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a b s t r a c t 

Current cloud computing frameworks host millions of physical servers that utilize cloud computing re- 

sources in the form of different virtual machines. Cloud Data Center (CDC) infrastructures require signif- 

icant amounts of energy to deliver large scale computational services. Moreover, computing nodes gen- 

erate large volumes of heat, requiring cooling units in turn to eliminate the effect of this heat. Thus, 

overall energy consumption of the CDC increases tremendously for servers as well as for cooling units. 

However, current workload allocation policies do not take into account effect on temperature and it is 

challenging to simulate the thermal behavior of CDCs. There is a need for a thermal-aware framework 

to simulate and model the behavior of nodes and measure the important performance parameters which 

can be affected by its temperature. In this paper, we propose a lightweight framework, ThermoSim, for 

modeling and simulation of thermal-aware resource management for cloud computing environments. This 

work presents a Recurrent Neural Network based deep learning temperature predictor for CDCs which is 

utilized by ThermoSim for lightweight resource management in constrained cloud environments. Ther- 

moSim extends the CloudSim toolkit helping to analyze the performance of various key parameters such 

as energy consumption, service level agreement violation rate, number of virtual machine migrations and 

temperature during the management of cloud resources for execution of workloads. Further, different 

energy-aware and thermal-aware resource management techniques are tested using the proposed Ther- 

moSim framework in order to validate it against the existing framework (Thas). The experimental results 

demonstrate the proposed framework is capable of modeling and simulating the thermal behavior of a 

CDC and ThermoSim framework is better than Thas in terms of energy consumption, cost, time, memory 

usage and prediction accuracy. 

© 2020 Elsevier Inc. All rights reserved. 
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. Introduction 

Resource management is critical in cloud environment in which

esource utilization, power consumption of servers, and storage

lay important roles. Provisioning and scheduling cloud resources

s often based on availability, without considering other crucial
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Fig. 1. Interaction of various entities in cloud data center for resource management. 
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parameters such as resource utilization or the server’s thermal

characteristics ( Chia-Ming et al., 2014 ). To realize this, a thermal-

aware simulator for resource allocation mechanism is required

( Tsai and Chen, 2016 ). The problem of allocating user work-

loads to a set of Physical Machines (PMs) or Virtual Machines

(VMs) and allocating VMs on different server farms adhering to

the terms of service as cited in Service Level Agreements (SLAs)

and sustaining the Quality of Service (QoS) is stated as the ser-

vice provisioning issue. Thus, cloud providers focus on devel-

oping energy-efficient approaches and policies ( Mhedheb et al.,

2013 ). 

Thermo-awareness in cloud refers to the consideration of ther-

mal properties, such as thermal temperature of the host, CPU tem-

perature, heat tolerance and thresholds, energy source (i.e. non-

renewable vs. renewable), cooling considerations and mechanisms,

cost etc. when dynamically managing cloud resources, scheduling

and allocating workloads ( Qinghui et al., 2008 ). The explicit con-

sideration of these properties can transform the way the cloud is

managed and resources/PMs/VMs are dynamically allocated, lead-

ing to more energy-efficient computing and reduced carbon foot-

print ( Lin et al., 2019 ) ( Wu et al., 2019 ). The consideration of these

properties can inform the design and definition of new policies

that consider energy and thermal properties as moving targets and

calls for dynamic management and optimization of cloud resources

( Chaudhry et al., 2015 ). It is also imperative that the consideration

of thermo properties needs to be balanced, traded-off and/or fac-

tored along QoS provision; this can be monitored and observed on

SLA compliance/violation. 

In this work, we consider the thermal characteristics of the

host machine focusing on the issue of allocating VMs to hosts in

the server farms and assigning workload to the appropriate VMs

considering performance parameters ( Ilager et al., 2019 ). The VMs

are sorted based on their resource utilization, memory utilization,

disk utilization and network utilization as discussed in Section 3.2 .

The anticipated scheduling policy reduces the energy of the PM,

resource utilization with the aid of high-performance distribution

strategies ( Xiang et al., 2018 ; Zhou et al., 2020 ). Fig. 1 illustrates

the basic architecture of resource management in cloud comput-

ing environments and describes the interaction of various entities

in cloud data center for resource management. The entire incom-

ing load of the server farm is distributed among several VMs for

execution ( Gill et al., 2019 ). The aggregate workload of the server

farm is the finite number of jobs where each job assigned to a few
Ms for execution which in turn are hosted by PMs ( Wu and Xu,

010 ). 

.1. Motivation and our contributions 

A well-known cloud simulator, CloudSim toolkit ( Calheiros

t al., 2011 ) is available, which allows to model and simulates

loud computing environments that resemble real-world infras-

ructure elements. However, CloudSim toolkit does not include

hermal aspects of a data center. Therefore, there is a need to de-

elop a simulation platform as a benchmark to incorporate thermal

haracteristics which establish a relationship between theory and

ractice for thermal-aware resource management. The required

imulation framework can combine both utilization and thermal

odels to perform VM allocation to reduce heat generation and

ence energy required in computing systems ( Moore et al., 2007 ;

inghui et al., 2008 ; Lazic et al., 2018 ; Ranganathan and Sharma,

005 ; Chaudhry et al., 2015 ). This more holistic approach allows it

o infer more complex patterns of behavior between resource uti-

ization and heat generation to engender a more efficient approach

f resource management which in effect increases the performance

f the system ( Xiang et al., 2018 ; Ilager et al., 2019 ; Gill et al.,

019 ; Gill et al., 2019 ). The motivation behind this research work

s to propose a framework for the simulation of thermal-aware

esource management for cloud computing environment, called

hermoSim , which benefits by combining compute utilization and

hysical heat characteristics over existing systems. We develop a

ightweight deep learning-based temperature predictor using Re-

urrent Neural Network (RNN) which utilizes resource consump-

ion metrics to accurately predict temperature for cloud hosts. We

xtend the base classes of CloudSim toolkit to incorporate thermal

arameters into it. We evaluated the feasibility and performance

f ThermoSim framework and compared it to another baseline

imulator. 

The main contributions of this research work are: 

1. A novel framework called ThermoSim is proposed for

thermal-aware resource management for cloud computing

environments by extending CloudSim toolkit. 

2. İn ThermoSim, thermal-aware and utilization based ap-

proaches are proposed for scheduling of resources to opti-

mize energy consumption and temperature simultaneously. 

3. A lightweight RNN based deep learning predictor for tem-

perature characteristics of cloud hosts is presented for low

overhead resource management in ThermoSim 

4. Proposed scheduling approaches equipped with efficient en-

ergy and thermal-aware policy for enhanced performance of

cloud data centers. 

5. Validated ThermoSim framework against Thas ( Mhedheb

et al., 2013 ) based on different system parameters such as

memory, time, cost, energy and prediction accuracy using

datasets from Alibaba Cluster and PlanetLab. 

6. ThemoSim analyze the performance of existing energy-

aware and thermal-aware scheduling policies based on dif-

ferent QoS parameters such as SLA Violation Rate, energy

consumption, number of VM migrations and temperature. 

7. We propose key future research directions in the context of

ThermoSim framework. 

Lightweight Testbed/Simulator: ThermoSim is designed to

uild an experimental testbed/simulator for conducting practical

esearch in the domain of thermal-aware resource management for

loud computing. Researchers can simulate the thermal behavior of

he entire data center using ThermoSim and test or validate their

pproach for thermal-aware resource management before imple-

enting on real CDC (sensors, servers and GPUs). 
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.2. Article organization 

The rest of the paper is organized as follows: Section 2 presents

he related work. Section 3 presents the ThermoSim framework.

ection 4 describes the performance evaluation, validation of Ther-

oSim framework and experimental results. Section 5 presents

onclusions, future research directions and open challenges. 

. Related work 

The existing frameworks that allow thermal-aware resource

cheduling have significant drawbacks in terms of their ability to

xtract and predict thermal characteristics in a CDC. We have cat-

gorized the related work based on non-SLA and SLA aware re-

ource management techniques for thermal management. 

