
1

Efficient Virtual Machine Sizing For Hosting
Containers as a Service

Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

Email: {sarehf@student, amir.vahid@, rnc@, rbuyya@}unimelb.edu.au

Abstract—There has been a growing effort in decreasing energy
consumption of large-scale cloud data centers via maximization
of host-level utilization and load balancing techniques. However,
with the recent introduction of Container as a Service (CaaS) by
cloud providers, maximizing the utilization at virtual machine
(VM) level becomes essential. To this end, this paper focuses on
finding efficient virtual machine sizes for hosting containers in
such a way that the workload is executed with minimum wastage
of resources on VM level. Suitable VM sizes for containers
are calculated, and application tasks are grouped and clustered
based on their usage patterns obtained from historical data.
Furthermore, tasks are mapped to containers and containers
are hosted on their associated VM types. We analyzed clouds’
trace logs from Google cluster and consider the cloud work-
load variances, which is crucial for testing and validating our
proposed solutions. Experimental results showed up to 7.55%
improvement in the average energy consumption compared to
baseline scenarios where the virtual machine sizes are fixed. In
addition, comparing to the baseline scenarios, the total number
of VMs instantiated for hosting the containers is also improved
by 68% on average.

I. INTRODUCTION

Cloud computing is a term for utility-oriented computing on
a pay as you go basis. As stated by Armbrust et al. [1], cloud
computing has the potential to transform a large part of the
IT industry while making software even more attractive as a
service. However, the major concern of cloud data centers is
the drastic growth in energy consumption. Data center energy
consumption results in increases in Total Cost of Ownership
(TCO) while decreasing the Return of Investment (ROI) of the
cloud infrastructure. Data center energy consumption has also a
great impact on carbon dioxide (CO2) emissions, which are es-
timated to be 2% of global emissions [2]. In this respect, there
has been a growing effort in decreasing energy consumption,
what resulted in considerable improvements in many aspects
of cloud data center operations, including cooling system and
server efficiency. Nevertheless, emerging new technologies
make room for further improvements in server efficiency. A
promising source for further improvements in energy efficiency
of cloud servers are the solutions that are tailored for specific
cloud service models.

In addition to traditional cloud services, namely Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS), and

D
ocker

Libs

Server

Hypervisor

VM A

A
pp 1

A
pp 2

A
pp 3

A
pp 4

D
ocker

Libs

VM B

A
pp 1

A
pp

2

Fig. 1. A Simple CaaS Deployment Model on IaaS.

Software as a Service (SaaS), recently a new type of service—
called Containers as a Service (CaaS)—has been introduced.
An example of container management system is docker which
is a tool that allows developers to define containers for applica-
tions 1. CaaS lies between IaaS and PaaS: while IaaS provides
virtualized compute resources and PaaS provides application
specific runtime services, CaaS is the missing layer that glues
these two layers together. As illustrated in Figure 1, CaaS
services are usually provided on top of IaaS’ virtual machines.
CaaS providers, such as Google and AWS, argue that at the
same time as containers might offer appropriate environment
for semi-trusted workloads, virtual machines provide another
layer of security for untrusted workloads.

To reduce energy consumption of CaaS, one may choose vir-
tual machine consolidation, Dynamic Voltage and Frequency
Scaling (DVFS), or both of them combined. However, these
efforts would be in vain if VM sizes are not customized to
better support deployed containers. For example, as shown in
Figure 1, size of VM B in comparison toVM A is not container-
optimized. As a result, there is resource wastage that results
in inefficiency in terms of energy consumption regardless of
how effective and energy efficient is the VM consolidation
technique in place.

We tackle the issue of energy efficiency in the context of
CaaS, this paper focuses on finding efficient virtual machine
sizes for hosting containers in a such way that the workload
is executed with minimum wastage of energy. To achieve this,
we present a technique derived from the analysis of real world

1Docker: https://www.docker.com/

2

clouds’ trace logs that takes into consideration cloud workload
variances, which is crucial in testing and validating the pro-
posed solutions. Cloud computing traces released publicly are
limited to those made available by Google. The first Google log
provides the normalized resource usage of a set of tasks over a
7 hour period. The second version of the Google traces, which
was released in 2012, contains more details in a longer time
frame. The paper main contribution is an approach for efficient
allocation of resources (in the form of virtual machine with
defined CPU and memory entitlement) that matches closely
the actual resource usage of deployed containers.

