
Future Generation Computer Systems 27 (2011) 1124–1134
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Optimizing the makespan and reliability for workflow applications with
reputation and a look-ahead genetic algorithm
Xiaofeng Wang a,∗, Chee Shin Yeo b, Rajkumar Buyya c, Jinshu Su a

a School of Computer, National University of Defense Technology, China
b Distributed Computing Group, Computing Science Department, Institute of High Performance Computing, Singapore
c Cloud Computing and Distributed Systems Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 25 November 2010
Received in revised form
2 March 2011
Accepted 8 March 2011
Available online 12 April 2011

Keywords:
Reliability
Reputation
Workflow scheduling
Genetic algorithm
Heuristic

a b s t r a c t

For applications in large-scale distributed systems, it is becoming increasingly important to provide
reliable scheduling by evaluating the reliability of resources. However, most existing reputation models
used for reliability evaluation ignore the critical influence of task runtime. In addition, most previous
work uses list heuristics to optimize the makespan and reliability of workflow applications instead of
genetic algorithms (GAs), which can give several satisfying solutions for choice. Hence, in this paper,
we first propose the reliability-driven (RD) reputation, which is time dependent, and can be used to
effectively evaluate the reliability of a resource in widely distributed systems. We then propose a look-
ahead genetic algorithm (LAGA) which utilizes the RD reputation to optimize both the makespan and the
reliability of a workflow application. The LAGA uses a novel evolution and evaluation mechanism: (i) the
evolution operators evolve the task-resource mapping of a scheduling solution and (ii) the evaluation
step determines the task order of solutions by using our proposed max–min strategy, which is the first
two-phase strategy that can work with GAs. Our experiments show that the RD reputation improves the
reliability of an applicationwithmore accurate reputations,while the LAGAprovides better solutions than
existing list heuristics and evolves to better solutions more quickly than a traditional GA.

Crown Copyright© 2011 Published by Elsevier B.V. All rights reserved.
l

1. Introduction

Recently, several distributed infrastructures including Grids
and Clouds have been proposed for large-scale collaborative and
distributed e-business and e-science applications. We expect
the deployment of a large number of Grid and Cloud services
for workflow applications such as Cloud workflow systems [1].
Despite the attractive features of these platforms (in terms of
scalability, dynamicity, and low cost), the inherent unreliability of
these open systems has caused great threat to the applications.
Resources may be offline unexpectedly, perform unpredictably
due to resource sharing between virtualized services, and behave
maliciously. Therefore, in large-scale distributed systems, the
scheduling of an application must also account for reliability, in
addition to the execution time (makespan), which is normally the
only consideration. To enable reliable scheduling, two important
issues need to be considered: (i) how to evaluate the reliability of a
resource and (ii) how to perform reliable scheduling based on the
reliability information of resources.

∗ Corresponding author.
E-mail addresses: xf_wang@nudt.edu.cn, xfwang.nudt@gmail.com (X. Wang),

yeocs@ihpc.a-star.edu.sg (C.S. Yeo), raj@csse.unimelb.edu.au (R. Buyya),
sjs@nudt.edu.cn (J. Su).

0167-739X/$ – see front matter Crown Copyright© 2011 Published by Elsevier B.V. A
doi:10.1016/j.future.2011.03.008
Most reliability-oriented scheduling work assumes that the
reliability of a resource (denoted as failure rate) is already known.
Hence they do not define how to evaluate the reliability of
a resource in a widely distributed computing environment. To
evaluate the resource reliability, Sonnek et al. [2] and Song et al. [3]
employ traditional reputation systems to capture the reliability of
resources in their scheduling. This results in two problems. First,
from the resource perspective, most reputation models [2,4–6]
only evaluate the reputation of a resource according to its ratio of
successfully completed tasks. They do not consider the influence
of the task runtime (size). For example, peer A has a higher task
failure rate (task failures per unit time) than peer B, so peer B
should have a better reputation. But traditional reputation models
will instead predict a better reputation for peer A when peer A
executes more tasks with short runtime and peer B executes more
tasks with long runtime. This is because peer A may successfully
complete more short tasks than peer B. Second, from the task
perspective, existing reputation models assign the same reliability
(success probability) [2,3] to all tasks on a resource based on the
reputation of the resource. However, the longer a task runs on an
unreliable resource, the lower success probability it should have.

Given the resource reliability information, optimizing both
the makespan and the reliability for a workflow application
with task dependences is known to be an NP-hard problem [7].

l rights reserved.

http://dx.doi.org/10.1016/j.future.2011.03.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:xf_wang@nudt.edu.cn
mailto:xfwang.nudt@gmail.com
mailto:yeocs@ihpc.a-star.edu.sg
mailto:raj@csse.unimelb.edu.au
mailto:sjs@nudt.edu.cn
http://dx.doi.org/10.1016/j.future.2011.03.008

X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134 1125
Hence, many list heuristics have been proposed for this problem.
However, most of them attempt to achieve makespan [8–10]
or reliability [2,7,11,12] suboptimal solutions, whose optimality
cannot be guaranteed [13]. In contrast, genetic algorithms (GAs)
can give several satisfying solutions for choice by iterative
evolutions over generations of scheduling solutions. Although a
GA is more time consuming than list heuristics, it is acceptable for
applications with long runtime. In addition, the speed of GAs can
be accelerated by using parallel GA technology [14].

Very few GAs have been proposed so far to enable both
makespan and reliability optimized scheduling for workflow
applications because of the difficulty of preserving their task
dependences while randomly evolving the solutions. The bi-
objective genetic algorithm (BGA) [15] is the only GA that we
know for this problem, but the BGA may give invalid solutions
which violate the dependence between tasks. Moreover, most
existing GAs [13,15,16] evolve the scheduling solutions randomly,
which may lead to the slow convergence of the GA. However,
GAs can be improved by using heuristics to evolve solutions
more intelligently. But not many heuristics have been specifically
proposed for GAs. Although some two-phase heuristics have
been proposed and reported to be more efficient than other
heuristics [9], they cannot work with GAs due to their evolution
mechanism.

Towards addressing these issues of reliability evaluation and
GA scheduling, we extend our previous work [17,18] to propose
the look-ahead scheduling algorithm with reliability-driven (RD)
reputation. To evaluate the reliability of resources, our RD
reputation considers the runtime of tasks by using the task
failure rate (task failures per unit time) of resources to define
the reputation. It also provides a real-time reputation that can
be used to evaluate the reliability of each task directly using the
exponential failuremodel. Based on the RD reputation, we propose
the look-ahead genetic algorithm (LAGA) to intelligently optimize
both the makespan and the reliability for a workflow application.

The LAGA incorporates two novel features: (i) it optimizes the
typical GA by a new mutation operator according to our proposed
resource priority heuristic and (ii) it uses a novel evolution
and evaluation mechanism—the genetic operators (crossover and
mutation) evolve the task-resource mapping for a solution, while
the task execution order of a solution is determined in the
evaluation step using our new max–min strategy. Our max–min
strategy is the first two-phase strategy that can work with
GAs based on the proposed dynamic task priority heuristics.
By using the max–min strategy, the LAGA is able to avoid
the invalid solution problem encountered by the BGA [15].
Most importantly, the LAGA can accelerate the evolution of
solutions more intelligently by using our evolution and evaluation
mechanism.

