
 1

A Deadline and Budget Constrained Cost-Time Optimisation Algorithm for
Scheduling Task Farming Applications on Global Grids

Rajkumar Buyya1, Manzur Murshed2, and David Abramson3

1Grid Computing and Distributed Systems Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne
Parkville, Melbourne, Australia

raj@cs.mu.oz.au

2 Gippsland School of Computing and
Information Technology

Monash University, Gippsland Campus
Churchill, Vic 3842, Australia

Manzur.Murshed@infotech.monash.edu.au

3 School of Computer Science and Software Engineering
Monash University, Caulfield Campus

Melbourne, Vic 3145, Australia
davida@csse.monash.edu.au

Abstract: Computational Grids and peer-to-peer (P2P)
networks enable the sharing, selection, and aggregation
of geographically distributed resources for solving
large-scale problems in science, engineering, and
commerce. The management and composition of
resources and services for scheduling applications,
however, becomes a complex undertaking. We have
proposed a computational economy framework for
regulating the supply and demand for resources and
allocating them for applications based on the users’
quality of services requirements. The framework
requires economy driven deadline and budget
constrained (DBC) scheduling algorithms for
allocating resources to application jobs in such a way
that the users’ requirements are met. In this paper, we
propose a new scheduling algorithm, called DBC cost-
time optimisation, which extends the DBC cost-
optimisation algorithm to optimise for time, keeping
the cost of computation at the minimum. The
superiority of this new scheduling algorithm, in
achieving lower job completion time, is demonstrated
by simulating the World-Wide Grid and scheduling
task-farming applications for different deadline and
budget scenarios using both this new and the cost
optimisation scheduling algorithms.

1 Introduction
Computational Grids [1] and peer-to-peer (P2P)
computing [2] networks are emerging as next
generation computing platforms for solving large-scale
computational and data intensive problems in science,
engineering, and commerce. They enable the sharing,
selection and aggregation of a wide variety of
geographically distributed resources including

supercomputers, storage systems, databases, data
sources, and specialized devices owned by different
organizations. However, resource management and
application scheduling is a complex undertaking due to
large-scale heterogeneity present in resources,
management policies, users, and applications
requirements in these environments [14].

The resources are heterogeneous in terms of their
architecture, power, configuration, and availability.
They are owned and managed by different
organizations with different access policies and cost
models that vary with time, users, and priorities.
Different applications have different computational
models that vary with the nature of the problem. The
resource owners and consumers/end-users have
different goals, objectives, strategies, and demand
patterns. In our earlier work [5][6], we investigated the
use of economics as a metaphor for management of
resources in Grid computing environments. The
computational economy framework provides a
mechanism for regulating the supply-and-demand for
resources and allocating them to applications based on
the users’ quality of services requirements [14]. It also
offers an incentive to resource owners for sharing
resources on the Grid and end-users trade-off between
the timeframe for result delivery and computational
expenses.

A Grid scheduler, often called resource broker, acts
as an interface between the user and distributed
resources and hides the complexities of Grid
computing [4]. It performs resource discovery,
negotiates for access costs using trading services, maps
jobs to resources (scheduling), stages the application
and data for processing (deployment), starts job

 2

execution, and finally gathers the results. It is also
responsible for monitoring and tracking application
execution progress along with adapting to the changes
in Grid runtime environment, variation in resource
share availability, and failures.

In our Grid economy framework, the resource
brokers use economy driven deadline and budget
constrained (DBC) scheduling algorithms for
allocating resources to application jobs in such a way
that the users’ requirements are met. In our early work
[6], we developed three scheduling algorithms for cost,
time, and time-variant optimisation strategies that
support deadline and budget constraints. We
implemented them within the Nimrod-G broker and
explored their capability for scheduling task-farming or
parameter-sweep and data-intensive computing
applications such as drug design [10] on the WWG
(World-Wide Grid) [7] testbed resources. To meet
users’ quality of service requirements, the broker leases
Grid resources and services dynamically at runtime
depending on their capability, cost, and availability.

