
Advanced QoS Methods for Grid Workflows Based on Meta-Negotiations and
SLA-Mappings

Ivona Brandic, Dejan Music, Schahram Dustdar
Institute of Information Systems

Vienna University of Technology, Austria
{ivona,dejan,dustdar}@infosys.tuwien.ac.at

Srikumar Venugopal, Rajkumar Buyya
Grid Computing and Distributed System (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{srikumar,raj}@csse.unimelb.edu.au

Abstract

In novel market-oriented resource sharing models, re-
source consumers pay for the resource usage and expect
that non-functional requirements for the application exe-
cution, termed as Quality of Service (QoS), are satisfied.
QoS is negotiated between two parties following the specific
negotiation protocols and is recorded using Service Level
Agreements (SLAs). However, most of the existing work as-
sumes that the communication partners know about the SLA
negotiation protocols and about the SLA templates before
entering the negotiation. However, this is a contradictory
assumption, if we consider computational Grids and novel,
commercially oriented computing Clouds where consumers
and providers meet each other dynamically. In this paper,
we present novel meta-negotiation and SLA-mapping solu-
tions for Grid workflows bridging the gap between current
QoS models and Grid workflows, one of the most success-
ful Grid programming paradigms. We illustrate the open
research issues with a real world case study. Thereafter,
we present document models for the specification of meta-
negotiations and SLA-mappings. We discuss the architec-
ture for the management of meta-negotiations and SLA-
mappings as well as integration of the architecture into a
Grid workflow management framework.

1 Introduction

In recent years, novel market-oriented resource sharing
models have enhanced existing Grid computing concepts
[21, 24, 4]. In market-oriented Grids, users pay for resource

usage and therefore expect that requested functional as well
as non-functional requirements of the application execution
are fulfilled [1, 8, 20]. Non-functional requirements com-
prise application execution time, reliability, availability and
similar issues. Non-functional requirements are termed as
Quality of Service (QoS), and are expressed and negoti-
ated by means of Service Level Agreements (SLAs). Ne-
gotiation strategy represents the internal decision making
process used for resource selection. Negotiation protocols
represents the publicly visible message exchange pattern
during the negotiation process. SLA templates represent
empty SLA documents with all required elements like par-
ties, SLA parameters, metrics and objectives, but without
QoS values [9]. SLAs are negotiated between two par-
ties following the negotiation protocol, and are generated
using the SLA templates available on both the consumers
and providers sides. The necessity for appropriate market-
oriented resource sharing models becomes even more ev-
ident, if we consider Grids as part of commercially used
Computing Clouds [6].

There exists a large body of literature that deals with
SLA-based Grid workflow negotiation and integration of
QoS concepts into Grid workflow management tools [4, 19,
2]. However, most of these publications assume that the
communication partner knows about the SLA negotiation
protocols before entering the negotiation and that they have
matching SLA templates. In commercially used Grids and
especially in case of computational clouds, this is an unreal-
istic assumption since services are discovered dynamically
and on demand. Thus, so-called meta-negotiations are re-
quired to allow two parties to reach an agreement on what
specific negotiation protocols, security standards, and docu-



ments to use before starting the actual negotiation. The ne-
cessity for SLA-mappings can be motivated by differences
in terminology for a common attribute such as price, which
may be defined as usage price on one side and service price
on the other, leading to inconsistencies during the negotia-
tion process.

In this paper, we approach the gap between existing QoS
methods and Grid workflows by proposing an architecture
for Grid workflow management with components for meta-
negotiations and SLA-mappings. Meta-negotiations are de-
fined by means of a meta-negotiation document where par-
ticipating parties may express: the pre-requisites to be sat-
isfied for a negotiation, for example, requirement for a
specific authentication method; the supported negotiation
protocols and document languages for the specification of
SLAs; and conditions for the establishment of an agree-
ment, for example, a required third-party arbitrator. Ini-
tial work on meta-negotiations for SLA-aware Grid ser-
vices was presented in a previous publication [5]. Map-
pings are defined by XSLT1 documents where inconsistent
parts of one document are mapped to another document e.g.,
from consumer’s template to provider’s template. More-
over, based on SLA-mappings and deployed taxonomies,
we eliminate semantic inconsistencies between consumer’s
and providers SLA-template.

The main contributions of this paper are therefore: (1)
definition of meta-negotiation documents; (2) development
of the strategies for the definition of SLA-mapping doc-
uments; (3) description of the Grid workflow architec-
ture for the management of meta-negotiations and SLA-
mappings; and (4) demonstration of meta-negotiations and
SLA-mappings using a sample real-world Grid workflow.

The rest of this paper is organized as follows: Section
2 presents the related work. In Section 3, we present a
real world case study used to illustrate meta-negotiations
and SLA-mappings. In Section 4, we discuss meta-
negotiations and Section 5 discusses the strategies for the
SLA-mappings. Section 6 presents the architecture for the
meta-negotiations and SLA-mappings, as well as integra-
tion of the architecture into a Grid workflow management
tool. Section 7 presents our conclusions and describes the
future work.