The remainder of this paper is organized as follows. Section 2
introduces related work. Section 3 presents the system model
and assumptions for the reputation-based scheduling problem.
Section 4 defines the RD reputation and its calculation algorithm.
Section 5 formalizes the RD scheduling problem, while the LAGA
is presented in Section 6. Performance results are presented in
Section 7, followed by the conclusions in Section 8.

2. Related work

We discuss existing work about reputation calculation, heuris-
tics, and GAs used in workflow scheduling, and compare each of
them with our work.

The reliability of a resource can be monitored by its reputation,
which can be defined as the probability that the resource
can deliver the expected utility service [4]. In P2P systems,
EigenTrust [5] and PowerTrust [19] compute the local trust value
based on the normalized number of successful transactions. In
volunteer computing systems, Sonnek et al. [2] calculate the
reliability of a worker resource as the ratio of correct responses,
while Zhang and Fang [20] use a Bayesian method to evaluate the
reputation of a peer based on the decayed amounts of successfully
completed and failed tasks. However, none of these reputation
models considers the influence of time. In Grid systems, Song
et al. [3] use fuzzy logic to evaluate the reputation. Although
their reputation model includes the task runtime, they do not
specify how the task runtime affects the reputation. Other works
[21,22] evaluate the time-related performance based on resource
availability. However, these works examine reliability at the
hardware level and thus do not consider the task-level behavior.
In addition, most of the above-mentioned works do not provide
methods to predict the real-time task failure rate of a resource,
which is needed for reliable task scheduling. To address these
issues, our RD reputation is specifically defined to be time
dependent, and our reputation calculation algorithm is able to
provide real-time failure rate evaluation for a resource.

Given the resource reliability evaluation, many list heuristics
[2,7–11] have been proposed to optimize the makespan or
reliability for workflow applications. To optimize the makespan,
the heterogeneous scheduling algorithm (HSA) [7] selects a task
with a greater task criticalness, which is based on the length of the
longest path through the task. To optimize the reliability, Dongarra
et al. [11] show that tasks should be assigned to the node with the
minimum multiplication value of instruction execution time and
reliability. Dogan and Özgüner [12] propose a bi-criteria heuristic
rule called RDLS that evaluates the priority of a task-resource
mapping according to the task size, task start time, computing
power of resource, and reliability cost. The two-phase min–min
heuristic is found to be the best tested heuristics for workflow
applications [9]. It works as follows: (i) for each task, select its
assumed resource which can start the task earliest, and (ii) from
all the tasks with the assumed resource, select the task with the
minimumend time to be scheduled. However, this heuristic cannot
be used by GAs because the task-resource mapping is only fixed
during the evolution phase. Hence, we propose a new max–min
strategy specifically for GAs, which uses a novel task priority
heuristic to predict the task criticalness more precisely than the
existing heuristics.

GAs can give several satisfying solutions by iterative evolutions
over generations of scheduling solutions. To our knowledge, the
BGA [15] is the only existing GA that can optimize both the
makespan and the reliability for a workflow application. However,
the BGA may give invalid solutions that violate the dependence
between tasks. So far, two methods have been proposed to
preserve the task dependence during the evolution phase. First,
Corrêa et al. [23] define two partitions, V1 and V2, of the tasks
such that there is no dependence from a task in V1 to a task in V2.
Second, Wang et al. [13] represent a scheduling solution as two
strings: the task-resource mapping string and the task execution
order string. Even though both methods can solve the invalid
solution problem, they do not take into account the reliability
of the workflow application. Furthermore, most existing GAs
[16,15,13] evolve the scheduling solutions randomly, and this may
lead to the slow convergence of the algorithm. On the other hand,
our LAGA determines the task execution order of a solution by
using our max–min strategy, which ensures that the algorithm
does not give invalid solutions. Moreover, the LAGA uses a novel
evolution and evaluation mechanism that is able to accelerate the
evolution of solutions more intelligently.

3. Systemmodel and assumptions

Table 1 lists all the notations used in this paper. We model a
workflow job as a directed acyclic graph (DAG): Job = (V , E). V

1126 X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134
Table 1
List of notation.

Notation Definition

vi A task in a directed acyclic graph (DAG)-modeled application
e(i, j) A dependence between tasks vi and vj
|vi| The number of instructions of task vi
ri A resource in the system
γi The unitary instruction execution time of resource ri
rdri The reliability-driven (RD) reputation for resource ri
M(i) The resource to which task vi is scheduled
si The start time of an interval for resource ri
ei The end time of an interval for resource ri
rti The total CPU time donated by resource ri in the current time interval
ci The number of task failures experienced by resource ri in the current time interval
rdr tii TherecordedRDreputationforresourceriintimeintervalti
tavaili The available start time for task vi
idle(rj) The time when resource rj is idle
tsi The start time of task vi
tei The end time of task vi

t jS ThetimewhenresourcerjcompletesallitstasksinschedulingS
RS The success probability of an application in scheduling S
fail(S) The failure factor of scheduling S
time(S) The makespan of scheduling S
imprt(i) The length of the longest path starting from task vi in a DAG
p(i) The priority of task vi given by heuristics
Fig. 1. System model.

is the set of nodes vi (1 ≤ i ≤ n) which denotes the tasks of the
workflow job. E is the set of edges e(i, j) (1 ≤ i < j ≤ n) which
represents the dependence between task vi and vj, with vi as the
parent task and vj as the child task. A task with no parent task is
called an entry task, while a task with no child task is called an
exit task. For each task vi, its weight |vi| represents the number
of instructions to be executed for the task, which is assumed to
be known using compiler technology [11]. Similar to previous
work [2,16,10],we focus on computationally intensive applications
in which the communication time between tasks is not modeled.
Our future work will extend the application model to include the
communication time between tasks.

In our widely distributed computing model as shown in
Fig. 1, there is a central Manager Server with four components:
(i) Resource Manager, (ii) Task Scheduler, (iii) Task Monitor, and
(iv) RDReputationManager. The ResourceManager acts as a broker
for the available computing resources in the system. A computing
resource can be a local cluster resource, remote Grid resource,
or Cloud service provider as used in Cloud workflow systems
[1,24]. Let R = {r1, r2, . . . , rm} be m resources available in the
system. Each resource ri is associated with two values: (i) γi, its
computing speed illustrated by unitary instruction execution time
(i.e., the time taken to execute one instruction) and (ii) rdri, its
RD reputation. The reputation rdri depicts the failure frequency
of resource ri and is maintained by the RD Reputation Manager.
Our calculation algorithm for real-time RD reputation will be
introduced in Section 4.
With the information of workflow applications and available
resources, the Task Scheduler can schedule the application. Let
M : V → R denote the mapping function; thus M(i) = rj means
that task vi is assigned to resource rj. We assume that the central
Manager Server can only schedule atmost one task to one resource
at any time. The scheduling problem and scheduling algorithmwill
be introduced in Sections 5 and 6 respectively.