.1. Non-SLA aware resource management 

Kim et al. (2019) proposed a Dynamic Thermal Management

DTM) technique, which exploits external computing resources

idle servers) adaptively as well as internal computing resources

free cores of CPU in the server) available in heterogeneous data

enters. DTM technique identifies memory intensiveness and usage

f VMs if the temperature of a CPU core in a server exceeds a pre-

efined thermal threshold and migrates the VMs among CPU cores

n the server to maintain the temperature of the server. DTM tech-

ique saves energy and improves the performance while satisfying

hermal constraints efficiently. DTM technique uses reactive mech-

nism but not able to predict the temperature variations proac-

ively. Moreover, the impact of temperature variations on SLA has

ot been identified. Fu et al. (2017) proposed Temperature-Aware

esource Management (TARM) algorithm, which uses Lyapunov

ptimization theory to maintain the server temperature without

ffecting the system reliability. TARM algorithm decreases energy

onsumed by Computer Room Air Conditioning (CRAC) and servers

hile imposing server temperature constraints and QoS. Further, a

rade-off between system energy consumption and server temper-

ture has been developed, which reported that there is a need of

hermal-aware and utilization-based approach to optimize the per-

ormance efficiently. TARM algorithm cannot measure the impact

f number of VM migrations on system performance and SLA. 

Fu et al. (2017) proposed a Dynamic Control Algorithm (DCA)

ithout breaking the average temperature constraints and de-

igned a Server Temperature-Constrained Energy Minimization

STCEM) problem. Further, DCA develops linear and quadratic con-

rol policies to solve STCEM problem using Lyapunov optimization,

imilar to TARM algorithm ( Fu et al., 2017 ). Further, trade-off be-

ween energy and temperature is designed to compare the perfor-

ance of linear with quadratic control policy and identities the

mpact on power usage on system performance during the exe-

ution of workloads. İn this approach, the impact of energy con-

umed by cooling components on overall temperature has not been

dentified. Wu et al. (2016) proposed VM level temperature predic-

ion in Cloud datacenters and measures the impact of CPU tem-

erature on system performance dynamically with/without calibra-

ion compared to empirical data. Experimental results show that

ynamic CPU temperature modeling with calibration at run time

roduces more accurate information. In this study, various impor-

ant performance parameters such as energy, SLA violation rate

nd their impact on temperature is not discussed. Pierson et al.

2019) formulated Mixed İnteger Linear Programming (MILP) for

patio-temporal thermal-aware scheduling while considering dy-

amics of heat dissipation and production during scheduling of

orkloads. Further, performance parameters such as energy and

xecution time are optimized to improve the performance of CDC.
˙n this research work, the impact of number of VM migrations
n system performance and SLA is not discussed. Oxley et al.

2016) proposed an online resource management technique for

hermal and energy constrained heterogeneous cloud environment,

hich uses offline analysis to predict temperature variations at

untime to improve the performance of the system. Earlier temper-

ture prediction helps to execute the workload within their dead-

ine and specified budget. Further, an automatic load balancer is

sed to balance the load in case of performance degradation while

ncreasing server temperature. This study failed to identify the im-

act of temperature change on SLA violation rate and energy con-

umption. 

Liu et al. (2018) proposed a thermal and power-aware model

hich also considers computing, cooling and task migration en-

rgy consumption. But due to their modeling limitations they have

ot considered I/O energy consumption, network transmission en-

rgy consumption. Moreover, they have measured parameters at

 very coarse granularity. This work failed to identify the impact

f temperature and energy consumption on SLA violation rate and

umber of VM migrations during execution of workloads. Akbar

t al. (2019) proposed a game based thermal aware allocation strat-

gy using Cooperative Game Theory and it decreases the imbal-

nce within the CDC by using the concept of cooperative game

heory with a Nash-bargaining to assign resources based on ther-

al profile. A problem in their approach is that they consider

 system to be homogeneous and does not incorporate violation

ate to categorize tasks and VMs. For heterogeneous environments,

heir algorithm can lead to contention and poor load balancing.

haleel (2018) described a thermal-aware load balancing strategy

y calculating the shortest distance to cloud resources deployed

t different geographical locations and conserving more bandwidth

ost. Further, it has been suggested that running servers at dif-

erent locations can reduce temperature at particular location and

mproves the health of server. Proposed strategy improves the re-

ource utilization without considering the other type of utiliza-

ion such as disk, network and memory. This would not be fea-

ible in virtual containers-based cloud services and mobile service

roviders. 

.2. SLA aware resource management 

Chen et al. (2017) proposed thermal-aware VM migration man-

ger to identify the working condition of server based on re-

ource utilization and temperature and recognizes the impact of

PU overheating (caused by chassis fan damage) on system per-

ormance. Further, it is shown that the migration of VMs from

verloaded server to underloaded server balances the load, re-

uces the damages to overloaded servers and improves its health

nd system performance. Proposed technique decreases the num-

er of VM failures and improves the system ability which further

educes SLA violation rate, but this technique has not been iden-

ified the impact of temperature variation on SLA violation rate.

hedheb et al. (2013) proposed a Thermal aware scheduler (Thas)

n the CloudSim toolkit, which implements an interface between

he hypervisor and the virtual machine in CDC. They have replaced

he CloudSim’s VMScheduler class which results in their schedul-

ng behavior to be highly data-dependent of the existing class in-

uts. However, Thas lacks thermal characteristic studies by which

hey are not able to find the best host location at the time of

M migration. Moreover, their model is restricted in terms of an-

lyzing the CPU and memory loads and the number of VM mi-

rations which significantly impacts the performance of the sys-

em in terms of its latency and other QoS parameters. Xiang et al.

2018) proposed a virtual machine scheduling technique for Cloud

atacenters which reduces total energy consumption while holis-

ically managing the components of CDC such as CPU, memory,

torage, network and cooling. This research work proposed a ther-
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Fig. 2. Architecture of ThermoSim framework. 
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mal and energy-aware model to analyze the temperature variation

and distribution in the CDC during execution of workloads. Further,

a holistic resource management approach is proposed to reduce

the energy consumption of CDC and maintains the temperature of

CDC below than critical temperature. The architecture comprises of

three sub-components such as workload manager, scheduling man-

ager and cooling manager. Workload manager manages the work-

loads submitted by user and process for scheduling based on their

requirements. Scheduling manager schedules the resources for exe-

cution of workloads while maximizing the performance of CDC and

minimizes the consumption of energy. Cooling manager maintains

the temperature of CDC and save cooling energy by performing VM

placement and dynamic migration in an efficient manner. Proposed

model updates computing capacity dynamically to improve cooling

efficiency and maintains the CPU temperature less than threshold

value while adjusting cooling energy to the lowest level to save en-

ergy and reduce SLA violation rate. İt uses reactive mechanism to

maintain temperature but not able to predict the temperature vari-

ations proactively. Moreover, the impact of temperature variations

on SLA has not been identified. 

Rodero et al. (2012) also provided a strategy to allocate VMs

using their temperature characteristics. They propose a reactive

technique as an alternative to VM migration and DVFS which re-

duces the activity of one or more VMs by pinning them to spe-

cific Cloud Management Portals (CMPs). They profile applications

to decide which VM to pin with which CPU. This in effect has

significant overhead in terms of CPU, Memory and Time and not

able to exploit thermal data completely as it significantly depends

on the OS’s default dynamic CPU power management which is not

aware of the characteristics of other physical machines in the net-

work. Kumar and Raghunathan (2016) presented a suite of heuris-

tics for energy efficiency consolidation and a hybrid scheduling al-

gorithm to maintain the temperature of the CDC and reduces the

energy consumption of different servers within the CDC. They pro-

pose StaticPPMMax (performance to power metrics using server’s

peak power consumption) and compute metrics for VM allocation,

but do not consider server process sleep state and transition power

consumption which makes their approach weak and not scalable

for complex workload models. Ilager et al. (2019) proposed an En-

ergy and Thermal-Aware Scheduling (ETAS) algorithm that dynam-

ically consolidates VMs to minimize the overall energy consump-

tion while proactively preventing hotspots. They have extended a

class of the CloudSim toolkit which does not allow them to val-

idate their results on fair grounds. Moreover, their algorithm as-

sumes static cooling environment, which may not be versatile to

different cooling settings. 