In this paper, the focus is on measuring impact of VM sizing
strategies on data center power consumption for a specific
period of time. To this end, we assume that we have a perfect
knowledge of workload (to eliminate the prediction inaccuracy
effect) and that no virtual machine consolidation approach
is in place. This work is carried out in three steps. In the
first step, we explored task usage patterns. We found that
there are similarities in the utilization patterns reported in the
traces, which is confirmed by previous studies [3], [4]. These
similarities helped us to group the tasks based on average
resource usage via clustering techniques. In the second step,
the clustering output is used for identification of customized
virtual machine types for the studied traces. Finally, in the third
step, each cluster of tasks is mapped to a corresponding virtual
machine type. We compare our VM sizing technique with fixed
VM size baseline scenarios. The experimental results show that
our proposed approach results in less number of servers, which
in turn results in less energy consumption in the data center.

II. RELATED WORK

There is a vast body of literature that considers power
management in virtualized and non-virtualized data centers via
hardware and software-based solutions [5]–[7]. Most of the
works in this area focus on host level optimization techniques
neglecting energy-efficient virtual machine size selection and
utilization. These approaches are suitable for IaaS cloud ser-
vices, where the provider does not have any knowledge about
the applications running in every virtual machine. However, for
SaaS and CaaS service models, information about the workload
on the virtual machines and improvements on the size selection
and utilization efficiency on VM level could be the first step
towards more energy efficient data centers, as results presented
in this paper demonstrate.

Regarding comparison between hosting SaaS on bare-metal
servers or virtual machines, Daniel et al. [8] explored the
differences between fixed virtual machine sizes and time
shares. Although they concluded that the time share model
requires less number of servers, they have not considered
dynamic VM size selection in their experiments. Similarly, in
the SEATS (smart energy-aware task scheduling) framework,
Hosseinimotlagh et al. [9] introduced an optimal utilization
level of a host to execute tasks which decrease the energy
consumption of the data center. In addition, they also presented
a virtual machine scheduling algorithm for maintaining the
host optimal utilization level while meeting the given QoS.
Apart from the level of optimization (host-level, data center-
level, or virtualization level), most of the research in the area

lack the analysis of real cloud backend traces and the variance
in the cloud workload in the proposed solutions.

To address this issue, Mishra et al. [3] and Chen et al. [4]
explored the first version of the Google cluster traces and
introduced two approaches for workload modeling and char-
acterization. Mishra et al. [3] used the clustering algorithm k-
means for forming the groups of tasks with more similarities
in resource consumptions and durations. Likewise, Chen et
al. [4] used k-means as the clustering algorithm. In their
experiments, the authors classified jobs2 instead of tasks. In
our proposed model, we use X-means for grouping the tasks
with similarities in their usage patterns. The clustering output
is used for determining the virtual machine configurations and
estimating the average usage of a typical task in a specific
cluster. We consider the second version of the trace released
in late 2011.

Through configuring bare-metal servers and applying
Google cluster trace, Zhang et al. [11] investigated the problem
of dynamic capacity provisioning in a real production data
center. The authors introduced a heterogeneity-aware resource
provisioning environment named Harmony and dynamically
adjusted number of active machines by considering hetero-
geneity in both workload and available machine hardware.
k-means is used for forming workload classes with similar
characteristics and resource requirements. Applying Google
cluster trace, it is stated that Harmony can improve the energy
consumption of the data center up to 28%. Although the energy
consumption is improved, the virtualization technology as the
building block of a cloud data center is not considered.

Different from previous works, we leverage virtualization
and containerization technology together and map the groups
of tasks to containers and containers to VMs. The configuration
of the container-optimized VMs is chosen based on the work-
load characteristics, which results in less resource wastage. In
our methodology, the problem of high energy consumption that
results from low resource utilization is also addressed, which
is not explored in most of the previous studies.

III. SYSTEM MODEL

The targeted system is a CaaS service placed between a
Platform as a Service (PaaS) and an IaaS data center operating
as a private cloud. Users can submit their applications in one
or more programming models supported by the provider to the
platform. For example, the platform can support MapReduce
or Bag of Tasks (BoT) applications. The users interact with the
system by submitting applications supported by the platform.
Each application consists of a set of jobs to be executed on
the infrastructure. In our studied scenario, the job itself can
be compromised of one or more tasks that are executed in
containers managed by the CaaS provider.

User Request Model: In the proposed model, the infrastruc-
ture is abstracted from the users. Thus, the only action required
from users of the service is the submission of their application
along with estimated resources required for their execution.
Parameters of a task submitted by a user are: Scheduling class;

2A job is compromised of one or more tasks [10].