After the schedules are made, the Task Scheduler will send
tasks to their assigned resources for execution. Meanwhile, it
notifies the Task Monitor of the schedule information. We assume
that the Task Monitor can check the status of all tasks. Several
technologies have been proposed for the Task Monitor, such as
checkpoint and quizzes verification [25]. The Task Monitor can
detect if a task vi successfully completes or fails before completion,
and it sends a reputation report about resource M(i) to the RD
Reputation Manager. With the collected reputation feedbacks, the
RD Reputation Manager can maintain a real-time reputation for
each resource, which can be used to schedule the next application.

The RD Reputation Manager, Task Scheduler, and Task Monitor
form a self-closed system. With the RD reputation given by
the RD Reputation Manager, the Task Scheduler can schedule
workflow jobs to different resources. According to the scheduling
information, the Task Monitor will keep track of the task
execution and give feedback to the RD Reputation Manager,
where the new real-time reputation is calculated for the next
workflow scheduling. These three components work iteratively
and interactively to maintain real-time reputation prediction and
efficient workflow scheduling.

4. Reliability evaluation as reputation

In volunteer computing, many discrete events may lead to
failures of an application such as non-availability of required
services, overloaded resource conditions, and malicious activities.
All these events are independent and may happen randomly.
Hence we use the commonly used exponential distribution
[11,7,15] to model the failure of a resource provider. The failure
density function is f (t) = λe−λt(t ≥ 0), where λ is the failure
rate of a resource. Let num_fails be the number of failures within a
resource during the job runtime period of run_time. We can then
compute the failure rate λ, which is the inverse of mean time to
failure (MTTF), as

λ =
1

∞

0 λxe−λxdx
=

1
MTTF

=
num_fails
run_time

. (1)

X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134 1127
To enable reliable scheduling, the real-time failure rate of each
resource needs to be monitored. Although traditional reputation
systems can be used to monitor the reliability of a resource,
they neither predict the failure rate of a resource directly nor
consider the influence of time. Hence, we define a time-dependent
reputation called the reliability-driven (RD) reputation, which is
directly related to the failure rate, as follows.

Definition 1. The RD reputation rdri for a resource ri is the
generally said or believed probability of task failure per unit time,
whereby the resource provider will fail to complete its assigned
tasks.

4.1. Calculation of the real-time RD reputation

Algorithm 1 shows the calculation of the real-time RD
reputation based on successive time intervals, each lasting a time
window Twindow. During each time interval, the server maintains
a reputation statistic repu_stai = (si, ei, rti, ci) for each resource
ri, where si is the start time of the interval, ei is the end time of
the interval, rti is the total CPU time donated by resource ri for
task execution in the interval, and ci is the number of task failures
experienced by resource ri in the interval.

Algorithm 1: RD Reputation Calculation Algorithm
1 foreach resource ri do
2 rdri = rdr0i = rdr initial;
3 ti ← 1;
4 si = ei = current_time;
5 rti ← 0;
6 ci ← 0;

7 while there is a reputation record testimonyij do
8 if eij < si + Twindow then

// current interval
9 ci ← ci + c ij ;

10 rti ← rti + (eij − sij);
11 ei ← max(eij, ei);
12 remove record testimonyij;
13 compute rdri using Equation 2;
14 else

// next interval
15 rdr tii ← rdri;
16 ti ← ti + 1;
17 si = ei = si + Twindow;
18 rti ← 0;
19 ci ← 0;

The algorithm begins with initializing the reputation statistic
repu_stai of each resource ri for the first time interval (lines 1–6).
Let us now assume that the algorithm comes to a time interval ti
for resource ri. After a task vj assigned to resource ri successfully
completes or fails, the server gives a reputation report testimonyij =
(sij, e

i
j, c

i
j), where sij and eij are the start and end times of task vj,

respectively, and c ij is the number of failures during this task. If
a task fails, we simply set c ij to be 1; otherwise it is 0. The server
then uses this report to update the reputation statistic repu_stai
for resource ri (lines 9–11).

After each update of the reputation statistic repu_stai, a real-
time statistical failure rate for resource ri can be calculated. Here,
the entire length of the current time interval is ei − si. During
the donated task execution time rti of resource ri in the current
interval, resource ri has ci task failures. During the remaining time
ei − si − rti in the current interval, resource ri is assumed to use
the reputation observed in the previous time interval ti− 1. Hence
the assumed number of task failures for the remaining time in the
current interval is rdr ti−1i (ei−si−rti), where rdr ti−1i is the recorded
RD reputation for resource ri in the previous time interval ti − 1.
We can now derive the real-time RD reputation rdri for resource ri
by Eq. (2). (ei− si− rti)/(ei− si) can be explained as the time decay
factor for the recorded RD reputation for resource ri in the previous
time interval.

rdri =
ci + rdr ti−1i (ei − si − rti)

ei − si

=
rti

ei − si
·
ci
rti
+

ei − si − rti
ei − si

· rdr ti−1i . (2)

At the end of the current time interval ti, the real-time RD
reputation rdri for resource ri is recorded as rdr tii (line 16). The
server then starts another reputation statistic for the next time
interval ti+1 (lines 17–20). For the initial time interval, we assume
that the RD reputation rdr0i for each resource ri is rdr initial (line
2). rdr initial is the initial RD reputation for all the resources and
should be set to a relatively high failure rate. In this way, rdr initial
provides resource providers with the incentive to deliver good-
quality services so as to improve their reputation.

5. The reliability-driven scheduling problem

Based on the RD reputation, we can define our reliability-driven
scheduling problem. In a workflow application, each task can only
be executed after all its parent tasks have been completed. Thus
the available start time tavaili for a task vi is

tavaili = max
e(j,i)∈E

tej , (3)

where tej is the end time of task vj. If task vi has no parent tasks,
its available start time is 0. Let function idle(rj) be the time when
resource rj is idle. Then the start time tsi and end time tei of task vi
is defined as

tsi = max{tavaili , idle(M(i))} (4)

tei = tsi + |vi|γj, (5)

where M(i) = rj. M(i) is the resource to which task vi is assigned
and γj is the instruction speed of resource rj. Hence the time t jS
when resource rj completes all its assigned tasks in scheduling S
is defined as

t jS = max
i|M(i)=rj

{tei }. (6)

The reliability of a workflow application is the probability
that all its tasks complete successfully. This can be given by the
probability that all the resources remain functional until all the
tasks assigned to them are completed [11]. Since rdri represents
the failure rate of resource ri, the probability that resource ri can
successfully complete all its tasks in scheduling S is Ri

S = e−t
i
S ·rdri .

