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Abstract—Dynamic consolidation of virtual machines (VMs) is an effective way to improve the utilization of resources and energy

efficiency in cloud data centers. Determining when it is best to reallocate VMs from an overloaded host is an aspect of dynamic VM

consolidation that directly influences the resource utilization and quality of service (QoS) delivered by the system. The influence on the

QoS is explained by the fact that server overloads cause resource shortages and performance degradation of applications. Current

solutions to the problem of host overload detection are generally heuristic based, or rely on statistical analysis of historical data. The

limitations of these approaches are that they lead to suboptimal results and do not allow explicit specification of a QoS goal. We

propose a novel approach that for any known stationary workload and a given state configuration optimally solves the problem of host

overload detection by maximizing the mean intermigration time under the specified QoS goal based on a Markov chain model. We

heuristically adapt the algorithm to handle unknown nonstationary workloads using the Multisize Sliding Window workload estimation

technique. Through simulations with workload traces from more than a thousand PlanetLab VMs, we show that our approach

outperforms the best benchmark algorithm and provides approximately 88 percent of the performance of the optimal offline algorithm.

Index Terms—Distributed systems, cloud computing, virtualization, dynamic consolidation, energy efficiency, host overload detection

Ç

1 INTRODUCTION

CLOUD computing has revolutionized the ICT industry by
enabling on-demand provisioning of computing re-

sources based on a pay-as-you-go model. An organization
can either outsource its computational needs to the cloud
avoiding high up-front investments in a private computing
infrastructure and consequent maintenance costs, or imple-
ment a private cloud data center to improve the resource
management and provisioning processes. However, the
problem of data centers is high energy consumption, which
has risen by 56 percent from 2005 to 2010, and in 2010
accounted to be between 1.1 and 1.5 percent of the global
electricity use [1]. Apart from high operating costs, this
results in substantial carbon dioxide (CO2) emissions, which
are estimated to be 2 percent of the global emissions [2]. The
problem has been partially addressed by improvements in
the physical infrastructure of modern data centers. As
reported by the Open Compute Project,1 Facebook’s Oregon
data center achieves a Power Usage Effectiveness (PUE) of
1.08, which means that � 93 percent of the data center’s
energy consumption are consumed by the computing

resources. Therefore, now it is important to focus on the
resource management aspect, i.e., ensuring that the comput-
ing resources are efficiently utilized to serve applications.

One method to improve the utilization of data center
resources, which has been shown to be efficient [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], is dynamic
consolidation of Virtual Machines (VMs). This approach
leverages the dynamic nature of cloud workloads: The VMs
are periodically reallocated using live migration according
to their current resource demand to minimize the number
of active physical servers, referred to as hosts, required to
handle the workload. The idle hosts are switched to low-
power modes with fast transition times to eliminate the
static power and reduce the overall energy consumption.
The hosts are reactivated when the resource demand
increases. This approach has basically two objectives,
namely minimization of energy consumption and max-
imization of the quality of service (QoS) delivered by the
system, which form an energy-performance tradeoff.

The QoS requirements can be defined in terms of a variety
of metrics and are formalized in the service level agreements
(SLAs). In this work, to specify the QoS requirements we
apply a modification of the workload independent metric
proposed in our previous work [15]. Therefore, the problem
transforms into minimization of energy consumption under
QoS constraints. This problem is too complex to be treated
analytically as a whole, as just the VM placement, which is a
part of dynamic VM consolidation, is an NP-hard problem
[4], [9], [13]. Moreover, many aspects of the problem have to
be addressed, e.g., the heterogeneity of physical resources
and VMs; nonstationary and unknown workloads, as
observed in Infrastructure as a Service (IaaS) environments;
power and performance costs of VM migrations; and the
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large scale of cloud data center infrastructures. Another
argument for splitting the problem is decentralization of the
resource management algorithm, which is important for
scaling the resource management system for efficient
handling of thousands of servers. Therefore, to make the
problem of dynamic VM consolidation tractable and provide
decentralization, in our previous work [15] we have
proposed its division into four subproblems:

1. Deciding when a host is considered to be over-
loaded, so that some VMs should be migrated from
it to other hosts to meet the QoS requirements.

2. Deciding when a host is considered to be under-
loaded, so that its VMs should be migrated, and the
host should be switched to a low-power mode.

3. Selecting VMs to migrate from an overloaded host.
4. Allocating the VMs selected for migration to other

active or reactivated hosts.

In this paper, we focus on the first subproblem—the
problem of host overload detection. Detecting when a host
becomes overloaded directly influences the QoS, because if
the resource capacity is completely utilized, it is highly
likely that the applications are experiencing resource
shortage and performance degradation. What makes the
problem of host overload detection complex is the necessity
to optimize the time-averaged behavior of the system, while
handling a variety of heterogeneous workloads placed on a
single host. To address this problem, most of the current
approaches to dynamic VM consolidation apply either
heuristic-based techniques, such as static utilization thresh-
olds [5], [6], [7], [8]; decision-making based on statistical
analysis of historical data [12], [13]; or simply periodic
adaptation of the VM allocation [3], [4]. The limitations of
these approaches are that they lead to suboptimal results
and do not allow the administrator to explicitly set a QoS
goal. In other words, the performance in regard to the QoS
delivered by the system can only be adjusted indirectly by
tuning parameters of the applied host overload detection
algorithm. In contrast, our approach enables the system
administrator to explicitly specify a QoS goal in terms of a
workload independent QoS metric. The underlying analy-
tical model allows a derivation of an optimal randomized
control policy for any known stationary workload and a
given state configuration. Our contributions in this paper are:

1. We analytically show that to improve the quality of
VM consolidation, it is necessary to maximize the
mean time between VM migrations initiated by the
host overload detection algorithm.

2. We propose an optimal offline algorithm (OPT) for host
overload detection, and prove its optimality.

3. We introduce a novel Markov Chain model that
allows a derivation of a randomized control policy
that optimally solves the problem of maximizing the
mean time between VM migrations under an
explicitly specified QoS goal for any known sta-
tionary workload and a given state configuration in
the online setting.

4. To handle unknown nonstationary workloads, we
apply the Multisize Sliding Window workload
estimation approach [16] to heuristically build an
adapted algorithm, which leads to approximately

15 percent higher mean intermigration time com-
pared to the best benchmark algorithm for the input
workload traces used in our experiments. The
adapted algorithm leads to approximately 88 percent
of the mean intermigration time produced by
the OPT.

We evaluate the algorithm by simulations using real-
world workload traces from more than a thousand
PlanetLab2 VMs hosted on servers located in more than
500 places around the world. Our experiments show that
the introduced algorithm outperforms the benchmark
algorithms, while meeting the QoS goal in accordance with
the theoretical model. The algorithm uses a workload
independent QoS metric and transparently adapts its
behavior to various workloads using a machine-learning
technique; therefore, it can be applied in an environment
with unknown nonstationary workloads, such as IaaS.

It is important to note that the model proposed in this
paper is based on Markov chains requiring a few funda-
mental modeling assumptions. First of all, the workload
must satisfy the Markov property, which implies memory-
less state transitions and an exponential distribution of state
transition delays. These assumptions must be taken into
account in an assessment of the applicability of the
proposed model to a particular system. A more detailed
discussion of the modeling assumptions and validation of
the assumptions is given in Section 6.4.