3

Fig. 2. Proposed system model. Cloud users submit requests for execution
of applications in form of the container requests to the data center. Each task
is executed in a container that meets application requirements. The resource
allocator is responsible for mapping these containers to the relevant and
available virtual machine configurations.

Task priority; and Required resources (i.e., number of cores
and amounts of RAM and storage).

Notice that currently available commercial CaaS solutions
require users to determine the required resources.

Cloud Model: The cloud model explored in this paper
contains three layers:

• Infrastructure layer: This layer contains physical
server that are partitioned to virtual machine through
the next layer;

• Virtualization layer: The virtualization technology is
taken into consideration as it improves the utilization of
resources by sharing them between virtual machines;

• Container layer: Containers run on virtual machines
and all share the same Linux kernel as the OS. The
combination of these technologies (i.e., container and
virtualization) has been recently introduced in Google
Container Engine3, which uses the open source technol-
ogy Kubernetes4.

System Objective: The objective of the proposed archi-
tecture is to find efficient virtual machine sizes for hosting
the containers in a way that the workload is executed with
minimum wastage of energy. The energy wastage is caused
by underutilization of resources (i.e., the virtual machines).
Therefore, one of the challenges is finding an optimal config-
uration of VM for a container, in such a way that its residing

3Google Container Engine: https://cloud.google.com/container-engine/docs/
4Kubernetes: http://kubernetes.io/

tasks have enough resources to be executed and the virtual
machine’s resources are not wasted during the operation.

The proposed model can be utilized by both Software as
a Services and private clouds so the advantages of virtual
machines and containers can be leveraged at the same time
that energy costs are reduced through efficiently utilization of
data centers. These systems are targeted because they have
limited number of applications and enough information about
them so that the typical cloud usage can be profiled.

Usually, profiles will be available for returning users of
the infrastructure. In such a case, previous information about
tasks needs enable the optimization of the task needs. For
new customers, where there is no historical information enable
profiling, the resources requested at request submission time
can be used as an estimation of resources needs. As discussed
previously, resource requirements are a common input param-
eter in commercial providers of similar services.

IV. ARCHITECTURE

Figure 2 shows our proposed architecture that is responsible
for selecting the right size of virtual machines that host con-
tainers running users’ tasks. The components of the proposed
architecture are further discussed in the next subsections. In
the pre-execution phase, based on historical information on
resource utilization of containers, our proposed system deter-
mines the virtual machine sizes. After that, in the execution
phases, each container (based on its features) is mapped to a
virtual machine with a specific type.

A. Components Involved in the Pre-execution Phase
In the pre-execution phase, some components of the archi-

tecture need to be tuned or defined before the system runtime.

• Task Classifier: The classifier is the entry point of
the streaming of tasks submitted by cloud users. It
is responsible for categorizing the submitted tasks to
predefined classes based on the desired features. The
features are selected according to the objective of the
grouping process and the workload characteristics. The
goal of the component is to identify tasks with similar
usage patterns in terms of CPU, memory, and disk uti-
lization. These patterns are obtained with application of
clustering algorithms. The classifier must be trained with
historical data before the system start up. The objective
of clustering tasks is understanding, via profiling, the
resource needs of tasks that are later used in the process
of defining VM types and estimating the number of tasks
that can be packed on each VM.

• VM Type Definer: This component is responsible for
defining VM sizes based on the information provided by
the Task Classifier. This is because determination of the
optimal VM size requires analysis of the historical data
about usage patterns of the task containers, and identi-
fication of groups of tasks with similar usage patterns
reduces the complexity of estimating the average usage
for a typical group. The output of this component is then
saved in the VM Types Repository.

4

• VM Types Repository: In this repository, the available
virtual machine sizes including the CPU, memory, and
disk specification are saved.

B. Components Involved in Execution Phase:

In this section we discuss the components which are in-
volved during the execution phase of the system. By execution
phase, we mean the activities carried out when the system is
started up and accepting job submissions.

• Container Mapper: Clustering results from the Task
Classifier are sent to the Container Mapper. Firstly,
this component maps each task to a suitable container.
Then, based on the available resources in the running
virtual machines and the available VM types in the VM
Types Repository, this component estimates the number
and type of new virtual machines to be instantiated to
support the newly arrived tasks. Apart from new VM
instantiation when available VMs cannot support the
arriving load, this component also reschedules rejected
tasks that are stored in the rejected task repository to the
available virtual machines of the type required by the
VM (if any). This component prioritizes the assignment
of newly arrived tasks to available resources before
instantiating a new virtual machine.