Thus the success probability RS of an application in scheduling S
can be computed as the product of all Ri

S as

RS =

m∏
i=1

Ri
S = e

−

m∑
i=1

t iS ·rdri
. (7)

The reliability-driven scheduling of a workflow application is
to maximize the reliability and minimize the makespan of the
application. To maximize the reliability of scheduling S, we need

1128 X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134
(a) Workflow example. (b) Actual scheduling. (c)
Two-dimensional
string.

(d) Task-resource mapping string.

Fig. 2. Encoding.
to minimize its failure factor fail(S) =
∑m

i=1 t
i
S · rdri. Therefore the

scheduling problem can be formalized as

Minimize fail(S) =
m−
i=1

t iS · rdri (8)

Minimize time(S) = max
ri∈R

(t iS). (9)

6. Reliability-driven scheduling using a GA

For the scheduling of workflow applications, GAs can give
several satisfying solutions for choice by iterative evolutions over
generations of scheduling solutions. A typical GA consists of the
following steps: (1) create an initial population consisting of
randomly generated solutions (chromosomes); (2) evaluate the
fitness of each solution and select the solutions for the next
population; (3) generate a new generation of solutions by applying
two genetic operators (crossover and mutation); and (4) repeat
steps 2 and 3 until the population converges. Usually, the genetic
operators evolve a scheduling solution randomly [16,15,13], which
can give invalid solutions or lead to slow convergence of the
algorithm. To address this problem, we have designed the look-
ahead genetic algorithm (LAGA), which uses a novel evolution and
evaluation mechanism. The LAGA determines the task execution
order for a solution in the evaluation step instead of normally
in the evolution step (crossover and mutation), and uses a new
max–min strategy based on our proposed task priority heuristics.
Each step of the LAGA is explained further in the following
sections.

6.1. Encoding

For a workflow application, a chromosome is a data structure
in which a scheduling solution is encoded. As illustrated in
Fig. 2(c),we use a two-dimensional string to represent a scheduling
solution. One dimension of the string represents the index of
resources, which depicts the task-resource mapping, while the
other dimension denotes the order between tasks. The two-
dimensional string can then be converted into the task-resource
mapping stringM (Fig. 2(d)) directly,which is a vector of length |V |.
Note that the task-resourcemapping string has the same symbolM
as the mapping function since they mean the same; i.e., M(i) = rj
means that task vi is assigned to resource rj.

6.2. Crossover

The rationale for the crossover operation is that it may
result in an even better chromosome by exchanging two fittest
chromosomes. To keep the dependence between tasks, two
crossover operations have previously been designed to exchange
Fig. 3. Crossover.

the task-resource mapping and task execution order separately
and randomly [16,13]. But this can make it difficult for the
crossover operation to find a better solution, since a good
task execution order for one task-resource mapping does not
necessarilymean it is also good for another task-resourcemapping.
Hence our crossover operation only exchanges the task-resource
mapping between two chromosomes. The task order of the two
new offspring is to be determined later in the evaluation step
using our proposed task priority heuristics. This ensures that a
feasible task execution order of a specific task-resource mapping
is determined more intelligently instead of just using random
exchange.

Our crossover operation first randomly selects some pairs of
chromosomes from the current population with a probability pc .
For each pair as shown in Fig. 3, it randomly generates a cut-off
point for the task-resource mapping string M , which divides the
strings of the pair into top and bottom parts. The two bottom parts
are then exchanged to generate two new task-resource mapping
offspring.

6.3. Mutation

The mutation operation leads the search to exit from a
local optimum and typically changes some of the genes in a
chromosome randomly. But thismay cause the algorithm to search
randomly around the good solutions. Therefore, in our mutation
operation, a solution is mutated intelligently based on a resource
priority heuristic. To optimize the reliability of an application,
Dongarra et al. [11] have proven that the resource which has
the minimal multiplication value of instruction speed (unitary
instruction execution time) and failure rate should have a higher
priority to be selected in the scheduling. Hence we define the
following.

Lemma 1. Resource priority heuristic (ResPH): Let 1/(γirdri) be the
priority of a resource ri, and S be a schedule where all the tasks are
assigned to the resource with the highest priority. Then any other
schedule S ′ ≠ S with reliability RS′ is such that RS′ < RS .

Like the crossover operation, our mutation operation only
changes the task-resource mapping for a solution. It mutates a

X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134 1129
(a) Original scheduling. (b) Scheduling after mutation.

Fig. 4. Mutation.
solution in the generation with a probability pm. The mutation
operation randomly selects one task in the solution and reassigns it
to any resource which has a lower γirdri. As shown in Fig. 4(a), task
v4 is originally scheduled to resource r4, whose γirdri is 4; thus the
mutation operation reassigns it to resource r2 with a lower γirdri of
1. Fig. 4(b) shows the new scheduling, in which both themakespan
and the reliability of the application have been improved.

6.4. Evaluation

Most GAs only assess the fitness of a solution in the evaluation
step, and do not try to improve the solution according to the
evaluation result. In our evaluation operation, the LAGA schedules
the task execution order for a new solution first. Then it calculates
the estimated end time tei for each task vi so that we can evaluate
the makespan and failure factor of the new scheduling S using
Eq. (5).

To give an optimized task execution order for a specific
task-resource mapping string, we first define two task priority
heuristics, and then propose a new max–min scheduling strategy
based on these two heuristics. To optimize the makespan for an
application, we need to assign higher priority to tasks which can
either start earlier or have more influence on the makespan of the
application. Hence we define the following.

Definition 2. Task priority heuristic 1 (TaskPH1): Let the impor-
tance imprt(i) of a task vi be the length of the longest path begin-
ning from the task in the DAG, which can be denoted as

imprt(i) =

|vi| if vi is an exit task
|vi| + max

e(i,j)∈E
imprt(j) otherwise. (10)

Thus the priority p(i) of task vi is

p(i) = E(γ) · imprt(i)−max(tavaili , idle(M(i))), (11)

where E(γ) is the mean instruction speed of all resources.

If there are two tasks scheduled to the same resource, the one
with thehigher priority should be scheduled first. TaskPH1uses the
mean instruction speed of all resources to estimate the completion
time of the longest path beginning from a task. It is easy and simple
to be implemented. In our GA, since the task-resource mapping
has been fixed in the previous evolution step, we can have a more
precise estimation of the completion time for a path. Hence we
define the following.

Definition 3. Task priority heuristic 2 (TaskPH2): Let the esti-
mated completion time comp(i) for the longest path beginning
from task vi be

comp(i) =

|vi| · γj if vi is an exit task
|vi| · γj + max

e(i,k)∈E
comp(k) otherwise, (12)
where M(i) = rj. Thus the priority p(i) of task vi is

p(i) = comp(i)−max(tavaili , idle(M(i))). (13)

Based on the task priority heuristics, our evaluation algorithm
uses a two-phase max–min strategy as shown in Algorithm 2,
which is specifically proposed for GAs. For each resource, the al-
gorithm first selects its next to be scheduled task, which has the
maximum priority based on TaskPH1 or TaskPH2. Then, from all
the next to be scheduled tasks of the resources, it selects the task
with theminimumend time to be scheduled. Given a task-resource
mapping stringM (the mapping function), all the tasks assigned to
resource ri are put into quei in their scheduling order, and the algo-
rithm outputs the estimated completion time t iS for each resource
ri in the new scheduling S. que_readyi is the queue containing the
unscheduled tasks which are ready to run on resource ri.