2.3. Critical analysis 

Table 1 shows the comparison of ThermoSim with existing

frameworks. All the above research works have presented thermal-

aware scheduling frameworks in cloud computing without consid-

ering the thermal-aware and utilization-based resource manage-

ment simultaneously in a single framework, but it is very im-

portant to study the behavior of both resource management ap-

proaches together to optimize the different QoS parameters in a

controlled and holistic manner. None of the existing works vali-

dated against prediction accuracy, memory and time and only two

frameworks ( Khaleel, 2018 ; Ilager et al., 2019 ) considered time

for validation. As per literature, there is a no existing framework

which considers all the four QoS parameters (SLA Violation Rate,

energy consumption, number of VM migrations and temperature)

in a single framework. Due to this, the current thermal-aware re-

source management become inefficient to respond in these situ-

ations. Thermal aware techniques provide benefits in some cases,

however fail in some other cases for which energy aware ap-
roaches are required ( Gill et al., 2019 ; Möbius et al., 2014 ; Li et al.,

018 ; Wu et al., 2019 ). Thus, ThermoSim uses an integrated ap-

roach leveraging both techniques for optimum results. 

Therefore, there is a need to develop a simulation platform as

 benchmark: 1) to establish a relationship between theory and

ractice for thermal-aware resource management, 2) to incorporate

hermal characteristics, 3) to schedule resources using thermal-

ware and utilization-based resource management simultaneously,

) to validate the thermal-aware resource management framework

gainst system parameters such as memory, time, cost, energy and

rediction accuracy and 5) to test the performance of thermal and

nergy-aware scheduling policies based on all the four QoS param-

ters such as SLA Violation Rate, energy consumption, number of

M migrations and temperature. Our proposed ThermoSim frame-

ork addresses the challenges of existing frameworks in this re-

earch work. 

. ThermoSim framework 

This section presents the detailed description of TheromSim

ramework. Fig. 2 presents the architecture of the ThermoSim

ramework, which is based on two different models: 1) Utiliza-

ion Model 2) Thermal Model. Energy model is an integral part

f Utilization model. In the utilization model, cloud workloads

re assigned to VMs based on their different types of utilization

resource, network, memory and disk) and energy consumption,

hile the thermal model considers the thermal characteristics of

he host machine and accordingly VMs are scheduled on PMs. 

.1. Energy model 

The larger part of the data center energy consumption is con-

ributed by the computing and cooling systems ( Singh et al., 2016 ;

alheiros et al., 2011 ; Gill et al., 2019 ; Qinghui et al., 2008 ; Lazic

t al., 2018 ; Xu and Buyya, 2019 ; Möbius et al., 2014 ; Li et al., 2018 ;

alis et al., 2018 ; Liu et al., 2012 ). 

 Total = E Computing + E Cooling (1)

.1.1. Computing 

The computing system consists of hosts and its energy con-

umption can be defined as follows: 

 Computing = E Processor + E Storage + E Memory + E Network + E Extra (2)



S.S.
 G

ill,
 S.

 Tu
li
 a

n
d
 A

.N
.
 To

o
si
 et

 a
l.
 /
 T

h
e
 Jo

u
rn

a
l
 o

f
 Sy

stem
s
 a

n
d
 So

ftw
a

re
 16

6
 (2

0
2

0
)
 110

5
9

6
 

5
 

Table 1 

Comparison of ThermoSim with exiting frameworks. 

Framework Performance Parameters Validation Deep 

Learning 

based 

Temperature 

Prediction 

Resource Management 

SLA 

Violation 

Rate 

Energy 

Consumption 

Number 

of VM 

Migrations 

Temperature Prediction 

Accuracy 

Memory Time Cost Energy Thermal-aware 

Approach 

Utilization 

based 

Approach 

Non-SLA aware Resource Management 

( Liu et al., 2018 ) ✔ ✔ ✔ ✔ 

( Akbar et al., 2019 ) ✔ ✔ ✔ ✔ ✔ 

( Khaleel, 2018 ) ✔ ✔ ✔ ✔ 

( Kim et al., 2019 ) ✔ ✔ ✔ 

( Fu et al., 2017 ) ✔ ✔ ✔ 

( Fu et al., 2017 ) ✔ ✔ ✔ 

( Wu et al., 2016 ) ✔ ✔ 

( Pierson et al., 2019 ) ✔ ✔ ✔ 

( Oxley et al., 2016 ) ✔ ✔ ✔ 

SLA aware Resource Management 

( Mhedheb et al., 2013 ) ✔ ✔ ✔ ✔ ✔ 

( Rodero et al., 2012 ) ✔ ✔ ✔ ✔ ✔ ✔ 

( Kumar and 

Raghunathan, 2016 ) 

✔ ✔ ✔ ✔ ✔ 

( Ilager et al., 2019 ) ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

( Chen et al., 2017 ) ✔ ✔ ✔ ✔ 

ThermoSim ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
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E Processor represents the processor’s energy consumption, which

is calculated using [Eq. 3] : 

E Processor = 

r= cores ∑ 

r=1 

(
E dynamic + E SC + E Leakage + E idle 

)
(3)

where E dynamic represents dynamic energy consumption,

E SC represents short-circuit energy consumption, E Leakage rep-

resents power loss due to transistor leakage current and E idle 

represents the energy consumption when processor component is

idle. Dynamic energy consumption ( E dynamic ) is calculated using Eq.

(4) , which is an average of energy consumption calculated using

linear and non-linear model. 

E dynamic = 

E linear 
dynamic 

+ E non −linear 
dynamic 

(
U j 

)
2 

(4)

E linear 
dynamic 

is the dynamic energy using linear model ( Xiang et al.,

2018 ) and it is calculated using Eq. (5) : 

E linear 
dynamic = C V 

2 f (5)

where C is capacitance, f is frequency, and V is voltage. E non −linear 
dynamic 

is the dynamic energy using non-linear model ( Zhao et al., 2018 ),

resource utilization has a non-linear relationship with energy con-

sumption and it is calculated using Eq. (6) : 

E non −linear 
dynamic 

(
U j 

)
= μ1 . U j + μ2 . U 

2 
j (6)

Where μ1 and μ2 are nonlinear model parameters and U j is

CPU utilization of host h j . 

E Storage represents the energy consumption of storage device,

which performs data read and write operations and it is calculated

using Eq. (7) : 

E Storage = E ReadOperation + E WriteOperation + E idle (7)

where E idle represents the energy consumption when storage com-

ponent is idle. 

E Memory represents the energy consumption of the main mem-

ory (RAM/DRAM) and cache memory (SRAM), which is calculated

using Eq. (8) : 

E Memory = E SRAM 

+ E DRAM 

(8)

E Network represents the energy consumption of networking

equipment such as routers, switches and gateways, LAN cards,

which is calculated using Eq. (9) : 

E Network = E Router + E Gateway + E LANcard + E Switch (9)

E Extra represents the energy consumption of other parts, includ-

ing the current conversion loss and others, which is calculated us-

ing Eq. (10) : 

E Extra = E Motherboard + 

F ∑ 

f=0 

E connector, f (10)

where E Motherboard is energy consumed by motherboard (s) and∑ F 
f=0 E connector, f is energy consumed by a connector (port) running

at the frequency f . 

3.1.2. Cooling 

The energy model for computing is developed based on en-

ergy consumption of different cooling components to maintain the

temperature of CDC. E Cooling represents the energy is consumed by

cooling devices (compressors, Air Conditioners (AC) and fans) to

maintain the temperature of cloud datacenter, which is calculated

using Eq. (11) : 

M Ut ilizat ion = 

Total Physical Memory − ( Memory Free + Memory 

Total Physical Memory 
E Cooling = E AC + E Compressor + E F an (11) T  
.2. Utilization model 

The jobs originate by cloud consumers as demanded services

nown as “cloud workloads” ( Singh and Chana, 2016 ). These work-

oads are submitted to the workload queue of the cloud system.

he workload is sorted in ascending order of VMs based on re-

ource utilization and placed in the queue to assign workload to

irtual machines. Resource Utilization is a ratio of an execution time

f a workload executed by a particular resource to the total uptime

f that resource ( Gill et al., 2019 ). The total uptime of resource is

he amount of time available with a cloud resource set for exe-

ution of workloads. We have designed the following formula to

alculate resource utilization ( R Utilization ) Eq. (12) . 