• Virtual Machine Instantiator: This component is re-
sponsible for the instantiation of a group of VMs with
the specifications received from the Container Mapper.
This component decreases the start-up time of the virtual
machines by instantiating a group of VMs at a time
instead of one VM per time.

• Virtual Machine Provisioner: This component is re-
sponsible for determining the placement of each virtual
machine on available hosts and turning on new hosts if
required to support the new VMs.

• Rejected Task Repository: The tasks that are rejected
by the VM Controller are submitted to this repository,
where they stay until the next upcoming processing
window to be rescheduled by the Container Mapper.

• Available VM Capacity Repository: IDs of virtual
machines that have available resources are registered in
this repository. It is used for assigning tasks killed by
the Virtual Machine Controller along with newly arrived
ones to available resource capacity.

• Power Monitor: This component is responsible for
estimating the power consumption of the data center
based on the resource utilization of available hosts.

• Host Controller: The Host Controller runs on each
host of the data center. It periodically checks virtual
machine resource usage (which is received from the
Virtual Machine Controllers) and identifies underutilized
machines, which are registered in the available resource
repository. This component also submits killed tasks
from the VMs running on its host to the Rejected Task
Repository so that these tasks can be rescheduled in the
next processing window. It also sends the host usage
data to the Power Monitor.

• Virtual Machine Controller (VMC): The VMC runs
on each VM of the data center. It monitors the usage of
the VM and, if the resources usage exceeds the virtual
machine capacity, it kills a number of containers with
low priority tasks so that high priority ones can obtain
the VM resources they require. In order to avoid task
starvation, this component also considers the number
of times a task is killed. Then the Controller sends
killed tasks to the Host Controller to be submitted to the
global rejected task repository. As mentioned before, the
killed tasks are then rescheduled on an available virtual
machine in the next processing window.

As we have described in this section, Task Clustering and
VM Type Definer are two core components of the architecture.
Therefore, in the next two sections we elaborate more on
approaches that these components use to achieve effective and
container-optimized VM size selection.

V. TASK CLUSTERING

For validation of the proposed architecture, we use Google
cluster traces. For the purpose of the evaluation of the ap-
proach, we selected to use the second day of the traces as it
had the highest number of task submissions. As the first step,
we have selected a subset of relevant features of tasks.

A. Clustering Feature Set

As our feature set, we used the following characteristics of
each task:

Task Length: The time during which the task was running on
a machine;
Submission Rate: The number of times that a task is being
submitted to the data center;
Scheduling Class: How sensitive to latency is the task/job.
In the studied traces the scheduling class is presented by an
integer number between 0 and 3. The task with a 0 scheduling
class is a non-production task. The higher the scheduling class
is, the most latency sensitive the task is;
Priority: The priority of a task shows how important a task is.
The high priority tasks get the preference for resources over
the low priority ones [10]. The priority is an integer number
in the range from 0 to 10;
Resource Usage: The average resource utilization UT (cal-
culated based on Equation 1) of a task T in terms of CPU,
memory, and disk during the observed period, defined as:

UT =

∑nr
m=1 u(T,m)

nr
(1)

Where nr is the number of times that the task usage (uT)
is being reported in the observed period.

The selected features of the data set were used for estimating
the number of task’s clusters and determining the suitable
virtual machine configuration for each group.

5

B. Clustering Algorithm
Clustering is the process of grouping the objects with the

objective of finding the subsets with the most similarities in
terms of the selected features. Therefore, the objective of the
grouping and the number of groups both would affect the
results of clustering. In our specific experiment, we focus on
finding groups of tasks with similarities in their usage pattern
so that we can allocate the available resources efficiently. A
primary task in clustering is identifying the number of clusters
for which we used X-means algorithm.

X-means [12] is the extended version of k-means [13] used
for estimating the number of groups present in the incom-
ing tasks. K-means is a computationally efficient partitioning
algorithm for grouping N-dimensional dataset into k clusters
via decreasing within-class variance. However, supplying the
number of groups (k) as an input of the algorithm is the major
challenge in K-means. However, X-means itself estimates the
number of clusters. The other difference of two is in the search-
ing process, k-means search is prone to local minima, while
X-means efficiently searches the space of cluster locations and
number of clusters in order to optimise Bayesian information
Criterion (BIC). The BIC is a criterion for selection of the
best fitting model amongst a set of available models for the
data [14]. Optimising the BIC criterion (which is achieved in
X-means) results in a better fitting model, which in the context
of this work means finding the optimum number of clusters
for the input data set.

