
SLA-Based Coordinated Superscheduling Scheme for Computational Grids

Rajiv Ranjan, Aaron Harwood and Rajkumar Buyya
GRIDS Laboratory and P2P Group

Department of Computer Science and Software Engineering
University of Melbourne

Victoria, Australia
{rranjan, aharwood, raj}@csse.unimelb.edu.au

Abstract

The Service Level Agreement (SLA) based grid su-
perscheduling approach promotes coordinated resource
sharing. Superscheduling is facilitated between admin-
istratively and topologically distributed grid sites via
grid schedulers such as Resource brokers and workflow
engines. In this work, we present a market-based SLA
coordination mechanism, based on a well known con-
tract net protocol.

The key advantages of our approach are that it al-
lows: (i) resource owners to have finer degree of con-
trol over the resource allocation which is something that
is not possible with traditional mechanisms; and (ii) su-
perschedulers to bid for SLA contracts in the contract
net, with focus on completing a job within a user spec-
ified deadline. In this work, we use simulation to show
the effectiveness of our proposed approach.

1 Introduction

The Grid superscheduling [13] problem is defined
as: “scheduling jobs across the grid resources such as
computational clusters, parallel supercomputers, desk-
top machines that belong to different administrative do-
mains”. Superscheduling in computational grids is fa-
cilitated by specialized superschedulers such as Grid
Federation Agent [9], NASA-Superscheduler [14]. In
this work, we propose a SLA [8] based coordinated su-
perscheduling scheme for federated grid systems. An
SLA is the agreement negotiated between a super-
scheduler (resource consumer) and LRMSes (resource
provider) about acceptable job QoS constraints. These
QoS constraints may include the job response time and
budget spent. Inherently, a SLA is the guarantee given
by a resource provider to a remote site job supersched-
uler for completing the job within the specified dead-
line, within the agreed budget or satisfying both at the

same time. A SLA-based coordinated job superschedul-
ing approach has many advantages: (i) It inhibits su-
perschedulers from submitting unbounded amounts of
work to LRMSes; (ii) once a SLA is reached, users’
are certain that agreed QoS shall be delivered by the
system; (iii) job queuing or processing delay is signifi-
cantly reduced, thus leading to enhanced QoS, otherwise
a penalty model [17] is applied to compensate them ;
and (iv) gives LRMSes more autonomy and better con-
trol over resource allocation decisions.

Our SLA model incorporates an economic mecha-
nism [3] for job superscheduling and resource alloca-
tion. The economic mechanism enables the regulation of
supply and demand of resources, offers incentive to the
resource owners for leasing, and promotes QoS based
resource allocation. In this work, we mainly focus on
the decentralized commodity market model [16]. In this
model every resource has a price, which is based on
the demand, supply and value. An economy driven re-
source allocation methodology focuses on: (i) optimiz-
ing resource provider’s payoff function; and (ii) increas-
ing end-user’s perceived QoS value. Note that our pro-
posed superscheduling approach is studied as part of a
new and emerging grid system which we call as Grid-
Federation [9]. General details about this system can be
found in Section 2.

Our SLA model considers a collection of computa-
tional cluster resources as a contract net [15]. As jobs ar-
rive, the grid superschedulers undertake one-to-one con-
tract negotiation with the LRMSes managing the con-
cerned resource. The SLA contract negotiation mes-
sage includes: (i) whether a job can be completed within
the specified deadline; and (ii) SLA bid expiration time
(maximum amount of time a superscheduler is willing to
wait before finalizing the SLA). The SLA bid expiration
time methodology we apply here is different from that
adopted in the Tycoon system [7]. In Tycoon, the SLA
bid expiration time at a resource is the same for all the
jobs irrespective of their size or deadline. In this case,

1-4244-0328-6/06/$20.00 c©2006 IEEE.