 Ut ilizat ion = 

n ∑ 

i =1 

×
(

execut ion t ime of a workload executed on i th resource 

total uptime of i th resource 

)

(12)

here n is the number of resources. These VMs are also sorted

n terms of their network utilization, memory utilization and disk

tilization in descending order i.e. opposite order in which work-

oads are sorted and placed in the queue. The formula for calculat-

ng memory utilization ( M Utilization ) in percentage ( Gill et al., 2019 )

s as follows Eq. (13) : 

rs + Cache Memory ) × 100 (13)

The formula for calculating disk utilization ( D Utilization ) in per-

entage is as follows Eq. (14) : 

 Ut ilizat ion = 

T otal Used 

T otal HD size 
× 100 (14)

 Ut ilizat ion = 

Storage Al l ocat ion Unit s × Storage Used 

StorageAl l ocat ionUnit s × Storage Size 
× 100 

(15)

The formula for calculating network utilization ( N Utilization ) in

ercentage ( Gill et al., 2019 ) is as follows Eq. (16) : 

 Ut ilizat ion = 

data bits 

band wid th × interv al 
× 100 (16)

The workloads present in the sub task queues are submitted

o the data center broker. Workload classification and assignment

re shown in Fig. 3 . Thus, cloud workloads are mapped to the

Ms based on energy-efficient resource management policy using

uckoo Optimization based scheduling technique ( Gill et al., 2019 ).

lgorithm 1 presents the utilization-based approach which i) sorts

he cloud workloads and ii) maps workloads to VMs. Based on the

urrent utilization of VMs, the scheduler allocates the tasks accord-

ngly. To do this, workloads are organized in increasing order of

tilization, and VMs in decreasing order with an aim to allocate

asks which lower the utilization i.e. light-weight tasks are exe-

uted on VM with high utilization, and vice-versa. 

The main idea of Algorithm 1 is described below: 

1. Initialize the hosts (PMs) as available at time stamp to 0 i.e.

host is available at beginning of scheduling. 

2. Sort workloads and VMs based on utilization. 

3. Map workloads to VMs. 

Algorithm 1 sorts tasks with increasing utilization require-

ents and sorts VMs with decreasing utilization requirements.

his allows high resource requirement tasks to be allocated on
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Fig. 3. Workload classification and assignment. 

Algorithm 1 Utilization based Approach for Resource Management. 

1. Input: Number of workloads (T) and number of available resources (V) 

2. Output: Mapping of each workload to the resource 

3. Function UtilizationSort (list, vm, decreasing) 

4. if (vm == True) then 

5. Sort list based on increasing order of E Total 

6. return ( UtilizationSort (list, false)) 

7. if (decreasing == True) then 

8. Sort list based on decreasing order of R Utilization 

9. else 

10. Sort list based on increasing order of R Utilization 

11. Break ties using M Utilization 

12. Break ties using D Utilization 

13. Break ties using N Utilization 

14. return (list) 

15. Start 

16. Initialize all host list (Number of PMs) 

17. Initialize all resource list (Number of VMs) 

18. Initialize all workload list (Number of tasks) 

19. T’ = UtilizationSort (T, false, false) // sort task with increasing 

utilization (estimating variation in utilization while executing task t ) 

20. V’ = UtilizationSort (T, true, true) // sort VM with decreasing 

utilization (function to estimate utilization for VM) 

21. for task t in T: 

22. for vm v in V: 

23. if t is suitable for v in V then 

24. Schedule the task t on VM v 

25. End 

V  

s  

i  

a  

w  

n

3

 

C  

t  

a  

s  

t  

2  

R  

s  

a  

m  

i  

e  

E

�

 

R  

(  

e  

2  

s  

C  

t

T  

w  

(  

(  

t  

e  

e  

o  

t  

m  

o

3

 

o  

a  

p  

j  

t  

m  

l  

b  

a  

t  

s  

T  

t  

p  

f  

b

 

R  

T  

P  

m  

f  

fi  
Ms which have low load. This greedy algorithm allows efficient

cheduling of tasks to VMs based on their requirements. The sort-

ng algorithm can be implemented using merge sort [O( n log n )],

nd the allocation of tasks we iterate over all VMs for every task

hich makes it [O( n 2 )] in worst case. Here n is maximum of the

umber of tasks or VMs. 

.3. Thermal model 

The idea is to design a scheduling policy for VMs based on the

PUs temperature characteristics. Thus, a thermal model is needed

hat describes these changes of this parameter when workloads

re running on virtual machines. Thermal-aware scheduling con-

iders current temperature and maximum working temperature,

hat is, the threshold temperature of every machine ( Ilager et al.,

019 ; Moore et al., 2007 ; Qinghui et al., 2008 ; Lazic et al., 2018 ;

anganathan and Sharma, 2005 ; Zhou et al., 2017 ), before making

cheduling decisions. Let the maximum threshold temperature of

 server machine be T over and let current temperature of a server

achine be T cu . T over is the temperature beyond which a machine

s overheated. The heuristic chosen for VM scheduling is the differ-

nce between threshold and present temperature, as formulated in
q. (17) . �T vi is the temperature variation of the host. 

T v i = T ov er − T cu (17) 

We used Computer Room Air Conditioning (CRAC) model and

C (where R and C are thermal resistance (k/w) and heat capacity

j/k) of the host respectively) thermal model ( Lee et al., 2017 ; Gill

t al., 2019 ; Moore et al., 2007 ; Qinghui et al., 2008 ; Lazic et al.,

018 ; Ranganathan and Sharma, 2005 ; Möbius et al., 2014 ) to de-

ign temperature model for calculation of current temperature of

PU ( T cu ). The following formula is used to calculate the current

emperature of CPU Eq. (18) . 

 cu = P R + T em p inlet + T initial ×e −RC (18)

here CRAC model is used to calculate inlet temperature

 Temp inlet ) and RC model is used to calculate CPU temperature

 Temp CPU ) and P is the dynamic power of host. T initial is the initial

emperature of the CPU. The relationship between a power (en-

rgy efficiency) and temperature model (heating model) ( Chaudhry

t al., 2015 ) is described in Eq. (18) . VMs are separated into vari-

us classes as per their temperature attributes, which are then dis-

ributed to the hosts based on their temperatures. The VM move-

ent component is directed to guarantee the unwavering quality

f the model when a host achieves threshold temperature. 

.4. Deep leaning based temperature prediction module 

In many CDCs, it is difficult to access the thermal characteristics

f the hosts ( Zhou et al., 2020 ). Mostly, the temperature sensors

re either too expensive or are unavailable to give accurate tem-

erature information ( Saha and Majumdar, 2017 ; Bakker and Hui-

sing, 2013 ). Having noisy temperature data can significantly affect

he performance of any thermal-aware simulator including Ther-

oSim. The thermal model in Section 3.3 requires various metrics

ike thermal resistance (R), capacitance (C), T initial , which may not

e available for many CDCs. Moreover, the CRAC and RC models

re resource intensive. Thus, there is a requirement of a predic-

ion module that can predict thermal characteristics by observing

impler metrics like memory, CPU, I/O utilization and fan speeds.

hermoSim, thus, can also use a temperature prediction module

hat uses Recurrent Neural Network (RNN) ( Dey and Fathi, 2017 ) to

redict CPU temperatures for different PMs. This is not only useful

or CDC where temperature sensors are unavailable or expensive

ut also when the sensor data is noisy. 

To predict the CPU temperature, our deep learning model uses

NN with 4 Gated Recurrent Units (GRU) layers as shown in Fig. 4 .

he input of the network is a matrix with various features of all

Ms. These features include fan speeds, and resource utilization

etrics. The output of the network is a vector of temperatures

or all PMs. A Recurrent Neural Network (RNN) is a class of arti-

cial neural networks where connections between nodes form a
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Table 2 

Sample data extracted from Alibaba CDC. 

Server ID and Time Fan (RPM) Utilization (%) Temp ( °C) 

Id Time Stamp F1 F2 F3 F4 F5 System Memory CPU I/O CPU 

N1 8:29:49 4214 4289 4230 4264 4263 58 62 63 72 44 

N2 6:09:23 3979 4046 4085 4060 4033 67 72 35 84 42 

N3 7:20:22 4389 4403 4311 4286 4386 43 76 61 40 53 

N4 6:53:08 5013 4928 5001 4981 5099 65 67 50 62 55 

N5 6:30:09 3552 3635 3601 3591 3499 67 82 30 38 44 

N6 6:01:46 4012 3970 3939 3891 3919 66 69 64 50 42 

Fig. 4. Architecture of RNN to predict temperature of PMs. 
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directed graph along a temporal sequence. This allows it to exhibit

temporal dynamic behavior. Unlike feedforward neural networks,

RNNs can use their internal state (memory) to process sequences

of inputs. This makes them applicable to tasks such as unseg-

mented, connected handwriting recognition or speech recognition.

