
188 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

Cluster Computing in the Classroom and Integration
With Computing Curricula 2001

Amy Apon, Member, IEEE, Jens Mache, Rajkumar Buyya, and Hai Jin, Member, IEEE

Abstract—With the progress of research on cluster computing,
many universities have begun to offer various courses covering
cluster computing. A wide variety of content can be taught in
these courses. Because of this variation, a difficulty that arises
is the selection of appropriate course material. The selection is
complicated because some content in cluster computing may also
be covered by other courses in the undergraduate curriculum,
and the background of students enrolled in cluster computing
courses varies. These aspects of cluster computing make the
development of good course material difficult. Combining experi-
ences in teaching cluster computing at universities in the United
States and Australia, this paper presents prospective topics in
cluster computing and a wide variety of information sources from
which instructors can choose. The course material is described
in relation to the knowledge units of the Joint IEEE Computer
Society and the Association for Computing Machinery (ACM)
Computing Curricula 2001 and includes system architecture,
parallel programming, algorithms, and applications. Instructors
can select units in each of the topical areas and develop their
own syllabi to meet course objectives. The authors share their
experiences in teaching cluster computing and the topics chosen,
depending on course objectives.

Index Terms—Cluster computing, computer science education,
Computing Curricula 2001, parallel algorithms, parallel program-
ming, system architecture.

I. INTRODUCTION

CLUSTERS are built using commodity-off-the-shelf
(COTS) hardware components and free or commonly

used software; they are playing a major role in solving
large-scale science, engineering, and commercial applications.
Cluster computing has emerged as a result of the convergence
of several trends, including the availability of inexpensive
high-performance microprocessors and high-speed networks,
the development of standard software tools for high-perfor-
mance distributed computing, and the increasing need of
computing power for computational science and commercial
applications. Clusters have evolved to support applications
ranging from supercomputing and mission-critical software,
through web server and e-commerce, to high-performance
database applications. Educators have an opportunity to teach
many types of topics related to cluster computing at univer-

Manuscript received October 10, 2001; revised January 25, 2003. This work
was supported by the National Science Foundation under Grant 9 996 143.

A. Apon is with the University of Arkansas, Fayetteville, AR 72701 USA
(e-mail: aapon@uark.edu).

J. Mache is with Lewis & Clarke College, Portland, OR 97219-7899 USA.
R. Buyya is with the University of Melbourne, Victoria 3010, Australia.
H. Jin is with Huazhong University of Science and Technology, Wuhan, China

430074.
Digital Object Identifier 10.1109/TE.2004.824842

sities at various levels, from upper-division undergraduate to
graduate levels.

Cluster computing provides an inexpensive computing
resource to educational institutions. Colleges and universities
need not invest millions of dollars to buy parallel computers for
the purpose of teaching “parallel computing.” A single faculty
member can build a small cluster from student laboratory
computers, obtain free software from the web, and use the
cluster to teach parallel computing. Many universities all over
the world, including those in developing countries, have used
clusters as a platform for high-performance computing.

Because cluster computing is so accessible to many types of
colleges and universities, a course in cluster computing can be
structured to fit a variety of curriculum needs. For example, a
course in cluster computing can emphasize parallel computing
in a curriculum that focuses on theory and algorithm develop-
ment, or the course can emphasize advanced network architec-
ture in a curriculum that emphasizes architecture and computer
engineering, or a cluster computing course could serve as a cap-
stone project course at a liberal arts undergraduate institution.
The goal of a course in cluster computing can vary according to
the needs of the curriculum of a particular institution.

Many resources are available for teaching cluster computing.
For example, the IEEE Computer Society Task Force on Cluster
Computing (TFCC) [1] provides online educational resources.
It promotes the inclusion of cluster-related technologies in the
core curriculum of educational institutions around the world
through its book donation program in collaboration with inter-
national authors and publishers.

Even with all of the available resources for cluster educa-
tion, a good course that covers a reasonable subset of topics of
cluster computing is difficult to design. The first difficulty has to
do with the diverse set of topics that cluster computing entails.
Many typical undergraduate or graduate courses have signifi-
cant overlap with the topics that may also be covered in a cluster
computing course. For example, undergraduate courses in op-
erating systems, networks, computer architecture, algorithms,
or Java computing may cover topics such as threads and syn-
chronization, network protocols, and communication or issues
related to symmetric multiprocessing. Since these courses may
come at different times in the curriculum, students enroll in the
cluster computing course with various backgrounds, depending
on whether or not they have had such courses as prerequisites.
For most undergraduate curricula, an instructor cannot assume
that all the previously mentioned courses are prerequisites. Oth-
erwise, many students would not be able to take the cluster com-
puting course because they would not have time to fit it in before
graduation.

0018-9359/04$20.00 © 2004 IEEE

APON et al.: CLUSTER COMPUTING IN THE CLASSROOM 189

Fig. 1. Typical cluster architecture. (Source [3].)