In our implementation, we use R [15] as an environment
for our statistical analysis of the data set and the statistical
procedures including X-means clustering algorithm and data
pre-processing. In this respect, RWeka [16] is used as our R
interface to connect to the applied machine learning software
Weka [17]. We used X-means from the clusterer package of
Weka for estimating the number of clusters.

VI. DETERMINATION OF VM TYPES

Once clusters that represent groups of tasks with similar
characteristics in terms of the selected features are defined,
the next step is to assign a VM type that can efficiently
execute tasks that belong to the cluster. By efficiently, we
mean successfully executing the tasks with minimum resource
wastage. Parameters of interest of a VM are number of cores,
amount of memory, and amount of storage. Apart from these,
we added one more parameter named task capacity, which is
the maximum number of tasks that can run in one VM without
resulting in task rejection.

VM Sizing Strategy: For each group (cluster) of tasks,
in order to determine the virtual machine’s parameters, the
average amount of resources required per hour for serving
the user requests during the 24 hours observation period is
estimated. Thus, the amount of CPU required per hour (CPUh)
is defined as follows:

CPUh = nT ∗ CPUu (2)

where CPUu is the average amount of CPU usage on an
hourly basis and nTh is the average number of tasks per hour
that are present and running in the system.

When the average amount of required CPU per hour is
estimated, a limit should be set for the maximum amount of
the CPU that a virtual machine can obtain. This amount should
be set according to the underlining infrastructure. For example
if the servers have 32 cores of CPU and the provider wants to
host at least two virtual machines per server, then each VM can
obtain at most 16 cores. If we assume that the largest virtual
machine in the system would have less than 16 cores, then if
the CPUh is above 16, therefore the load should be served
by more than one virtual machine. It has to be divided by the
first integer n found between 2 to 9 in a way that the residual
of CPUh/n is zero (For example if the CPUh is equal to 21,
n would be 3, which results in 3 VMs with 7 cores each.) .
In other words, n would be the number of virtual machines
with VMCPU = CPUh/n which is enough for serving the
requests for every hour. Further, if the CPUh is bellow our
virtual machine maximum CPU limit, then one virtual machine
would be enough to serve the requests and n is equal to 1.

Then, for defining the VM memory size, Equation 3 is used.

VMmemory =
nT ∗memoryu

n
(3)

In our studied trace, since the tasks required small amount
of storage, the allocated amount of storage for all of the virtual
machines are assumed to be 10 GB, which is enough for the OS
installed on the VM and the tasks disk usage. Furthermore, the
VM’s task capacity VMtc is calculated based on Equation 4.

VMtc = min(VM1/tU1
, ..., V Mi/tUi

), i = {CPU,memory}
(4)

where tUi
is the average resource usage during the observed

period.
Thus, for each cluster, the VM type is defined in terms of

CPUh and VMmemory . Once VM Types are determined, they
are stored in the VM types repository, so future selection of
better matches for required containers hosting the tasks are
chosen based on such defined types. The effectiveness of this
strategy for selection of VM Types based on clustering of tasks
is evaluated in the next sections.

VII. EVALUATION

In this section, we discuss the experiments that we con-
ducted to evaluate our proposed approach in terms of its
efficiency in task execution and power consumption.

The data set used in this paper is derived from the second
version of the Google cloud trace log [10] collected during a
period of 29 days. The log consists of data tables describing the
machines, jobs, and tasks. In the trace log, each job consists
of a number of tasks with specific constraints. Considering
these constraints, the scheduler determines the placement of
the tasks on the appropriate machines. The event type value
in the job and tasks are reported in the event table. For the
purpose of this evaluation, we utilize all the events from the
trace log and we assume that all the events are happening as
reported in the trace log.

6

TABLE I. VIRTUAL MACHINE CONFIGURATIONS FOR 18 CLUSTERS.

VM Type Number of Tasks vCPU
Memory
(GB)

VM Type Number of Tasks vCPU
Memory
(GB)

TYPE 1 142 14 17.93 TYPE 10 418 8 14.8

TYPE 2 79 1 2.82 TYPE 11 471 9 28.98

TYPE 3 261 3 11.70 TYPE 12 87 2 4.11

TYPE 4 292 2 2.39 TYPE 13 439 1 3.68

TYPE 5 1836 1 5.35 TYPE 14 185 3 22.48

TYPE 6 107 3 8.1 TYPE 15 78 1 2.72

TYPE 7 70 2 3.21 TYPE 16 220 3 10.12

TYPE 8 585 1 0.93 TYPE 17 254 1 14.14

TYPE 9 336 1 2.06 TYPE 18 1200 1 1.52

TABLE II. VIRTUAL MACHINE SPECIFICATIONS OF RFS AND THE SELECTED AMAZON EC2 INSTANCES.