However, analyzing temperature characteristics also requires the

exploitation of temporal workload and processing patterns, which

can be done best with RNNs. However, RNNs face the problem of

vanishing gradients which makes the network updates very slow,

for which the research community has introduce GRUs. GRUs are

a gating mechanism in recurrent neural networks, introduced in

2014 by Cho et al. (2014) . To solve the vanishing gradient prob-

lem of a standard RNN, GRU uses, so-called, update gate and reset

gate. These are two vectors which decide what information should

be passed to the output. The special thing about them is that they

can be trained to keep information from long ago, without wash-

ing it through time or remove information, which is irrelevant to

the prediction. 

To train the neural network, we used traces 1 from Alibaba CDC,

a large-scale ecommerce provider Li and Hu, 2019 ; Guo et al., 2019 ;

Tian et al., 2019 ; Wu et al., 2019 ). Dataset extracted from traces on

a cluster of 70 servers with 64-bit Ubuntu 18.04 Operating Sys-

tem, every server is equipped with the Intel® Core TM i7 9700k

processor (No. of Cores 8, No. of Threads 8, Processor Base Fre-

quency 3.60 GHz, Max Turbo Frequency 4.90 GHz, Cache 12 MB

Intel® Smart Cache, Bus Speed 8 GT/s and TDP 95 W), 16 GB of

RAM, 512 GB SSD storage and Graphics card GTX 2060. Hadoop

MapReduce is installed on all the servers for processing to execute

word count application. Every server hosts at least 15 virtual ma-

chines or nodes. A sample from the dataset is shown in Table 2 .

However, only utilization of various elements of the server is not

sufficient for accurate prediction of temperature. Previous works

show that Fan speeds also affect the server temperature ( Capozzoli

and Primiceri, 2015 ; Lazic et al., 2018 ). For our experiments, we

have taken configuration with 5 fans, so we calculate Fan speed
1 Alibaba Cluster - https://github.com/alibaba/clusterdata . 

h  

a  

i  
rom the different utilization metrics in the dataset. Fan speed is

alculated using Eq. (19) , which is multiplication of average uti-

ization ( Avg utilization ) and CPU temperature ( Temp ) ( Capozzoli and

rimiceri, 2015 ; Lazic et al., 2018 ; Liu et al., 2012 ; Dundu and Gao,

014 ). 

P M F an = α( A v g utilization × T emp ) (19)

here α = 1 . 5 RPM/Degree Celsius 

For 5 fans, we keep fan speed RPM Fan , a random value between

 RP M F an − 1 
2 �RP M F an , RP M F an + 

1 
2 �RP M F an ] , where �RPM Fan is

efined using Eq. (20) . 

RP M F an = α( �A v g utilization × T emp + A v g utilization × �T emp )

(20)

As per the dataset, the precision of Avg utilization within 1% and

recision of Temp is within 1 Degree Celsius ( °C). Using 1100 train-

ng and 100 test datapoints, our network is able to reach accuracy

f 96.78%. 

Using this deep leaning-based prediction module, ThermoSim

an also classify VMs and PMs based on thermal-aware technique

ven for CDCs where temperature sensors are unavailable. 

.5. Virtual machine classification and scheduling 

Fig. 5 presents the process of virtual machine classification and

llocation. Virtual machines are categorized into three classes in

ccordance with their thermal features: hot, warm, and cold. A

cold’ VM symbolizes that a VM may decrease the temperature of

 PM if its temperature is greater than θ vl . A ‘hot’ VM states that

 VM may raise the temperature of a host if its temperature is

reater than θ vh . A ‘warm’ VM signifies the temperature of a PM

ill remain stable. 

The thermal scheduler allocates VMs to the PM whose tem-

erature is farthest away from its maximum threshold tempera-

ure. The scheduler also manages a waiting queue. It is the queue

hrough which demand for a new VM is fulfilled. Each new request

or VM is added at the end of waiting queue ( Capozzoli and Prim-

ceri, 2015 ). 

The scheduler will remove that VM request from the waiting

ueue as per further requirement; then further scheduler queues

he VMs into sub-queues based on the temperature variation of the

ost due to the VM i.e., value of �T vi . If the temperature variation

f host is greater than the high temperature threshold, then the

M is added to the hot queue; if the temperature variation of host

s less than the low temperature threshold, then it is added to the

old queue, otherwise it is added to the warm queue ( Chu et al.,

015 ; Capozzoli and Primiceri, 2015 ). For VM allocation, compar-

son is done: if the current temperature of a host is more than

he high temperature threshold of a host, a cold VM from the cold

ueue will be allocated ( Zhou and Wei, 2015 ). Subsequently, the

ost temperature lowers to the ordinary state and a VM will be

llocated on the host to execute. When the temperature of a host

s greater than θ and VM from the cold queue is allocated to the
ch 

https://github.com/alibaba/clusterdata
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Fig. 5. Process of virtual machine classification and allocation. 
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Table 3 

Symbols and its description. 

Symbol Description 

�T vi Temperature variation of host due to execution of current VM 

T over Temperature of overheated host 

T normal Temperature of normal host 

T danger Temperature of overheating host 

θ vh The low temperature threshold of �T vi 

θ vl The high temperature threshold of �T vi 

θ cl Low temperature threshold of host // normal host temperature 

θ ch High temperature threshold of host //overheating host temperature 
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ost, the temperature then drops to below θ ch . When the tempera-

ure of a host is less than θ cl , a hot VM will be selected to execute.

or cases that the temperature of a host is between θ cl and θ ch ,

he VM from warm queue will be executed. Algorithm 2 presents

he thermal-aware approach, which contains two phases: 1) sort-

ng and 2) resource scheduling. 

Algorithm 2 Thermal-aware Approach for Resource Management. 

1. Input: Number of VMs and number of available PMs 

2. Output: Scheduling of VMs to the PMs 

3. Start 

4. Initialize all host list (Number of PMs) 

5. Initialize all VMs list (Number of Resources (VMs) - vmlist) 

6. do 

7. { 

8. dequeue VM from queue 

9. calculate �T vi 

10. if ( �T vi > θ vh ) then 

11. enqueue the VM to Q Hot 

12. else if ( �T vi < θ vl ) do 

13. enqueue the VM to Q cold 

14. else if ( θ vh > �T vi > θ vl ) do 

15. enqueue the VM to Q warm 

16. } 

17. while !vmlist.empty() 

18. if (T over > θ ch and ! Q cold .empty()) then 

19. dequeue(Q cold ); 

20. else if (!Q warm .empty()) then 

21. dequeue(Q warm ); 

22. else 

23. dequeue(Q Hot ); 

24. if (T over < θ ch & ! Q Hot .empty()) then 

25. dequeue(Q Hot ); 

26. else if (!Q warm .empty()) then 

27. dequeue(Q warm ); 

28. else dequeue(Q cold ); 

29. allocate VM to PM 

30. End 

The thermal-aware algorithm sorts the VMs based on their exe-

ution effect on PMs. Algorithm 2 executes hot VMs on cold nodes

nd cold VMs on hot nodes and tries to reduce energy consump-

ion. The symbols used in the Algorithm 2 are defined in Table 3 . 

For calculating the value of θ vl and θ vh different types of VMs

ccording to temperature variation of the host machine; 

vh = T over − T danger (21) 

v l = 

1 

2 

T normal − T danger (22) 

Several papers from the literature ( Tsai and Chen, 2016 ;

hu et al., 2015 ; Zhou and Wei, 2015 ; Wu and Xu, 2010 ;
lager et al., 2019 ; Chaudhry et al., 2015 ) reported a different range

f values for temperature: 

• T over = 79 °C. // overheated host temperature 
• T danger = 70 °C. //overheating host temperature 
• T normal = 29 °C. // normal host temperature 

The main idea of Algorithm 2 is described below: 

1. Initialize the all hosts (PMs) as available at time stamp to 0

i.e. host is available at the beginning of resource scheduling.