A second difficulty with designing a good course in cluster
computing is the illusion that many students (and instructors)
have about cluster computing. Building a cluster, such as a
Linux cluster, is so easy that even a person without much
experience can handle this task with the guidance of a brief
brochure. This ease of constructing clusters may give students
a misunderstanding of the difficulties involved in cluster
computing. The next challenge, which is how to make the
individual computers operate as an integrated system for the
purpose of solving a single problem, is more difficult. The main
challenges lie in developing applications that exploit the cluster
infrastructure and in understanding the design tradeoffs for the
cluster architecture. Parallel algorithms need to be developed
and implemented. Writing a parallel application that executes
correctly and efficiently on a cluster is a difficult task. Students
may be unprepared for the challenges involved in these tasks.

To address these difficulties in teaching cluster computing,
the authors present a set of sample syllabi of cluster computing
for instructors to use. In this paper, the focus is on how to de-
sign a good syllabus for a cluster computing course, considering
various student backgrounds, and without repeating most of the
topics covered by other courses. In Section II, possible topics
of cluster computing are listed and matched with the knowl-
edge units defined in the Joint IEEE Computer Society and As-
sociation for Computing Machinery (ACM) Computing Cur-
ricula 2001 Computer Science body of knowledge [2]. A set
of sample syllabi in Section III are provided for use in teaching
cluster computing at both the senior undergraduate and grad-
uate level. These syllabi cover the necessary topics related to
cluster computing, including system architecture, parallel pro-
gramming, algorithms, and applications. For the convenience of
instructors, several related books and references are also listed.
Finally, in Section IV, the authors discuss their experiences in
teaching cluster computing at several universities in the United
States and Australia.

II. PROSPECTIVE TOPICS FOR TEACHING

A cluster is a type of parallel or distributed processing system
that consists of a collection of interconnected, stand-alone com-
puters working together as a single, integrated computing re-
source [1]. A generic architecture of a cluster computer is shown

in Fig. 1. A node of the cluster can be a single or multipro-
cessor computer, such as a PC, workstation, or symmetric mul-
tiprocessor (SMP). Each node has its own memory, input/output
(I/O) devices, and operating system. A cluster can be in a single
cabinet or the nodes can be physically separated and connected
via a local area network (LAN). Typically, a cluster will appear
as a single system to users and applications. In addition to de-
scribing these general cluster characteristics, topics that may be
covered in a course on cluster computing include system archi-
tecture, parallel programming, and parallel algorithms and ap-
plications [3], [4].

System architecture topics include hardware components,
such as the network interface, topology and link characteristics,
host node architecture, and system software. Also included in
system architecture are the network communication protocols
used in the cluster, including Transmission Control Pro-
tocol/Internet Protocol (TCP/IP) programming and low-latency
protocols, such as the protocol that executes on the InfiniBand
Architecture [5]. Single processor, SMP, and cache-coherent
nonuniform memory architectures (CC-NUMAs) are of in-
terest. System-level middleware is responsible for offering the
illusion of a unified system image (single system image, or SSI)
from a collection of independent but interconnected computers.
Application-level support includes run-time system support,
such as software-implemented distributed shared memory,
parallel file systems, and resource management and scheduling
systems. Finally, a course covering system architecture may
cover case studies, such as Beowulf Clusters, IBM SP2, Digital
TruCluster, and Berkeley NOW [6].

Programming topics include a discussion of portable, effi-
cient, and easy-to-use tools for developing applications. Such
environments include tools and utilities, such as compilers,
message-passing libraries, debuggers, and profilers. Parallel
programming topics include shared-memory programming and
tools, such as POSIX and Java threads. Distributed-memory
programming includes message-passing programming tools,
such as Message Passing Interface (MPI) and Parallel Virtual
Machine (PVM). Middleware programming includes tools such
as Common Object Request Broker Architecture (CORBA),
Remote Procedure Call (RPC), Java Remote Method Invocation
(RMI), Java Servlets, Java Database Connectivity (JDBC), and
Jini.

190 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

Parallel algorithms and application topics include high-per-
formance algorithms and applications and techniques of
algorithm design. In addition, performance evaluation and
tuning is of interest, including optimization, visualization,
high availability, network security, and benchmark experi-
ments, such as NAS parallel benchmark (NPB) and Linpack
benchmark. A comprehensive discussion of cluster-based
architectures, programming, and applications can be found in
[3], [4], [7]–[11], [13], and [14].

Since the areas of interest in cluster computing encompass
a wide variety of topics, an instructor may have difficulty se-
lecting the most appropriate topics for inclusion in a course in
cluster computing. The Computing Curricula 2001 helps to al-
leviate this difficulty by defining a set of knowledge units for
computer science. The topics in cluster computing come from
several knowledge areas. In this section, a set of basic, core, and
extended units are proposed for a course at the undergraduate
level in cluster computing. Basic units for cluster computing in-
clude those topics that students should know before proceeding
to core cluster computing topics. Core units in cluster computing
include those topics that the authors consider to be fundamental
to cluster computing. Finally, extended or optional units cover
topics such as application areas or advanced areas of cluster
computing. By defining basic, core, and extended knowledge
units, an instructor is able to design a course that can be lec-
tured at a variety of levels in a variety of institutions, from a
liberal arts undergraduate college to a beginning graduate level
at a research university.