RFS Amazon EC2

VM Type Number of Tasks vCPU
Memory
(GB)

VM Type Cmax vCPU
Memory
(GB)

TYPE 1 452 1 5.42
m3.large 150 1 7.5

TYPE 2 696 9 16.1

TYPE 3 273 3 5.32 m3.medium 150 1 3.75

TYPE 4 1639 11 24.29 t2.medium 266 2 4

TYPE 5 357 1 3.29 t2.small 133 1 2

In the available traces, resource utilization measurements
and requests are normalized, and the normalization is per-
formed separately for each column in relation to the high-
est amount of the particular resource found on any of the
machines. In this context, to get a real sense of the data,
we assume the largest amount of resources including CPU,
memory, and disk to be 100% of a core of the largest machine
CPU (3.2 GHz), 4GB and 1 GB respectively. Therefore,
for every column we multiply each recorded data by the
related amount (e.g for recorded memory utilization we have
Realutil = RecordedUtil ∗ 4).

The Google cluster hosts are heterogeneous in terms of
the CPU, memory and disk capacity. However, the hosts
with the same platform ID have the same architecture. In
order to eliminate the placement constraints and decrease
placement complexity, only the tasks scheduled on one of the
three available platforms are considered. The configurations
of the simulated data center servers are inspired by Google
data center during the studied trace period. As suggested by
Garraghan et.al [18], the servers in our selected platform are
PRIMERGY RX200 S7. For the PRIMERGY platform, the
tasks scheduled during the second day of the traces are all
scheduled on one server type with 32 cores of CPU (3.2 GHz),
32 GB of memory and 1 TB of disk. The power profile of
this server type are extracted from the SPECpower ssj2008
results [19] reported for PRIMERGY. This power profile is
then used for determining the constants of the applied power
linear model presented in Equation 5 (in this equation n is
the CPU utilization percentage of each server). We focus on
energy consumption of CPU because this is the component that
presents the largest variance in energy consumption in regards
to its utilization rate [20].

Pn(ti) = (Pmax − Pidle) ∗ n/100 + Pidle (5)

The proposed system is simulated and the tasks are assigned
to the containers. Then, these containers are hosted in the
corresponding virtual machine types during each processing

5 10 15 20 25

0
10

20
30

40
50

Time (Hour)

E
ne

rg
y

C
on

su
m

pt
io

n
(K

W
h)

●

m3.large
m3.medium
t2.medium
t2.small
WFS
RFS

● ● ● ● ● ● ●
● ● ● ● ● ●

●
●

●
● ●

●
● ● ● ●

●
●

Fig. 3. Energy consumption of the data center for the usage-based fix VM
size approach versus RFS and WFS

window (one minute for the purposes of these experiments).
The simulation runtime is set to 24 hours. The number of
rejected tasks is reported for each experiment separately. Since
the virtual machines placement also affects the simulation
result, First Fit placement policy is used for all of the experi-
ments. This placement algorithm reports the first running host
that can provide the resources for the VM and if no running
host is found for placing the VM then a new host will be
turned on.

Output metrics of interest are number of instantiated VMs,
task rejection rate, and the energy consumption (Subsec-
tion VII-A3). In order to ensure the quality of service, task
rejection rate is defined as the number of rejected tasks in
each 1 minute processing window.

A. Results

Initially, we explore the factors that affect the resulting
virtual machine sizes (types). The number of VM types is
directly affected by the number of task clusters (k), which

7

RFS

WFS

m3.large

t2.medium

m3.medium

t2.small

Task Rejection Rate(task/minute)

0 10 20 30 40 50

Fig. 4. Task rejection rate for WFS, RFS and the fixed VM sizes considering
the usage-based approach

is estimated via applying X-means on the selected feature set.
The details are further discussed in Section VII-A1.

The efficiency of the proposed VM size selection technique
is then explored considering the baseline scenarios in which
the virtual machine types are fixed. For the baseline scenarios,
the containers are assigned to VMs considering two different
criteria discussed in Subsection VII-A2.

1) Feature set selection: The following approaches are con-
sidered in the investigation the effect of feature selection on
virtual machine sizes:

Whole Feature Set (WFS) approach: In this approach, the
whole feature set listed in Section V-A is considered as the
input of the X-means algorithm, which resulted in 18 clusters
of tasks. The virtual machine sizes are defined following the
procedures in Section VI. The obtained VM sizes are listed in
Table I. As we mentioned in Section VI, 10 GB of storage is
assigned to all VM types in order to have enough space for
the OS installed on each VM.