2 Related Work

Currently, a large body of work has been performed in
the area of Grid workflow negotiation and QoS. Moreover,
several projects are dealing with resource lookup based
on functional and non-functional requirements. Ouelhadj
et al. [17] discusse incorporation of SLA-based resource
brokering into existing Grid systems. Wieczorek et al. [19]

1XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt.html

propose a novel approach for modeling scheduling prob-
lems as an extension of the multiple-choice knapsack prob-
lem. They present a general bi-criteria scheduling heuristic,
based on dynamic programming, called the Dynamic Con-
straint Algorithm (DCA). Guo et al. [11] describe a web
services based QoS-aware workflow management system
(WfMS) utilized in context of GridCC project. Glatard et
al. [10] discuss a probabilistic model of workflow execu-
tion time evaluated in context of EGEE grid infrastructure.
Walker et. al [22] present an approach to dynamic work-
flow management and optimisation using near-realtime per-
formance with strategies for choosing an optimal service,
based on user-specified criteria, from several semantically
equivalent Web services.

Venugopal et al. [21] propose a negotiation mechanism
for advance resource reservation using the alternate offers
protocol. Brandic et al. [4] present a holistic Grid infrastruc-
ture for specification, planing and execution of QoS-aware
Grid workflows. In both these publications, it is assumed
that each participating service understands the necessary ne-
gotiation protocol.

Al-Ali et al. [1] extend the service abstraction in the
Open Grid Services Architecture (OGSA) for QoS proper-
ties, focusing on the application layer. A given service may
indicate the QoS properties it can offer or it may search
for other services based on specific QoS properties. Cza-
jkowski et al. [8] propose generalized resource manage-
ment model where resource interactions are mapped to a
well-defined set of platform-independent SLAs, based on
the Service Negotiation and Acquisition Protocol (SNAP).
Condor’s ClassAds mechanism is used to represent jobs, re-
sources, and Condor daemons [18]. Dan et al. [9] present a
framework for providing customers of Web services differ-
entiated levels of service through the use of automated man-
agement and SLAs. Zhao et al. [25] discuss how semantic
technologies can be used for workflow provenance, while
Guan et al. [12] discuss their application for automatic lo-
cation and selection of appropriate Grid services.

To the best of our knowledge, none of these approaches
for the management of Grid workflows address meta-
negotiations (MN) where participating parties may agree on
a specific negotiation protocol, security standards or other
negotiation pre-requisites, and SLA-mappings where partic-
ipants may manage non-matching SLA templates. Further-
more, our approach ensures semantic matching of SLA tem-
plates between service provider and service consumer.

3 Case Study

In order to illustrate necessity for meta-negotiations
and SLA-mappings in context of Grid workflows we use
the sample workflow for maxillo facial surgery simulation
(MFSS) that was introduced in a previous publication [3].



a) Negotiation 
Terms:
Begin time
End time
Price

b) Security: GSI

c) Negotiation 
Protocol: Alternate 
Offers

d) Document Language:
WSLA

e) Agreement:
Third party 
arbitrator

a) Mapping:
"price" to "usage 
price"

b) Mapping: 
$ to €

(1)

(2)

Figure 1. Sample MFSS Process

3.1 Maxillo Facial Surgery Simulation

The MFSS application facilitates the work of medical
practitioners and provides the pre-operative virtual planning
of maxillo-facial surgery. The application consists of a set
of components which can run on a local machine or on dif-
ferent remote machines. As shown in Figure 1, these com-
ponents may be organized as a Grid workflow in order to
simplify the work of the end users. The main steps of the
simulation are:
Mesh generation is used for the generation of meshes

necessary for the finite element simulation. A sam-
ple complex mesh generation MGSequence activity is
shown in the middle part of Figure 1.

Mesh manipulation defines the initial and boundary con-
ditions for the simulation.

Finite Element Analysis is a fully parallel MPI applica-
tion running on a remote HPC cluster. A sample com-
plex finite element analysis FEMSequence activity is
depicted in the down right corner of Figure 1.

3.2 Negotiation- and SLA-Restrictions

We model the MFSS workflow using Amadeus, a QoS-
aware Grid modeling, planning, and execution tool [3].
Instead of specifying QoS with execution time and price
constraints as presented previously [3], the user wants to
express limitations on negotiation protocols and provided
SLA templates as described in the following.

Meta-Negotiation. The restrictions on meta-negotiations
are specified during the design time of the workflow. As de-
picted in Figure 1, part (1), meta-negotiation for the MGSe-
quence activity (used for mesh generation) is specified by
means of (a) negotiation terms, (b) security restrictions, (c)
negotiation protocols, (d) document languages and (e) pre-
conditions for the agreement establishment. Negotiation
terms are specified as begin time, end time, and price. In
order to initiate a negotiation, GSI2 security is required.
The negotiation is performed based on the alternate of-
fers protocol. Therefore, the workflow application under-
stands only the alternate offers protocol, and negotiation
with resources which do not provide alternate offers proto-
col cannot be properly accomplished. Additional limitation
considers document language used for the specification of
SLAs. As shown in Figure 1, QoS is specified using WSLA
[23]. Additionally, it is specified that for the successful
agreement completion a third party arbitration service is
required.