Eight hours of basic units in cluster computing can be iden-
tified from the Computing Curricula 2001 [2]. These units are
labeled core topics in the computer science body of knowledge
in the Computing Curricula 2001. Since cluster computing is
listed as an advanced course, CS333, in the Computing Cur-
ricula 2001, the students coming into the course can be expected
to have already completed a majority of the core areas of their
curriculum. However, since not all courses are offered every
semester at every institution, the possibility exists that students
may not have completed certain topics that are basic to cluster
computing. An instructor may choose to include or skip these
units, depending on the preparation of the students in the course.
The following knowledge units can help an instructor identify
material that may overlap with other courses in the curriculum
or that should be covered in the cluster computing course if stu-
dents have not studied this material previously.

• Programming Fundamentals 2 (PF2), Algorithms
and problem-solving: Divide and conquer strategies,
master/slave programming paradigm, and design strate-
gies. 2 basic hours

• Programming Fundamentals 5 (PF5), Event-driven pro-
gramming: Client/server programming. 1 basic hour

• Architecture and Organization 4 (AR4), Memory system
organization and architecture: Cache coherence and
memory consistency. 1 basic hour

• Architecture and Organization 7 (AR7), Multiprocessing
and alternative architectures: Switch and snoopy bus ar-
chitectures for symmetric multiprocessors. 1 basic hour

• Operating Systems 3 (OS3), Concurrency: Locking proto-
cols, tools for shared memory programming, and solutions
to classic synchronization problems. 1 basic hour

• Net-Centric Computing 2 (NC2), Communication and net-
working: Simple TCP/IP network architecture, and socket
programming. 2 basic hours

Depending on the emphasis of the course, the core units for
cluster computing are composed of 20–29 or more hours from
the Computing Curricula 2001. Of these, only six hours are la-
beled core topics in the Computing Curricula 2001 (only the
hours in AL4, AR7, NC2, and SE2). Core units for cluster com-
puting include the following.

• Social and Professional Issues 9 (SP9), Economic issues
in computing: Moore’s Law and price/performance trade-
offs with clusters. 2 core hours

• Architecture and Organization 7 (AR7), Multiprocessing
and alternative architectures: Advanced interconnection
architectures. 2 core hours

• Architecture and Organization 9 (AR9), Architecture
for networks and distributed systems: The architecture
of cluster interconnection networks, such as Myrinet,
Scalable Coherent Interface, Gigabit Ethernet, and others.
1–4 core hours

• Net-Centric Computing 2 (NC2), Communication and net-
working: The buffer layer, zero-copy messaging, and re-
mote memory operations. 1 core hour

• Net-Centric Computing 6 (NC6), Network management:
The setup and administration of IP networks, Domain
Name Server (DNS), subnets, Network Information
Service (NIS), and Network File System (NFS). 1 to 2
core hours

• Software Engineering 2 (SE2), Using APIs: Basic Mes-
sage Passing Interface (MPI) or Parallel Virtual Machine
(PVM), and Parallel Virtual File System (PVFS). 2 core
hours

• Computational Science 4 (CN4), High-performance com-
puting: Advanced message-passing programming, parallel
file access, optimization. 6 or more core hours

• Algorithms and Complexity 4 (AL4), Distributed algo-
rithms: Ring, tree, and related communication algorithms,
broadcast, and multicast communication. 1 core hour

• Algorithms and Complexity 11 (AL11), Parallel algo-
rithms: Algorithms, such as parallel matrix multiplication
and butterfly communication patterns. 3–7 core hours

• Operating Systems 11 (OS11), System performance eval-
uation: Amdahl’s Law, Gustafson’s Law, performance
measurement, and evaluation. 1–2 core hours

To complete the hours for a semester course in cluster com-
puting, any number of optional or extended topics can be in-
cluded. Suggestions include the following knowledge areas.

• Software Engineering (SE3), Software tools and environ-
ments: Parallel debugging and environments for parallel
application development.

• Operating Systems (OS8), File systems: Parallel file systems,
advanced techniques for caching, prefetching, process mi-
gration, and single-system image in clusters.

• Algorithms (AL11), Parallel Algorithms: Advanced parallel
algorithms.

• Architecture and Organization (AR9), Architecture for net-
works and distributed systems: Interconnection architectures
for cluster computing and low-latency protocols.

APON et al.: CLUSTER COMPUTING IN THE CLASSROOM 191

• Graphics and Visualization (GV9), Visualization: Visualiza-
tion of parallel algorithms or performance of clusters.

• Intelligent Systems 4 (IS4), Advanced search: Parallel search
algorithms.