The remainder of the paper is organized as follows: In
Section 2, we discuss the related work followed by the
objective of host overload detection and workload inde-
pendent QoS metric in Sections 3 and 4, respectively. We
introduce an OPT for the problem of host overload
detection in Section 5. In Section 6, we introduce a Markov
model for the problem of host overload detection and
approximate it for unknown non-stationary workloads in
Section 7. In Section 8, we propose a control algorithm
followed by a multicore CPU model in Section 9 and an
experimental evaluation in Section 10. We conclude the
paper with Section 11 discussing the results and future
research directions.

2 RELATED WORK

Prior approaches to host overload detection for energy-
efficient dynamic VM consolidation proposed in the
literature can be broadly divided into three categories:
Periodic adaptation of the VM placement (no overload
detection), threshold-based heuristics, and decision-making
based on statistical analysis of historical data. One of the
first works, in which dynamic VM consolidation has been
applied to minimize energy consumption in a data center,
has been performed by Nathuji and Schwan [3]. They
explored the energy benefits obtained by consolidating VMs
using migration and found that the overall energy
consumption can be significantly reduced. Verma et al. [4]
modeled the problem of power-aware dynamic VM
consolidation as a bin-packing problem and proposed a
heuristic that minimizes the data center’s power consump-
tion, taking into account the VM migration cost. However,
the authors did not apply any algorithm for determining
when it is necessary to optimize the VM placement—the
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proposed heuristic is simply periodically invoked to adapt
the placement of VMs.

Zhu et al. [5] studied the dynamic VM consolidation
problem and applied a heuristic of setting a static CPU
utilization threshold of 85 percent to determine when a
host is overloaded. The host is assumed to be overloaded
when the threshold is exceeded. The 85 percent utilization
threshold has been first introduced and justified by Gmach
et al. [6] based on their analysis of workload traces. In
their more recent work, Gmach et al. [7] investigated
benefits of combining both periodic and reactive thresh-
old-based invocations of the migration controller. VMware
Distributed Power Management [8] operates based on the
same idea with the utilization threshold set to 81 percent.
However, static threshold heuristics are unsuitable for
systems with unknown and dynamic workloads, as these
heuristics do not adapt to workload changes and do not
capture the time-averaged behavior of the system. We
have enhanced the static threshold heuristic in our
previous work [15] by dynamically adapting the value of
the threshold according to statistical analysis of the
workload history. In this paper, we use static and dynamic
threshold heuristics as benchmark algorithms in the
experimental evaluation of the proposed approach.

Jung et al. [9] investigated the problem of dynamic
consolidation of VMs running multitier web applications to
optimize a global utility function, while meeting SLA
requirements. The approach is workload specific, as the
SLA requirements are defined in terms of the response time
precomputed for each transaction type of the applications.
When the request rate deviates out of an allowed interval,
the system adapts the placement of VMs and the states of
the hosts. Zheng et al. [10] proposed automated experi-
mental testing of the efficiency of a reallocation decision
prior to its application, once the response time, specified in
the SLAs, is violated. In the approach proposed by Kumar
et al. [11], the resource allocation is adapted when the
application’s SLAs are violated. Wang and Wang [17]
applied control loops to manage resource allocation under
response time QoS constraints at the cluster and server
levels. If the resource capacity of a server is insufficient to
meet the applications’ SLAs, a VM is migrated from the
server. All these works are similar to threshold-based
heuristics in that they rely on instantaneous values of
performance characteristics but do not leverage the ob-
served history of system states to estimate the future
behavior of the system and optimize time-averaged
performance metrics.

Guenter et al. [12] implemented an energy-aware
dynamic VM consolidation system focused on web applica-
tions, whose SLAs are defined in terms of the response
time. The authors applied weighted linear regression to
predict the future workload and proactively optimize the
resource allocation. This approach is in line with the Local
Regression (LR) algorithm proposed in our previous work
[15], which we use as one of the benchmark algorithms in
this paper. Bobroff et al. [13] proposed a server overload
forecasting technique based on time-series analysis of
historical data. Unfortunately, the algorithm description
given in the paper is too high level, which does not allow us
to implement it to compare with our approach. Weng et al.

[18] proposed a load-balancing system for virtualized
clusters. A cluster-wide cost of the VM allocation is
periodically minimized to detect overloaded and under-
loaded hosts, and reallocate VMs. This is a related work but
with the opposite objective—the VMs are deconsolidated to
balance the load across the hosts.

As mentioned above, the common limitations of the
prior works are that, due to their heuristic basis, they lead
to suboptimal results and do not allow the system
administrator to explicitly set a QoS goal. In this work,
we propose a novel approach to the problem of host
overload detection inspired by the work of Benini et al. [19]
on power management of electronic systems using Markov
decision processes. We build a Markov chain model for the
case of a known stationary workload and a given state
configuration, and using a workload independent QoS
metric derive a Nonlinear Programming (NLP) problem
formulation. The solution of the derived NLP problem is
the optimal control policy that maximizes the time between
VM migrations under the specified QoS constraint in the
online setting. Since most real-world systems, including
IaaS, experience highly variable nonstationary workloads,
we apply the Multisize Sliding Window workload estima-
tion technique proposed by Luiz et al. [16] to heuristically
adapt the proposed model to nonstationary stochastic
environments and practical applications. Although the
final approach is a heuristic, in contrast to the related
works it is based on an analytical model that allows the
computation of an optimal control policy for any known
stationary workload and a given state configuration.

3 THE OBJECTIVE OF A HOST OVERLOAD

DETECTION ALGORITHM

In this section, we show that to improve the quality of VM
consolidation, it is necessary to maximize the time intervals
between VM migrations from overloaded hosts. Since VM
consolidation is applied to reduce the number of active
physical hosts, the quality of VM consolidation is inversely
proportional to H, the mean number of active hosts over n
time steps:

H ¼ 1

n

Xn
i¼1

ai; ð1Þ

where ai is the number of active hosts at the time step
i ¼ 1; 2; . . . ; n. A lower value of H represents a better quality
of VM consolidation.

To investigate the impact of decisions made by host
overload detection algorithms on the quality of VM
consolidation, we consider an experiment, where at any
time step the host overload detection algorithm can initiate
a migration from a host due to an overload. There are two
possible consequences of a decision to migrate a VM
relevant to host overload detection: Case 1, when a VM to
be migrated from an overloaded host cannot be placed on
another active host due to insufficient resources, and
therefore, a new host has to be activated to accommodate
the VM; and Case 2, when a VM to be migrated can be
placed on another active host. To study host overload
detection in isolation, we assume that no hosts are switched
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off during the experiment, i.e., once a host is activated, it
remains active until n.

Let p be the probability of Case 1, i.e., an extra host has to
be activated to migrate a VM from an overloaded host
determined by the host overload detection algorithm. Then,
the probability of Case 2 is ð1� pÞ. Let T be a random
variable denoting the time between two subsequent VM
migrations initiated by the host overload detection algo-
rithm. The expected number of VM migrations initiated by
the host overload detection algorithm over n time steps is
n=E½T �, where E½T � is the expected intermigration time.

