 

R4 Intel, Pentium/VC820, Linux, 2 CNR, Pisa, Italy 380 Time-shared 1 380.0 

R5 SGI, Origin 3200, IRIX, 6 ZIB, Berlin, Germany 410 Time-shared 5 82.0 

R6 SGI, Origin 3200, IRIX, 16 ZIB, Berlin, Germany 410 Time-shared 5 82.0 

R7 SGI, Origin 3200, IRIX, 16 
Charles U., Czech 

Republic 
410 Space-shared 4 102.5 

R8 Intel, Pentium/VC820, Linux, 2 Portsmouth, UK 380 Time-shared 1 380.0 

R9 SGI, Origin 3200, IRIX, 4 Manchester, UK 410 Time-shared 6 68.33 

R10 Sun, Ultra, Solaris, 8, ANL, Chicago, USA 377 Time-shared 3 125.66 

3.2 Application Modeling 
We have modeled a task farming application that 
consists of 200 jobs. In GridSim, these jobs are 
packaged as Gridlets whose contents include the job 
length in MI, the size of job input and output data in 
bytes along with various other execution related 
parameters when they move between the broker and 
resources. The job length is expressed in terms of the 
time it takes to run on a standard resource PE with 
SPEC/MIPS rating of 100. Gridlets processing time is 
expressed in such a way that they are expected to take 
at least 100 time- units with a random variation of 0 to 
10% on the positive side of the standard resource. That 
means, Gridlets’ job length (processing requirements) 
can be at least 10,000 MI with a random variation of 0 
to 10% on the positive side. This 0 to 10% random 
variation in Gridlets’ job length is introduced to model 
heterogeneous tasks similar to those present in the real 
world parameter sweep applications.  

3.3 Scheduling Experiments 
We performed both cost and cost-time optimisation 
scheduling experiments with different values of 
deadline and budget constraints (DBC) for a single 

user. The deadline is varied in simulation time from 
100 to 3600 in steps of 500. The budget is varied from 
G$ 5000 to 22000 in steps of 1000. 

A trace of resource selection and allocation using 
cost and cost-time optimisation scheduling strategies 
shown in Figure 3 indicates their impact on the 
application processing completion time. When the 
deadline is tight (e.g., 100), there is high demand for all 
the resources in short time, the impact of cost and cost-
time scheduling strategies on the completion time is 
similar as all the resources are used up as long as 
budget is available to process all jobs within the 
deadline (see Figure 3a and Figure 3b). However, when 
the deadline is relaxed (e.g., 3100), it is likely that all 
jobs can be completed using the first few cheapest 
resources. In this experiment there were resources with 
the same cost and capability (e.g., R4 and R8), the cost 
optimisation strategy selected resource R4 to process 
all the jobs (see Figure 3c); whereas the cost-time 
optimisation strategy selected both R4 and R8 (see 
Figure 3d) since both resources cost the same price and 
completed the experiment earlier than the cost-
optimisation scheduling. This situation can be observed 
clearly in scheduling experiments with a large budget 
for different deadline values (see Figure 4). Note that 
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the left most solid curve marked with the label “All” in 
the resources axis in Figure 4 represents the 
aggregation of all resources. 

As the deadline increases, the cost optimisation 
algorithm predominantly scheduled jobs on the 
resource R4 (see Figure 4a) whereas, the cost-time 
optimisation algorithm scheduled jobs on resources R4 

and R8 (see Figure 4b), the first two cheapest resources 
with the same cost. Therefore, the application 
scheduling using the cost-time optimisation algorithm 
is able to finish earlier compared to the one scheduled 
using the cost optimisation algorithm and both 
strategies have spent the same amount of budget for 
processing its jobs.  
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(a) Cost optimisation with a low deadline. 
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(b) Cost-time optimisation and a low deadline. 
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(c) Cost optimisation with a high deadline. 
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(d) Cost-Time optimisation with a high deadline. 

Figure 3: The number of Gridlets processed and resources selected for different budget values. 
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(a) Cost optimisation when the budget is high. 
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(b) Cost-Time optimisation when the budget is high. 

Figure 4: The number of Gridlets processed and resources selected for different deadline values. 
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4 Summary and Conclusion 
Computational Grids enable the sharing, discovery, 
selection, and aggregation of geographically distributed 
heterogeneous resources for solving large-scale 
applications. We proposed computational economy as a 
metaphor for managing the complexity that is present 
in the management of distributed resources and 
allocation. It allows allocation of resources depending 
on the users’ quality of service requirements such as 
the deadline, budget, and optimisation strategy. In this 
paper, we proposed a new deadline and budget 
constrained scheduling algorithm called cost-time 
optimisation. We developed a scheduling simulator 
using the GridSim toolkit and evaluated the new 
scheduling algorithm and compared its performance 
and quality of service delivery with cost optimisation 
algorithm. When there are multiple resources with the 
same cost and capability, the cost-time optimisation 
algorithm schedules jobs on them using the time-
optimisation strategy for the deadline period. From the 
results of scheduling experiments for many scenarios 
with a different combination of the deadline and budget 
constraints, we observe that applications scheduled 
using the cost-time optimisation are able to complete 
earlier than those scheduled using the cost optimisation 
algorithm without incurring any extra expenses. This 
proves the superiority of the new deadline and budget 
constrained cost-time optimisation algorithm in 
scheduling jobs on global Grids. 

Efforts are currently underway to implement the 
cost-time optimisation algorithm within the Nimrod-G 
Grid resource broker for scheduling parameter sweep 
applications on the World-Wide Grid testbed resources. 
The GridSim toolkit and the economic Grid broker 
simulator can be downloaded from the project website: 
http://www.buyya.com/gridsim/ 
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