• Information Management (IM8, IM9, IM10, IM11), Dis-
tributed databases, physical database design, data mining,
and information storage and retrieval on clusters.

• Computational Science (CN1, CN3), Numerical analysis,
modeling, and simulation.

III. SUGGESTED COURSE COMPONENTS

Since the Computing Curricula 2001’s organization of the
material into knowledge units suggests a minimal core set of
about 20 hours, many options exist for filling the remaining
hours to form a full-semester course. One option is to construct
the course to have a specific emphasis, such as an emphasis
in system architecture, in programming environments and lan-
guages, or in the design of algorithms and applications. This
section of the paper suggests courses with these specific em-
phases. The material in each emphasis area is presented in units,
and instructors may select among the units to form a complete
course in cluster computing. At the end of each section, the cor-
responding knowledge units in cluster computing, if applicable,
are given in brackets.

A. System Architecture

A student having studied computer organization, networking,
operating systems, and programming meets the prerequisites for
a course on network-based advanced computer architecture. As
cluster-based systems are developed with standard, COTS hard-
ware and software components, an excellent course exercise
is to build one’s own cluster-based, high-performance, and/or
high-availability computer system. Such a project can be cou-
pled with the development of software that provides an illusion
of a single-system image or on developing scientific and busi-
ness applications.

The system architecture course can be divided into four units:
introduction, cluster building blocks, system-level cluster mid-
dleware (focusing on SSI and high-availability infrastructure),
and projects. Among these units, the largest amount of time
should be dedicated to system-level middleware.

Unit 1: Introduction: Many different computer architec-
tures supporting high-performance computing have emerged,
including vector processors, massively parallel processors
(MPPs), SMPs, CC-NUMAs, distributed systems, and clusters.
The success of these systems in the marketplace depends
on their price/performance ratio. This unit discusses these
competing computer architectures and their characteristics.
Important questions to be addressed are, “What exactly is
cluster computing? Why is it a good idea?” A primary goal is
to understand the key reasons for the development of cluster
technology that supports low-cost, high-performance, and
high-availability computing. A suitable textbook for this unit is
[8]. [Knowledge units: AR7, AR9, SP9.]

Unit 2: Cluster Building Blocks: Clusters are composed
of commodity hardware and software components. Cluster
nodes can be PCs, workstations, and SMPs. Networks used

for interconnecting cluster nodes can be LANs, such as Fast
Ethernet; system area networks, such as Myrinet and Quadrics
switches; or the InfiniBand communication fabric [5]. Various
operating systems, including Linux, Solaris, and Windows,
can be used for managing node resources. The communication
software can be based on standard TCP/IP or low-latency
messaging layers, such as VIA. Resources include [3], [10],
[11], and [13]. [Knowledge units: AR7, AR9, OS3, NC2.]

Unit 3: System-Level Middleware: System-level middleware
offers SSI and high-availability infrastructure for processes,
memory, storage, I/O, and networking. This unit focuses on
SSI at the operating system or subsystems level. A modular
architecture for SSI allows the use of services provided by
lower level layers to be used for the implementation of higher
level services. This unit discusses design issues, architecture,
and representative systems for job/resource management,
network RAM, software Redundant Arrays of Inexpensive
Disks (RAID), single I/O space, and virtual networking [3], [9].
A number of operating systems have proposed SSI solutions,
including MOSIX [12], Unixware, and Solaris-MC. One
or more such systems should be discussed since they help
students understand architecture and implementation issues.
[Knowledge units: AR7, AR9, OS8.]

Unit 4: Course Projects: Absorbing the entire course’s
conceptual material is impossible without the hands-on
experience of some aspect of cluster systems. Fortunately,
several cluster-based software systems are freely available for
download (with source code), including Linux, VIA, PBS,
Condor, MPI, PVM, GFS, GLunix, and MOSIX. Students can
explore these components by changing some of the policies
used in these systems. For example, students can develop a new
scheduling policy and program it as modification of the PBS
cluster management source code.

Some of the projects that can be explored include the fol-
lowing:

• building a low-cost cluster using PCs, Ethernet, Linux, and
MPI;

• developing tools for system administration, including job
submission and management, job scheduling using var-
ious scheduling policies, and cluster monitoring;

• implementing a standard user-level communication layer
based on VIA.

One of the best course projects for students is to develop web-
based access mechanisms for clusters. Students can also identify
deficiencies and limitations of existing systems and develop new
solutions and policies to overcome them. Deeper explorations of
new methods, mechanisms, and policies for SSI can also serve
as good thesis topics. [Knowledge units: NC6, Optional units.]

B. Programming

A course in cluster computing that focuses on programming
can provide students with an abundance of hands-on experience
with clusters. The tools that are required to teach these topics
are generally available on most campuses; computer science stu-
dents usually have the background required at the senior level to
study cluster programming, and much tutorial material is avail-
able online in various locations. Thus, the course can cover a

192 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

range of topics without requiring the students to purchase a large
number of expensive textbooks. Prerequisites for a course in
cluster programming include data structures, basic algorithms,
computer organization, and basic operating systems concepts.
The four units presented in this section are largely independent
of one another, although the prerequisites for each unit may vary.

