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Abstract—A composite service in multi-tenant SaaS cloud
would inevitably operate under dynamic changes on the work-
load from the tenants, and thus it is not uncommon for the
composition to encounter under-utilization and over-utilization
on the component services. However, both of those cases could
be good or bad: the former implies that although there is
under-utilization, the pay-off afterwards are more significant;
the latter, in contrast, refers to the over-utilization that leads
to trivial pay-off, or nothing at all. Such a notion perfectly
matches with the Technical Debt (TD) metaphor in Software
Engineering. As a result, it is necessary to identify the root
causes of the debts and where the debt can be manifested in
the service composition, which, in turn, would offer great helps
on the decision making process of service composition. In this
paper, we propose a novel approach for identifying the technical
debt in service composition under SaaS cloud. The approach
combines time series forecasting and a newly proposed technical
debt model to estimate the future debt and utility in the service
composition. Through a real world case study, we demonstrate
that our approach can successfully identify both the good and
bad debts, while producing satisfactory accuracy on estimating
the technical debt involved in the service composition under SaaS
cloud.

Index: Service composition, Technical debt, Service utility,
Quality of Service, Multi-tenant.

I. INTRODUCTION

Service composition is a logical combination of multiple
abstract services resulting into a single unit (e.g., an applica-
tion) for performing complex requests submitted by the users
in the multi-tenant SaaS cloud [1]. An abstract service can be
realized by a set of candidate component services [1], each of
which comes with different capacities to process n requests
per second. However, uncertainty in workload generated by
the tenants may affect the overall Quality of Service (QoS),
and more importantly, it may cause under-utilization or over-
utilization on the component services with respect to their
capacities. Consequently, the operational cost could outweigh
the service revenue or violates the tenants’ Service Level
Agreement (SLA), which may trigger a recomposition.

A service composition is sub-optimal from the utility point
of view when the selected component services are under-
/over-utilized during execution. While over-utilization gen-
erally implies negative impacts, under-utilization could be
good or bad: if the pay off in the future is more significant,
then we can temporally accept under-utilization; otherwise,
the under-utilization would only incur unneeded cost. Such
a notion perfectly matches with the Technical Debt (TD)

metaphor [2][3] in Software Engineering. In particular, there
may be an imperfect composition decision, leading to a
new forms of technical debts that explicate this category
of systems. The debt can be intentional; it can be due to
recomposition plans that provide higher services capacity than
what is currently demanded by the users. Technical debt could
be incurred unintentionally in the service composition, for
example, when a component service receives a high volume
of requests workload, and the underlying component service
cannot process all the requests,consequently, violating the
SLA. In this example, the penalty costs against the response
time violation and the eventuality recomposition costs can be
viewed as interest on the debt for a given execution instance.

To better support the decision making process of service
composition in SaaS cloud, in this paper, we propose an
approach that combines technical debt metaphor and time
series forecasting for identifying and estimating technical debt
in service composition. Notably, we have made the following
contributions:

• We tailor a time series forecasting method, namely
ARFIMA model [4], into the debt model for estimating
future debt.

• We propose a model that explicitly maps the concepts of
TD in the contexts of service composition. Such a model
is capable of quantifying both good and bad debt.

• The proposed debt model, enhanced by the time series
forecasting method, allows us to build a utility model that
provides more informed insights to the decision making
process of service composition.

II. BACKGROUND AND RELATED WORK

Technical debt can be attributed to sub-optimal decisions,
shortcut on decisions, and/or deferred activities that can incur
extra cost/rework, if it would be carried in the future as
when compared the current time. Technical debt metaphor
was initially coined by Cunningham in 1992 [2]. Software
engineering community presented this metaphor and discussed
its applicability to many software artifacts, covering code,
requirements, architecture, testing and documentation, among
the other. The common understanding is that technical debt is
the result of making technical compromises that are expedient
in short-term but that create a technical context that increases
complexity and cost in the long term [3]. If these technical



compromises are not paid back than technical debt can be in-
curred and degrade the system quality or the development team
productivity in long term. By incurring technical debt is not
always bad, if organization makes informed decisions or strate-
gic reasons about to incur debt [5]. McConnell [6] classified
the term “technical debt” into intentional and unintentional. An
intentional debt is the debt which is taken by an organization
to optimize the present value in the software project rather
than future value or to make informed decisions for gaining
short-term benefits. On the other hand, unintentional debt can
be incurred unknowingly when an organization makes non-
strategic or inappropriate decisions in software project.