In this work, we propose a new scheduling
algorithm, called DBC cost-time optimisation, which
extends the DBC cost-optimisation algorithm to
optimise for time keeping the cost of computation at
the minimum. Resources with the same cost are
grouped together and time-optimisation scheduling
strategy is applied while allocating jobs to a group. We
demonstrate the ability of this new scheduling
algorithm by implementing it within the economic Grid
resource broker simulator built using the GridSim
toolkit [3]. The performance of this new algorithm is
evaluated by scheduling a synthetic task farming
application on simulated WWG testbed resources for
different deadline and budget scenarios. We then
compare and contrast the results of scheduling with the
cost optimisation algorithm.

A number of projects are investigating scheduling
on distributed systems [14]. They include Grid
scheduling systems such as AppLeS [11] and NetSolve
[12], which use system-centric scheduling strategies;
and REXEC [13], which supports computational
economy-based resource management in a single
administrative domain cluster computing
environments.

The rest of this paper is organized as follows.
Section 2 presents the GridSim broker architecture and
internal components that simulate and manage the
execution of task farming applications along with
scheduling algorithm. The simulation of heterogeneous
resources with different capabilities and access costs,
creation of synthetic application, and evaluation of
proposed cost-time optimisation scheduling algorithm
against the cost optimisation algorithm are discussed in
Section 3. The final section summarises the paper

along with suggestions for future work.

2 Grid Broker Simulation and DBC
Cost-Time Optimisation Algorithm

The GridSim toolkit [3] is used to simulate Grid
environment and a Nimrod-G like deadline and budget
constrained scheduling system called economic Grid
resource broker. The simulated Grid environment
contains multiple resources and user entities with
different requirements. The user and broker entities
extend the GridSim class. All the users create
experiments that each of which contains application
specification (a set of Gridlets that represent
application jobs with different processing) and quality
of service requirements (deadline and budget
constraints with optimisation strategy). When the
simulation starts, the user entity creates an instance of
its own broker entity and passes a request for
processing application jobs.

2.1 Broker Architecture
The broker entity architecture and its interaction with
other entities is shown in Figure 1. The key
components of the broker are: experiment interface,
resource discovery and trading, scheduling flow
manager backed with scheduling heuristics and
algorithms, Gridlets dispatcher, and Gridlets receptor.
A detailed discussion on the broker implementation
using the GridSim toolkit can be found in [3].
However, to enable the understanding of the broker
framework in which the new scheduling algorithm is
implemented, we briefly present its operational model:

1. The user entity creates an experiment that contains
application description (a list of Gridlets to be
processed) and user requirements to the broker via
the experiment interface.

2. The broker resource discovery and trading module
interacts with the GridSim GIS entity to identify
contact information of resources and then interacts
with resources to establish their configuration and
access cost. It creates a Broker Resource list that
acts as a placeholder for maintaining resource
properties, a list of Gridlets committed for
execution on the resource, and the resource
performance data as predicted through the
measurement and extrapolation methodology.

3. The scheduling flow manager selects an
appropriate scheduling algorithm for mapping
Gridlets to resources depending on the user
requirements (deadline and budget limits; and
optimisation strategy—cost, cost-time, time, or
time variant). Gridlets that are mapped to a
specific resource are added to the Gridlets list in
the Broker Resource.

 3

4. For each of the resources, the dispatcher selects the
number of Gridlets that can be staged for
execution according to the usage policy to avoid
overloading resources with single user jobs.

5. The dispatcher then submits Gridlets to resources
using the GridSim’s asynchronous service.

6. When the Gridlet processing completes, the
resource returns it to the broker’s Gridlet receptor
module, which then measures and updates the

runtime parameter, resource or MI share available
to the user. It aids in predicting the job
consumption rate for making scheduling decisions.

7. The steps, 3–6, continue until all the Gridlets are
processed or the broker exceeds the deadline or
budget limits. At the end, the broker returns
updated experiment data along with processed
Gridlets back to the user entity.

R1

Rm

.

.

.

.

.