SLA-Mapping. The restrictions on SLA mappings are
specified during the run-time of the workflow. We can as-
sume that during the negotiation process, services that sup-
port the specified negotiation terms, negotiation protocols,
and document language are found as described above. How-
ever, in our case study, the SLA template of the candidate
service for finite element simulation, defined by sequence
FEMSequence, varies from the workflow’s SLA template.
As shown in Figure 1, part (2), QoS constraint price is
specified with the term price, whereas WSLA template of
the candidate service contains QoS constraint termed usage
price, see case (a). Furthermore, on the provider’s side the
price is charged in US Dollars, whereas workflow’s QoS
component expects Euros, see case (b).

In the following sections, we describe the methods and
architecture for the specification and enforcement of meta-
negotiations and SLA-mappings.

4 Grid Meta-Negotiations

In this section, we describe meta negotiation document
based on the case study presented in Section 3. Thus, the
meta-negotiation document depicted in Figure 3 represents
the solution for the case study shown in Figure 1, part (1).

4.1 Meta-Negotiation Strategies

Usually, multiple meta-negotiation documents may be
specified for a single workflow. Figure 2 shows different
strategies for the specification of meta-negotiation docu-
ments (MND)s. A MND can be specified for a single task
as shown in Figure 2, case (a). For the activities A1, A4

2Grid Security Infrastructure, http://www.globus.org/security/



A1

A2 A3

A4

A5

MND
-A1

MND-
A2,A3

MND
-A4

MND
-A5

MND
-WF

(a)(b)

(c)

Flow

Workflow

Figure 2. Attachment of MNM Policies

and A5 meta negotiation documents MND-A1, MND-A4,
and MND-A5 are specified. For the complex activity flow
and comprising activities A2 and A4 one MND is speci-
fied, namely MND-A2,A3 (see Figure, 2, case (b)). In the
simplest case, the MND document is defined for the overall
workflow as shown in case (c), Figure 2.

4.2 Meta-Negotiation Document (MND)

The participants publishing into the registry follow a
common document structure that makes it easy to discover
matching documents. This document structure is presented
in Figure 3 and consists of the following main sections.

Each document is enclosed within the
<meta-negotiation> ... </meta-negotiation>
tags. The document contains an <entity> element
defining contact information, organization and ID of the
participant. The <ID> element defines the unique identifier
given to the meta-negotiation document by the registry.
The publisher can update or delete the document using the
identifier.

Furthermore, the <entity> element contains work-
flow specific information, such as the task ID that the MND
is specified for. For example, in Figure 3, lines 7-9 specify
that the MND is describing task nr. 5 of the specific work-
flow. Each meta-negotiation comprises three distinguishing
parts, namely pre-requisites, negotiation and agreement as
described in the following paragraphs.

Pre-requisites. The conditions to be satisfied before a
negotiation are defined within the <pre-requisite>
element (see Figure 3, lines 12–23). Pre-requisites de-
fine the role a participating party takes in a negotiation,
the security credentials and the negotiation terms. The
<security> element specifies the authentication and au-
thorization mechanisms that the party wants to apply before
starting the negotiation process. For example, in Figure 3,

1. <meta-negotiation
2. xmlns:xsi="..."
3. xsi:noNamespaceSchemaLocation="...">
4. <entity>
5. <contact name="..." .../>
6. <ID name="1234"/>
7. <workflow>
8. <task>5</task>
9. </workflow>
10. ...
11. </entity>
12. <pre-requisite>
13. <role name="consumer"/>
14. <security>
15. <authentication value="GSI"
16. location="uri"/>
17. </security>
18. <negotiation-terms>
19. <negotiation-term name="beginTime"/>
20. <negotiation-term name="endTime"/>
21. <negotiation-term name="price"/>
22. </negotiation-terms>
23. </pre-requisite>
24. <negotiation>
25. <document name="WSLA" value="uri"
26. version="1.0"/>
27. <protocol name="alternateOffers"
28. schema="uri" version="1.0"
29. location="uri"/>
30. </negotiation>
31. <agreement>
32. <confirmation
33. name="arbitrationService"
34. value="uri"/>
35. </agreement>
36. </meta-negotiation>

Figure 3. Example Meta-negotiation docu-
ment

the consumer requires that the other party should be authen-
ticated through the Grid Security Infrastructure (GSI) [13]
(lines 15–16). The negotiation terms specify QoS attributes
that a party is willing to negotiate and are specified in the
<negotiation-term> element. For example, in Fig-
ure 3, the negotiation terms of the consumer are beginTime,
endTime, and price (lines 19–21).

Negotiation. Details about the negotiation process are de-
fined within the <negotiation> element. Each doc-
ument language is specified within the <document> el-
ement. In Figure 3, WSLA is specified as the supported
document languages. Additional attributes specify the URI
(Uniform Resource Indicator) to the API or WSDL for the



documents and their versions supported by the consumer
(lines 25–26). In Figure 3, AlternateOffers is specified as
the supported negotiation protocol. In addition to the name,
version, and schema attributes, the URI to the WSDL or
API of the negotiation protocols is specified by the location
attribute (lines 27–39).

Agreement. Once the negotiation has concluded and if
both parties agree to the terms, then they have to sign an
agreement. This agreement may be verified by a third party
organization or may be lodged with another institution who
will also arbitrate in case of a dispute. These modalities
are specified within the <agreement> clause of the meta-
negotiation document. For example, in Figure 3, a third
party service, called ”arbitrationService”, is specified for
confirming the agreement between the two parties.