2. Calculate the temperature variation, before and after allocat-

ing the VM until queue is not empty. 

3. Allocate VMs to sub-queues according to the temperature

variation value of the host. 

4. Dequeues VMs from their sub-queues according to the host

state and allocates VM to PM. 

5. Execute the allocated VM on PM. 

Algorithm 2 maintains 3 sub-queues for VMs, classified into hot,

arm and cold. The VMs are allocated to these queues based on

heir temperature models. Based on the queues and temperatures

f hosts, we allocate hot VMs to cold hosts and cold ones to hot

osts. If hot or cold VM queues are empty, we next consider warm

ueues. This way the temperature remains balanced. The overall

omplexity of the algorithm is O(n) where n is maximum of num-

er of hosts and VMs. 

.6. Integration of all models 

The utilization model is used in integration with the energy

odel. It provides quantified values for resource utilization for dif-

erent computational elements like CPU, memory and disk. The en-

rgy model is used to calculate the energy consumption for dif-

erent components classified broadly into computing and cooling.

oth energy and utilization models are used for resource man-

gement of allocating tasks to VMs in ThermoSim as described in
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Fig. 6. ThermoSim framework is extending different classes from the CloudSim Toolkit. 
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Algorithm 1 . Moreover, the thermal model using temperatures cal-

culated by either Eq. (18) or the RNN based prediction module is

used for thermal-aware approach for resource management of al-

locating VMs to PMs, as shown in Algorithm 2 . We show use cases

of both algorithms in performance evaluation, where we compare

energy-based and thermal-based resource allocation policies as de-

scribed in Section 4. 

4. Performance evaluation 

This section describes the performance evaluation, configura-

tion details, type of workload and experimental results for valida-

tion of ThermoSim. The CloudSim toolkit ( Calheiros et al., 2011 )

has been extended by developing a new ThermoSim framework

to incorporate thermal parameters. Fig. 6 shows the class di-

agram where the ThermoSim framework is extending different

classes (VMAllocationPolicy, VMScheduler, DataCenterCharacteris-

tics and CloudletScheduler) from the CloudSim toolkit and devel-

oped four different classes (ThermoCloud, UtilizationBased, Ther-

malAware and TemperaturePredictor ). ThermoCloud is main class,

which interacts with classes of CloudSim toolkit and controls Uti-

lizationBased class, ThermalAware class and TemperaturePredictor

class. Fig. 7 shows the sequence diagram, which describes the in-

teraction among various classes of ThermoSim framework during

execution of workloads. 

4.1. Configuration settings 

We have conducted experiments on a machine with an Intel®

Core TM i7-7820HQ Processor (8M Cache, 3.90 GHz), 16 GB RAM
nd 2 TB of HDD running on 64-bit Windows OS. Our CDC com-

rises of 4 PMs with configuration (Cores = 4, CPU MIPS = 20 0 0,

AM = 8 GB, Bandwidth = 1 Gbit/s) and 12 VMs with config-

ration (Core = 1, CPU MIPS = 500, RAM = 1 GB and Band-

idth = 100 Mbit/s). We have run the experiments for 10 times

nd the average results are reported. We have run the simulation

or periods of 48 h and executed the scheduling algorithm after

very 5-minute interval for dynamic consolidation of VMs. Virtual

odes are further divided into instances called Execution Compo-

ents (ECs). Every EC contains their own cost of execution and it is

easured with unit (C$/EC time unit (Sec)). EC measures cost per

ime unit in Cloud dollars (C$). 

For the execution of workloads in our experiments, we have

hosen varied computational settings on top of heterogeneous re-

ources. The variety comes in the number of cores at the CPU-level,

he page levels of the main memory, switches at the network level

nd disk space at the storage level ( Calheiros et al., 2011 ; Grozev

nd Buyya, 2013 ; Lebre et al., 2015 ; Gill et al., 2019 ). Cores is

he number of Processing Element’s (PE) required by the Cloudlet.

able 4 shows the simulation parameters utilized in the various

xperiments undertaken by this research work, also as identified

rom the existing empirical studies and literature such as utiliza-

ion model ( Qinghui et al., 2008 ; Kouki and Ledoux, 2012 ), energy

odel (computing ( Singh et al., 2016 ; Gill et al., 2019 ; Li et al.,

018 ; Balis et al., 2018 ; Lin et al., 2019 , 2019 ) and cooling ( Qinghui

t al., 2008 ; Lazic et al., 2018 ; Möbius et al., 2014 ; Liu et al., 2012 )

nd thermal-aware scheduling ( Lazic et al., 2018 ; Ranganathan and

harma, 2005 ; Möbius et al., 2014 ). Experimental setup incorpo-

ated CloudSim to produce and retrieve simulation results. 
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Fig. 7. Sequence diagram describes interaction among various classes of ThermoSim framework. 

Table 4 

Simulation parameters and their Values. 

Parameter Value 

Number of VMs (nodes) 360 

Number of Cloudlets (Workloads) 3000 

Bandwidth 1000–3000 B/S 

CPU MIPS 2000 

Size of Cloud Workload 10000 + (10%–30%) MB 

Number of PEs per machine 1 

PE ratings 100–4000 MIPS 

Cost per Cloud Workload 3 C$–5 C$ 

Memory Size 2048–12576 MB 

File size 300 + (15%–40%) MB 

Cloud Workload output size 300 + (15%–50%) MB 

Initial Temperature 12–22 °C 
Inlet Temperature 15–40 °C 
Power Consumption by Processor 130 W–240 W 

Power Consumption by Cooling Devices 400 W–900 W 

Power Consumption by RAM 10 W–30 W 

Power Consumption by Storage 35 W–110 W 

Power Consumption by Network 70 W–180 W 

Power Consumption by Extra Components 2 W–25 W 
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.2. Workload 

The ThermoSim framework uses PlanetLab 2 dataset ( Park and

ai, 2006 ) and it is considered as a workload (Cloudlet). This

ataset is a set of resource utilization traces from PlanetLab VMs

ollected during 10 random days in March and April 2011. To find

he experiment statistics, 50 0-30 0 0 different workloads are exe-

uted. We selected the Poisson Distribution ( Amvrosiadis et al.,

018 ) for workload submission in this research work due to follow-

ng reasons: 1) evaluating the performance of workload execution

or specific interval of time and 2) every workload is independent

f all other workloads (number of workloads are arriving in first

our is independent of the number of workloads arriving in any

ther hour). 

.3. Validation of ThermoSim 

We have validated the proposed ThermoSim framework using

n existing Thermal-aware Simulator, called ThaS ( Mhedheb et al.,
2 PlanetLab - https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/ 〈 ?PMU 

 〉 Pagecounts-raw . 

4

 

a  
013 ), which implements the thermal-aware scheduling policy us-

ng CloudSim toolkit ( Calheiros et al., 2011 ). 

.3.1. Baseline simulator 

ThaS ( Mhedheb et al., 2013 ) implements an interface between

he hypervisor and the virtual machine in CDC. They have replaced

he CloudSim’s VMScheduler class which results in their schedul-

ng behavior to be highly data-dependent of the existing class in-

uts. However, Thas lacks thermal characteristic studies by which

hey are not able to find the best host location at the time of VM

igration. Moreover, their model is restricted in terms of analyz-

ng the CPU and memory loads and the number of VM migra-

ions which significantly impacts the performance of the system

n terms of its latency and other QoS parameters. 

In ThermoSim, we have implemented the thermal-behavior

y developing three new classes (ThermalAware, UtilizationBased

nd TemperaturePredictor), which further extends the four classes

DataCenterCharacteristics, VMScheduler, VMAllocationPolicy and 

loudletScheduler) of the CloudSim toolkit ( Calheiros et al., 2011 )

hrough a coordinator class, ThermoCloud , as shown in Fig. 6 . The

hermalAware class takes temperature input from the Tempera-

urePredictor class when temperature information of the cloud

osts is not available. The TemperaturePredictor class uses utiliza-

ion metrics from the UtilizationBased class and applies Fan-RPM

odels if such information is unavailable. We provided standard

rror bars for every graph to show the variation in the experimen-

al results. 