The algorithmworks as follows: (i) add each entry task vj to the
task ready queue of its assigned resourceM(j), and set its available
start time to 0 (lines 1–3); (ii) select the task with the maximum
priority for each resource (lines 8); (iii) among all the selected
tasks, the task vtask_sel with the minimum end time is selected to
be scheduled (lines 9–12); (iv) schedule the selected task vtask_sel
(lines 13–15), and update the task completion time and idle time
for resource M(task_sel) (line 16); (v) update the state of all the
child tasks of the scheduled task (lines 17–20); (vi) repeat steps
ii–v until all the tasks have been scheduled.

Theorem 1. The time complexity of the evaluation algorithm is
O(n log n + nm + d), where m is the number of resources, n is the
number of nodes (tasks) in a DAG, and d is the number of directed
edges (dependence constraints).
Proof. The time complexity of initializing the task ready queue
is O(n) (lines 1–3). An entire iteration (lines 4–21) schedules one
task at a time. Thus it will run n times. To effectively sort and
select a task for each resource (line 8), it takes O(log n) time. The
time complexity of computing the task end time and selecting
the task with the minimum end time is O(m) (lines 9–12). The
time complexity of lines 13–16 is O(1). Hence the time complexity
of repeating lines 5–16 is O(n(log n + m + 1)). To update the
available time for the child tasks (lines 17–20), it takes O(d) time.
Therefore, the total time complexity for the evaluation algorithm
is O(n+ n(log n+m+ 1)+ d) = O(n log n+ nm+ d). �

6.5. Selection

In GAs, the fitness function is used to measure and select
solutions. As our goal is to optimize the reliability and makespan
for an application under the time constraint, the sum of weighted
global ratios (SWGR)model [15] can be used to compute the fitness
value. Thus the fitness value f (S) of a scheduling S is defined as

f (S) = ω1 ·
fail(S)−minFail
maxFail−minFail

+ω2 ·
time(S)−minTime
maxTime−minTime

, r(ω1 + ω2 = 1). (14)

1130 X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134
Algorithm 2: Evaluation Algorithm
input : task-resource mapping stringM
output: {t iS, quei} for each resource ri

1 foreach entry task vj do
2 add vj to task ready queue que_readyM(j);
3 tavailj ← 0;

4 repeat
// minimum end time

5 min_end←∞;
// task selected

6 task_sel← null;
7 foreach resource ri do

// max–min phase 1
8 find task vj with the maximum priority value from

que_readyi;
// max–min phase 2

9 compute tej using Equation 5;
10 if tej < min_end then

// update minimum end time
11 min_end← tej ;

// update task selected
12 task_sel← j;

13 res_sel← M(task_sel);
14 remove vtask_sel from que_readyres_sel;
15 add vtask_sel to queres_sel;
16 t res_selS = idle(res_sel) = tetask_sel;
17 foreach child task vi of task vtask_sel do
18 compute tavaili using Equation 3;
19 if vi is ready to run then
20 add vi to que_readyM(i);

21 until every que_readyi is empty;

Here, maxFail and minFail are the maximum and minimum
failure factors for the solutions in the current generation,
respectively, while maxTime and minTime are the maximum
makespan and minimum makespan, respectively. The first two
elements of f (S) encourage the algorithm to select the solutions
with the minimum failure factor and minimum makespan. Both
these objectives are assigned weights (ω1 and ω2) according to
the trade-off requirement of the user. Hence, to select the good
solutions for the next generation, the chromosomes in the mating
pool are first ordered in ascending order of their fitness value f (S).
After that, the algorithm uses the commonly used roulette wheel
selection scheme [13] to select solutions for the next generation.
Details of this scheme can be found in [13] and thus are not
repeated here.

7. Performance evaluation

We simulate a distributed computing environment to evaluate
the performance of our scheduling problem. We first examine the
impact of RD reputation on the reputation calculation and the
scheduling result. We then assess the performance of the LAGA by
comparing it with two popular list heuristics and another GA, and
analyzing the efficiency of its three priority heuristics.

7.1. Experimental setup

For our experiments, we use GridSim [26] to simulate a
distributed computing environment based on three parameters:
the number of resources m, the mean resource speed γ , and the
mean resource failure rate λ. These parameters are used according
to previous work [8,7,15]. There are 200 resources donating
various number of CPU cycles. The resource speeds are uniformly
distributed between 5 × 10−4 and 10−3 ms per instruction. The
resource failure rates are uniformly distributed between 10−3 and
10−4 failures/h [15].

As in most previous work [8,15,13,27], we use a random
DAG generator to simulate workflow applications based on three
parameters: the number of tasks, the mean out-degree of a task
node, and the mean task size. The number of tasks is between 40
and 200. The mean out-degree of a task node is 2. The task sizes
are uniformly distributed between 1 × 104 and 15 × 106 million
instructions (MI).

Other remaining parameters are for our proposedRD reputation
and the LAGA. The initial RD reputation rdr initial for all resources
is 10−3 failures/h and the reputation decay factor α is 0.2. Both
weights ω1 and ω2 for the fitness value are 0.5; i.e., the algorithm
considers both the reliability and the makespan to be of the same
priority. The probability for crossover operation and mutation
operation is 0.5 and 0.25, respectively. These two probabilities are
set to be a medium value used in [14] so that we can test the
evolution process of GAs. The population size of the LAGA is 20. For
each type of workflow application with the same parameters, we
create five instances so that they can have a wide representation.
In addition, for each workflow application, we run the GAs three
times to obtain their average results.

7.2. RD reputation

7.2.1. Comparison with traditional reputation
We compare our RD reputation with the traditional reputation,

which uses the ratio of successfully completed tasks. Our compar-
ison focuses on increasing task sizes of {12, 24, 36, 48, 60, 72} ×
105 MI in two scenarios: (i) varying resource speed and (ii) vary-
ing resource failure rate. The varying resource speed is either fast,
with 1000MIPS, or slow, with 500MIPS. The varying resource fail-
ure rate is either high, with 10−3 failures/h, or low, with 10−4 fail-
ures/h.

Fig. 5 shows the failure probabilities of RD reputation and
traditional reputation for a medium-sized task normalized by the
actual failure rate of the resource. The failure probability of RD
reputation across different task sizes remains consistently about
the same as the actual failure rate of the resource (i.e., normalized
value of 1), whereas the failure probability of traditional reputation
is only close to the actual failure rate for the medium task size
(i.e., 42× 105 MI). Otherwise, the failure probability of traditional
reputation also increases as the size of tasks increases. In addition,
the failure probability of traditional reputation deviates more
from the correct failure rate when resources have a faster speed
(Fig. 5(a) or lower failure rate (Fig. 5(b)). This is because the
normalized failure probability of traditional reputation obeys a
negative exponential function. Thus the faster speed or lower
failure rate contributes to a smaller exponent, which results in a
greater deviation.