The meta-negotiation architecture described here was
experimentally evaluated and the results were presented in
a previous publication [5].

5 SLA-Mappings

In this section, we describe sample documents for SLA
mappings between inconsistent templates. SLA examples
used here address the case study presented in Section 3,
Figure 1, part (2). In the presented scenario, each WSLA
template has to be published into a registry where the ne-
gotiation partners i.e., a provider and a consumer can find
each other. The management of WSLA templates is de-
scribed in Section 6. After publishing the WSLA (see Sec-
tion 6) and after successful meta-negotiation (see Section
4), WSLA mappings can be defined as described in the fol-
lowing scenario.

5.1 Scenario for SLA-Mappings

Figure 4 depicts a scenario for defining XSL transforma-
tions.

WSLA templates are publicly available and published in
a searchable registry. Each participant may download pre-
viously published WSLA templates and compare it with the
local template. This can be done in an automatic way by
using appropriate tools. We are currently developing a GUI
that can help consumers to find suitable service categories.
If there are any inconsistencies discovered, service con-
sumer may write rules (XSL transformation) from his/her
local WSLA template to the remote template. The rules
can also be written by using appropriate visualization tools.
Thereafter, the rules are stored in the database and can be
applied during the runtime to the remote WSLA template.
During the negotiation process, the transformations is per-
formed from the remote WSLA template to the local WSLA
template and vice versa.

local
WSLA
template

Rule
from
local to 
remote

XSL-
Transfor-
mations

+

remote
WSLA
Template

Service
Consumer

XSL-
Transfor-
mationslocal 

WSLA
template

+

Service
Provider

Rule
from
local to 
remote

Rule
from
remote 
to local

XSL-
Transfor-
mations

Rule
from
remote 
to local +

XSL-
Transfor-
mations

+

Figure 4. Scenario for XSL Transformations

The upper part of Figure 4 depicts a service consumer
generating a WSLA. The locally generated WSLA plus the
rules defining transformation from local WSLA to remote
WSLA, deliver a WSLA which is compliant to the remote
WSLA. In the second case, the remote WSLA template has
to be translated into the local one. In that case, the remote
WSLA plus the rules defining transformations from the re-
mote to local WSLA deliver a WSLA which is complaint to
the local WSLA. Thus, in this manner, the negotiation may
be done using non-matching WSLAs.

As shown in the lower part of Figure 4, even the ser-
vice provider can define rules for XSL transformations from
the publicly published WSLA templates to the local WSLA
templates. Thus, both parties, provider and consumer, may
match on a publicly available WSLA template.

5.2 SLA-Mappings Document (SMD)

In this section, we present and discuss a sample SLA-
mapping document. Generally, SLA mappings can be de-
fined using XSLT and XPath expressions. Figure 5 shows
a sample rule for XSL transformations corresponding to the
case study presented in Figure 2, part (2), case (a). The doc-
ument is parsed for the SLAParameter price (see lines 2-6)
and is replaced with the usage price parameter as shown in
line 8.

A similar document can be defined for the transforma-
tions between Dollars and Euros as described in the case
study (see Section 3). In this case, we define the mapping
rule which selects the calculation function of the remote
WSLA and returns result in Euro by multiplying the calcu-



1. ...
2. <xsl:template match=""/ns:SLA/
3. ns:ServiceDefinition/
4. ns:WSDLSOAPOperation/
5. ns:SLAParameter/
6. @name[.=’price’]"">
7. <xsl:attribute name=’{name()}’>
8. <xsl:text>usage price</xsl:text>
9. </xsl:attribute>
10. </xsl:template>
11. ...

Figure 5. Example XSL Transformation

lated value with Euro/Dollar factor. With similar mapping
rules, users can not only map simple syntax values (values
of some attributes etc.), they can even define complex se-
mantic mappings backed by complex logic.

6 Architecture

In this section, we present the architecture used for the
management of the meta-negotiation documents and SLA-
mappings (MNSM) in the context of a QoS-aware Grid
workflow system. First, we discuss the architectural com-
ponents for the management of meta-negotiations and SLA-
mappings. We describe the components in detail and give
a sample architectural case study. Finally, we incorporate
the meta-negotiations and SLA-mappings components into a
QoS-aware Grid workflow architecture and discuss it based
on the introduced case study.

6.1 Meta-Negotiation and SLA-Mapping
(MNSM) Architecture

6.1.1 Meta-Negotiation Infrastructure

In order to create a case study that tests the proposed
meta-negotiation framework in practice, we have extended
a previous publication on negotiation of advance reserva-
tions using the alternate offers protocol [21] to incorpo-
rate the meta-negotiation framework. The architecture fol-
lowed in this case study is shown in Figure 6. It consists of
the registry for meta-negotiation documents and the meta-
negotiation middleware on both the provider and consumer
sides.