Based on the definitions given above, we can define
X � Bðn=E½T �; pÞ, a binomially distributed random variable
denoting the number of extra hosts switched on due to VM
migrations initiated by the host overload detection algo-
rithm over n time steps. The expected number of extra hosts
activated is E½X� ¼ np=E½T �. Let A be a random variable
denoting the time during which an extra host is active
between the time steps 1 and n. The expected value of A can
be defined as follows:

E½A� ¼
XnE½T �
j k

i¼1

ðn� ði� 1ÞE½T �Þp

¼ n

E½T �

� �
p

2
nþ n� n

E½T �

� �
� 1

� �
E½T �

� �

�np
2

1þ n

E½T �

� �
:

ð2Þ

Let us rewrite (1) as follows:

H ¼ 1

n

Xn
i¼1

ai

¼ 1

n

Xn
i¼1

a1 þ
1

n

Xn
i¼1

ðai � a1Þ

¼a1 þ
1

n

Xn
i¼1

ðai � a1Þ:

ð3Þ

The first term a1 is a constant denoting the number of
hosts that have been initially active and remain active until
the end of the experiment. The second term H� ¼
1
n

Pn
i¼1ðai � a1Þ is the mean number of hosts switched on

due to VM migrations being active per unit of time over n
time steps. We are interested in analyzing the average
behavior, and thus estimating the expected value of H�. It is
proportional to a product of the expected number of extra
hosts switched on due to VM migrations and the expected
activity time of an extra host normalized by the total time,
as shown in

E½H�� / 1

n
E½X�E½A�

� 1

n

np

E½T �
np

2
1þ n

E½T �

� �

¼ np2

2E½T � 1þ n

E½T �

� �
:

ð4Þ

Since the objective is to improve the quality of VM
consolidation, it is necessary to minimize E½H��. From (4),
the only variable that can be directly controlled by a host

overload detection algorithm is E½T �; therefore, to minimize
E½H�� the objective of a host overload detection algorithm is
to maximize E½T �, i.e., to maximize the mean time between
migrations from overloaded hosts.

4 A WORKLOAD INDEPENDENT QOS METRIC

To impose QoS requirements on the system, we apply an
extension of the workload independent QoS metric introduced
in our previous work [15]. We define that a host can be in
one of two states in regard to its load level: 1) serving
regular load; and 2) being overloaded. It is assumed that if a
host is overloaded, the VMs allocated to the host are not
being provided with the required performance level leading
to performance degradation. To evaluate the overall
performance degradation, we define a metric denoted
Overload Time Fraction (OTF):

OTF ðutÞ ¼
toðutÞ
ta

; ð5Þ

where ut is the CPU utilization threshold distinguishing the
nonoverload and overload states of the host; to is the time,
during which the host has been overloaded, which is a
function of ut; and ta is the total time, during which the host
has been active. Using this metric, SLAs can be defined as
the maximum allowed value of OTF. For example, if in the
SLAs it is stated that OTF must be less or equal to
10 percent, it means that on average a host is allowed to
be overloaded for not more than 10 percent of its activity
time. Since the provider is interested in maximizing the
resource utilization while meeting the SLAs, from his
perspective this requirement corresponds to the QoS goal
of OTF ! 10%, while OTF � 10%. The definition of the
metric for a single host can be extended to a set of hosts by
substituting the time values by the aggregated time values
over the set of hosts.

The exact definition of the state of a host, when it is
overloaded, depends on the specific system requirements.
However, the value of the CPU utilization threshold ut
defining the states of a host does not affect the model
proposed in this paper, the model allows setting the
threshold to any value. For example, in our experiments,
we define that a host is overloaded, when its CPU
utilization is 100 percent, in which case the VMs allocated
to this host do not get the required CPU capacity leading to
performance degradation. The reasoning behind this is the
observation that if a host serving applications is experien-
cing 100 percent utilization, the performance of the
applications is constrained by the host’s capacity; therefore,
the VMs are not being provided with the required
performance level.

It has been claimed in the literature that the performance
of servers degrade, when their load approaches 100 percent
[20], [21]. For example, the study of Srikantaiah et al. [21]
has shown that the performance delivered by the CPU
degrades when the utilization is higher than 70 percent. If
due to system requirements, it is important to avoid
performance degradation, the proposed OTF metric allows
the specification of the CPU utilization threshold at the
required level below 100 percent. The host is considered to
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be overloaded, when the CPU utilization is higher than the
specified threshold.

In general, other system resources, such as memory,
disk, and network bandwidth, should also be take into
account in the definition of QoS requirements. However, in
this paper we only consider the CPU, as it is one of the main
resources that are usually oversubscribed by Cloud
providers. Therefore, in our analysis we assume that the
other system resources are not significantly oversubscribed
and do not become performance bottlenecks.

Verma et al. [22] proposed a similar metric for
estimating the SLA violation level in a system, which they
defined as the number of time instances, when the capacity
of a server is less than the demand of all applications
placed on it. However, their metric shows a nonnormalized
absolute value, which, for example, cannot be used to
compare systems processing the same workload for
different periods of time. In contrast, the OTF metric is
normalized and does not depend on the length of the time
period under consideration.

In the next section, based on the objective of a host
overload detection algorithm derived in Section 3 and the
OTF metric introduced in this section, we propose an
OPT for the problem of host overload detection and prove
its optimality.

5 AN OPTIMAL OFFLINE ALGORITHM

As shown in Section 3, it is necessary to maximize the
mean time between VM migrations initiated by the host
overload detection algorithm, which can be achieved by
maximizing each individual intermigration time interval.
Therefore, we limit the problem formulation to a single
VM migration, i.e., the time span of a problem instance is
from the end of a previous VM migration and to the end of
the next. Given the results of Sections 3 and 4, the problem
of host overload detection can be formulated as an
optimization problem (6)-(7)

taðtm; utÞ ! max ð6Þ

toðtm; utÞ
taðtm; utÞ

�M; ð7Þ

where tm is the time when a VM migration has been
initiated; ut is the CPU utilization threshold defining the
overload state of the host; toðtm; utÞ is the time, during
which the host has been overloaded, which is a function of
tm and ut; ta is the total time, during which the host has
been active, which is also a function of tm and ut; and M is
the limit on the maximum allowed OTF value, which is a
QoS goal expressed in terms of OTF. The aim of a host
overload detection algorithm is to select the tm that
maximizes the total time until a migration, while satisfying
the constraint (7). It is important to note that the optimiza-
tion problem (6)-(7) is only relevant to host overload
detection, and does not relate to host underload situations.
In other words, maximizing the activity time of a host is
only important for highly loaded hosts. Whereas for
underloaded hosts, the problem is the opposite—the
activity time needs to be minimized; however, this problem
is not the focus of the current paper and should be
investigated separately.

In the offline setting, the state of the system is known at
any point in time. Consider an offline algorithm that
passes through the history of system states backwards
starting from the last known state. The algorithm decre-
ments the time and recalculates the OTF value toðtm;utÞ

taðtm;utÞ at

each iteration. The algorithm returns the time that
corresponds to the current iteration if the constraint (7) is
satisfied (Algorithm 1).

Algorithm 1. An Optimal Offline Algorithm (OPT)

Input: A system state history

Input: M, the maximum allowed OTF

Output: A VM migration time

1: while history is not empty do

2: if OTF of history �M then

3: return the time of the last history state
4: else

5: drop the last state from history

6: end if

7: end while

Theorem 1. Algorithm 1 is an OPT for the problem of host

overload detection.