Unit 1: Shared-Memory Programming: Given that many
clusters are composed of SMPs, background in shared-memory
programming is a good entry into cluster programming for
advanced undergraduates and beginning graduate students.
This unit is appropriate if a prior operating systems course was
taught from a primarily theoretical perspective or if the material
is used to introduce advanced parallel programming. Several
languages are available to teach shared-memory programming,
including the following two that are most accessible.

1) C or C++ is an accessible language that uses the pthreads
library on Linux or UNIX, or the threads library on
Solaris. The pthreads library is a POSIX-compliant
version of threads and offers named condition variables.
The monitor itself must be coded using mutex variables.

2) Java is another accessible language. Java threads do not
support named condition variables, but rather support
wait sets on an object. A prerequisite for Java thread
programming is prior experience in Java or another
object-oriented programming language.

Students do not have to have access to a SMP computer to
gain experience programming with threads. However, some
programs that examine the performance of thread programs
work best if the students have access to at least a dual-pro-
cessor computer. Typical topics that may be covered include
processes versus threads, thread libraries, classic concurrent
programming problems, parallel algorithms, and applications.
Suitable follow-on material for Unit 1 includes advanced
parallel algorithms and hardware issues associated with sym-
metric multiprocessors. A follow-on coverage of symmetric
multiprocessors for students with limited hardware background
is [9]. Resources include [14]–[18]. [Knowledge units: OS3,
AL11.]

Unit 2: Message Passing Primitives: Although new
high-performance protocols are available for cluster com-
puting, some instructors may want to provide students with
a brief introduction to message-passing systems as a part of
coverage of basic units in cluster computing. This unit can
include programs using the sockets interface to TCP/IP before
introducing more complicated parallel programming with
distributed-memory programming tools [19]. If students have
already had a course in data communications or computer net-
works, then this unit should be skipped. Students should have
access to a networked computer laboratory with the sockets
libraries enabled. Sockets usually come installed on Linux
workstations. Typical topics covered in this unit include basic
networking, the IP stack, TCP, and User Datagram Protocol
(UDP) sockets library, client/server programming, stream
messaging versus data type messaging, and endian issues.

A project that combines Unit 1 and Unit 2 is programming
a multithreaded server application and the corresponding client
using sockets and threads. A good follow-on for Unit 2 is cov-

erage of low-latency message-passing protocols and discussion
of the overhead in TCP/IP. [Knowledge units: NC2, PF5, AL4.]

Unit 3: Parallel Programming Using MPI: An introduction
to distributed-memory programming, using a standard tool such
as the MPI [20], is crucial to cluster computing. MPI is available
for C, C++, FORTRAN, and Java. The resources for students for
this unit include a networked cluster of computers with MPI in-
stalled. Setting up a cluster the first time can require some effort,
but after the cluster is set up, it requires little to no maintenance
throughout the semester.

Typical topics that may be covered include the following:

• introduction to parallel computing;
• I/O on parallel systems;
• tree communication, broadcast, tags, safety;
• collective communication: reduce, dot product, all reduce,

gather/scatter, all gather;
• grouping data, derived types, type matching, pack/unpack;
• MPI communicators and topologies;
• algorithm development and advanced MPI programming.

A good co-unit for this unit could offer some coverage of par-
allel algorithms and applications (see Section III-C). Resources
for instructors include [11], [14], [15], [21], and [22]. [Knowl-
edge units: AL4, AL11, SE2, CN4.]

Unit 4: Application-Level Middleware: Application-level
middleware is the layer of software between the operating
system and applications. Middleware provides various services
required by an application to function correctly. A course
in cluster programming can include coverage of middleware
tools, such as CORBA, Remote Procedure Call, Java Remote
Method Invocation (RMI), or Jini. Sun Microsystems has
produced a number of Java-based technologies that can become
units in a cluster programming course. Advanced middleware
products, such as CORBA, can be taught as an entire course,
often forming the basis for topics courses at the advanced
undergraduate or beginning graduate level. Resources available
to instructors include Jini and Javasoft [23].

C. Algorithms and Applications

In a course on cluster computing, students need to study al-
gorithms and applications since high-performance applications
are one building block of cluster computing [24]. Moreover, al-
gorithms and applications provide 1) the opportunity and con-
text for programming projects and 2) examples of how clusters
are put to work. The algorithms and application topic can be di-
vided into three units: overview of applications, techniques of
algorithm design, and evaluation and tuning.