In our architecture, the service provider role is carried
out by Aneka [7], which is a resource management sys-
tem for enterprise Grids composed of machines running Mi-
crosoft Windows operating system. Aneka provides facili-
ties for advance reservation of computing nodes and sup-
ports flexible scheduling of applications constructed using
different parallel programming models such as bag-of-tasks

and dataflow computing. The Gridbus Broker [20] maps
jobs to appropriate resources considering various restric-
tions specified by terms of functional and non-functional
requirements. Functional requirements include but are not
limited to task and data dependencies such as, for example,
a sequence of tasks is required to execute a specific applica-
tion. Non-functional requirements include QoS parameters
such as budget restrictions, and a deadline for execution.
The broker can guarantee the end-user’s deadline require-
ment only if it is able to reserve nodes on resources in ad-
vance. Therefore, in this respect, the broker functions as a
consumer that requests reservations from the provider.

6.1.2 SLA-Mappings Infrastructure

In order to create a case study that tests the proposed SLA-
mapping framework in practice, we developed novel in-
frastructure as depicted in Figure 6 based on the VRESCo
framework [14]. The VRESCo framework enables applica-
tion developers to efficiently develop service-oriented appli-
cation simplifying the handling with numerous Web service
specifications such as UDDI. The framework facilitates dy-
namic service management by utilizing client-side libraries
which transparently handle service communication as well
as publishing, searching, querying and composing of ser-
vices. In VRESCo, services are bound based on dynamic
proxies, which frequently check whether selected services
satisfy developer’s needs e.g., specified QoS-parameters in
SLAs. We extended the VRESCo framework with the fea-
tures for the management of the WSLA-templates and SLA-
mappings as described in the following.

Using the SLA-mapping features of VRESCo, users may
search for service templates, publish services and define
SLA-mappings to existing services. We classify service
templates into categories i.e., for each specific domain, as
for example medical, telecommunication or financial do-
main we provide a single template. Using an appropri-
ate GUI, which is subject of ongoing research, users may
browse through templates, publish services to the registry
and define SLA-mappings from local WSLAs to remote
WSLAs and vice versa. As depicted in Figure 6, SLA-
templates are mapped to VRESCo’s predefined data model
based on taxonomies [15].

6.1.3 Registry

We implemented two distinct registries for meta-
negotiations and SLA-mappings, described as follows:

Meta-negotiation registry. The registry is a searchable
repository for meta-negotiation documents that are created
by the participants. Currently, this is implemented as a Post-
greSQL database with a web service front end that provides



 

Remote SLA 
template

Gridbus Broker
Meta Negotiaiton Middleware 

(MNM)
Meta Negotiaiton Middleware 

(MNM)
Meta Negotiaiton Middleware 

(MNM)
Meta Negotiation and SLA Mapping 

Middleware
Meta Negotiation and SLA Mapping 

Middleware Aneka
Amadeus 
Workflow

WSDL

DB

<pre-
requisite 
... />
<negotiation
... />
<agreement
... /> 5. Negotiation

1a. Publishing
2a. Publishing, Querying

Alternate 
Offers 

Negotiation 
Strategy

API

DBDB
Registry

4. Handshaking

...
...

3a. Matching

Service Consumer Service Provider

Alternate 
Offers 

Negotiation 
Strategy

Participant 1 Participant 2

Trans-
formation 
rules: 
XSLT, 
XPath

<pre-
requisite 
... />
<negotiation
... />
<agreement
... />

Trans-
formation 
Rules: 
XSLT, 
XPath

Remote SLA 
template

Taxonomies

Local SLA 
template

Local SLA 
template

Remote SLA 
template

1b. Publishing, publishing of SLA-mappings
3b. Quering, publishing of SLA-mappings

a. meta-negotiation 
b. SLA-mapping

4b. Transformation

2b. parsing, 
mapping to the data-model

VRESCo

Figure 6. Architecture for meta-negotiations and SLA-mappings in heterogeneous Grids with sample
provider and consumer

the interface shown in Figure 7. However, it is possible to
host the registry using a cloud of databases hosted on a ser-
vice provider such as Google App Engine3 or Amazon S3.
When a meta-negotiation document is published, the reg-
istry assigns it a unique identifier (ID) that can then be used
for subsequent operations. The query call tries to find the
documents that match the maximum number of attributes of
the search query. It returns an array of IDs of these docu-
ments to the caller which can then fetch each one through
the getDocument call. Methods depicted in Figure 7 in
lines 1-4 depict the methods for the manipulation of MNDs,
whereas methods depicted in lines 5-9 represent the meth-
ods for the manipulation of SLA-mappings.

1. publish(XMLdocument);
2. update(XMLdocument);
3. query(XMLdocument);
4. getDocument(ID);
5. createTemplateCategory(TemCategory);
6. createAttributeMapping(ProviderAttrMapp);
7. createAttributeMapping(ConsumerAttrMapp);
8. createService(Service);
9. findServices(ConsumerServiceRequest);

Figure 7. Registry Methods

3http://code.google.com/appengine

SLA-mapping registry. We used MS-SQL 2008 for the
SLA-mappings database. The database is manipulated
based on the role-model. The registry methods are imple-
mented as WCF4 services and can be accessed with appro-
priate access rights only. We define three roles: service con-
sumer, service provider and registry administrator. Service
consumer is able to search suitable services for the selected
service categories e.g., by using the method findServices, as
depicted in Figure 7, line 9. Service consumer may also
create SLA-mappings as depicted in line 7. Service provider
may publish his services and bind it to a specific template
category using the method createService. Furthermore, he
may define SLA-mappings by using the method createAt-
tributeMapping. Registry administrator may create, update
and delete service categories. Please note that for all cre-
ate methods depicted in lines 5-8, we have implemented the
corresponding CRUD methods. Each template category is
identified with an unique name and is stored in the database
as an XML document. Each service is identified with a
name and is described with a WSDL-URI and filled SLA-
template of the selected category. For each service, multiple
SLA-mapping documents may be defined.