Reduced Feature Set (RFS) approach: By assigning
the same amount of storage, WFS approach leads to the
observation that the most effective parameters in VM size
selection for this specific workload are the average CPU and
memory utilization. Therefore, for the RFS approach, the
clustering feature set is reduced to these two main features.
The application of the new feature set as input of X-means
resulted in 5 clusters, which consequently results in 5 different
VM sizes (shown in Table II).

Between these two approaches, the one that could save
more energy via reducing the number of servers has the more
efficient virtual machine sizes. As Figure 3 shows, RFS results
in 81% less energy consumption in comparison to WFS. This is
because RFS causes less resource fragmentation and that leads
to less number of servers. Therefore, it can be concluded that
tailoring the size of virtual machines to container requirement
is crucial, however it has to be done in such a way that avoids
resource fragmentation. Apart from the energy perspective,
comparing to WFS approach, RFS results in 86% and 77% less
number of instantiated VMs and rejection rate respectively.

2) Baseline scenarios: In order to investigate the effect of
defining the virtual machine sizes according to the workload
(container optimized), in these experiments we consider sce-
narios where VM sizes are fixed. In this respect, we consider

the existing Amazon EC2 instances listed in Table II. In
these scenarios, the scheduler assigns the containers to only
one specific VM size (e.g t2.small instance) considering the
following approaches:

Request-based resource allocation approach: In the
request-based resource allocation approach, tasks are given the
exact amount of resources requested and specified by the user
while submitted. Therefore, in this approach containers are
packed in the virtual machines according to their containing
task specifications, as submitted by users.

Usage-based resource allocation approach: In this ap-
proach, the maximum number of containers (cmax) that can
be hosted in one VM instance is specified in the pre-execution
phase leveraging the average resource utilization of the tasks.
cmax is reported for each of the Amazon instances in Table II.
This approach is included in the baseline scenarios, since the
concept of utilizing the usage of the tasks is also taken into
account in our VM size selection technique.

cmax = min(VMr/Usager), r = CPU,Memory,Disk
(6)

3) Discussion: The results obtained with the utilization
of the aforementioned approaches are compared considering
three different matrices. The first matrix, which shows the
main effect of our proposed VM size selection selection
technique, is the energy consumption matrix obtained through
Equation 5. Figure 3 shows the energy consumption for the
baseline scenarios considering the usage-based approach and
the proposed VM size selection technique. The data center
energy consumption for the baseline scenarios considering
the requested-based approach is also plotted in Figure 5.
Because users overestimate resource requirements, the energy
consumption is improved in the usage-based approach by
almost 50% comparing to the requested-based approach in the
baseline scenarios, for all of the fixed VM sizes. However,
RFS still outperforms all of the experiments in terms of the
data center energy consumption. For the usage-based baseline
scenarios, RFS shows 33%, 44%, 24%, and 70% less energy
consumption on average comparing to t2.small, t2.medium,
m3.medium, and m3.large VM sizes respectively.

For the second comparison matrix, we consider the number
of instantiated virtual machines (nVM). The increase in nVM ,
results in more virtualization overhead and also longer delays
in scheduling because of the VM instantiation delay. Results
show that RFS can execute the workload with the smallest
nVM . It outperforms the usage-based baseline scenarios by
82%, 75%, 37%, and 86% less number of instantiated VMs
for the t2.small, t2.medium, m3.medium, and m3.large VM
sizes respectively.

In order to ensure the quality of service, the task rejec-
tion rate is considered as the third comparison matrix. Task
rejection rates for the usage-based baseline scenarios, WFS,
and RFS approaches are shown in Figure 4. As in previous
cases, RFS VM size selection approach outperforms the usage-
based baseline scenarios by 8%, 42%, 8%, and 15% less task
rejection rate for the t2.small, t2.medium, m3.medium, and
m3.large VM sizes respectively. It is worth mentioning that,

8

5 10 15 20 25

0
20

40
60

80

Time (Hour)

E
ne

rg
y

C
on

su
m

pt
io

n
(K

W
h)

●

m3.large
m3.medium
t2.medium
t2.small
WFS
RFS

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Fig. 5. Energy consumption of the data center for the request-based fix VM
size approach versus RFS and WFS.