In recent years, researchers applied technical debt metaphor
in cloud computing based services. Alzaghoul et. al.[7] applied
real option approach for managing technical debt at the service
selection for the cloud-based service oriented architecture.
They identified technical debt of substitution decisions bease
on the Binomial Real Option approach. Skourletopoulos et. al.
[8] described an approach for evaluating the technical debt for
the selection of mobile cloud-based service. The problem is
formulated based on the cost-benefits analysis and considered
linear growth of users in system modelling. However, the
proposed approach did not consider time sensitivity and run-
time service execution environment. The effective manage-
ment of technical debt needs to consider these attributes
because runtime environment changes must have the root of
causing technical debt and time sensitivity guides to make
debt-aware decision about when to pay-off the accumulated
debt in service composition under SaaS cloud.

III. TECHNICAL DEBT IN SERVICE COMPOSITION

Technical debt in service composition can be observed at
different levels (e.g., service utility, recomposition decisions,
or SLA violation etc.). Technical debt can be attributed to
ill-informed design decisions that can, for instance, relate
to sub-optimal capacity planning and be incurred when a
composite service is not fully utilized. This, for example,
can be due to significant drop in requests workload in SaaS
cloud. As a consequences, the operational cost may exceed the
service’s revenue. Furthermore, a composite service can bear
a technical debt by design when environmental changes (e.g.,
partner service failure or QoS fluctuation etc.) put pressure
on the system to recompose the composite service. Addition-
ally, technical debt can be associated with an inappropriate
engineering decisions or poorly justified run-time decisions
for recomposing the composite services. These decisions can
carry short-term benefits in terms of improving service utility,
but they might not be geared towards long-term benefits or
future value creation.

In summary, we argue that a technical debt-aware recom-
position decision is needed for managing the above described
issues. We motivate the need for treating these accrued debt
as a “time-sensitive moving target” in service composition
that needs to dynamically monitored for transforming the
accumulated debt into future value.

Figure 1: Time series forecasting based debt estimation

Technical debt is not always bad, if it can help the develop-
ers to speed development process [9]. We see this argument as
a valid point in service composition for improving composition
utility or avoiding needless recomposition. In Figure 1, an
intentionally technical debt is incurred in service composition,
when we decide to postpone the service recomposition at
time t1 and look the possibility of generating future value in
the current service composition plan using time-series based
predictive value. Technical debt can be manage proactively,
if it is visible in service composition. In this case, technical
debt is clearly visible as a reengineering cost of service
recomposition. An interest may be accumulated over the
incurred technical debt in service composition at time t1
due to poorly selected services in the composition. Interest
indicate the composite service utility (e.g., cost of unused
service capacity or penalty) which may be underutilized or
overutilized due to dynamic changes in requests workload.

A. Technical Debt Indicators in Service Composition

Technical Debt Indicators consist information about what
type of technical debt (good or bad debts) is, why and when
was incurred, how much debt was estimated, when it will
be pay off in future [10]. We identified following key TD
indicators in service composition.

SLA Violation: SLA violation constitutes the unintentional
technical debt in service composition when a composite ser-
vice does not satisfy the predefined response time mentioned
in end-users SLA then a penalty cost against each request
violation would be count as interest over the technical debt.

Runtime decisions: An inappropriate or poorly justified run-
time decision for service recomposition may lead the technical
debt in a way to select unsuitable component services for
composing a new composite service which can not support
the scalability requirements in changing requests workload.

Service utility: Service utility constitutes the technical debt
when a composite service is sub-optimal from the utility point
of view. For example, a sub-optimal composite service can
incur an intentional debt by getting service scalability benefits
in the future.