6.1.4 Meta-Negotiation Middleware

The meta-negotiation middleware facilitates the publishing
of the meta-negotiation documents into the registry and the
integration of the meta-negotiation framework into the ex-

4Windows Communication Foundation



isting clients (e.g. workflow tools) and/or service infrastruc-
ture, including, for example, negotiation or security clients.
Besides acting as a client for publishing and querying meta-
negotiation documents (steps 1a and 2a in Figure 6), the
middleware delivers necessary information for the existing
negotiation clients i.e., information for the establishment of
the negotiation sessions (step 4, Figure 6) and information
necessary to start a negotiation (step 5 in Figure 6). As
shown in Figure 6, each service consumer may negotiate
with multiple service providers concurrently. As mentioned
in Section 4, even the reverse may happen as well, wherein
a consumer advertises a job. In such cases, the providers
would negotiate with multiple consumers.

After querying the registry and applying a client-based
strategy for the selection of the appropriate service, the
information from the service’s meta-negotiation document
is parsed. Thereafter, meta-negotiation information is in-
corporated into the existing client software using a depen-
dency injection framework such as Spring5. This depen-
dency injection follows an Inversion of Control approach
wherein the software is configured at runtime to invoke ser-
vices that are discovered dynamically rather than known
and referenced beforehand. This is suitable in the context
of meta-negotiation wherein a participant discovers others
at runtime through the registry and has to dynamically adapt
based on the interfaces provided by his counterpart (usually
through a WSDL document).

On the consumer side, the middleware queries the reg-
istry and obtains matching meta-negotiation documents.
The middleware parses the meta-negotiation document of
the selected provider and dynamically injects the interfaces
discovered from the WSDLs in the document for security,
negotiation and arbitration services into the existing abstract
clients. Currently, we support semi-automatic integration of
existing clients into meta-negotiation middleware wherein
the existing clients are extended with the XML-based con-
figuration files which are then automatically populated with
the discovered interfaces.

6.1.5 SLA-Mapping Middleware

As already mentioned in Section 6.1.3, SLA-mapping mid-
dleware is based on a bunch of WCF services. For the
sake of brevity, in the following we discuss just a few
of them. RegistryAdministrationService provides methods
for the manipulation of the database where administrator
rights are required e.g., creation of template categories. An-
other example represents WSLAMappingService which is
used for the management of SLA mappings by service con-
sumer and service provider. WSLAQueryingService is used
to query SLA mapping database. Database can be queried

5http://www.springframework.org

based on template category, SLA attributes and similar at-
tributes.

Before publishing a service by a provider, the submitted
SLA-template is parsed by a WSLA parser as depicted by
step 1b in Figure 6. Within the SLA-mapping framework, it
is not prescribed which parser to use, moreover we prescribe
the interface which has to be implemented by each parser.
For the creation of the concrete instance of the parser, we
use the abstract factory pattern. Currently, we have im-
plemented a version with the recent Language Integrated
Query (LINQ) technology from .NET 3.5. Each WSLA
parser takes as input an SLA template, parses this docu-
ment in SLA types with SLA elements and SLA attributes,
and maps it to the predefined data model, as defined by step
2b in Figure 6.

Service consumers may now search for appropriate
services through WSLAQueryingService and define ap-
propriate SLA-mappings by using the method createAt-
tributeMapping as depicted in step 3b. Thereafter, service
consumer may send request with a filled SLA template to
the registry using the WSLAQueryingService. Initially the
existence of prior SLA mappings defined for that specific
service consumer is checked. If so, these will be used for
transformation using registry’s internal TransformatorSer-
vice as depicted in in step 4b. TransformatorService is im-
plemented using an AbstractFactory pattern, thus different
transformation services can be easily incorporated into the
SLA mapping middleware. After the transformation, ser-
vice negotiation may start as depicted in steps 4 and 5.

6.2 Workflow Management

Figure 8 shows the integration of the meta-negotiation
and SLA-mapping architecture, presented in Section 6.1,
into Amadeus, a Grid workflow tool [4]. Workflow mod-
eling is done using the Teuta tool where QoS constraints,
meta-negotiation documents and SLA-mappings can be
specified using UML standard. QoS constraints, meta-
negotiation documents, and SLA-mappings are specified in
a visual way by selecting the appropriate task and filling up
the property panel of the Teuta tool. The UML represen-
tation is translated into the XML representation following
the syntax of Quality of Service aware Grid Workflow Lan-
guage (QoWL) [3]. QoWL excerpt of the MFSS workflow
(see Figure 1, part (1)) is depicted in Figure 9.