.

.

.

C
T

 o
pt

im
iz

e

C
os

t o
pt

im
iz

e

T
im

e
op

tim
iz

e

N
on

e
O

pt
.

R
es

ou
rc

e
D

is
co

ve
ry

an

d
T

ra
di

ng

Gridlet Receptor
D

is
pa

tc
he

r

. .. .

1

6

4

2

7

E
xp

er
im

en
t I

nt
er

fa
ce

3

5

Scheduling Flow Manager

R1

R2

Rn

User
Entity

(Broker Resource List and Gridlets Q)

GIS

Broker Entity

Grid Resources

 Figure 1: Economic Grid resource broker architecture and its interaction with other entities.

2.2 Deadline and Budget Constrained
Cost-Time Optimisation Scheduling
Algorithm

We have simulated deadline and budget constrained
(DBC) scheduling algorithms, cost-optimisation [3],
time-optimisation, and time-variant optimisation,
presented in [6]. A new scheduling algorithm, called
cost-time optimisation, proposed in this paper is shown
in Figure 2. It extends the cost-optimisation algorithm
to optimise the time without incurring additional
processing expenses. This is accomplished by applying
the time-optimisation algorithm to schedule task-
farming or parameter-sweep application jobs on
distributed resources having the same processing cost.
The performance evaluation of this new algorithm is
presented in the next section.

3 Scheduling Simulation and
Performance Evaluation

To simulate application scheduling in GridSim
environment using the economic Grid broker requires
the modeling and creation of GridSim resources and

applications that model jobs as Gridlets. In this section,
we present resource and application modeling along
with the results of scheduling experiments with quality
of services driven application processing.

3.1 Resource Modeling
We modeled and simulated a number of time- and

space-shared resources with different characteristics,
configuration, and capability as those in the WWG
testbed. We have selected the latest CPUs models
AlphaServer ES40, Sun Netra 20, Intel VC820 (800EB
MHz, Pentium III), and SGI Origin 3200 1X 500MHz
R14k released by their manufacturers Compaq, Sun,
Intel, and SGI respectively. The processing capability
of these PEs in simulation time-unit is modeled after
the base value of SPEC CPU (INT) 2000 benchmark
ratings published in [8]. To enable the users to model
and express their application processing requirements
in terms of MI (million instructions) or MIPS (million
instructions per second) on the standard machine, we
assume the MIPS rating of PEs is same as the SPEC
rating. Table 1 shows the characteristics of resources
simulated and their PE cost per time unit in G$ (Grid

 4

dollar). The simulated resources resemble the WWG
testbed resources used in the Nimrod-G scheduling
experiments reported in [9]. The access cost of PE in
G$/time-unit not necessarily reflects the cost of
processing when PEs have different capability. The
brokers need to translate it into the G$ per MI for each

resource. Such translation helps in identifying the
relative cost of resources for processing Gridlets on
them. It can be noted some of the resources in Table 1
have the same MIPS per G$. For example, both R4 and
R8 have the same cost and so resources R2, R3, and
R10.

Figure 2: Deadline and budget constrained (DBC) scheduling with cost-time optimisation.

Algorithm: DBC_Scheduling_with_Cost_Time_Optimisation()
1. RESOURCE DISCOVERY: Identify the resources and their capability using the Grid information

services.
2. RESOURCE TRADING: Identify the cost of all resources and the capability to be delivered per cost-

unit. The resource cost can be expressed in units such as processing cost-per-MI, cost-per-job, CPU cost
per time unit, etc. and the scheduler needs to choose suitable unit for comparison.

3. If the user supplies D and B-factors, then determine the absolute deadline and budget based on the
capability of resources and their cost, and the application processing requirements (e.g., total MI
required).