Moreover, a decision making needs to know the nature of
accumulated debt in terms of good or bad debts. We describe
the good and bad debts in composite service perspective and
identifying their consequences.

Good Debt: A good technical debt in service composition is
viewed as “time-sensitive moving target” that needs to monitor
for transforming the accumulated debt into future values
creation. For example, Figure 2 shows that a composite service
is underutilized in a way to deliver more than the required
demand of the users at time t1 and intentionally accumulates
the debt for a time period (e.g., t1 to t5). We may accept such



debt in a way to consider the future demand for scaling-up
the service capacity that transforms the accumulated debt into
future values.

Figure 2: Good Debt Figure 3: Bad Debt

Bad Debt: A bad debt in service composition may leads the
situation of continuous under-utilization of composite service
and will not be able to pay off the accumulated debt in future
as shown in Figure 3. As consequences, such accumulated debt
negatively impacts the service utility that needs to manage by
taking proactive decisions.

IV. MEASURING TECHNICAL DEBT IN SERVICE
COMPOSITION

In this section, we describe how ARFIMA, a time series
forecasting method, can be used to predict workload of a
component service. Drawing on the prediction, we then present
a formal technical debt model in the context of service
composition under SaaS cloud. Such a model identifies and
estimates the possible technical debt with respect to the overall
utility, which would provide greater insights to the decision
making process of recomposition.

1) Requests workload prediction: Undoubtedly, the dy-
namic changes of workload on a component service is the
fundamental causes of possible technical debt. To predict such
a workload, we use Autoregressive Fractionally Integrated
Moving Average model (ARFIMA) [4], a widely used time
series model that guarantee the prediction accuracy when a
time series contains long memory pattern. We prepared the
requests workload time series that contains the number of
observed requests at each time interval (e.g., seconds) and feed
it as an input to ARFIMA for predicting the future requests
workload at every second. Formally, the general expression of
ARFIMA(p, d, q) can be expressed as:

(1−
p∑

i=1

φiB
i)(1−B)dWt = (1 +

q∑
i=1

θiB
i)εt (1)

whereby Wt is the workload for a component service at
time t. εt is a white noise process. B is the backward
shift operator and (1 − B)d is the fractional differencing
operator. The fractional number d is the memory parameter
and d ∈ [−0.5, 0.5]. 1 −

∑p
i=1 φiB

i is the autoregressive
polynomial of order p and 1 +

∑q
i=1 θiB

i is the moving
average polynomial of order q in the lag operator B. We
estimate the value of memory parameter d using fdGPH()
function in the R forecast package proposed by [11]. The
value of p is the autoregressive order that indicates the number
of distinct lags appearing in the forecasting equation, and q
is the moving average order that shows the number of lagged
forecast error in the prediction equation.

A. Technical Debt Computing Model

To estimate technical debt in service composition, we adopt
the notions of principal and interest [3][10] from technical debt
metaphor into a contextualized model for the analysis.

1) Recomposition Principal: In the context of service re-
composition, we use principal to denote the invested cost
of recomposing the entire composite service for improving
service utility. The principal can be derived from the resources
usages, such as the CPU time or the effort spent by software
engineer for the decision making of the service composition.
Specifically, we compute the principal for recomposing a
service using equation 2.

Principal = E × Ccpu (2)
Suppose that the recomposition process requires 2 seconds

(denoted as E) and the execution cost of CPU is $ 0.0025
per second (denoted as Ccpu), then it takes a principal as 2 ×
0.0025 = $ 0.005.