Unit 1: Overview of Applications: Clusters have infiltrated
not only the traditional science and engineering marketplaces
for research and development, but also the huge commercial
marketplaces of commerce and industry. Clusters are being in-
creasingly used for high-performance computation and also to
provide highly available services for applications, such as web
and database servers. Clusters are used in many scientific dis-
ciplines, including biology (e.g., genome mapping and protein
folding), engineering (e.g., turbo-fan design and automobile de-
sign), high-energy physics (e.g., nuclear weapons simulation),

APON et al.: CLUSTER COMPUTING IN THE CLASSROOM 193

astrophysics (e.g., galaxy simulation), and meteorology (e.g.,
climate simulation and earth/ocean modeling). Typical topics
that may be covered include the following [24].

• Internet applications: Systems like Linux Virtual Server
direct clients’ network connection requests to multiple
servers that share their workload.

• Compression: Systems like Evoke Communications’
speech-to-e-mail service use clusters to perform
transcoding that meets real-time requirements.

• Data mining: Efforts like Terabyte Challenge use clusters
at multiple sites to manage, mine, and model large dis-
tributed data sets for high-energy physics, health care, or
web crawlers.

• Parameter study: Tools like Nimrod use a cluster to exe-
cute task farming and parameter study applications (the
same program repeatedly executed with different initial
conditions) as a means of exploring the behavior of com-
plex systems like aircrafts or ad-hoc networks.

• Image rendering: A ray tracer can distribute the rendering
among different nodes.

[Knowledge units: SP9, AL11.]
Unit 2: Techniques of Algorithm Design and Specific Al-

gorithms: It is most important to show by example how to
design and implement programs that make use of the compu-
tational power provided by clusters. Typical topics that may
be covered include process-level parallelism, partitioning,
divide-and-conquer, communication, synchronization, agglom-
eration, mapping, load balancing, and termination detection.
Specific algorithms and applications that may be covered
include sorting, numerical algorithms, image processing, graph
algorithms, searching, optimization, genetic algorithms, par-
allel simulation, molecular modeling, climate ocean modeling,
and computational fluid dynamics. Teaching resources include
[14], [21], and [25]–[28]. [Knowledge units: PF2, AL4, AL11,
SE2, CN4, Optional Units.]

Unit 3: Evaluation and Tuning: After the fundamental is-
sues of the existence of sufficient parallelism have been ad-
dressed, there often are several algorithms or strategies avail-
able. Therefore, tradeoffs must be weighed to determine which
is most appropriate. How does one choose and develop appro-
priate algorithms and then evaluate the resulting implementa-
tions? How does one optimize overall performance? Parallel al-
gorithms can be categorized according to a number of criteria,
including regular or irregular, synchronous or asynchronous,
coarse or fine-grained, bandwidth greedy or frugal, latency tol-
erant or intolerant, distributed or shared address space. Typical
topics that may be covered include modeling, measuring, anal-
ysis, visualization, debugging, and optimization. [Knowledge
units: OS11, SE3, GV9.]

IV. DISCUSSIONS AND EXPERIENCE

Generally, the topics chosen for a course on cluster computing
depends on the course objective. In this section, the authors dis-
cuss their experiences with teaching courses that centered on
cluster computing at their universities.

A. University of Arkansas

Cluster computing is taught at the advanced undergraduate
level with the primary objective of introducing parallel program-
ming and problem solving [29]. Students in the course have had
programming, data structures, computer organization, and op-
erating systems.

The first part of the course covers enabling technologies for
clusters, including cluster hardware elements, operating sys-
tems support for shared-memory programming, and basic net-
working concepts. Since many students have not yet studied
computer architecture, some time is spent on hardware issues,
such as SMP. Systems issues, such as network protocol stacks,
cost of network communication, interconnection technologies
for clusters, Amdahl’s Law, and a comparison of clusters to
symmetric multiprocessors, are discussed in this portion.

The second and largest part of the course covers dis-
tributed-memory programming using MPI. Several program-
ming assignments are given, including at least one basic
program such as a matrix/vector multiply program and several
advanced programs. MPI features, such as collective com-
munication, communicators, efficient message passing, and
advanced features of MPI-2, are covered. Along with MPI,
the course also covers basic design of parallel programs and
parallel I/O.

The third part of the course covers miscellaneous topics, as
time allows, including high availability, SSI, tools for cluster
setup, administration, scheduling, and performance testing. A
significant portion of the course grade is based on a program-
ming project that each student selects and submits near the end
of the semester. The project is a great way to allow students to
focus more thoroughly on a topic that interests them or to cover
a topic for which class time did not allow.

B. Monash University

The purpose of the course CSC433: Parallel Systems for
the Bachelor’s of Science Hons. degree is to build students’
knowledge of advanced architecture and parallel programming.
About half of the course focuses on 1) parallel systems and
machine architectures and 2) various communication models
and languages for parallel programming [30]. The topics
covered in part 1) include pipelined architectures, shared
memory, distributed memory, single instruction multiple data
(SIMD), multiple instruction multiple data (MIMD), MPP, and
application-specific parallel systems. The topics covered in part
2) include early work on simple language extensions for con-
currency, simple extensions for message passing, programming
with tuples, message passing for parallel architectures, data
parallel programming, mapping problems to parallel systems,
and optimization of parallel programs to exploit architectural
features.