RFS

WFS

m3.large

t2.medium

m3.medium

t2.small

Resource Allocation Mode:
Usage−based
Request−based

Number of Instantiated VMs

0

10
0

20
0

30
0

40
0

50
0

60
0

Fig. 6. Number of instantiated virtual machines for the applied approaches.

because of the over allocation of resources for the requested-
based baseline scenarios, the task rejection rate is equal to zero
for all of the VM types.

In summary, the experiments show that our VM size se-
lection technique combined with workload information, saves
considerable amount of energy with minimum task rejections.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we investigated the problem of inefficient
utilization of data center infrastructure resulted from the users
overestimation of required resources on virtual machine level.
To address the issue, we considered the recently introduced
CaaS cloud service model and presented a technique for
finding efficient virtual machine sizes for hosting containers
considering their actual resource usage instead of users esti-
mated amounts.

To investigate the efficiency of our VM sizing technique,
we considered baseline scenarios in which the virtual machine
sizes are fixed. Because of user overestimation of resources,
the usage-based approach (where VM sizes are chosen based
on actual requirements of applications rather than amount
requested by users) outperforms the requested-based approach
by almost 50% in terms of the data center average energy
consumption. Despite this improvement, our approach outper-
forms the usage-based baseline scenarios by almost 7.55% in

terms of the data center energy consumption. Apart from the
energy perspective, our approach results in less number of VM
instantiation comparing to all other mentioned experiments.

As future work, we will consider workload prediction to
estimate the real usage of containers, and will apply correlation
analysis to place VMs that are not correlated in one host to
minimize rejection rate.

REFERENCES

[1] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud
computing,” University of California at Berkeley, Berkeley, Technical
Report UCB/EECS-2009-28, Feb. 2009.

[2] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient manage-
ment of data center resources for cloud computing: a vision, architec-
tural elements, and open challenges,” in PDPTA 2010: Proc. of the
2010 International Conference on Parallel and Distributed Processing
Techniques and Applications. CSREA Press, pp. 6–17.

[3] Mishra et al., “Towards characterizing cloud backend workloads: in-
sights from Google compute clusters,” ACM SIGMETRICS Performance
Evaluation Review, vol. 37, no. 4, p. 3441, 2010.

[4] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and
lessons from a publicly available google cluster trace,” Tech. Rep., 2010.

[5] A. Kansal et al., “Virtual machine power metering and provisioning,”
in Proc. of the 1st ACM symposium on Cloud computing, 2010.

[6] R. Nathuji and K. Schwan, “VirtualPower: coordinated power manage-
ment in virtualized enterprise systems,” in ACM SIGOPS Operating
Systems Review, vol. 41, 2007, pp. 265 –278.

[7] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning of
cloud resources for real-time services,” in Proc. of the 7th International
Workshop on Middleware for Grids, Clouds and e-Science, 2009, p. 1.

[8] D. Gmach, J. Rolia, and L. Cherkasova, “Selling t-shirts and time
shares in the cloud,” in Proc. of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).
IEEE Computer Society, 2012, pp. 539–546.

[9] S. Hosseinimotlagh, F. Khunjush, and R. Samadzadeh, “Seats: smart
energy-aware task scheduling in real-time cloud computing,” The Jour-
nal of Supercomputing, vol. 71, no. 1, pp. 45–66, 2015.

[10] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format+ schema,” Tech. Rep., 2011.

[11] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “HARMONY:
Dynamic heterogeneity-aware resource provisioning in the cloud,”
The 33rd International Conference on Distributed Computing Systems
(ICDCS), July 2013.

[12] D. Pelleg and A. W. Moore, “X-means: Extending k-means with effi-
cient estimation of the number of clusters,” in Seventeenth International
Conference on Machine Learning. Morgan Kaufmann, 2000.

[13] J. Hartigan and M. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Applied Statistics, vol. 28, no. 1, pp. 100–108, 1979.

[14] G. Schwarz et al., “Estimating the dimension of a model,” The annals
of statistics, vol. 6, no. 2, pp. 461–464, 1978.

[15] R. C. Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2013.

[16] K. Hornik et al., “Open-source machine learning: R meets Weka,”
Computational Statistics, vol. 24, no. 2, pp. 225–232, 2009.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[18] P. Townend, J. Xu, and I. S. Moreno, “An analysis of failure-related
energy waste in a large-scale cloud environment,” IEEE Transactions
on Emerging Topics in Computing, p. 1, 2014.

[19] S. P. E. Corporation. (2012) Specpower ssj2008 results. [Online].
Available: http://www.spec.org/power ssj2008/results/

[20] M. Blackburn, Ed., Five ways to reduce data center server power
consumption. The Green Grid, 2008.