Proof. Let the time interval covered by the system state
history be ½t0; tn�, and tm be the time returned by
Algorithm 1. Then, according to the algorithm the
system states corresponding to the time interval ðtm; tn�
do not satisfy the constraint (7). Since tm is the right
bound of the interval ½t0; tm�, then tm is the maximum
possible time that satisfies the constraint (7). Therefore,
tm is the solution of the optimization problem (6)-(7),
and Algorithm 1 is an OPT for the problem of host
overload detection. tu

6 A MARKOV CHAIN MODEL FOR THE HOST

OVERLOAD DETECTION PROBLEM

In this section, we base our model on the definitions of
Markov chains, a mathematical framework for statistical
modeling of real-world processes. Bolch [23] provides a
detailed introduction to Markov chains.

6.1 The Host Model

Each VM allocated to a host at each point in time utilizes a
part of the CPU capacity determined by the application
workload. The CPU utilization created over a period of time
by a set of VMs allocated to a host constitutes the host’s
workload. For the initial analysis, we assume that the
workload is known a priori, stationary, and satisfies the
Markov property. In other words, the CPU utilization of a
host measured at discrete time steps can be described by a
single time-homogeneous DTMC.

There is a controller component, which monitors the
CPU utilization of the host and according to a host overload
detection algorithm decides when a VM should be migrated
from the host to satisfy the QoS requirements, while
maximizing the time between VM migrations. According
to Section 5, we limit the problem formulation to a single
VM migration, i.e., the time span of a problem instance is
from the end of a previous VM migration to the end of the
next.
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To describe a host as a DTMC, we assign states to N

subsequent intervals of the CPU utilization. For example, if

N ¼ 11, we assign the state 1 to all possible values of the

CPU utilization within the interval [0, 10 percent), 2 to the

CPU utilization within ½10; 20 percentÞ; . . . , N to the value

100 percent. The state space S of the DTMC contains N

states, which correspond to the defined CPU utilization

intervals. Using this state definition and knowing the

workload of a host in advance, by applying the Maximum

Likelihood Estimation (MLE) method it is possible to derive

a matrix of transition probabilities P. The matrix is

constructed by estimating the probabilities of transitions

bpij ¼ cijP
k2S cik

between the defined N states of the DTMC for i; j 2 S,

where cij is the number of transitions between states i and j.
We add an additional state ðN þ 1Þ to the Markov chain

called an absorbing state. A state k 2 S is said to be an

absorbing state if and only if no other state of the Markov

chain can be reached from it, i.e., pkk ¼ 1. In other words,

once the Markov chain reaches the state k, it stays in that

state indefinitely. The resulting extended state space is

S� ¼ S [ fðN þ 1Þg. For our problem, the absorbing state

ðN þ 1Þ represents the state, where the DTMC transitions

once a VM migration is initiated. According to this

definition, the control policy can be described by a vector

of the probabilities of transitions from any nonabsorbing

state to the absorbing state ðN þ 1Þ, i.e., the probabilities of

VM migrations, which we denote mi, where i 2 S. To add

the state ðN þ 1Þ into the model, the initial transition

probability matrix P is extended with a column of

unknown transition probabilities m ¼ ½mi�8i 2 S resulting

in an extended matrix of transition probabilities P�:

P� ¼

p�11 � � � p�1N m1

..

. . .
. ..

. ..
.

p�N1 � � � p�NN mN

0 0 0 1

0
BBB@

1
CCCA; ð8Þ

where p�ij are defined as follows:

p�ij ¼ pijð1�miÞ; 8i; j 2 S: ð9Þ

In general, the workload experienced by the host’s VMs

can lead to any CPU utilization from 0 to 100 percent;

therefore, the original DTMC can be assumed to be ergodic.

We will restrict the extended DTMC to the states in S;

therefore, using Q ¼ P� I [23], the extended matrix of

transition probabilities P� can be transformed into a

corresponding extended matrix of transition rates Q�:

Q� ¼

p�11 � 1 � � � p�1N m1

..

. . .
. ..

. ..
.

p�N1 � � � p�NN � 1 mN

0 0 0 0

0
BBB@

1
CCCA: ð10Þ

In the next section, we formulate the QoS constraint in

terms of the introduced model, derived extended matrix of

transition rates Q�, and OTF metric.

6.2 The QoS Constraint

Let

LðtÞ ¼
Z t

0

��ðuÞ du; ð11Þ

then LiðtÞ denotes the total expected time the CTMC spends
in the state i during the interval ½0; tÞ. By integrating an
equation for the unconditional state probability vector ��ðtÞ:
d��ðtÞ=dt ¼ ��ðtÞQ on both sides, a new differential equation
for LðtÞ is derived [23]:

d LðtÞ
dt

¼ LðtÞQþ ��ð0Þ; Lð0Þ ¼ 0: ð12Þ

The expected time spent by the CTMC before absorption
can be calculated by finding the limit LSð1Þ ¼ limt!1 LSðtÞ
restricting the state space to the states in S. The limit exists
due to a nonzero probability of a transition to the absorbing
state ðN þ 1Þ. However, the limit does not exist for the state
ðN þ 1Þ. Therefore, to calculate LSð1Þ, the extended
infinitesimal generator matrix Q� is restricted to the states
in S, resulting in a matrix Q�S of the size N 	N . The initial
probability vector ��ð0Þ is also restricted to the states in S
resulting in ��Sð0Þ. Restricting the state space to nonabsorb-
ing states allows the computation of limt!1 on both sides of
(12) resulting in the following linear equation [23]:

LSð1ÞQ�S ¼ ���Sð0Þ: ð13Þ

Let N denote the state of a host when it is overloaded,
e.g., when the CPU utilization is equal to 100 percent, then
the expected time spent in the state N before absorption can
be calculated by finding LNð1Þ from a solution of the
system of linear (13). Similarly, the total expected time of
the host being active can be found as

P
i2S Lið1Þ. Letting

the VM migration time be Tm, the expected OTF can be
calculated as follows:

OTF ¼ Tm þ LNð1Þ
Tm þ

P
i2S Lið1Þ

: ð14Þ

6.3 The Optimization Problem

By the solution of (13), closed-form equations for L1ð1Þ;
L2ð1Þ; . . . ; LNð1Þ are obtained. The unknowns in these
equations are m1;m2; . . . ;mN , which completely describe
the policy of the controller. For our problem, the utility
function is the total expected time until absorption, as the
objective is to maximize the intermigration time. To
introduce the QoS goal in the problem formulation, we
specify a limit M on the maximum allowed value of the
OTF metric as a constraint resulting in the following
optimization problem:X

i2S
Lið1Þ ! max

Tm þ LNð1Þ
Tm þ

P
i2S Lið1Þ

�M:

ð15Þ

The (15) form an NLP problem. The solution of this NLP
problem is the vector m of the probabilities of transitions to
the absorbing state, which forms the optimal control policy
defined as a PMF m ¼ ½mi�8i 2 S. At every time step, the

BELOGLAZOV AND BUYYA: MANAGING OVERLOADED HOSTS FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES IN CLOUD DATA... 1371



optimal control policy migrates a VM with probability mi,
where i 2 S is the current state. The control policy is
deterministic if 9k 2 S : mk ¼ 1 and 8i 2 S; i 6¼ k : mi ¼ 0;
otherwise, the policy is randomized.