Grid Bank

4

5

6

Cluster2

Cluster n
Cluster 4

Cluster 3
Cluster 1
GFA 1

GFA 2

GFA 3

GFA 4
GFA n

Subscribe Query

Quote Unsubscribe

INTERNET

Shared Federation Directory

1

2

3

fedreation
quotes

schedule

fedreation
quotes

schedule

7

8

9

PSfrag replacements

SLA Bid

SLA Bid

SLA Bid

SLA Bid

Users

Users

Users
Users

Users

Figure 1. Grid-Federation

the total bid-processing delay is directly controlled by
the local resource auctioneer. In our model, the super-
scheduler bids with a SLA bid expiration time propor-
tional to the job’s deadline. The focus is on meeting the
job’s SLA requirements, particularly the job’s deadline.

Our time constrained SLA bid-based contract nego-
tiation approach gives LRMSes finer control over the
resource allocation decision as compared to traditional
First-Come-First-Serve (FCFS) approach. Existing su-
perscheduling systems including NASA-Superscheduler
assumes every LRMS allocates the resources using
FCFS scheduling scheme. In this work, we propose a
Greedy backfilling LRMS scheduling that focus on max-
imizing resource owner’s payoff function. In this case,
a LRMS maintains a queue of SLA bid requests gener-
ated by various superschedulers in the system at a time
t. Every SLA bid has an associated expiry time. If the
concerned LRMS does not reply within that expiry pe-
riod, then the SLA request is considered to be expired.
Greedy backfilling is based on well known Greedy or
Knapsack method [6]. The LRMSes periodically iter-
ates through the local SLA bids and finalizes the contract
with those that fit the resource owner’s payoff function.

The main contribution of this work includes: (i) a
SLA bid based superscheduling approach; (ii) a Greedy
backfilling cluster scheduling approach for LRMSes that
focus on maximizing the resource owners’ payoff func-

tion; and (iii) allowing resource owners to have a finer
degree of control over resource allocation decisions. In
this work, we use simulation to evaluate the feasibility
of our proposed approach. The paper is organized as
follows. In section 2, we present a brief overview of
our Grid-Federation superscheduling framework. Sec-
tion 3.1 presents details about our proposed bid-based
SLA contract negotiation model. In section 3.2, we give
details about our proposed Greedy backfilling LRMS
scheduling approach. In section 4, we present various
experiments and discuss our results. We end this paper
with concluding remarks and our future vision in Sec-
tion 5. Note that, in Table. 1 we define the various nota-
tions that we use in this paper.

2 Brief overview of Grid-Federation

The Grid-Federation [9] system is defined as a large
scale resource sharing system that consists of a coop-
erative federation of distributed clusters based on poli-
cies defined by their owners (shown in Fig.1). Fig.1
shows an abstract model of our Grid-Federation de-
ployed over a shared federation directory. To enable
policy based transparent resource sharing between these
clusters, we define and model a new RMS system,
which we call Grid Federation Agent (GFA). Currently,
we assume that the directory information is shared us-

Table 1. Notations
Symbol Meaning
n number of Grid Federation Agents (GFAs).
ci resource access cost at GFA i.
pi number of processors at GFA i.
Ji,j,k i-th job from the j-th user of k-th GFA.
pi,j,k number of processor required by Ji,j,k .
bi,j,k assigned budget to Ji,j,k .
di,j,k assigned deadline to Ji,j,k .
dei,j,k effective deadline for Ji,j,k .
D(Ji,j,k, Rk) time function (expected response time for Ji,j,k at resource k).
B(Ji,j,k, Rk) cost function (expected budget spent for Ji,j,k at resource k).
Ik incentive earned by resource owner k over simulation period.
τ(Ji,j,k) returns next SLA bid interval ∆tnegi,j,k,p for Ji,j,k .
tnegi,j,k

total SLA bid interval/delay for Ji,j,k .
Qm,t set of jobs that have been assigned but not accepted at GFAm at time

t.
Qam,t set of jobs that have been accepted at GFAm at time t.
Qsm,t set of jobs sorted in decreasing order of incentive it provides to the

resource owner at GFAm at time t.
nu number of users over all clusters (

Pn
k=1 nk , nk number of users

at GFA k).
nj total jobs in the federation (

Pn
(k,ui)=1

nk, ui).

tsi,j,k
job submission delay (user to GFA).

tri,j,k
finished job return delay (GFA to user) .