4. SCHEDULING: Repeat while there exists unprocessed jobs and the current time and processing
expenses are within the deadline and budget limits. [It is triggered for each scheduling event or whenever
a job completes. The event period is a function of deadline, job processing time, rescheduling overhead,
resource share variation, etc.]:

[SCHEDULE ADVISOR with Policy]
a. For each resource, predict and establish the job consumption rate or the available resource share

through the measure and extrapolation strategy taking into account the time taken to process previous
jobs.

b. SORT the resources by increasing order of cost. If two or more resources have the same cost, order
them such that powerful ones (e.g., higher job consumption rate or resource share availability, but the
first time based on the total theoretical capability, say the total MIPS) are preferred first.

c. Create resource groups containing resources with the same cost.
d. SORT the resource groups with the increasing order of cost.
e. If any of the resource has jobs assigned to it in the previous scheduling event, but not dispatched to

the resource for execution and there is variation in resource availability, then move appropriate
number of jobs to the Unassigned-Jobs-List. This helps in updating the whole schedule based on the
latest resource availability information.

f. Repeat the following steps for each resource group as long as there exists unassigned jobs:
i. Repeat the following steps for each job in the Unassigned-Jobs-List depending on the processing

cost and the budget availability: [It uses the time optimisation strategy.]

• Select a job from the Unassigned-Jobs-List.

• For each resource, calculate/predict the job completion time taking into account previously
assigned jobs and the job completion rate and resource share availability.

• Sort resources by the increasing order of completion time.

• Assign the job to the first resource and remove it from the Unassigned-Jobs-List if the predicted
job completion time is less than the deadline.

5. [DISPATCHER with Policy]
Repeat the following steps for each resource if it has jobs to be dispatched:

• Identify the number of jobs that can be submitted without overloading the resource. Our
default policy is to dispatch jobs as long as the number of user jobs deployed (active or in
queue) is less than the number of PEs in the resource.

 5

Table 1: World-Wide Grid testbed resources simulated using GridSim.

Resource
Name in

Simulation

Simulated Resource
Characteristics

Vendor, Resource Type,
Node OS, No of PEs

Equivalent Resource
in Worldwide Grid

(Hostname,
Location)

A PE
SPEC/
MIPS
Rating

Resource
Manager

Type

Price
(G$/PE

time
unit)

MIPS
per G$

R0
Compaq, AlphaServer, CPU,

OSF1, 4
VPAC, Melb,

Australia 515 Time-shared 8 64.37

R1 Sun, Ultra, Solaris, 4 AIST, Tokyo, Japan 377 Time-shared 4 94.25

R2 Sun, Ultra, Solaris, 4 AIST, Tokyo, Japan 377 Time-shared 3 125.66

R3 Sun, Ultra, Solaris, 2 AIST, Tokyo, Japan 377 Time-shared 3 125.66

R4 Intel, Pentium/VC820, Linux, 2 CNR, Pisa, Italy 380 Time-shared 1 380.0

R5 SGI, Origin 3200, IRIX, 6 ZIB, Berlin, Germany 410 Time-shared 5 82.0

R6 SGI, Origin 3200, IRIX, 16 ZIB, Berlin, Germany 410 Time-shared 5 82.0

R7 SGI, Origin 3200, IRIX, 16
Charles U., Czech

Republic
410 Space-shared 4 102.5

R8 Intel, Pentium/VC820, Linux, 2 Portsmouth, UK 380 Time-shared 1 380.0

R9 SGI, Origin 3200, IRIX, 4 Manchester, UK 410 Time-shared 6 68.33

R10 Sun, Ultra, Solaris, 8, ANL, Chicago, USA 377 Time-shared 3 125.66

3.2 Application Modeling
We have modeled a task farming application that
consists of 200 jobs. In GridSim, these jobs are
packaged as Gridlets whose contents include the job
length in MI, the size of job input and output data in
bytes along with various other execution related
parameters when they move between the broker and
resources. The job length is expressed in terms of the
time it takes to run on a standard resource PE with
SPEC/MIPS rating of 100. Gridlets processing time is
expressed in such a way that they are expected to take
at least 100 time- units with a random variation of 0 to
10% on the positive side of the standard resource. That
means, Gridlets’ job length (processing requirements)
can be at least 10,000 MI with a random variation of 0
to 10% on the positive side. This 0 to 10% random
variation in Gridlets’ job length is introduced to model
heterogeneous tasks similar to those present in the real
world parameter sweep applications.