6.4 Modeling Assumptions

The introduced model allows the computation of the
optimal control policy of a host overload detection
controller for a given stationary workload and a given
state configuration. It is important to take into account that
this result is based on a few fundamental modeling
assumptions. First of all, it is assumed that the system
satisfies the Markov property, or in other words, the
sojourn times (i.e., the time a CTMC remains in a state) are
exponentially distributed. Assuming an exponential dis-
tribution of sojourn times may not be accurate in many
systems. For instance, state transition delays can be
deterministic due to a particular task scheduling, or follow
other than exponential statistical distribution, such as a
bell-shaped distribution. Another implication of the Mar-
kov property is the assumption of memoryless state
transitions, which means that the future state can be
predicted solely based on the knowledge of the current
state. It is possible to envision systems, in which future
states depend on more than one past state.

Another assumption is that the workload is stationary
and known a priori, which does not hold in typical
computing environments. In the next section, we show
how the introduced model can be heuristically adapted to
handle unknown nonstationary workloads. The proposed
heuristically adapted model removes the assumption of
stationary and known workloads; however, the assump-
tions implied by the Markov property must still hold. In
Section 10, we evaluate the proposed heuristically adapted
model and test the assumptions through a simulation study
using real workload traces from more than a thousand
PlanetLab VMs. The simulation results show that the model
is efficient for this type of mixed computing workloads.

With a correct understanding of the basic model
assumptions and careful assessment of the applicability of
our model to a particular system, an application of the
model can bring substantial performance benefits to the
resource management algorithms. As demonstrated by our
simulation study in Section 10, our approach outperforms
the benchmark algorithms in terms of both the mean
intermigration time and the precision of meeting the
specified QoS goal.

7 NONSTATIONARY WORKLOADS

The model introduced in Section 6 works with the
assumption that the workload is stationary and known.
However, this is not the case in systems with unknown
nonstationary workloads, such as IaaS. One of the ways to
adapt the model defined for known stationary workloads
to the conditions of initially unknown nonstationary
workloads is to apply the Sliding Window workload
estimation approach proposed by Chung et al. [24]. The
base idea is to approximate a nonstationary workload as a
sequence of stationary workloads U ¼ ðu1; u2; . . . ; uNu

Þ that
are enabled one after another. In this model, the transition

probability matrix P becomes a function of the current
stationary workload PðuÞ.

Chung et al. [24] called a policy that makes ideal
decisions for a current stationary workload ui the best
adaptive policy. However, the best adaptive policy requires
the perfect knowledge of the whole sequence of workloads
U and the times, at which the workloads change. In reality,
a model of a workload ui can only be built based on the
observed history of the system behavior. Moreover, the time
at which the current workload changes is unknown.
Therefore, it is necessary to apply a heuristic that achieves
results comparable to the best adaptive policy. According to
the Sliding Window approach, a time window of length lw
slides over time always capturing last lw events. Let cij be the
observed number of transitions between states i and j,
i; j 2 S, during the last window lw. Then, applying the MLE
method, the transition probability pij is estimated as

bpij ¼ cijP
k2S cik

:

As the window length lw !1, the estimator bpij converges
to the real value of the transition probability pij if the length
of the current stationary workload ui is equal to lw [24].

However, the Sliding Window approach introduces
three sources of errors in the estimated workload:

1. The biased estimation error, which appears when
the window length lw is shorter than the length of a
sequence of outliers.

2. The resolution error (referred to as the sampling
error by Luiz et al. [16]), which is introduced due to
the maximum precision of the estimates being
limited to 1=lw.

3. The adaptation time (referred to as the identification
delay by Luiz et al. [16]), which is a delay required to
completely fill the window with new data after a
switch from a stationary workload ui�1 to a new
stationary workload ui.

Luiz et al. [16] extended the Sliding Window approach
by employing multiple windows with different sizes, where
a window to use is selected dynamically using the
information about the previous system state and variances
of the estimates obtained from different windows. They
referred to the extended approach as the Multisize Sliding
Window approach. The proposed algorithm dynamically
selects the best window size to eliminate the bias estimate
error and benefit from both the small sampling error of
large window sizes and small identification error of small
window sizes. In this paper, we apply the Multisize Sliding
Window approach to the model introduced in Section 6 to
adapt it to initially unknown nonstationary workloads.

We adapt the calculation of the expected OTF (14) by
transforming it to a function of t 2 IRþ to incorporate the
information that is known by the algorithm at the time of
decision making:

OTF ðtÞ ¼ Tm þ yðtÞ þ LNð1Þ
Tm þ tþ

P
i2S Lið1Þ

; ð16Þ

where yðtÞ is a function returning the total time spent in the
state N during the time interval ½0; t�.
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7.1 Multisize Sliding Window Workload Estimation

In this section we briefly introduce the Multisize Sliding

Window approach; for more details, reasoning and analysis

please refer to Luiz et al. [16]. A high-level view of the

estimation algorithm is shown in Fig. 1. First of all, to

eliminate the biased estimation error, the previous history is

stored separately for each state in S resulting in S state

windows Wi, i ¼ 1; 2; . . . ; S. Let J , D, and NJ be positive

numbers; L ¼ ðJ; J þD; J þ 2D; . . . ; J þ ðNJ � 1ÞDÞ a se-

quence of window sizes; and lwmax
¼ J þ ðNJ � 1ÞD the

maximum window size. At each time t, the Previous State

Buffer stores the system state st�1 at the time t� 1 and

controls the window selector, which selects a window Wi

such that st�1 ¼ i. The notation Wk
i ðtÞ denotes the content of

the window Wi in a position k at the time t. The selected

window shifts its content one position to the right to store

the current system state: Wkþ1
i ðtÞ ¼Wk

i ðtÞ, 8k ¼ 1; . . . ; lwmax
;

discards the rightmost element W
lwmax
i ðtÞ; and stores st in the

position W 1
i ðtÞ. Once the selected state window Wi is

updated, new probability estimates are computed based on

this state window for all window sizes as follows:

bpijðt;mÞ ¼
PLm

k¼1ðWk
i ðtÞ ¼¼ jÞ
Lm

; ð17Þ

where “==” is the equivalence operation, i.e., ð1 ¼¼ 1Þ ¼
1; ð1 ¼¼ 0Þ ¼ 0. A computed probability estimate is stored

in NJ out of the SSNJ estimate windows EijmðtÞ, where

i; j 2 S, and m is the estimate window size index,

1 � m � NJ . NJ estimate windows EijmðtÞ are selected

such that st�1 ¼ i and st ¼ j, 8m ¼ 1; . . . ; NJ . Similarly to

the update process of the state windows, the selected

estimate windows shift their contents one position to the

right, discard the rightmost element ELmijmðtÞ, and storebpijðt;LmÞ in the position E1
ijmðtÞ. To evaluate the precision of

the probability estimates, the next step is to estimate the

variance Sði; j; t;mÞ of the probability estimates obtained

from every updated estimate window:

�pijðt;mÞÞ ¼
1

Lm
XLm
k¼1

Ek
ijmðtÞ;

Sði; j; t;mÞ ¼ 1

Lm � 1

XLm
k¼1

ðEk
ijmðtÞ � �pijðt;LmÞÞ2;

ð18Þ

where �pijðt;mÞ is the mean value of the probability
estimates calculated from the state window Wi of length
Lm. To determine what values of the variance can be
considered to be low enough, a function of acceptable
variance Vacðbpijðt;mÞ;mÞ is defined [16]:

Vacðbpijðt;mÞ;mÞ ¼ bpijðt;LmÞð1� bpijðt;LmÞÞLm
: ð19Þ

Using the function of acceptable variance, probability
estimates are considered to be adequate if Sði; j; t;mÞ �
Vacðbpijðt;mÞ;mÞ. Based on the definitions given above, a
window size selection algorithm can be defined (Algo-
rithm 2). According to the selected window sizes,
transition probability estimates are selected from the
estimate windows.