∆tnegi,j,k,p
total delay for p-th SLA bid for Ji,j,k .

λSLAi
SLA arrival rate at GFA i.

µSLAi
SLA satisfaction rate at GFA i.

li,j,k job length for Ji,j,k (in terms of million instructions)
αi,j,k communication overhead for Ji,j,k

ing some efficient protocol (e.g. a peer-to-peer proto-
col [12, 5]). In this case, the P2P system provides a
decentralized database with efficient updates and range
query capabilities. Individual GFAs access the direc-
tory information using the interface shown in Fig.1,
i.e. subscribe, quote, unsubscribe, and query. The
specifics of the interface can be found in [10]. Our ap-
proach considers the emerging computational economy
metaphor for the Grid-Federation. Some of the com-
monly used economic models [3] in resource allocation
includes the commodity market model, the posted price
model, the bargaining model, the tendering/contract-net
model, the auction model, the bid-based proportional re-
source sharing model, the community/coalition model
and the monopoly model. Grid-Federation considers de-
centralized commodity market model for managing job
scheduling and resource allocation. In this case, the re-
source owners: (i) can clearly define what is shared in
the Grid-Federation while maintaining a complete au-
tonomy; (ii) can dictate who is given access; and (iii)
get incentives for leasing their resources to federation
users.

In Fig.1 a user who is local to GFA 3 is submitting
a job. If the user’s job QoS can’t be satisfied locally
then GFA 3 queries the federation directory to obtain the
quote of the 1-st fastest (if the user is seeking optimize
for time (OFT)) or 1-st cheapest cluster (if the user is
seeking to optimize for cost (OFC)). In this case, the
federation directory returns the quote advertised by GFA
2. Following this, GFA 3 bids for SLA contract (enquiry
about QoS guarantee in terms of response time) at GFA
2. If GFA has too much load or the SLA bid does not fit

the resource owner payoff function, the bid eventually
timeouts. In this case, the SLA bid by GFA 2 times out.
As the next superscheduling iteration, GFA 3 queries the
federation directory for the 2-nd cheapest/fastest GFA
and so on. The process of SLA bids is repeated until
GFA 3 finds a GFA that can schedule the job (i.e. accept
the SLA bid) (in this example the job is finally scheduled
on cluster 4).

3 Models

3.1 SLA model

The SLA model we consider is that of a set of dis-
tributed cluster resources each offering a fixed amount
of processing power. The resources form part of the fed-
erated grid environment and are shared amongst the end-
users, each having its own SLA parameters. SLAs are
managed and coordinated through an admission control
mechanism enforced by GFA at each resource site. Each
user in the federation has a job Ji,j,k. We write Ji,j,k
to represent the i-th job from the j-th user of the k-th
resource. A job consists of the number of processors re-
quired, pi,j,k, the job length, li,j,k (in terms of millions
of instructions), the communication overhead, αi,j,k and
SLA parameters the budget, bi,j,k , the deadline or maxi-
mum delay, di,j,k . More details about the job model can
be found in [9].

3.1.1 SLA bid with expiration time (based on con-
tract net protocol [15])

The collection of GFAs in the federation are referred to
as a contract net, and job-migration in the net is facil-
itated through the SLA contracts. Each GFA can take
on two roles either a manager or contractor. The GFA
to which a user submits a job for processing is referred
to as the manager GFA. The manager GFA is respon-
sible for superscheduling the job in the net. The GFA
which accepts the job from the manager GFA and over-
looks its execution is referred to as the contractor GFA.
Individual GFAs are not assigned these roles in advance.
The role may change dynamically over time as per the
user’s job requirements. Thus, the GFA alternates be-
tween these two roles or adheres to both over the course
of superscheduling.