3.3 Scheduling Experiments
We performed both cost and cost-time optimisation
scheduling experiments with different values of
deadline and budget constraints (DBC) for a single

user. The deadline is varied in simulation time from
100 to 3600 in steps of 500. The budget is varied from
G$ 5000 to 22000 in steps of 1000.

A trace of resource selection and allocation using
cost and cost-time optimisation scheduling strategies
shown in Figure 3 indicates their impact on the
application processing completion time. When the
deadline is tight (e.g., 100), there is high demand for all
the resources in short time, the impact of cost and cost-
time scheduling strategies on the completion time is
similar as all the resources are used up as long as
budget is available to process all jobs within the
deadline (see Figure 3a and Figure 3b). However, when
the deadline is relaxed (e.g., 3100), it is likely that all
jobs can be completed using the first few cheapest
resources. In this experiment there were resources with
the same cost and capability (e.g., R4 and R8), the cost
optimisation strategy selected resource R4 to process
all the jobs (see Figure 3c); whereas the cost-time
optimisation strategy selected both R4 and R8 (see
Figure 3d) since both resources cost the same price and
completed the experiment earlier than the cost-
optimisation scheduling. This situation can be observed
clearly in scheduling experiments with a large budget
for different deadline values (see Figure 4). Note that

 6

the left most solid curve marked with the label “All” in
the resources axis in Figure 4 represents the
aggregation of all resources.

As the deadline increases, the cost optimisation
algorithm predominantly scheduled jobs on the
resource R4 (see Figure 4a) whereas, the cost-time
optimisation algorithm scheduled jobs on resources R4

and R8 (see Figure 4b), the first two cheapest resources
with the same cost. Therefore, the application
scheduling using the cost-time optimisation algorithm
is able to finish earlier compared to the one scheduled
using the cost optimisation algorithm and both
strategies have spent the same amount of budget for
processing its jobs.

50
00 80

00 11
00

0

14
00

0

17
00

0

20
00

0

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10

0

10

20

30

40

50

60

70

Gridlets
Completed

Budet

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Cost-OptimiseDeadline = 100

(a) Cost optimisation with a low deadline.

50
00 80

00

11
00

0

14
00

0

17
00

0

20
00

0

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10

0

10

20

30

40

50

60

70

Gridlets
Completed

Budget

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Deadline = 100 Cost-Time Optimise

(b) Cost-time optimisation and a low deadline.

50
00 80

00 11
00

0

14
00

0

17
00

0

20
00

0

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Completed

Budget

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Cost-OptimiseDeadline = 3100

(c) Cost optimisation with a high deadline.

5000

9000

13000

17000

21000

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Completed

Budget

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Cost-Time OptimisationDeadline = 3100

(d) Cost-Time optimisation with a high deadline.

Figure 3: The number of Gridlets processed and resources selected for different budget values.

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Processed

Deadline

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Cost OptimiseBudget = 22,000

(a) Cost optimisation when the budget is high.

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

R
0R
1R
2R
3R
4R
5R
6R
7R
8R
9

R
10A

ll

0

20

40

60

80

100

120

140

160

180

200

Gridlets
Processed

Deadline

Resources

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

All

Cost-Time OptimisationBudget = 22,000

(b) Cost-Time optimisation when the budget is high.

Figure 4: The number of Gridlets processed and resources selected for different deadline values.