Algorithm 2. The Window Size Selection Algorithm

Input: J , D, NJ , t, i, j

Output: The selected window size

1: lw  J

2: for k ¼ 0 to NJ � 1 do

3: if Sði; j; t; kÞ � Vacðbpijðt; kÞ; kÞ then

4: lw  J þ kD
5: else

6: break loop

7: end if

8: end for

9: return lw

The presented approach addresses the errors mentioned
in Section 7 as follows:

1. The biased estimation error is eliminated by intro-
ducing dedicated history windows for each state:
Even if a burst of transitions to a particular state is
longer than the length of the window, the history of
transitions from the other states is preserved.

2. The sampling error is minimized by selecting the
largest window size constrained by the acceptable
variance function.

3. The identification error is minimized by selecting a
smaller window size when the variance is high,
which can be caused by a change to the next
stationary workload.

8 THE CONTROL ALGORITHM

We refer to a control algorithm based on the model
introduced in Section 6 as the Optimal Markov Host
Overload Detection (MHOD-OPT) algorithm. We refer to
the MHOD-OPT algorithm adapted to unknown nonsta-
tionary workloads using the Multisize Sliding Window
workload estimation technique introduced in Section 7 as
the Markov Host Overload Detection (MHOD) algorithm.
A high-level view of the MHOD-OPT algorithm is shown
in Algorithm 3. In the online setting, the algorithm is
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invoked periodically at each time step to make a VM
migration decision.

Algorithm 3. The MHOD-OPT Algorithm

Input: Transition probabilities
Output: A decision on whether to migrate a VM

1: Build the objective and constraint functions

2: Invoke the brute-force search to find the m vector

3: if a feasible solution exists then

4: Extract the VM migration probability

5: if the probability is < 1 then

6: return false

7: end if

8: end if

9: return true

Closed-form equations for L1ð1Þ; L2ð1Þ; . . . ; LNð1Þ are
precomputed offline from (13); therefore, the runtime
computation is not required. The values of transition
probabilities are substituted into the equations for L1ð1Þ;
L2ð1Þ; . . . ; LNð1Þ, and the objective and constraint func-
tions of the NLP problem are generated by the algorithm.
To solve the NLP problem, we applied a brute-force search
algorithm with a step of 0.1, as its performance was
sufficient for the purposes of simulations. In MHOD-OPT,
a decision to migrate a VM is made only if either no feasible
solution can be found, or the migration probability
corresponding to the current state is 1. The justification
for this is the fact that if a feasible solution exists and the
migration probability is less than 1, then for the current
conditions there is no hard requirement for an immediate
migration of a VM.

The MHOD algorithm shown in Algorithm 4 can be
viewed as a wrapper over the MHOD-OPT algorithm,
which adds the Multisize Sliding Window workload
estimation. During the initial learning phase Tl, which in
our experiments was set to 30 time steps, the algorithm does
not migrate a VM. Once the learning phase is over, the
algorithm applies the Multisize Sliding Window technique
to estimate the probabilities of transitions between the states
and invokes the MHOD-OPT algorithm passing the transi-
tion probability estimates as the argument. The result of the
MHOD-OPT algorithm invocation is returned to the user.

Algorithm 4. The MHOD Algorithm

Input: A CPU utilization history

Output: A decision on whether to migrate a VM

1: if the CPU utilization history size > Tl then

2: Convert the last CPU utilization value to a state

3: Invoke the Multisize Sliding Window estimation to

obtain the estimates of transition probabilities
4: Invoke the MHOD-OPT algorithm

5: return the decision returned by MHOD-OPT

6: end if

7: return false

9 THE CPU MODEL

The models and algorithms proposed in this paper are
suitable for both single core and multicore CPU architec-
tures. The capacity of a single core CPU is modeled in terms

of its clock frequency F . A VM’s CPU utilization ui is
relative to the VM’s CPU frequency fi and is transformed
into a fraction of the host’s CPU utilization U . These
fractions are summed up over the N VMs allocated to the
host to obtain the host’s CPU utilization, as shown in

U ¼ F
XN
i

fiui: ð20Þ

For the purpose of the host overload detection problem,
we model multicore CPUs as proposed in our previous
work [15]. A multicore CPU with n cores each having a
frequency f is modeled as a single core CPU with the nf
frequency. In other words, F in (20) is replaced by nf . This
simplification is justified, as applications and VMs are not
tied down to a specific core, but can by dynamically
assigned to an arbitrary core by a time-shared scheduling
algorithm. The only physical constraint is that the CPU
capacity allocated to a VM cannot exceed the capacity of a
single core. Removing this constraint would require the VM
to be executed on more than one core in parallel. However,
automatic parallelization of VMs and their applications
cannot be assumed.

10 PERFORMANCE EVALUATION

10.1 Importance of Precise Workload Estimation

The purpose of this section is to show that the precision of
the workload estimation technique is important to achieve
high performance of the MHOD algorithm. To show this,
we constructed an artificial workload that illustrates a case
when the MHOD algorithm with the Multisize Sliding
Window workload estimation leads to lower performance
compared to MHOD-OPT due to its inability to adapt
quickly enough to a highly nonstationary workload.

We define that the host can be in one of two possible
states f0; 1g, where the state 1 means that the host is being
overloaded. Let the nonstationary workload be composed
of a sequence of three stationary workloads, whose
probabilities of transitions between the states are shown
in Table 1. We used simulations to evaluate the algorithms.
For this experiment, the OTF constraint was set to
30 percent, and the sequence of window sizes for the
Multisize Sliding Window workload estimation was
ð30; 40; 50; 60; 70; 80; 90; 100Þ. The code of the simulations
is written in Clojure.3 To foster and encourage reproduci-
bility of experiments, we have made the source code of all
our simulations publicly available online.4
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An Artificial Nonstationary Workload
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The simulation results are shown in Table 2. According to
the results, for the workload defined in Table 1 the MHOD-
OPT algorithm provides exactly the same performance as
the OPT. However, the MHOD algorithm migrates a VM at
the beginning of the third stationary workload because it is
not able to immediately recognize the change of the
workload, as shown for p00 and bp00 in Fig. 2.

In summary, even though the Multisize Sliding Window
workload estimation provides high quality of estimation
[16], in some cases it may result in an inferior performance
of the MHOD algorithm compared to MHOD-OPT. This
result was expected, as MHOD-OPT skips the estimation
phase and utilizes the knowledge of real transition
probabilities. The artificial workload used in this section
was specifically constructed to show that imprecise work-
load estimation may lead to unsatisfactory performance of
the MHOD algorithm. However, as shown in the next
section, the MHOD algorithm performs closely to OPT for
real-world workloads.