As jobs arrive at a GFA, the GFA adopts the role of a
manager. Following this, the manager GFA queries the
shared federation directory to obtain the quote for the
contractor GFA that matches the user specified SLA pa-
rameters. Note that, users can seek optimization for one
of the SLA parameters i.e. either response time (OFT)
or the budget spent (OFC). Once, the manager ob-
tains the quote for the desired contractor, it undertakes

PSfrag replacements

tri,j,k

di,j,k

dei,j,k

effective deadline
tnegi,j,ktsi,j,k

∆tnegi,j,k,1

∆tnegi,j,k,2
∆tnegi,j,k,n

Figure 2. Job superscheduling timeline

one-to-one SLA contract negotiation with the contrac-
tor. The SLA contract negotiation message includes:
(i) whether the job Ji,j,k can be completed within the
specified deadline; and (ii) SLA bid expiration time
∆tnegi,j,k,l. The contractor GFA has to reply within the
bid time ∆tnegi,j,k,l, otherwise the manager GFA under-
takes SLA contract negotiation with the next available
contractor in the net. Algorithm SLA bidding mecha-
nism (refer to Algorithm 1) depicts various events and
corresponding superscheduling actions undertaken by a
GFA.

Our SLA contract model considers a part of the total
job deadline as the SLA contract negotiation time (refer
to Eq. 1). The manager GFA bids with a different SLA
expiration interval given by Eq. 2. In Fig. 2 we show the
job superscheduling timeline. The timeline includes the
job submission delay, tsi,j,k , total SLA contract negoti-
ation delay, tnegi,j,k , expected response time (computed
using Eq. 1) and finished job return delay, tri,j,k . The to-
tal SLA contract bidding delay available to the manager
GFA for superscheduling job Ji,j,k is given by:

tnegi,j,k = di,j,k − tsi,j,k − dei,j,k − tri,j,k (1)

The total SLA contract bid negotiation delay
tnegi,j,k assumes a finite number of values ∆tnegi,j,k,1 ,
∆tnegi,j,k,2 ,...,∆tnegi,j,k,n in superscheduling a job
Ji,j,k (refer to Fig. 2). We define the value of ∆tnegi,j,k,l
by

∆tnegi,j,k,l =
tnegi,j,k −

∑l−1
p=1 ∆tnegi,j,k,p

2
, l > 0

(2)
Note that, the value for ∆tnegi,j,k,l can be given by

other distributions [2] such as uniform or random. We
intend to analyze various distributions for SLA bid inter-
val and study its effect on our proposed superscheduling
approach in our future work. For simplicity, in this work
we use the distribution given by Eq. 2.

As the superscheduling iteration increases, the man-
ager GFAs give less time to the contractor to decide on
the SLA in order to meet the user’s job deadline. This
approach allows a large number of scheduling iterations
to the manager GFA. However, if the user’s SLA param-
eters cannot be satisfied (after iterating up to the greatest
r such that GFA could feasibly complete the job), then
the job is dropped. To summarizes, a SLA bid for job
Ji,j,k includes:

• l-th SLA bid expiry interval tnegi,j,k,l (computed
using Eq. 2);

• expected response time (dei,j,k) (computed using
Eq. 1).

We consider the function:

τ : Ji,j,k −→ Z+ (3)

which returns the next allowed SLA bidding time in-
terval ∆tnegi,j,k,p for a job Ji,j,k using Eq.2.

3.2 Greedy backfilling: (LRMS scheduling
model)

Most of the existing LRMSes apply system-centric
policies for allocating jobs to resources. Some of the
well known system-centric policies include: (i) FCFS;
(ii) Conservative backfilling; and (ii) Easy backfilling.
Experiments have shown that the job backfilling ap-
proach offers significant improvement in performance
over the FCFS scheme. However, these system centric
approaches allocate resources based on parameters that
enhance system utilization or throughput. The LRMS
either focuses on minimizing the response time (sum of
queue time and actual execution time) or maximizing
overall resource utilization of the system, and these are
not specifically applied on a per-user basis (user obliv-
ious). Further, the system centric LRMSes treat all re-
sources with the same scale, thus neglecting the resource
owner payoff function. In this case, the resource owners

Algorithm 1: SLA bidding mechanism
PROCEDURE: SLA BIDDING MECHANISM0.1
begin0.2

begin0.3
SUB-PROCEDURE:0.4
EVENT USER JOB SUBMIT (Ji,j,k)
call SLA BID (Ji,j,k).0.5

end0.6
begin0.7

SUB-PROCEDURE: SLA BID (Ji,j,k)0.8
Send SLA bid for job Ji,j,k to the next available0.9
contractor GFA (obtained by querying the shared
federation directory).