The remaining half of the course is dedicated to: a) cluster
computer architecture, b) message-passing programming with
MPI, and c) development of parallel programs using MPI. The
topics covered in cluster architecture include cluster building
blocks, middleware, and SSI. Topics covered in MPI program-
ming include data types, process management, point-to-point

194 IEEE TRANSACTIONS ON EDUCATION, VOL. 47, NO. 2, MAY 2004

and group communications, and communication patterns. Each
of these topics is illustrated with example programs.

Students are given assignments to develop parallel programs
for solving matrix manipulation, sorting, searching, data
mining, and shortest path algorithms. The second assignment
focused on developing a survey report on selected topics in
state-of-the-art cluster technologies, such as cluster operating
systems, resource management systems, cluster administration,
new programming environments, genetic programming, com-
mercial applications, and emerging cluster building blocks. For
this assignment, each student surveyed a different topic with a
focus on recent advances and wrote a report. The outcome of
both the laboratory experiments and the state-of-the-art-report
writing experience was rated by students to be a good experi-
ence and helped in evaluating the students understanding of the
course.

C. University of Southern California (USC)

Cluster computing has been taught as part of courses EE557:
Computer System Architecture [31] and EE657: Parallel Pro-
cessing [32]. EE557 focused on system architecture for parallel
and distributed systems. They include SMP and CC-NUMA
multiprocessors, clusters of servers and PC/workstations,
and MPP systems. Another cluster-related topic covered is
distributed software RAID and parallel I/O. Since USC Trojans
cluster research group has done very extensive research work on
distributed software RAID, more design detail and benchmark
experiments are taught in these courses. Students can learn very
intensive techniques on how to implement a single I/O space in
the environment of Linux PC clusters.

Taking EE557 was a prerequisite for the EE657 research-ori-
ented course that covers scalable computers, network security,
concurrent programming, agent technology, and middleware
support for cluster and Internet applications. Case studies of
parallel computers and benchmark programming experiments
are performed on SGI Origin 2000 superserver and on USC
Trojans PC cluster. Again, based on extensive research expe-
rience on agent technology and cluster and network security,
several units are devoted to explain the topics on multi-agent
technologies, firewall security architecture, and e-commerce
security applications. Because this course is research oriented,
only two projects are performed to finish this course. The
mid-term project is a research report. Students can select one
out of 20 different topics on cluster and network security. For
the final project, students need to use MPI parallel program-
ming to perform the Linpack benchmark experiments on SGI
Origin 2000 and USC Trojans PC Linux cluster.

D. Lewis & Clark College

Cluster computing is a semester-long course for undergrad-
uate students. The first part of the course is an introduction
to cluster building blocks and MPI programming. After-
wards, most of the time is spent on building the cluster and
on parallelizing a ray-tracer application parallel, including
performance measurements and tuning. Experiments include
different network technologies (including Gigabit Ethernet),

different network topologies, and different file systems (in-
cluding PVFS). Students seem to particularly enjoy hands-on
components, such as cabling and experimenting with parallel
ray-tracing programs. When the cluster is up and several stu-
dents are ready to run programs, coordination (or a scheduling
system) becomes necessary.

V. CONCLUSION

The variety of references cited illustrates that cluster com-
puting ties together systems, communications, architecture, pro-
gramming, applications, and algorithms. While this variety can
make the selection of course topics difficult, the sample courses
described in this paper can help instructors to design a course in
cluster computing at their own institutions. The authors’ expe-
rience with teaching cluster computing has been very favorable.
The nature of cluster computing allows students to tie together
material from a number of different courses in their curriculum
to provide a sort of “capstone” experience in an undergraduate
education or to provide a source of thesis topics at the graduate
level.

REFERENCES

[1] IEEE Task Force on Cluster Computing (TFCC). (2002, Dec.). [Online]
Available: http://www.ieeetfcc.org/

[2] IEEE Computer Society/ Association for Computing Machinery.
(2001, Dec.) Computing Curricula 2001. The Joint Task Force on
Computing Curricula. [Online] Available: http://www.computer.org/ed-
ucation/cc2001/

[3] R. Buyya, Ed., High Performance Cluster Computing: Systems and Ar-
chitectures. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[4] R. Buyya, Ed., High Performance Cluster Computing: Programming
and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[5] High Performance Mass Storage and Parallel I/O, H. Jin, R. Cortes, and
R. Buyya, Eds., IEEE Press, Piscatway, NJ, 2001.

[6] (2002, Dec.) UC Berkeley NOW Project. [Online] http://now.cs.
berkeley.edu/

[7] Cluster Info Centre. (2002, Dec.). [Online] http://www.buyya.
com/cluster

[8] K. Hwang and Z. Xu, Scalable Parallel Computing. New York: Mc-
Graw-Hill, 1998.

[9] G. Pfister, In Search of Clusters. Englewood Cliffs, NJ: Prentice-Hall,
1998.