10.2 Evaluation Using PlanetLab Workload Traces

In an environment with multiple hosts, the MHOD
algorithm operates in a decentralized manner, where
independent instances of the algorithm are executed on
every host. Therefore, to evaluate the MHOD algorithm
under a real-world workload, we simulated a single host
with a quad-core CPU serving a set of heterogeneous VMs.
The clock frequency of a single core of the host was set to
3 GHz, which according to the model introduced in
Section 9 transforms into 12 GHz. These CPU characteristics
correspond to a mid-range Amazon EC2 physical server
type [25]. The amount of the host’s memory was assumed to
be enough for the VMs. The CPU frequency of a VM was
randomly set to one of the values approximately corre-
sponding to the Amazon EC2 instance types5: 1.7, 2, 2.4, and
3 GHz. The CPU utilization of the VMs was simulated
based on the data provided as a part of the CoMon project, a
monitoring infrastructure for PlanetLab [26]. The project
provides the data measured every 5 minutes from more
than a thousand VMs running in more than 500 locations
around the world. For our experiments, we have randomly
chosen 10 days from the workload traces collected during
March and April 2011.

For a simulation run, a randomly generated set of VMs
with the CPU utilization traces assigned is allocated to the
host. At each time step, the host overload detection
algorithm makes a decision of whether a VM should be
migrated from the host. The simulation runs until either the
CPU utilization traces are over, or until a decision to
migrate a VM is made by the algorithm. At the end of a
simulation run, the resulting value of the OTF metric is

calculated according to (5). The algorithm of assigning the

workload traces to a set of VMs is presented in Algorithm 5.
To avoid trivial cases and stress the algorithms with more

dynamic workloads, we decided to filter the original
workload traces. We constrained the maximum allowed

OTF after the first 30 time steps to 10 percent and the
minimum overall OTF to 20 percent. Using the workload

assignment algorithm, we pregenerated 100 different sets of
VMs that meet the defined OTF constraints and ran every
algorithm for each set of VMs. The workload data used in

the experiments are publicly available online.6

Algorithm 5. The Workload Trace Assignment Algorithm

Input: A set of CPU utilization traces

Output: A set of VMs

1: Randomly select the host’s minimum CPU utilization at

the time 0 from 80 percent, 85 percent, 90 percent,

95 percent, and 100 percent
2: while the host’s utilization < the threshold do

3: Randomly select the new VM’s CPU frequency

4: Randomly assign a CPU utilization trace

5: Add the new VM to the set of created VMs

6: end while

7: return the set of created VMs

10.2.1 Benchmark Algorithms

In addition to the OPT introduced in Section 5, we

implemented a number of benchmark algorithms and ran
them with different parameters to compare with the

proposed MHOD algorithm. In this section, we give a brief
overview of the benchmark algorithms; a detailed descrip-

tion of each of them is given in our previous work [15]. The
first algorithm is a simple heuristic based on setting a CPU

utilization threshold (THR), which monitors the host’s CPU
utilization and migrates a VM if the defined threshold is
exceeded. This threshold-based heuristic was applied in a

number of related works [5], [6], [7], [8]. The next two
algorithms apply statistical analysis to dynamically adapt

the CPU utilization threshold: based on the median absolute
deviation (MAD), and on the interquartile range (IQR) [15].

Two other algorithms are based on estimation of the

future CPU utilization using LR (i.e., Loess method) and a
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Fig. 2. The estimated bp00 compared to p00.

TABLE 2
Comparison of MHOD, MHOD-OPT, and OPT

5. http://aws.amazon.com/ec2/instance-types/. 6. https://github.com/beloglazov/tpds-2013-workload/.



modification of the method robust to outliers, referred to as
robust LR [15]. We denote these algorithms LR and Local
Regression Robust (LRR), respectively. The LR algorithm is
in line with the regression-based approach proposed by
Guenter et al. [12]. Another algorithm continuously
monitors the host’s OTF and decides to migrate a VM if
the current value exceeds the defined parameter; we
refer to this algorithm as the OTF Threshold (OTFT)
algorithm. The last benchmark algorithm, the OTF
Threshold Migration Time (OTFTM) algorithm, is similar
to OTFT; however, it uses an extended metric that includes
the VM migration time:

OTF ðto; taÞ ¼
Tm þ to
Tm þ ta

; ð21Þ

where to is the time, during which the host has been
overloaded; ta is the total time, during which the host has
been active; and Tm is the VM migration time.

10.2.2 MHOD Compared with Benchmark Algorithms

To shorten state configuration names of the MHOD
algorithm, we refer to them by denoting the thresholds
between the utilization intervals. For example, a 3-state
configuration ð½0; 80 percentÞ, ½80; 100 percentÞ, 100 percentÞ
is referred to as 80-100. We simulated the following 2- and
3-state configurations of the MHOD algorithm: 80-100, 90-
100, and 100 (a 2-state configuration). We simulated each
state configuration with the OTF parameter set to 10, 20,
and 30 percent. In our experiments, the VM migration time
was set to 30 seconds.

To find out whether different numbers of states and
different state configurations of the MHOD algorithm
significantly influence the algorithm’s performance in
regard to the time until a migration and the resulting
OTF value, we conducted paired t-tests. The tests on the
produced time until a migration data for comparing
MHOD 80-100 with MHOD 100 and MHOD 90-100 with
MHOD 100 showed nonstatistically significant differences
with the p-values 0.20 and 0.34, respectively. This means
that the simulated 2- and 3-state configurations of the
MHOD algorithm on average lead to approximately the
same time until a migration. However, there are statisti-
cally significant differences in the resulting OTF value

produced by these algorithms: 0.023 percent with 95 percent
Confidence Interval (CI) (0.001, 0.004 percent) and p-value
¼ 0:033 for MHOD 100 compared with MHOD 80-100; and
0.022 percent with 95 percent CI (0.000, 0.004 percent) and
p-value ¼ 0:048 for MHOD 100 compared with MHOD 90-
100. However, differences in the resulting OTF value in
the order of less than 0.1 percent are not practically
significant; therefore, we conclude that the simulated 2-
and 3-state configurations produce approximately the same
results. Further in this section, we compare only the ð½0;
100 percentÞ, 100 percentÞ 2-state configuration of MHOD
with the benchmark algorithms, as it requires simpler
computations compared with the 3-state configurations.

The experimental results comparing the 2-state config-
uration of the MHOD algorithm (for the MHOD algorithm,
the OTF parameter is denoted in the suffix of the
algorithm’s name, e.g., for 10, 20, and 30 percent: MHOD-
10, MHOD-20, and MHOD-30) with the benchmark algo-
rithms are depicted in Figs. 3a and 3b. It is remarkable how
closely the resulting OTF value of the MHOD algorithm
resembles the value set as the parameter of the algorithm
for 10 and 20 percent. The wider spread for 30 percent is
explained by the characteristics of the workload: In many
cases the overall OTF is lower than 30 percent, which is also
reflected in the resulting OTF of the optimal offline
algorithm (OPT-30). The experimental results show that
the algorithm is capable of meeting the specified OTF goal,
which is consistent with the theoretical model introduced in
Section 6.