end0.10
begin0.11

SUB-PROCEDURE:0.12
EVENT SLA BID REPLY (Ji,j,k)
if SLA Contract Accepted then0.13

Send the job Ji,j,k to accepting GFA.0.14
end0.15
else0.16

call SLA BID TIMEOUT (Ji,j,k).0.17
end0.18

end0.19
begin0.20

SUB-PROCEDURE:0.21
SLA BID TIMEOUT(Ji,j,k)
if τ (Ji,j,k) ≥ 0 then0.22

call SLA BID (Ji,j,k).0.23
end0.24
else0.25

Drop the job Ji,j,k .0.26
end0.27

end0.28
end0.29

do not have any control over resource allocation deci-
sions. While in reality the resource owner would like to
dictate how his resources are made available to the out-
side world and apply a resource allocation policy that
suits his payoff function. To summarize, the system-
centric approaches do not provide mechanisms for re-
source owners to dictate resource: (i) sharing; (ii) access
and ; (iii) allocation policies.

To address this, we propose a Greedy method based
resource allocation heuristic for LRMSes. Our proposed
heuristic focuses on maximizing payoff function for the
resource owners. The heuristic is based on the well
known Greedy method. The Greedy method for solv-
ing optimization problems considers greedily maximiz-
ing or minimizing the short-term goals and hoping for
the best, without regard to the long-term effects. This
method has been used to solve the knapsack problem [6].
Greedy method considers a set S, consisting of n items.
Each item i has a associated positive benefit bi and a
positive weight wi. Given the knapsack capacity W , the
Greedy heuristic focuses on maximizing the total benefit∑
i∈Sa bi(xi/wi) with constraint

∑
i∈Sa xi ≤ W , such

that Sa ⊆ S. In this case, xi being the part of item i

Algorithm 2: Greedy-Backfilling
PROCEDURE: GREEDY BACKFILLING1.1
begin1.2

r = pm1.3
c = 01.4
Qm,t ← φ1.5
Qam,t ← φ1.6
Qsm,t ← φ1.7
begin1.8

SUB-PROCEDURE:Event SLA Bid ARRIVAL(Ji,j,k)1.9
A SLA request message for the job Ji,j,k that arrives at a1.10
GFAQm,t←Qm,t ∪ {Ji,j,k}
Schedule the SLA bid timeout event after τ(Ji,j,k) time1.11
units
call STRICT GREEDY()1.12

end1.13
begin1.14

SUB-PROCEDURE:Event SLA Bid Timeout(Ji,j,k)1.15
A SLA bid for job Ji,j,k that reaches timeout period1.16
if (r ≥ pi,j,k and dei,j,k ≥ D(Ji,j,k, Rm)) then1.17

Call RESERVE(Ji,j,k)1.18
end1.19
else1.20

Reject the SLA bid for job Ji,j,k1.21
Reset Qm,t←Qm,t − {Ji,j,k}1.22

end1.23
end1.24
begin1.25

SUB-PROCEDURE:Event Job Finish(Ji,j,k)1.26
A job Ji,j,k that finishes at a GFA Reset r = r + pi,j,k1.27
call STRICT GREEDY()1.28

end1.29
begin1.30

SUB-PROCEDURE: RESERVE(Ji,j,k)1.31
Reserve pi,j,k processors for the job Ji,j,k1.32
Reset r = r − pi,j,k ,Qm,t←Qm,t − {Ji,j,k},1.33
Qam,t←Qam,t ∪ {Ji,j,k}

end1.34
begin1.35

SUB-PROCEDURE: STRICT GREEDY()1.36
Reset c = 01.37
Sort SLA bids in Qm,t in decreasing order of incentives1.38
and store in Qsm,t
Get next SLA bid for job Ji,j,k from the listQsm,t, c=c+11.39
if (r ≥ pi,j,k and dei,j,k ≥ D(Ji,j,k, Rm)) then1.40