[10] D. Spector, Building Linux Clusters. Sebastopol, CA: O’Reilly, 2000.
[11] T. Sterling, J. Salmon, D. Becker, and D. Savarese, How to Build a Be-

owulf. Cambridge, MA: MIT Press, 1999.
[12] MOSIX. (2002, Dec.). [Online] http://www.mosix.cs.huji.ac.il/
[13] T. Sterling, Ed., Beowulf Cluster Computing With Linux. Cambridge,

MA: MIT Press, 2002.
[14] B. Wilkinson and M. Allen, Parallel Programming. Englewood Cliffs,

NJ: Prentice-Hall, 1999.
[15] G. Andrews, Foundations of Multithreaded, Parallel, and Distributed

Programming. Reading, MA: Addison-Wesley, 1999.
[16] D. Butenhof, Programming With POSIX Threads. Reading, MA: Ad-

dison-Wesley, 1997.
[17] S. Hartley, Concurrent Programming, the Java Programming Language:

Oxford Press, 1998.
[18] D. Lea, Concurrent Programming in Java: Design Principles and Pat-

terns. Reading, MA: Addison-Wesley, 2000.
[19] B. Hall. (2002, Dec.) Beej’s Guide to Network Programming Using

Internet Sockets. [Online] Available: http://www.ecst.csuchico.edu/
~beej/guide/net/

[20] MPI Software. (2002, Dec.). [Online] Available: http://www-
unix.mcs.anl.gov/mpi/mpich/

[21] P. Pacheco, Parallel Programming With MPI. San Mateo, CA: Morgan
Kaufmann, 1996.

[22] M. Snir, S. Otto, S. Lederman, D. Walker, and J. Dongarra, MPI: The
Complete Reference. Cambridge, MA: MIT Press, 1996.

APON et al.: CLUSTER COMPUTING IN THE CLASSROOM 195

[23] W. K. Edwards and C.Core Jini, The Sun Microsystems Press Java Se-
ries. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[24] M. Baker, A. Apon, R. Buyya, and H. Jin, “Cluster computing and appli-
cations,” in Encyclopedia of Computer Science and Technology. New
York: Marcel Dekker, Aug. 2001, vol. 45.

[25] I. Foster, Designing and Building Parallel Programs. Reading, MA:
Addison-Wesley, 1995.

[26] F. T. Leighton, Introduction to Parallel Algorithms and Architec-
tures. San Mateo, CA: Morgan Kaufmann, 1992.

[27] S. Roosta, Parallel Processing and Parallel Algorithms: Theory and
Computation. New York: Springer-Verlag, 2000.

[28] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel
Computing: Design and Analysis of Algorithms. Redwood City, CA:
Benjamin Cummings, 1994.

[29] A. Apon. (2002, Dec.) CSCE 4253: Cluster Computing. [Online] Avail-
able: http://csce.uark.edu/~aapon/courses/cluster/

[30] T. Dix and R. Buyya. (2002, Dec.) CSC433: Parallel Systems. Monash
Univ.. [Online] Available: http://www.buyya.com/csc433/

[31] K. Hwang. (2002, Dec.) EE557: Computer Systems Architecture. [On-
line] Available: http://www-classes.usc.edu/engr/ee-s/557h/

[32] , (2002, Dec.) EE657: Parallel Processing. [Online] Available:
http://www-classes.usc.edu/engr/ee-s/657h/

Amy Apon (M’96) received the B.S.Ed., M.A., and M.S. degrees from the Uni-
versity of Missouri-Columbia in 1979, 1981, and 1983, respectively, and the
Ph.D. degree in computer science from Vanderbilt University, Nashville, TN, in
1984.

She is an Associate Professor at the University of Arkansas, Fayetteville.
Her research interests include parallel and distributed systems and wireless net-
works.

Jens Mache received the Vordiplom from Universitaet Karlsruhe, Karlsruhe,
Germany, in 1992, the M.S. degree from Southern Oregon University, Ash-
land, in 1994, and the Ph.D. degree in computer science from the University
of Oregon, Eugene, in 1999.

He has been a tenure-track Assistant Professor of Computer Science at Lewis
& Clark College, Portland, OR, since 1998. His research interests include par-
allel and distributed systems, networks, and network security.

Dr. Mache is a Member of the IEEE Computer Society.

Rajkumar Buyya received the Ph.D. degree in computer science and software
engineering from Monash University, Victoria, Australia, in 2002.

He is currently an Assistant Professor in the School of Computer Science and
Software Engineering at the University of Melbourne, Victoria, Australia.

Dr. Buyya is Co-Chair of the IEEE Task Force on Cluster Computing.

Hai Jin (M’99) received the Ph.D. degree in electrical and electronic engi-
neering from the Huazhong University of Science and Technology, Wuhan,
China.

He is Professor and Associate Dean of the College of Computer Science and
Technology, Huazhong University of Science and Technology. He has been a
Visiting Scholar at the University of Southern California, Los Angeles.