As depicted in lines 1-12, the QoWL element repre-
sents a sequence activity. Specification of QoS constraints
is done using <qos-constraints> element (see lines
3-11). The reqDescVar attribute specifies the request de-
scriptor with the meta-data necessary for the performance
prediction. The mnd attribute specifies the path to the meta-
negotiation document depicted in Figure 3, and the SLA-
mapp attribute specifies the path to the SLA-mapping doc-



Policies

Policies

Workflow Planning and Execution Tool

Participant Specific 
Negotiation and Planning 

Components

Policies

Policies

Workflow Planner (WP)

Negotiatior

User 
Interface

WF

MND,
SLA-

Mapp.

QoS

 

Meta Negotiaiton 
Middleware (MNM)
Meta Negotiaiton 

Middleware (MNM)
Meta Negotiaiton 

Middleware (MNM)
Meta Negotiation and 

SLA Mapping 
Middleware

MND

Registry

... ...

Service Provider

local 
WSLA

Mappings
Negotiation 

Strategy 
...

XML 
config 
file

XML 
config 
file

XML 
config 
file

Workflow Modeling

Workflow Planning and Execution

Event-
Notification 
Component

Meta Negotiation and 
SLA Mapping 
Middleware

Aneka

Alternate 
Offers 

Negotiation 
Strategy

MND

local 
WSLA

Mappings

Figure 8. Workflow Management Tool with Components for Meta-Negotiations and SLA-Mappings

1. <sequence name="MGSequence" ... >
2. ...
3. <qos-constraints reqDescVar="..."
4. mnd="..." SLA-mapp="...">
5. <qos-constraint name="beginTime"
6. value="..."/>
7. <qos-constraint name="endTime"
8. value="..."/>
9. <qos-constraint name="price"
10. value="..." />
11. </qos-constraints>
12. </sequence>

Figure 9. QoWL example

ument depicted in Figure 5. QoS constraints are defined by
the element <qos-constraint>.

After translation of the workflow UML representation
into QoWL, meta negotiation is conducted as described
in the meta-negotiation scenario, Figure 6, Section 6.1.4.
Meta-negotiation and SLA-mapping middleware is inte-
grated into the Amadeus tool using XML descriptors and
following the concepts of Inversion of Control. As shown
in Figure 8, XML configuration files bridge the MNSM
with the participant specific negotiation and planning com-
ponents. After the meta-negotiation, negotiations with se-
lected resources may start as described in [4].

Currently, we are developing an infrastructure for the de-
tection of inconsistent WSLA templates using event-based
notification mechanisms. Thus, negotiation participants
who want to negotiate even with services which have non-
matching SLAs may subscribe for specific topic e.g., terms
of negotiation. If services that require SLA-mappings are
discovered during the meta negotiation process e.g., due to
inconsistent terms of negotiation, all subscribed participants
are notified. Thereafter, SLA-mappings may be defined us-

ing the appropriate GUI and stored in the database. Finally,
negotiation between services with non-matching SLAs may
start.

7 Conclusion and Future Work

In this paper, we have presented advanced QoS meth-
ods for meta-negotiations and SLA-mappings in Grid work-
flows. We exemplified our research issues with a real-
world case study with Grid workflows for maxillo facial
surgery simulation. Thereafter, we discussed the meta-
negotiation documents through which each participant may
state supported protocols, and document languages as well
as the pre-requisites for starting negotiations and establish-
ing agreements. We presented novel methods for SLA-
mappings which enables negotiation between partners with
non-matching SLA templates. Furthermore, since all SLA
templates have to be mapped to a data model, we elim-
inated semantic inconsistencies between consumer’s and
provider’s SLA templates. We developed an architecture for
the management of meta-negotiation documents and SLA-
mappings, and incorporated that architecture into a Grid
workflow management tool. In the future we plan to test
our approach with real-life Grid applications and develop
strategies to handle negotiations across incompatible proto-
cols and documents.

Acknowledgments

The work described in this paper was supported by
the the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement 215483
(S-Cube) and by the Australian Research Council and the
Dept. of Innovation, Industry and Scientific Research under
Discovery Project and International Science Linkage grants
respectively.



References

[1] R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, and S. So-
hail. G-qosm: Grid service discovery using qos properties.
Computing and Informatics, 21:363–382, 2002.

[2] J. Blythe, E. Deelman, Y. Gil. Automatically Composed
Workflows for Grid Environments. IEEE Intelligent Systems
19(4): 16–23 2004.

[3] I. Brandic, S. Pllana, S. Benkner. High-level Composition
of QoS-aware Grid Workflows. An Approach that Consid-
ers Location Affinity. Workshop on Workflows in Support
of Large-Scale Science. In conjunction with the 15th IEEE
International Symposium on High Performance Distributed
Computing, Paris, France, June 2006.

[4] I. Brandic, S. Pllana, S. Benkner. Specification, Plan-
ning, and Execution of QoS-aware Grid Workflows within
the Amadeus Environment. Concurrency and Computation:
Practice and Experience, 20(4): 331–345 John Wiley &
Sons, Inc., New Jersey, March 2008.

[5] I. Brandic, S. Venugopal, Michael Mattess, and R. Buyya,
Towards a Meta-Negotiation Architecture for SLA-Aware
Grid Services. Technical Report, GRIDS-TR-2008-9, Grid
Computing and Distributed Systems Laboratory, The Uni-
versity of Melbourne, Australia, Aug. 8, 2008.