7.2.2. Impact on scheduling
To compare the scheduling results based on RD and traditional

reputation, half of the resources in our simulation have the actual
failure rate, while the other half of the resources have either
RD reputation-based failure rate or traditional reputation-based
task failure probability. Fig. 6 shows that both RD and traditional
reputation-based scheduling achieve almost the same makespan
for increasing task sizes (Fig. 6(a)). However, RD reputation-based
scheduling achieves a consistently lower failure probability than
traditional reputation-based scheduling (Fig. 6(b)). In particular,
the failure probability of traditional reputation ismuchworse than
that of RD reputation as the task size decreases or increases. This
is due to traditional reputation giving a different resource failure
rate from the actual one, and hence tasks are scheduled to more
unreliable resources.

X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134 1131
(a) Varying resource speed. (b) Varying resource failure rate.

Fig. 5. Normalized failure probability of a medium-sized task based on RD and traditional reputation.
(a) Normalized makespan. (b) Failure probability.

Fig. 6. Normalized makespan and failure probability of a workflow application based on RD and traditional reputation.
(a) Makespan. (b) Failure probability.

Fig. 7. Makespan and failure probability of a scheduling given by DLS, RDLS, and the LAGA.
7.3. LAGA

7.3.1. Comparison with list heuristics
DLS, RDLS [12], and BSA [7] are three well-known list heuristics

to optimize the makespan or reliability for workflow applications.
To compare our LAGA with these three list heuristics, we run DLS,
RDLS, and BSA 100 times respectively to get the average result. The
number of tasks varies from 40 to 200. Fig. 7 shows that the LAGA
performs the best for both makespan and reliability. In particular,
the LAGA achieves a considerably larger improvement ratio (of
about 14%) for makespan and reliability when the number of tasks
is small (40 tasks), as compared to when the number of tasks is
large (200 tasks). This is because, when there are fewer tasks, there
will be more idle resources for the LAGA to select for each task.
Hence the LAGA is able to examine each of them to find the most
suitable resource. On the other hand, list heuristics only examine
one resource according to the heuristic value, which may not be
the best one.

7.3.2. Comparison with another GA (the BGA)
We compare our LAGA with the BGA [15], which evolves a

solution randomly. Their performances are compared in terms of
iteration and time. For the comparison in terms of iteration, we
compute the average normalized makespan and reliability of the

1132 X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134
(a) Average normalized makespan. (b) Average normalized reliability.

Fig. 8. Average normalized makespan and reliability of a scheduling given by the BGA and the LAGA in terms of iterations.
(a) Time needed for a new generation. (b) Scheduling quality improvement over time.

Fig. 9. Performance of the BGA and the LAGA in terms of time.
Fig. 10. The efficiency of ResPH.

solutions, which are the mean makespan and reliability of the
current generation normalized by the mean makespan and failure
factor of the initial generation, respectively. The application has
200 tasks, while the number of iterations of the two GAs is 1000.
Fig. 8 shows that the LAGA improves the makespan and reliability
for an application more quickly than the BGA. In addition, for the
same number of iterations, the LAGA always gives better quality
scheduling solutions than the BGA.

To compare the performance in terms of time, we run two
experiments. The first experiment examines the average time
needed for a new generation with better quality solutions. Fig. 9(a)
shows that the BGA needs less time (16 ms less on average)
than the LAGA for a new generation at the start of the evolution
(generations 1–31), but needs much more time with increasing
number of generations (generation 62 onwards). Since the BGA
randomly searches for better solutions, it is easy to find a better
solution at the start of the evolution, but it gradually becomes
harder to find a better solution. On the other hand, the LAGA needs
to run the evaluation algorithm, which is more time-consuming,
and thus evolves more slowly at the start of the evolution.
However, our priority heuristics are able to ensure that the LAGA
still continues to find better solutions using a similar amount of
time as the evolution process progresses.

The second experiment studies the average scheduling quality
over the running time of the GA by sampling every 200 ms. The
normalized scheduling quality of a GA is the sum of the normalized
reliability and the inverse of the normalizedmakespan. In Fig. 9(b),
at the start of the evolution, the BGA improves the quality of the
solutions more quickly than the LAGA. However, it becomes very
difficult and slower for the BGA to improve the quality, while
the LAGA outperforms the BGA to obtain better quality solutions.
Hence, Fig. 9(b) proves that our analysis of the previous experiment
(Fig. 9(a)) is correct. Fig. 9(b) also shows that, for a workflow
application with 200 tasks, it needs about 5.2 s for the LAGA to
achieve convergence. This is acceptable for long runtimeworkflow
applications that need several hours or even several days.

X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134 1133
(a) Average normalized makespan. (b) Average normalized reliability.

Fig. 11. Average normalized makespan and reliability of a scheduling given by the LAGA using TaskPH1 or TaskPH2.
7.4. Priority heuristics

7.4.1. The efficiency of ResPH
To evaluate the efficiency of ResPH, we use a workflow

application comprising 200 tasks to compare the LAGA using only
ResPH (LAGA-ResPH) with the BGA. Fig. 10 shows the average
normalized scheduling quality (as introduced in Section 7.3.2) of
the LAGA-ResPH and the BGA over the number of iterations. It can
be seen that ResPH gives better scheduling quality at the start of
the evolution. But, as the number of iterations increases, ResPH
is no longer able to further improve the scheduling quality, thus
resulting in the LAGA achieving the same scheduling quality as the
BGA. This shows that, after a period of evolution, it will be difficult
for the LAGA to improve the quality of a solution by just assigning
a task to a faster or more reliable resource.

7.4.2. The efficiency of TaskPH1 and TaskPH2
We compare the efficiency of our task priority heuristics

(TaskPH1 and TaskPH2) on the LAGA. For the experiments, the
number of tasks in the workflow application varies from 40 to 200.
Fig. 11 shows the averagemakespan and reliability of the solutions
given by the LAGA using TaskPH1 and TaskPH2, normalized by
the makespan and reliability of the solutions given by the BGA,
respectively.

We can observe that both TaskPH1 and TaskPH2 enable the
LAGA to achieve a lower makespan (normalized makespan <1)
and a higher reliability (normalized reliability >1) than the BGA.
However, TaskPH2 achieves a significantly lower makespan and
higher reliability than TaskPH1 when the workflow application is
of medium size (120 tasks). Otherwise, both TaskPH1 and TaskPH2
achieve similar performance when the workflow application is
of small or large size. This is because, when the number of
tasks is small, the GA can find a good solution even without
heuristics. When the number of tasks is large, every resource will
be assigned many tasks, which makes it very difficult to estimate
the completion time for a long task path. Hence in this case,
TaskPH2 cannot outperform TaskPH1, although it can predict a
more precise estimation of the completion time.