Experimental Results: Fig. 8 (a) shows the variation of mem-

ry usage with varying numbers of workloads. ThermoSim saves

2.6% memory as compared to Thas, which increases further to

4.74% when using the prediction module. Fig. 8 (b) shows the

ariation of time against the number of workloads. ThermoSim

aves 17.7% of time as compared to Thas, which increases further

o 23.64% when using the prediction module. Fig. 8 (c) shows the

ariation of cost with number of workloads which is measured in

loud Dollars (C$) and ThermoSim saves 15.5% cost as compared

o Thas, which increases further to 20.45% when using the predic-

ion module. Fig. 8 (d) shows variation of energy with the number

f workloads and ThermoSim saves 10.5% energy as compared to

has, which increases further to 14.13% when using the prediction

odule. 

.3.2. Prediction accuracy 

We have evaluated the prediction accuracy for both ThermoSim

nd Thas to prove the novelty of proposed framework with varia-

https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/Pagecounts-raw
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Fig. 8. Performance comparison of ThermoSim and Thas with different Number of Workloads: (a) Memory (b) Time, (c) Cost, (d) Energy. 

Fig. 9. Performance comparison of ThermoSim and Thas in terms of Prediction Accuracy for Resource Requirement: (a) Different Number of Workloads and (b) Different 

Number of Nodes. 
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tion of workloads and nodes. Prediction Accuracy is defined as the

ratio of the number of correct predictions in the experiment to the to-

tal number of predictions in the experiment for thermal, energy and

utilization. 

Fig. 9 shows the comparison of ThermoSim and Thas based on

prediction accuracy for resource requirement. Fig. 9 (a) shows the

performance comparison of ThermoSim and Thas with different

number of workloads and the value of prediction accuracy is de-

creasing with the increase in the number of workloads but Ther-
oSim performs better than Thas (both with and without the pre-

iction module). Fig. 9 (b) shows the performance comparison of

hermoSim and Thas with different number of nodes and the value

f prediction accuracy is increasing with the increase in the num-

er of nodes but ThermoSim performs better than Thas (both with

nd without the prediction module). 

Fig. 10 shows the comparison of ThermoSim and Thas based

n prediction accuracy for temperature. Here too, the prediction

ccuracy decreases with increasing number of workloads and in-
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Fig. 10. Performance comparison of ThermoSim and Thas in terms of Prediction Accuracy for Temperature: (a) Different Number of Workloads and (b) Different Number of 

Nodes. 

Fig. 11. Performance comparison of ThermoSim and Thas in terms of Prediction Accuracy for Energy Consumption: a) Different Number of Workloads and b) Different 

Number of Nodes. 
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w  
reases with increasing number of nodes. Fig. 10 shows that the

hermoSim (both with and without prediction module) gives bet-

er performance as compared to Thas. 

Fig. 11 shows the comparison of ThermoSim and Thas based on

rediction accuracy for energy consumption. Fig. 11 (a) shows that

he prediction accuracy falls drastically for Thas from 85% to 38%

s number of workloads increases from 300 to 1800. Accuracy in-

reases with number of nodes for Thas and ThermoSim (with and

ithout the prediction module) as shown in Fig. 11 (b). 

Fig. 12 shows the comparison of ThermoSim and Thas based on

rediction accuracy for resource utilization. Again, ThermoSim has

igher accuracy compared to Thas. However, when the prediction

odule is used, the accuracy falls drastically with increasing num-

er of workloads due to higher variance in memory usage char-

cteristics at large number of workloads leading to thermal throt-

ling in systems, hence reducing prediction performance ( Lin et al.,

007 ). 

Fig. 13 shows the comparison of ThermoSim and Thas based

n prediction accuracy for memory utilization. Again, accuracy for

hermoSim (both with and without prediction module) is higher

ompared to Thas. 

Fig. 14 shows the comparison of ThermoSim and Thas based on

rediction accuracy for disk utilization. Again, accuracy for Ther-
 r  
oSim (both with and without prediction module) is higher as

ompared to Thas. However, disk utilization prediction accuracy is

ow when using prediction modules due to high variance and task

eterogeneity in the system ( Longford, 2010 ). 

Fig. 15 shows the comparison of ThermoSim and Thas based on

rediction accuracy for network utilization. As shown, the network

tilization prediction accuracy decreases with increasing number

f workloads and increases with increasing number of nodes. 

.3.3. Analysis of results 

The ThermoSim framework is capable of scheduling the VMs in-

ependently. Experimental results show that ThermoSim has bet-

er performance compared to Thas as Thas implements thermal-

ware scheduling policy inside the VMScheduler class of CloudSim

oolkit ( Calheiros et al., 2011 ), and as a result its scheduling behav-

or is still dependent on the VMScheduler class - which increases

ata-dependency. There are two other important reasons for better

erformance of ThermoSim as compared to Thas: 1) ThermoSim is

ffective in locating and scheduling the energy efficient resources

ynamically using CRUZE ( Gill et al., 2019 ) and 2) ThermoSim per-

orms scaling operations sharply. The prediction accuracy reduces

hen we use the prediction module as it does not consider various

oom cooling methods like CRAC, however due to much simpler



14 S.S. Gill, S. Tuli and A.N. Toosi et al. / The Journal of Systems and Software 166 (2020) 110596 

Fig. 12. Performance comparison of ThermoSim and Thas in terms of Prediction Accuracy for Resource Utilization: (a) Different Number of Workloads and (b) Different 

Number of Nodes. 

Fig. 13. Performance comparison of ThermoSim and Thas in terms of Prediction Accuracy for Memory Utilization:(a) Different Number of Workloads and (b) Different 

Number of Nodes. 

Fig. 14. Performance comparison of ThermoSim and Thas in terms of Prediction Accuracy for Disk Utilization: (a) Different Number of Workloads and (b) Different Number 

of Nodes. 
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Fig. 15. Performance comparison of ThermoSim and Thas in terms of Prediction Accuracy for Network Utilization: (a) Different Number of Workloads and (b) Different 

Number of Nodes. 
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mplementation and lower computational requirements of the pre-

iction module. Note: The detailed description all the metrics are

iven in our previous work ( Singh et al., 2016 ) ( Gill et al., 2019 ). 

.4. Case studies using ThermoSim 

We have presented two case studies to test the performance of

hree different energy-aware and thermal-aware resource manage-

ent techniques using both the proposed ThermoSim framework

nd the existing framework Thas. The energy consumption shown

ere is based on average energies calculated by the linear and non-

inear models. For brevity and fair comparison, we only include re-

ults without using the prediction module and using the Thermal

odel instead. The results when using the RNN are nearly between

he ThermoSim and Thas results, as its prediction accuracies are

ower than when Thermal model is used. This experiment used

200 workloads. We have tested the performance of ThermoSim

nd Thas using QoS parameters such as energy consumption, SLA

iolation Rate (SVR), number of VM migrations and temperature

s shown in Figs. 16 and 17 . 

.4.1. Case study 1: energy-aware resource management 

İn this section, first case study has been presented to test the

erformance of three different energy-aware resource management

echniques (FCFS, DVFS and SOCCER) using both the proposed

hermoSim framework and the existing framework Thas ( Mhedheb

t al., 2013 ). First Come First Serve (FCFS) based energy-aware

esource management technique schedules the resources for ex-

cution of homogeneous workloads using FCFS-based scheduling

lgorithm. Dynamic Voltage and Frequency Scaling (DVFS) ( Chia-

ing et al., 2014 ) is an energy optimization approach, which ad-

usts the frequency settings of the computing devices to opti-

ize scheduling of resources. SOCCER ( Singh et al., 2016 ) is an

nergy-aware autonomic resource scheduling approach, which exe-

utes the heterogeneous cloud workloads using the IBM autonomic

odel. Fig. 16 shows the variation of QoS parameters for different

nergy-aware resource management techniques. 

The value of QoS parameters increases as the number of nodes

ncreases. Fig. 16 (a) shows SOCCER has 13.12% less SLA violation

ate in ThermoSim compared to Thas, similarly in FCFS and DVFS

2.45% and 14.98% improvement respectively. SOCCER performed

etter than DVFS and FCFS in both ThermoSim and Thas frame-

ork as it executes workloads based on signed SLA between user

nd provider. Fig. 16 (b) shows SOCCER consumes 11.23% less en-

rgy in ThermoSim compared to Thas, similarly in FCFS and DVFS
.35% and 9.15% improvement respectively. SOCCER performs bet-

er than DVFS and FCFS in both ThermoSim and Thas framework

s it adjusts resource utilization at runtime. 