Call RESERVE(Ji,j,k)1.41
end1.42
else1.43

if c < sizeof(Qsm,t) then1.44
Iterate through step 1.391.45

end1.46
end1.47

end1.48
end1.49

selected by the Greedy method.
Fig.3 shows the queue of SLA bids at each site in

the federation. Every incoming SLA bid is added to
the LRMS request queue, Qm,t and a bid expiration
timeout event is scheduled after time interval τ(Ji,j,k).
Every resource i has a different SLA bid arrival rate,
λSLAi and SLA bid satisfaction rate, µSLAi . The
LRMS scheduler iterates through the SLA bid queue
in case any of the following events occur: (i) new
SLA bid arrives to the site; (ii) job completion; or (iii)
SLA bid reaches its expiration time. Procedure Greedy
backfilling (refer to Algorithm 2) depicts various events
and corresponding scheduling actions undertaken by the
LRMS.

PSfrag replacements
R1 R2

R3

Rn

SLA bids (λSLA1
) SLA bids (λSLA2

)

SLA bids (λSLA3
)

SLA bids (λSLAn)

µSLA1 µSLA2

µSLA3

µSLAn

Figure 3. SLA bid queues in Grid-
Federation

3.3 Integer linear programming (ILP) formu-
lation of scheduling heuristic

Queue, Qm,t, maintains the the set of job SLA bids
currently negotiated with the LRMS at GFA m by time
t. We consider the SLA bid acceptance variable xi,j,k

• Definition of variable:
xi,j,k = 1 if the SLA request for job Ji,j,k is ac-
cepted;
xi,j,k = 0 otherwise.
The Greedy-Backfilling heuristic accepts SLA re-
quests constrained to the availability of number of
processors requested for job Ji,j,k and expected re-
sponse time dei,j,k .

• Definition of the constraints:

∑

1≤i≤nj
1≤j≤nu
1≤k≤n

pi,j,k ≤ pm (4)

pm total number of processors available at a
LRMS (GFA) m. pi,j,k denotes number of proces-
sor requested during the SLA bid for job Ji,j,k . All
the accepted SLA bids for jobs are maintained in
the queue Qam,t.

• Payoff or Objective function: The LRMS sched-
uler accepts SLA bids for the jobs such that it max-
imizes the resource owners’ payoff function by ap-
plying the Greedy backfilling heuristic

Im = max(
∑

1≤i≤nj
1≤j≤nu
1≤k≤n
1≤m≤n

B(Ji,j,k, Rm)) (5)

Note that, models for economic parameters i.e. how
resource owners determine their price and how jobs are
assigned deadline and budget can be found in [11].

4 Experiments and observations

4.1 Workload and resource methodology

We performed trace based simulation to evaluate
the effectiveness of our SLA-based superscheduling ap-
proach. The workload trace data was obtained from [1].
The trace contains real time workload of various re-
sources/supercomputers including CTC SP2, KTH SP2,
LANL CM5, LANL Origin, NASA iPSC, SDSC Par96,
SDSC Blue, SDSC SP2 (See Table 2). The simulator
was implemented using the GridSim [4] toolkit that al-
lows modeling and simulation of distributed system enti-
ties for evaluation of scheduling algorithms. The simula-
tion experiments were conducted by utilizing workload
trace data over the total period of four days (in simula-
tion units) at all the resources. We consider federation
with computational economy mechanism as the resource
sharing environment for our experiments.

4.2 Experiment 1 - Quantifying scheduling pa-
rameters related to resource owners and
end-users with varying total SLA bid time

We performed the simulations which comprised of
end-users seeking OFT for their jobs (i.e. 100% users
seek OFT). We vary the total SLA bid from 0% to 50%
of total allowed job deadline. In case, no SLA bid delay
is allowed (i.e. 0% of total allowed deadline) then the
contacted GFA has to immediately make the admission
control decision. In this case, we simulate FCFS based
strategy for finalizing the SLA. However, in other cases
we consider a Greedy backfilling SLA approach. Note
that, due to space constraint we could not include all the
details in this paper. Hence, the interested readers are
adviced to refer to the report [11] for additional experi-
ments and results.