 7

4 Summary and Conclusion
Computational Grids enable the sharing, discovery,
selection, and aggregation of geographically distributed
heterogeneous resources for solving large-scale
applications. We proposed computational economy as a
metaphor for managing the complexity that is present
in the management of distributed resources and
allocation. It allows allocation of resources depending
on the users’ quality of service requirements such as
the deadline, budget, and optimisation strategy. In this
paper, we proposed a new deadline and budget
constrained scheduling algorithm called cost-time
optimisation. We developed a scheduling simulator
using the GridSim toolkit and evaluated the new
scheduling algorithm and compared its performance
and quality of service delivery with cost optimisation
algorithm. When there are multiple resources with the
same cost and capability, the cost-time optimisation
algorithm schedules jobs on them using the time-
optimisation strategy for the deadline period. From the
results of scheduling experiments for many scenarios
with a different combination of the deadline and budget
constraints, we observe that applications scheduled
using the cost-time optimisation are able to complete
earlier than those scheduled using the cost optimisation
algorithm without incurring any extra expenses. This
proves the superiority of the new deadline and budget
constrained cost-time optimisation algorithm in
scheduling jobs on global Grids.

Efforts are currently underway to implement the
cost-time optimisation algorithm within the Nimrod-G
Grid resource broker for scheduling parameter sweep
applications on the World-Wide Grid testbed resources.
The GridSim toolkit and the economic Grid broker
simulator can be downloaded from the project website:
http://www.buyya.com/gridsim/

References
[1] I. Foster and C. Kesselman (editors), The Grid:

Blueprint for a Future Computing Infrastructure,
Morgan Kaufmann Publishers, USA, 1999.

[2] A. Oram (editor), Peer-to-Peer: Harnessing the
Power of Disruptive Technologies, O’Reilly Press,
USA, 2001.

[3] R. Buyya and M. Murshed, GridSim: A Toolkit for
the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid
Computing, The Journal of Concurrency and
Computation: Practice and Experience (CCPE),
Wiley Press, May 2002.

[4] R. Buyya, D. Abramson, and J. Giddy, Nimrod/G:
An Architecture for a Resource Management and
Scheduling System in a Global Computational

Grid, 4th International Conference and Exhibition
on High Performance Computing in Asia-Pacific
Region (HPC ASIA 2000), May 14-17, 2000,
Beijing, China.

[5] R. Buyya, D. Abramson, and J. Giddy, An
Economy Driven Resource Management
Architecture for Global Computational Power
Grids, 2000 International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA 2000), June 2000, Las
Vegas, USA.

[6] R. Buyya, J. Giddy, and D. Abramson, An
Evaluation of Economy-based Resource Trading
and Scheduling on Computational Power Grids for
Parameter Sweep Applications, Proceedings of the
2nd International Workshop on Active Middleware
Services (AMS 2000), pp. 221-230, August 1,
2000, Pittsburgh, USA, Kluwer Academic Press,
USA, 2000.

[7] R. Buyya, The World-Wide Grid,
http://www.buyya.com/ecogrid/wwg/

[8] SPEC, SPEC CPU2000 Results,
http://www.specbench.org/osg/cpu2000/results/cp
u2000.html, accessed on Jan. 30, 2002.

[9] R. Buyya, D. Abramson, J. Giddy, and H.
Stockinger, Economic Models for Resource
Management and Scheduling in Grid Computing,
The Journal of Concurrency and Computation:
Practice and Experience (CCPE), Wiley Press,
May 2002 (to appear).

[10] R. Buyya, K. Branson, J. Giddy, and D.
Abramson, The Virtual Laboratory: Enabling
Molecular Modelling for Drug Design on the
World Wide Grid, Technical Report, CSSE-103,
Monash University, December 2001.

[11] F. Berman, and R. Wolski, The AppLeS Project: A
Status Report, Proceedings of the 8th NEC
Research Symposium, Germany, May 1997.

[12] H. Casanova, M. Kim, J. Plank, and J., Dongarra,
Adaptive Scheduling for Task Farming with Grid
Middleware, The International Journal of High
Performance Computing, Vol. 13, No. 3, Fall,
1999.

[13] B. Chun and D. Culler, User-centric Performance
Analysis of Market-based Cluster Batch
Schedulers, 2nd IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2002),
Berlin, Germany, May 2002.

[14] R. Buyya, Economic-based Distributed Resource
Management and Scheduling for Grid Computing,
PhD Thesis, Monash University, Australia, April
12, 2002. http://www.buyya.com/thesis/