[6] R. Buyya, C. S. Yeo, and S. Venugopal, Market-Oriented
Cloud Computing: Vision, Hype, and Reality for Delivering
IT Services as Computing Utilities. 10th IEEE International
Conference on High Performance Computing and Commu-
nications (HPCC 2008), Sept. 25-27, 2008, Dalian, China.

[7] X. Chu, K. Nadiminti, Ch. Jin, S. Venugopal, and R. Buyya
Aneka: Next-Generation Enterprise Grid Platform for e-
Science and e-Business Applications. Proceedings of the 3rd
IEEE International Conference on e-Science and Grid Com-
puting (e-Science 2007), Dec. 10-13, 2007, Bangalore, India.

[8] K. Czajkowski, I. Foster, C. Kesselman, V. Sander and S.
Tuecke, SNAP: A Protocol for Negotiating Service Level
Agreements and Coordinating Resource Management in Dis-
tributed Systems. 8th Workshop on Job Scheduling Strategies
for Parallel Processing, Edinburgh Scotland, July 2002.

[9] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kue-
bler, H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef.
Web services on demand: WSLA-driven automated manage-
ment. IBM Systems Journal, 43(1), 2004.

[10] T. Glatard, J. Montagnat, X. Pennec. A Probabilistic Model
to Analyse Workflow Performance on Production Grids. 8th
IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2008), pp.510-517, Lyon, France, 19-22
May 2008.

[11] L. Guo, A. S. McGough, A. Akram, D. Colling, J. Marty-
niak, M. Krznaric. Enabling QoS for Service-Oriented Work-
flow on GRID. Seventh International Conference on Com-
puter and Information Technology (CIT 2007), pp. 1077-
1082, Fukushima, Japan, October 16-19, 2007.

[12] T. Guan, E. Zaluska, D. De Roure. A Semantic Service
Matching Middleware for Mobile Devices Discovering Grid
Services. Advances in Grid and Pervasive Computing, Third
International Conference, GPC 2008, pp. 422-433 Kunming,
China, May 25-28, 2008.

[13] I. Foster, and C. Kesselman, and G. Tsudik, and S. Tuecke.
A Security Architecture for Computational Grids, Proc. 5th
ACM Conference on Computer and Communications Secu-
rity Conference, San Francisco, CA, USA, ACM Press, New
York, USA, 1998.

[14] A. Michlmayr, F. Rosenberg, Ch. Platzer, M. Treiber, S.
Dustdar. Towards Recovering the broken SOA Triangle - A
Software Engineering Perspective. In Proceedings of the 2nd
International Workshop on Service-oriented Software Engi-
neering (IW-SOSWE’07), Dubrovnik, Croatia, September
2007.

[15] F. Rosenberg, P. Leitner, A. Michlmayr, S. Dustdar. Inte-
grated Metadata Support for Web Service Runtimes. Pro-
ceedings of the Middleware for Web Services Workshop
(MWS’08), co-located with the 12th IEEE International Dis-
tributed Object Computing Conference (EDOC’08), 15-19.
September 2008, Munich, Germany.

[16] I. J. Taylor, E. Deelman, D. B. Gannon. Workflows for e-
Science. Springer Verlag, 2005.

[17] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and
K. Krishnakumar. A multi-agent infrastructure and a ser-
vice level agreement negotiation protocol for robust schedul-
ing in grid computing. in Proceedings of the 2005 European
Grid Computing Conference (EGC 2005), Amsterdam, The
Netherlands, February, 2005.

[18] D. Thain, T. Tannenbaum, and M. Livny. Distributed Com-
puting in Practice: The Condor Experience. Concurrency
and Computation: Practice and Experience, Vol. 17, No. 2-4,
pages 323-356, February-April, 2005.

[19] M. Wieczorek, S. Podlipnig, R. Prodan, T Fahringer. Bi-
criteria Scheduling of Scientific Workflows for the Grid Clus-
ter Computing and the Grid. IEEE International Symposium
on Cluster Computing and the Grid, Lyon, France, 19-22
May 2008.

[20] S. Venugopal, R. Buyya and L. Winton, A Grid Service Bro-
ker for Scheduling e-Science Applications on Global Data
Grids, Concurrency and Computation: Practice and Experi-
ence, 18(6): 685-699, Wiley Press, New York, USA, May
2006.

[21] S. Venugopal, X. Chu, R. Buyya. A Negotiation Mechanism
for Advance Resource Reservation using the Alternate Offers
Protocol. 16th International Workshop on Quality of Service
(IWQoS 2008), June 2-4, 2008, University of Twente, En-
schede, The Netherlands.

[22] D. W. Walker, L. Huang, O. F. Rana, Y. Huang. Dynamic
service selection in workflows using performance data. Sci-
entific Programming 15(4): 235-247 (2007).

[23] Web Service Level Agreement (WSLA),
http://www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf

[24] J. Yu, R. Buyya. A Taxonomy of Workflow Management Sys-
tems for Grid Computing. Journal of Grid Computing, 3(3-
4):171-200, Springer Science + Business Media B.V., New
York, USA, September 2005.

[25] J. Zhao, C. Goble, R. Stevens, D.Turi. Mining Taverna’s se-
mantic web of provenance Concurrency and Computation:
Practice & Experience 20(5), John Wiley & Sons, Inc., New
Jersey, April 2008.