8. Conclusion

We have studied the reliability-driven scheduling problem
in distributed computing environments by proposing the time-
dependent RD reputation for resource reliability evaluation. The
RD reputation uses the failure rate to define the reputation of a
resource so that it can be used to evaluate the reliability of a task
directly using the exponential failure model. Our RD reputation
calculation algorithmcan alsomonitor the real-time changes of the
reputation dynamically.

Based on the RD reputation, we then propose a look-ahead
genetic algorithm (LAGA) to optimize both the makespan and
the reliability of workflow applications intelligently. The LAGA
optimizes the typical GA by a new mutation operator according
to our proposed resource priority heuristic (ResPH). It uses a novel
evolution and evaluationmechanism: the genetic operators evolve
the task-resource mapping for a solution, while the task execution
order of a solution is determined in the evaluation step using our
proposed max–min strategy based on the defined task priority
heuristics (TaskPH1 and TaskPH2). Simulation results show that
the RD reputation can improve the reliability of a workflow
application with more accurate reputations, while the LAGA can
derive much better quality solutions than list heuristics DLS, RDLS,
and BSA, and outperforms the previously proposed BGA in evolving
scheduling solutions.

Acknowledgements

We thank Marco A. S. Netto and Sungjin Choi for their
comments. Thework is partially supported by the National Natural
Science Foundation (Research on Trust Management for Cyber
Space), Major State Basic Research Development Programs of
China: No. 2009CB320503 and the Australian Research Council.

References

[1] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-
degree compared, in: Grid Computing Environments Workshop 2008, GCE
2008, IEEE Computer Society, Austin, TX, USA, 2008.

[2] J. Sonnek, A. Chandra, J. Weissman, Adaptive reputation-based scheduling on
unreliable distributed infrastructures, IEEE Trans. Parallel Distrib. Syst. 18 (11)
(2007) 1551–1564. http://dx.doi.org/10.1109/TPDS.2007.1094.

[3] S. Song, K. Hwang, Y.-K. Kwok, Risk-resilient heuristics and genetic algorithms
for security-assured grid job scheduling, IEEE Trans. Comput. 55 (6) (2006)
703–719. http://dx.doi.org/10.1109/TC.2006.89.

[4] A. Jøsang, R. Ismail, C. Boyd, A survey of trust and reputation systems
for online service provision, Decis. Support Syst. 43 (2) (2007) 618–644.
http://dx.doi.org/10.1016/j.dss.2005.05.019.

[5] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The EigenTrust algorithm for
reputation management in p2p networks, in: WWW ’03: Proceedings of the
12th International Conference onWorldWideWeb, ACM, New York, NY, USA,
2003, pp. 640–651. http://doi.acm.org/10.1145/775152.775242.

[6] Y. Wang, M.P. Singh, Trust representation and aggregation in a distributed
agent system, in: AAAI ’06: Proceedings of the 21st National Conference on
Artificial Intelligence, AAAI Press, 2006, pp. 1425–1430.

[7] M. Hakem, F. Butelle, Reliability and scheduling on systems subject to
failures, in: ICPP ’07: Proceedings of the 2007 International Conference on
Parallel Processing, IEEE Computer Society, Washington, DC, USA, 2007, p. 38.
http://dx.doi.org/10.1109/ICPP.2007.72.

[8] S.C. Kim, S. Lee, J. Hahm, Push-pull: deterministic search-based dag scheduling
for heterogeneous cluster systems, IEEE Trans. Parallel Distrib. Syst. 18 (11)
(2007) 1489–1502. http://dx.doi.org/10.1109/TPDS.2007.1106.

http://dx.doi.org/10.1109/TPDS.2007.1094
http://dx.doi.org/10.1109/TC.2006.89
http://dx.doi.org/10.1016/j.dss.2005.05.019
http://doi.acm.org/10.1145/775152.775242
http://dx.doi.org/10.1109/ICPP.2007.72
http://dx.doi.org/10.1109/TPDS.2007.1106

1134 X. Wang et al. / Future Generation Computer Systems 27 (2011) 1124–1134
[9] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I. Reuther, J.P.
Robertson, M.D. Theys, B. Yao, D. Hensgen, R.F. Freund, A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems, J. Parallel Distrib. Comput. 61 (6) (2001)
810–837.

[10] M. Wieczorek, S. Podlipnig, R. Prodan, T. Fahringer, Bi-criteria scheduling of
scientific workflows for the grid, in: 8th IEEE International Symposium on
Cluster Computing and the Grid, CCGrid 2008, IEEE Computer Society, Wash-
ington, DC, USA, 2008, pp. 9–16. http://dx.doi.org/10.1109/CCGRID.2008.21.

[11] J.J. Dongarra, E. Jeannot, E. Saule, Z. Shi, Bi-objective scheduling algorithms
for optimizing makespan and reliability on heterogeneous systems, in: SPAA
’07: Proceedings of the Nineteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, ACM, New York, NY, USA, 2007, pp. 280–288.
http://doi.acm.org/10.1145/1248377.1248423.

[12] A. Dogan, F. Özgüner, Matching and scheduling algorithms for minimizing
execution time and failure probability of applications in heterogeneous
computing, IEEE Trans. Parallel Distrib. Syst. 13 (3) (2002) 308–323.
http://dx.doi.org/10.1109/71.993209.

[13] L. Wang, H.J. Siegel, V.R. Roychowdhury, A.A. Maciejewski, Task matching
and scheduling in heterogeneous computing environments using a genetic-
algorithm-based approach, J. Parallel Distrib. Comput. 47 (1) (1997) 8–22.
http://dx.doi.org/10.1006/jpdc.1997.1392.

[14] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, B.-S. Lee, Efficient hierarchical parallel
genetic algorithms using grid computing, Future Gener. Comput. Syst. 23 (4)
(2007) 658–670. http://dx.doi.org/10.1016/j.future.2006.10.008.

[15] A. Doğan, F. Özgüner, Biobjective scheduling algorithms for execution time-
reliability trade-off in heterogeneous computing systems, Comput. J. 48 (3)
(2005) 300–314. http://dx.doi.org/10.1093/comjnl/bxh086.

[16] J. Yu, M. Kirley, R. Buyya, Multi-objective planning for workflow execution on
grids, in: GRID ’07: Proceedings of the 8th IEEE/ACM International Conference
on Grid Computing, IEEE Computer Society, Washington, DC, USA, 2007,
pp. 10–17. http://dx.doi.org/10.1109/GRID.2007.4354110.

[17] X. Wang, R. Buyya, J. Su, Reliability-oriented genetic algorithm for workflow
applications using max–min strategy, in: 9th IEEE International Symposium
on Cluster Computing and the Grid, CCGrid 2009, IEEE Computer Society, Los
Alamitos, CA, USA, Shanghai, China, 2009.

[18] X. Wang, C.S. Yeo, R. Buyya, J. Su, Reliability-driven reputation based
scheduling for public-resource computing using ga, in: IEEE 23rd International
Conference on Advanced Information Networking and Applications, AINA
2009, IEEE Computer Society, Los Alamitos, CA, USA, Bradford, UK, 2009.