Fig. 16 (c) shows SOCCER has 10.45% fewer VM migrations in

hermoSim compared to Thas, similarly in FCFS and DVFS 5.15%

nd 5.91% improvement respectively. SOCCER perform better than

VFS and FCFS in both ThermoSim and Thas framework as it is ca-

able of performing resource consolidation dynamically. Fig. 16 (d)

hows SOCCER offers 12.52% lower temperatures in ThermoSim

ompared to Thas, similarly in FCFS and DVFS 8.75% and 10.66%

mprovement respectively. SOCCER performs better than DVFS and

CFS in both ThermoSim and Thas framework as it shuts down the

dle resources automatically during the execution of workloads. 

.4.2. Case study 2: thermal-aware resource management 

İn this section, second case study has been presented to test

he performance of three different thermal-aware resource man-

gement techniques (DTM, ETAS and GTARA) using both the pro-

osed ThermoSim framework and the existing framework Thas

 Mhedheb et al., 2013 ). Energy and Thermal-Aware Scheduling

ETAS) algorithm ( Ilager et al., 2019 ) that dynamically consolidates

Ms to minimize the overall energy consumption while proactively

reventing hotspots. Dynamic Thermal Management (DTM) tech-

ique ( Kim et al., 2019 ) exploits external computing resources (idle

ervers) adaptively as well as internal computing resources (free

ores of CPU in the server) available in heterogeneous data centers.

ame-based Thermal-Aware Resource Allocation (GTARA) strategy 

 Akbar et al., 2019 ) decreases the imbalance within the CDC by us-

ng the concept of cooperative game theory with a Nash-bargaining

o assign resources based on thermal profile. Fig. 17 shows the

ariation of QoS parameters for different thermal-aware resource

anagement techniques. 

The value of QoS parameters increases as the number of nodes

ncreases. Fig. 17 (a) shows GTARA has 15.32% less SLA violation

ate in ThermoSim compared to Thas, similarly in DTM and ETAS

6.66% and 13.72% improvement respectively. GTARA performs bet-

er than ETAS and DTM in both ThermoSim and Thas framework as

t reduces the energy consumption significantly with low VM mi-

rations while not violating the SLAs. Fig. 17 (b) shows GTARA con-

umes 9.73% less energy in ThermoSim compared to Thas, similarly

n DTM and ETAS 11.93% and 12.65% improvement respectively.

TARA performs better than DTM and ETAS in both ThermoSim

nd Thas framework as it considers ambient effect of surrounding

odes is considered while assigning workloads to the computing

odes. 
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Fig. 16. Performance of different energy-aware scheduling algorithms: (a) SLA Violation Rate (b) Energy Consumption, (c) Number of VM Migrations, (d) Temperature. 

Fig. 17. Performance of different thermal-aware scheduling algorithms: (a) SLA Violation Rate (b) Energy Consumption, (c) Number of VM Migrations, (d) Temperature. 
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Fig. 17 (c) shows GTARA has 10.87% fewer VM migrations in

ThermoSim compared to Thas, similarly in DTM and ETAS 6.46%

and 7.75% improvement respectively. GTARA perform better than

ETAS and DTM in both ThermoSim and Thas framework as it

can improve thermal balance and avoid hotspots dynamically by

using cooperative game theory with a Nash-bargaining solution.
ig. 17 (d) shows GTARA offers 18.65% lower temperatures in

hermoSim compared to Thas, similarly in DTM and ETAS 16.95%

nd 17.75% improvement respectively. GTARA perform better than

TM and ETAS in both ThermoSim and Thas framework because

orkloads are assigned to the nodes based on their thermal

rofiles. 
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.5. Discussions 

The experimental results demonstrate that ThermoSim is per-

orming better than Thas in terms of different performance param-

ters such as memory, energy, temperature and cost. Further, it is

learly noted that the prediction accuracy of ThermoSim is better

han Thas with the variation of number of workloads and nodes.

he more holistic approach of ThermoSim consideration of diverse

arameters like SLA violation rate, cost, number of VM migrations

nd energy independently for each VM allows it to surpass Thas in

erformance. As per the results of case study 1 using ThermoSim,

OCCER has better performance as compared to DVFS and FCFS us-

ng different QoS parameters for energy-aware techniques, while

TARA perform better than ETAS and DTM for thermal-aware tech-

iques as shown in case study 2. 

. Summary and conclusions 

In this paper, we proposed a framework called ThermoSim

or the simulation and modeling of thermal-aware resource man-

gement for cloud computing environments. ThermoSim uses a

ightweight RNN-based deep leaning model for thermal-predictor

or efficient and low overhead resource management in resource

onstrained cloud environments. We have validated the proposed

hermoSim framework using three well-known energy-aware and

hermal-aware resource scheduling techniques by testing the per-

ormance of four QoS parameters: energy consumption, SLA vio-

ation rate, number of VM migrations and temperature, with dif-

erent number of resources. We have validated the proposed Ther-

oSim framework against existing thermal-aware simulator (Thas).

inally, relationship between theory and practice is very important.

enchmarking is an important starting point, which may try to re-

ate the holistic aspects studied in our simulation in real-world

ractice. This may lead to additional improvements of the theo-

etical basis. 

.1. Future research directions and open challenges 

Although the ThermoSim framework is capable of simulating

nd modeling the thermal-aware characteristics of cloud data cen-

ers, it can be further enhanced in a larger scope under the follow-

ng aspects. 

1. High Energy Demand in Cooling Servers : High power con-

sumption leads to the creation of hot spots and increases in

server temperature. Thus, there is a need to study the trade-

off between cooling energy and computing energy and its 

effect on temperature. 

2. Peak Temperature among Servers : Temperature is another im-

portant parameter for both physical servers and virtualiza-

tion solutions. Variance in the on-chip temperature and the

resultant occurrence of hot spots degrades the performance

of processors, increases the energy consumption. Thermal

management strategies are required to uniformly distribute

the temperature. 

3. High Level of Power Consumption by the Servers : The non-

energy aware scheduling techniques lead to increase in

power consumption among the servers which degrades the

server’s reliability and performance in terms of availability

and scalability. 

4. Validation of ThermoSim in the Large-scale Cloud Data Center :

The proposed ThermoSim framework will be implemented

in a real cloud environment to validate the availability of

the proposed models using Hadoop based Cloud Cluster and

thermal sensors. 

5. Automation of ThermoSim using Artificial Intelligence (AI): To

build a framework/benchmark that automatically classifies
applications/workloads according to their temperature pro- 

file using AI ( Gill et al., 2019 ). 

6. Fog and Edge Computing Environments: Further, ThermoSim

can be extended towards fog/edge computing scenarios with

heterogeneous hardware, and stronger energy constraints

( Gill et al., 2019 ). 

7. Container-based Deployment: In future, virtualization technol- 

ogy (e.g., VMs) used in ThermoSim can be replaced with

Docker-based containers to improve the performance for

CPU-intensive applications. Ease of use of containers (espe-

cially quick restarts) can reduce the execution time of work-

loads and improves energy efficiency ( Zhou et al., 2020 ).

Containers also provide a lightweight environment for the

deployment applications because they are stand-alone, self-

contained units that package software and its dependencies

together. Further, container-based deployment is more effec-

tive than VMs because containers have small memory foot-

print and consume a very small amount of resources ( Gill

et al., 2019 ). 

8. Reliability and Security: There is a need to investigate the

interlink between cloud thermo properties and dependable

provision of computation, covering scheduling, resource al-

location, consolidation, execution, cloudlet among the others

etc. By dependability, we refer to the extent to which the

cloud environment can continue to maintain its reliability,

security and performance while dynamically optimizing for

energy and honoring thermo-properties ( Gill et al., 2019 ). 

9. Dynamic Monitoring: There is a need to develop priority tools

and repositories for monitoring and collecting behavioural

information about the dynamic management of thermo pro-

prieties and dependability. These repositories can be mined

to inform the design of more dependable thermo-aware

policies. 
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