4.3 Results and observations

4.3.1 Federation perspective

In experiment 1, we measure how varying of the to-
tal time for SLA bids coupled with Greedy backfill-

Table 2. Workload and Resource Configuration
Index Resource / Cluster

Name
Trace Date Processors MIPS

(rating)
Jobs Quote(Price) NIC to Network Bandwidth

(Gb/Sec)
1 CTC SP2 June96-May97 512 850 79,302 4.84 2
2 KTH SP2 Sep96-Aug97 100 900 28,490 5.12 1.6
3 LANL CM5 Oct94-Sep96 1024 700 201,387 3.98 1
4 LANL Origin Nov99-Apr2000 2048 630 121,989 3.59 1.6
5 NASA iPSC Oct93-Dec93 128 930 42,264 5.3 4
6 SDSC Par96 Dec95-Dec96 416 710 38,719 4.04 1
7 SDSC Blue Apr2000-Jan2003 1152 730 250,440 4.16 2
8 SDSC SP2 Apr98-Apr2000 128 920 73,496 5.24 4

ing resource allocation strategy affects the Grid partic-
ipants across the federation. We quantify how the ad-
ditional decision making time given to the LRMSes be-
fore finalizing the SLA contracts affects the overall sys-
tem performance in terms of resource owner’s and end-
user’s objective functions. We observed that when the
LRMSes across the federation applied FCFS technique
for finalizing the SLAs (i.e. no decision making time
was given, so the LRMSes have to reply as soon as
the SLA request was made), the resource owner’s made
4.102× 109 grid dollars as incentive (refer to Fig.4(a)).

We observed that with an increase in the total SLA
bidding time (i.e. as the LRMSes were allowed deci-
sion making time before finalizing the SLAs hence they
applied Greedy backfilling scheduling on the queue of
SLA bids), the resource owners earned more incentive
as compared to the FCFS case. When 10% of the total
deadline was allowed for SLA bids, the total incentive
earned across the federation increased to 4.219 × 109

grid dollars. While, in case 50% of total job deadline
was allowed for the SLA bids, the total incentive ac-
counted to 4.558×109 grid dollars. Hence, the resource
owners across federation exprienced an increase of ap-
proximately 10% in their incentive as compared to the
FCFS case.

However, we observed that with an increase in the
total SLA bid delay, the end-users across the federa-
tion experienced degraded QoS. During the FCFS case,
the average response time across the federation was
1.183 × 104 sim units (refer to Fig.4(b)). However, in
case of 10% SLA bid delay the average response time in-
creased to 1.344× 104 sim units. Finally, when 50% of
the total job deadline was allowed as SLA bid delay the
average response time further increased to 1.956 × 104

sim units. Furthermore, in this case the end-users end up
spending more budget as compared to the FCFS case (re-
fer to Fig.4(c)).

Hence, we can see that although the proposed ap-
proach leads to better optimization of resource owners’
payoff function, it has degrading effect on the end-user’s
QoS satisfaction function across the federation.

5 Conclusion and future work

In this paper, we presented an SLA-based super-
scheduling approach based on the contract net proto-
col. The proposed approach models a set of resource
providers as a contract net while job superschedulers
work as managers, responsible for negotiating SLA con-
tracts and job superscheduling in the net. Supersched-
ulers bid for SLA contracts in the net with a focus on
completing the job within the user specified deadline.
We analyzed how the varying degree of SLA bidding
time (i.e. admission control decision making time for
LRMSes) affects the resource providers’ payoff func-
tion. The results show that the proposed approach gives
resource owners finer control over resource allocation
decisions. However, the results also indicate that the
proposed approach has a degrading effect on the user’s
QoS satisfaction. However, we need to do more research
on abstracting the user’s QoS requirement. We need to
analyze how the deadline type for the user jobs can be
abstracted into different types such as into urgent and
relaxed deadline. In these cases, jobs with an urgent
requirement can be given a preference while finalizing
SLA contracts hence providing improved QoS satisfac-
tion to users. In our future work we will study to what
extent the user profile can change and how pricing po-
lices for resources leads to varied utility of the system.
We also intend to look into simultaneously bidding for
SLA contracts at multiple contractors in the net, for a su-
perscheduling iteration l for a job Ji,j,k . This approach
can increase the end-user’s QoS satisfaction in terms of
response time, as in this case the total waiting time per
SLA bid is greatly reduced.