Figs. 3a and 3b show that the THR, MAD, and IQR
algorithms are not competitive compared with the LR, LRR,
and MHOD algorithms, as the produced time until a
migration is low and does not significantly improve by
adjustments of the algorithm parameters. To compare the
LR and LRR algorithms with the MHOD algorithms, we ran
additional simulations of the MHOD algorithm with the
OTF parameter matching the mean value of the resulting
OTF produced by LR and LRR. The following values of
the OTF parameter of the MHOD algorithm were set to
match the mean resulting OTF values of LR and LRR: To
match LR-1.2, LR-1.1, and LR-1.0—6.75, 15.35, and 40 per-
cent, respectively; to match LRR-1.2, LRR-1.1, and LRR-
1.0—6.76, 14.9, and 36.6 percent, respectively.
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As intended, paired t-tests for the comparison of MHOD
with LR and MHOD with LRR showed nonstatistically
significant differences in the resulting OTF values with both
p-values > 0.7. Results of paired t-tests for comparing the
time until a migration produced by the algorithms with
matching resulting OTF values are shown in Table 3.
The results of the comparison of the MHOD and LRR
algorithms are graphically depicted in Fig. 4. According to
the results, there is a statistically significant difference in the
time until a migration produced by the algorithms: The
MHOD algorithm on average leads to approximately 16.4
and 15.4 percent better time until a migration than LR and
LRR, respectively, with the same mean resulting OTF
values. It is also interesting to notice from Fig. 4 that the
spread of the resulting OTF produced by the MHOD
algorithm is much narrower than LRR’s, which means that
MHOD more precisely meets the QoS goal.

10.2.3 Comparison of MHOD with OTFT and OTFTM

OTFT and OTFTM are two other algorithms that apart from
the MHOD algorithm allow explicit specification of the QoS
goal in terms of the OTF parameter. To compare the
performance of the OTFT, OTFTM, and MHOD algorithms
we introduce another performance metric. This metric is the
percentage of SLA violations relatively to the total number
of VM migrations, where SLA requirements are defined as
OTF �M, M is the limit on the maximum allowed
resulting OTF value. The SLA violation counter is incre-
mented if after a VM migration the resulting OTF value is
higher than the value M specified in the SLAs.

We simulated the OTFT, OTFTM, and MHOD algo-
rithms using the PlanetLab workload described earlier. We
simulated the algorithms setting the following values of the
OTF parameter as the SLA requirement: 10, 20, and

30 percent. The simulation results are shown in Fig. 5.
The graphs show that MHOD leads to slightly lower
resulting OTF values and time until a migration. The SLA
violation levels caused by the algorithms are shown in
Table 4. It is clear that the MHOD algorithm substantially
outperforms the OTFT and OTFTM algorithms in the level
of SLA violations leading to only 0.33 percent SLA
violations, whereas both OTFT and OTFTM cause the
percentage of SLA violations of 81.33 percent.

The obtained results can be explained by the fact that
both OTFT and OTFTM are unable to capture the overall
behavior of the system over time and fail to meet the SLA
requirements. In contrast, the MHOD algorithm leverages
the knowledge of the past system states and by estimating
future states avoids SLA violations. For instance, in a case of
a steep rise in the load, OTFT and OTFTM react too late
resulting in an SLA violation. In contrast, MHOD acts more
intelligently and by predicting the potential rise migrates a
VM before an SLA violation occurs. As a result, for the
simulated PlanetLab workload the MHOD algorithm keeps
the level of SLA violations at less than 0.5 percent.

10.2.4 Comparison of MHOD with OPT

Figs. 3a and 3b include the results produced by the OPT for
the same values of the OTF parameter set for the MHOD
algorithm: 10, 20, and 30 percent. The results of paired t-
tests comparing the performance of OPT with MHOD are
shown in Table 5. The results show that there is no
statistically significant difference in the resulting OTF value,
which means that for the simulated PlanetLab workload the
MHOD algorithm on average leads to approximately the
same level of adherence to the QoS goal as the OPT. There is
a statistically significant difference in the time until a
migration with the mean difference of 4,639 with 95 percent
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Fig. 4. Comparison of MHOD with LRR.

TABLE 3
Paired T-Tests with 95 Percent CIs for Comparing the Time

Until a Migration Produced by MHOD, LR, and LRR

Fig. 5. Comparison of OTFT, OTFTM, and MHOD.

TABLE 4
SLA Violations by OTFT, OTFTM and MHOD



CI: (3,617, 5,661). Relatively to OPT, the time until a

migration produced by the MHOD algorithm converts to

88.02 percent with 95 percent CI: (86.07, 89.97 percent). This

means that for the simulated PlanetLab workload, the

MHOD algorithm on average delivers approximately

88 percent of the performance of the OPT, which is highly

efficient for an online algorithm.

11 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have introduced a Markov chain model

and proposed a control algorithm for the problem of host

overload detection as a part of dynamic VM consolidation.

The model allows a system administrator to explicitly set a

QoS goal in terms of the OTF parameter, which is a

workload independent QoS metric. For a known stationary

workload and a given state configuration, the control policy

obtained from the Markov model optimally solves the host

overload detection problem in the online setting by

maximizing the mean intermigration time, while meeting

the QoS goal. Using the Multisize Sliding Window work-

load estimation approach, we have heuristically adapted

the model to handle unknown nonstationary workloads.

We have also proposed an OPT for the problem of host

overload detection to evaluate the efficiency of the MHOD

algorithm. The conducted experimental study has led to the

following conclusions:

1. For the simulated PlanetLab workload, 3-state
configurations of the MHOD algorithm on average
produce approximately the same results as the
ð½0; 100Þ; 100Þ 2-state configuration of the MHOD
algorithm; therefore, we prefer the 2-state config-
uration, as it requires simpler computations.

2. The 2-state configuration of the MHOD algorithm
outperforms the LRR algorithm, the best benchmark
algorithm, by producing on average approximately
15.4 percent better time until a VM migration with
the same mean but much narrower spread of the
resulting OTF value, leading to a better quality of
VM consolidation according to Section 3.

3. The MHOD algorithm substantially outperforms
the OTFT and OTFTM algorithms in the level of
SLA violations resulting in less than 0.5 percent
SLA violations compared to 81.33 percent of OTFT
and OTFTM.

4. The MHOD algorithm on average provides approxi-
mately the same resulting OTF value and approxi-
mately 88 percent of the time until a VM migration
produced by the OPT.

5. The MHOD algorithm enables explicit specification
of a desired QoS goal to be delivered by the system

through the OTF parameter, which is successfully
met by the resulting value of the OTF metric.

The introduced model is based on Markov chains
requiring a few fundamental assumptions. It is assumed
that the workload satisfies the Markov property, which may
not be true for all types of workloads. Careful assessment of
the assumptions discussed in Section 6.4 is important in an
investigation of the applicability of the proposed model to a
particular system. However, our experimental study invol-
ving multiple mixed heterogeneous real-world workloads
has shown that the algorithm is efficient in handling them.
For the simulated PlanetLab workload, the MHOD algo-
rithm performed within a 12 percent difference from the
performance of the OPT, which is highly efficient for an
online algorithm. As a part of future work, we plan to
implement the MHOD algorithm as an extension of the VM
manager within the OpenStack Cloud platform7 to evaluate
the algorithm in a real system as a part of energy-efficient
dynamic VM consolidation.
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