[19] R. Zhou, K. Hwang, Powertrust: a robust and scalable reputation system for
trusted peer-to-peer computing, IEEE Trans. Parallel Distrib. Syst. 18 (4) (2007)
460–473. http://dx.doi.org/10.1109/TPDS.2007.1021.

[20] Y. Zhang, Y. Fang, A fine-grained reputation system for reliable service
selection in peer-to-peer networks, IEEE Trans. Parallel Distrib. Syst. 18 (2007)
1134–1145. http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.1043.

[21] D. Kondo, G. Fedak, F. Cappello, A.A. Chien, H. Casanova, Characterizing
resource availability in enterprise desktop grids, Future Gener. Comput. Syst.
23 (7) (2007) 888–903. http://dx.doi.org/10.1016/j.future.2006.11.001.

[22] X. Qin, T. Xie, An availability-aware task scheduling strategy for het-
erogeneous systems, IEEE Trans. Comput. 57 (2) (2008) 188–199.
http://dx.doi.org/10.1109/TC.2007.70738.

[23] R.C. Corrêa, A. Ferreira, P. Rebreyend, Scheduling multiprocessor tasks with
genetic algorithms, IEEE Trans. Parallel Distrib. Syst. 10 (8) (1999) 825–837.
http://dx.doi.org/10.1109/71.790600.

[24] M. Rahman, R. Ranjan, R. Buyya, Cooperative and decentralized workflow
scheduling in global grids, Future Gener. Comput. Syst. 26 (5) (2010)
753–768.

[25] S. Zhao, V. Lo, Result verification and trust-based scheduling in peer-to-peer
grids, in: Proceedings of the 5th IEEE International Conference on Peer-to-Peer
Computing, P2P 2005, IEEE Computer Society, Los Alamitos, CA, USA, Konstanz,
Germany, 2005, doi:10.1109/P2P.2005.13.

[26] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, R. Buyya, A toolkit for modelling
and simulating data grids: an extension to gridsim, Concurr. Comput.: Pract.
Exp. 20 (13) (2008) 1591–1609. doi:10.1002/cpe.1307.

[27] M. Bubak, T. Gubala, M. Kapalka, M. Malawski, K. Rycerz, Workflow composer
and service registry for grid applications, Future Gener. Comput. Syst. 21 (1)
(2005) 79–86.
Xiaofeng Wang is an assistant professor in School of
Computer, National University of Defense Technology
(NUDT), China. He completed his Ph.D. at NUDT in 2009.
From Nov. 2007 to Nov. 2008, he was a visiting student
at the Cloudbus lab at the University of Melbourne,
with the China Scholarship Council’s Fellowship. His
current research interests are in distributed computing,
trust management and intelligent date processing. He
has published several papers in renowned journals
and conferences like IEEE/ACM CCGrid, AINA, and IEEE
Transactions on Services Computing etc.

Chee Shin Yeo is a research engineer at the Institute
of High Performance Computing (IHPC), Singapore. He
completed his Ph.D. at The University of Melbourne,
Australia. His research interests include parallel and
distributed computing, services and utility computing,
energy-efficient computing, and market-based resource
allocation.

Rajkumar Buyya is Professor of Computer Science and
Software Engineering; and Director of the Cloud Comput-
ing and Distributed Systems (CLOUDS) Laboratory at the
University of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft Pty Ltd., a spin-off com-
pany of the University, commercializing its innovations in
Grid and Cloud Computing. He has authored andpublished
over 300 researchpapers and four text books. The books on
emerging topics that Dr. Buyya edited include, High Per-
formance Cluster Computing (Prentice Hall, USA, 1999),
Content Delivery Networks (Springer, Germany, 2008),

Market-Oriented Grid and Utility Computing (Wiley, USA, 2009), and Cloud Com-
puting: Principles and Paradigms (Wiley, USA, 2011). He is one of the highly cited
authors in computer science and software engineering worldwide (h-index=52, g-
index=111, 14500 citations).

Software technologies for Grid and Cloud computing developed under Dr.
Buyya’s leadership have gained rapid acceptance and are in use at several academic
institutions and commercial enterprises in 40 countries around theworld. Dr. Buyya
has led the establishment and development of key community activities, including
serving as foundation Chair of the IEEE Technical Committee on Scalable Comput-
ing and four IEEE conferences (CCGrid, Cluster, Grid, and e-Science). He has pre-
sented over 250 invited talks on his vision on IT Futures and advanced computing
technologies at international conferences and institutions in Asia, Australia, Europe,
North America, and South America. These contributions and international research
leadership of Dr. Buyya are recognized through the award of ‘‘2009 IEEE Medal for
Excellence in Scalable Computing’’ from the IEEE Computer Society, USA. Manjra-
soft Aneka technology for Cloud Computing developed under his leadership has re-
ceived ‘‘2010 Asia Pacific Frost & Sullivan New Product Innovation Award’’.

Jinshu Su is a full professor in School of Computer,
National University of Defense Technology (NUDT), China.
He received his B.S degree of mathematics from Nankai
University, 1985, and his M.S, and Ph.D. degrees from
NUDT in 1988 and 2000 respectively, both in Computer
Science. Currently, he serves as head of the Institute of
network and information security, NUDT. He has lead
several national key projects of CHINA, including one
national 973 projects, several national 863 projects and
NSFC Key projects. Pro. Su is a member of ACM and IEEE,
a senior member of CCF (China Computer Federation). He

has published more than 70 papers in international journals and conferences,
including ICDCS 06, Infocom 08, Mobihoc 08, CCGrid 09 and ICPP 10 etc.

http://dx.doi.org/10.1109/CCGRID.2008.21
http://doi.acm.org/10.1145/1248377.1248423
http://dx.doi.org/10.1109/71.993209
http://dx.doi.org/10.1006/jpdc.1997.1392
http://dx.doi.org/10.1016/j.future.2006.10.008
http://dx.doi.org/10.1093/comjnl/bxh086
http://dx.doi.org/10.1109/GRID.2007.4354110
http://dx.doi.org/10.1109/TPDS.2007.1021
http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.1043
http://dx.doi.org/10.1016/j.future.2006.11.001
http://dx.doi.org/10.1109/TC.2007.70738
http://dx.doi.org/10.1109/71.790600
http://dx.doi.org/doi:10.1109/P2P.2005.13
http://dx.doi.org/doi:10.1002/cpe.1307

	Optimizing the makespan and reliability for workflow applications with reputation and a look-ahead genetic algorithm
	Introduction
	Related work
	System model and assumptions
	Reliability evaluation as reputation
	Calculation of the real-time RD reputation

	The reliability-driven scheduling problem
	Reliability-driven scheduling using a GA
	Encoding
	Crossover
	Mutation
	Evaluation
	Selection

	Performance evaluation
	Experimental setup
	RD reputation
	Comparison with traditional reputation
	Impact on scheduling

	LAGA
	Comparison with list heuristics
	Comparison with another GA (the BGA)

	Priority heuristics
	The efficiency of ResPH
	The efficiency of TaskPH1 and TaskPH2

	Conclusion
	Acknowledgements
	References