References

[1] http://www.cs.huji.ac.il/labs/parallel.
[2] A. O. Allen. Probability, Statistics and Queuing The-

ory with computer science applications. Academic Press,
INC., 1978.

[3] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger.
Economic models for resource management and schedul-
ing in grid computing. Special Issue on Grid computing
Environment, The Journal of concurrency and Computa-
tion:Practice and Experience (CCPE), Volume 14, Issue
13-15, Wiley Press, 2002.

(a) total SLA bid delay vs. total federation earning (grid dollars)

(b) total SLA bid delay vs. average response time (sim units)

(c) total SLA bid delay vs. average budget spent (grid dollars)

Figure 4. Federation perspective

[4] R. Buyya and M. Murched. Gridsim: A toolkit for the
modeling and simulation of distributed resource man-
agement and scheduling for grid computing. Jour-
nal of Concurrency and Computation: Practice and
Experience;14(13-15), Pages:1175-1220, 2002.

[5] M. Cai, M. Frank, J. Chen, and P. Szekely. Maan: A
Multi-atribute addressable network for grid information
services. Proceedings of the Fourth IEEE/ACM Interna-
tional workshop on Grid Computing;Page(s):184 - 191,
2003.

[6] G. Gambosi, A. Postiglione, and M. Talamo. Algorithms
for the relaxed online bin-packing model. SIAM J. Com-
put., 30(5):1532–1551, 2001.

[7] K. Lai, B. A. Huberman, and L. Fine. Tycoon: A dis-
tributed market-based resource allocation system. Tech-
nical Report, HP Labs, 2004.

[8] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou,
and K. Krishnakumar. A multi-agent infrastructure and
a service level agreement negotiation protocol for robust
scheduling in grid computing. In Proceedings of the Eu-
ropean Grid Conference. Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2005.

[9] R. Ranjan, R. Buyya, and A. Harwood. A case for coop-
erative and incentive based coupling of distributed clus-
ters. In Proceedings of the 7th IEEE International Con-
ference on Cluster Computing (CLUSTER’05), Boston,
MA.

[10] R. Ranjan, A. Harwood, and R. Buyya. Grid-federation:
A resource management model for cooperative federa-
tion of distributed clusters. Technical Report, GRIDS-
TR-2004-10, Grid Computing and Distributed Systems
Laboratory, University of Melbourne, Australia, 2004.

[11] R. Ranjan, A. Harwood, and R. Buyya. SLA-based co-
ordinated superscheduling scheme and performance for
computational grids, http://arxiv.org/abs/cs.dc/0605057,
2006.

[12] C. Schmidt and M. Parashar. Flexible information dis-
covery in decentralized distributed systems. In the
Twelfth International Symposium on High Performance
Distributed Computing (HPDC-12), June, 2003.

[13] J. Schopf. Ten actions when superscheduling. In Global
Grid Forum, 2001.

[14] H. Shan, L. Oliker, and R. Biswas. Job supersched-
uler architecture and performance in computational grid
environments. In SC ’03: Proceedings of the 2003
ACM/IEEE conference on Supercomputing, page 44,
Washington, DC, USA, 2003. IEEE Computer Society.

[15] R. G. Smith. The contract net protocol: high-level com-
munication and control in a distributed problem solver.
pages 357–366, 1988.

[16] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. G-
commerce: Market formulations controlling resource al-
location on the computational grid. In IPDPS ’01: Pro-
ceedings of the 15th International Parallel & Distributed
Processing Symposium, page 46, Washington, DC, USA,
2001. IEEE Computer Society.

[17] C. Yeo and R. Buyya. Service level agreement based
allocation of cluster resources: Handling penalty to
enhance utility. In Proceedings of the 7th IEEE In-
ternational Conference on Cluster Computing (CLUS-
TER’05), Boston, MA.