2) Interest: An interest can be accumulated over time on
the component service which may be under-utilized or over-
utilized. In such context, the interests may be accumulated over
time on the yth component service for the xth abstract service
(denoted as CSxy). For such a component service, the interests
accumulated up to the future n timesteps can be derived from
the actual service capacity (i.e., service throughput denoted
as T ) and the predicted workload at time t (i.e., Wt) from
equation 1, as shown below:

Int(CSxy) =


∑n

t=1((T −Wt)× C) if Wt ≤ T∑n
t=1((

Wt

T
−RSLA)× P ) otherwise

(3)
Clearly, the interests are different depending on two different
scenarios of utilizing the capacity of a component service:

(a) Service under-utilization: When the component service
is under-utilized, i.e., the predicted workload is smaller than or
equals to the capacity of component service (Wt ≤ T ), interest
can be calculated as the accumulated cost of unused service
capacity. For example, on a component service, suppose that
the execution cost of processing each request is $0.00015
(denoted as C), and a component service has the capacity to
process 55 requests per second while the predicted workload
on this component service is 48 requests per second. Assuming
that the accumulated interests till now is $1.02, then this
component service will carry the interest as $1.02 + (55-48)
× 0.0015= $1.0305.

(b) Service over-utilization: When the component service
is over-utilized, i.e., the predicted workload is greater than
the capacity of component service (Wt > T ), the SLA
requirement on latency (denoted as RSLA) would often be
violated [12], and thus a penalty rate (denoted as P ) would
be used to compute the extra cost to be paid. Suppose again,
for a component service, that the accumulated interests till
now is $1.02, and that a given SLA contains the requirement
of 2 seconds latency and the penalty rate of latency violation is
$ 0.0025 per second. Now, assuming that the average service
latency, derived from the predicted workload and its capacity,



is 3.5 seconds, then the interest would be $1.02 + (3.5-2.0) ×
0.0025 = $1.0237.

Finally, up to the future n timesteps, the overall technical
debt (denoted as Debt) of a decision for recomposing the
services can be identified and estimated according to the
principal and interests, as shown in equation 4:

Debt = Principal +

k∑
x=1

Interest(CSxy) (4)

where k is the total number of abstract services and CSxy is
the selected component service for the xth abstract service

B. Calculating Debt Aware Utility for Service Composition

The utility of a service composition consists of the revenue
and the fundamental operation cost. In particular, the revenue
and cost accumulated for future n timesteps can be calculated
as the following:

Revenue(CSxy) =

n∑
t=1

Wt × Ctenants (5)

Cost(CSxy) =
n∑

t=1

Wt × C (6)

whereby Ctenants is the charge to the tenants per request,
which directly contribute to the revenue generated by the
composite service. C is again the cost per request to the SaaS
provider for using a component service and its infrastructure.
Wt is the predicted workload at time t. Combining with the
debt model, the utility of a service composition (denoted as
U ) decision for future n timesteps can be calculated as:

U =

k∑
x=1

Revenue(CSxy)−
k∑

x=1

Cost(CSxy)−Debt (7)

Such a utility model is debt-aware and predictive, which
helps to consolidate the decision making process of service
composition.

Table I: Simulation Parameters

Parameters Numerical Value
Ccpu : Recomposition cost (e.g., engineering efforts
plus CPU execution cost)

0.0025 ($)

C: Per request execution cost 0.00015 ($)
Ctenants : Per request tenant’s cost 0.00025 ($)
P : Penalty per request 200% of its cost
RSLA : Response time (SLA) 1 seconds

Table II: Evaluation of Predication Accuracy

MAE RMSE Theil Coefficient
Request Workload 4.0190 5.0817 0.7532

Table III: Number of Good and Bad Debt for All 3600 Seconds.

Total good debt Total bad debt
Composite Service 414 385

C. Identifying Good and Bad Debt

According to our definition about the good and bad debt
in section IV, the debt depends on the service utility over
execution time. Our approach dynamically monitors the ser-
vice utility for the future timesteps. The incurred debt can be
considered as good or bad based on equation 7, suppose the
overall utility (Ut) generated at time t is $1.5 along with debt
acceptance and for the next monitoring period, the predictive
utility at t+n is $ 2.0, which implies that the accumulated debt
at time t is good and it should be accepted. This is because

the accumulated debts in the past would be paid off by t+n,
leading to an anticipated improvement on the overall utility.
Otherwise, the service capacity can become underutilized and
accumulates the bad debt that is unlikely to be paid off in
future. Specifically, We calculate the good and the bad debt
using following equation:

Debt =

{
Debtgood if Ut ≤ Ut+n

Debtbad otherwise
(8)

The notion of good and bad debt provide a simple, intuitive,
yet effective way for the service provider to make more
informed decision on the recomposition of service.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We extended the Service Composition Middleware [13], a
tool for modelling and simulating multi-tenant service compo-
sition. Such a tool exploits evolutionary algorithm to optimize
service composition in the SaaS cloud. On top of that, we
implemented our approach to identify and estimate technical
debt throughout the life-cycle of a service composition. In par-
ticular, our experiments aim to answer the following research
questions:

• RQ1: Whether the approach is sufficiently accurate in
estimating the technical debt (and utility) for service
composition in SaaS cloud?

• RQ2: Whether our approach can successfully identify
good and bad debts?

We conducted all experiments on the same machine with
Intel Core i7 2.60 Ghz. Processor, 8GB RAM and windows
10. We use Sales CRM, a real-world application, as our testing
environment (shown in Figure 3). The Sales CRM application
processes the incoming requests workload (actual) as shown in
Figure 6. In our experiments, the workload is collected from
the 1998 FIFA World Cup website trace [14] for the length
of 7200 seconds. To evaluate the prediction quality, we pre-
process the workload by using the first half as the samples for
training the forecasting model, while the remaining workload
data is used for testing the accuracy. We conduct a monitoring
every 5 seconds. The ARFIMA model is implemented using
the arfima package in R [15]. We run a simulation on
multi-tenant middleware by implementing our technical debt
approach with the simulation parameters shown in Table I.

B. Results Discussion for RQ1

To predict the workload for each component service, we fit
the ARFIMA model and evaluate the prediction accuracy using
common accuracy metrics[11]. These metrics contain Mean
Absolute Error (MAE) measures the prediction accuracy by
averaging the absolute value of the difference between actual
value and predicted value, Root Mean Square Error (RMSE) is
a standard deviation which is measured by the difference be-
tween the actual value and predicted value. Moreover, Theil’s
coefficient indicates the good forecasting if Theil value lies
between 0 and 1, otherwise shows the poor prediction. Table
II provides a summary of the mean accuracy of predicting



Figure 4: Predicted and actual workload for a component service

Figure 5: Predicted and actual debt that is accumulated for all
component services

workload for all the component services. From the table, we
see that the MAE and RMSE is within 15% of the general
workload, which has a value between 35 and 50 request per
second. This is considered are relatively low error and thus the
accuracy is acceptable. As a more detailed example, Figure 4
illustrates the workload trace for a component service. As we
can see, the results of the predicted workload generally match
with the actual one.

Drawing on the predicted workload, the technical debt can
be identified and estimated. Figure 5 shows the predicted
and actual debt for all component services. Clearly, the two
traces do not match exactly. However, we see that the slope
generally follow similar patterns, but differs only in terms of
the magnitudes. The deviations between the two traces are also
acceptable. In Figure 6, we also plot the predicted and actual
utility of the service composition, and again we see generally
similar trace. This implies that the predicted workload can also
help to estimate the revenue and cost, not only the likely debt.

C. Results Discussion for RQ2

Throughout the entire 3600 seconds run of the service
composition and drawing from equation 8, we were able to
identify numbers of good and bad debt incurred by the decision
of recomposition (monitor every 5 seconds), shown in Table
III. Clearly, in our case study, the number of good debt is
higher than that of the bad ones, implying a generally healthier
status of the service composition.

To provide a more detailed analysis of the good and bad
debt, in Figure 7, we illustrate the total utilization of all the
component services involved. In particular, we highlight two
sets of example: one set is classified as 60 bad debt and another
is considered as good (20 debts). At time horizon 1200s to
1500s, the debt accumulated till every 5 seconds length is
consider as bad, and hence we have 60 bad debt as there are
60 monitoring. This is because from a point to the next time
point (5 seconds later), the utility is decreasing. In contrast,
between 2400s and 2500s time points, we found 20 good debt
as the accumulated debt at every point would be paid off by
the next time point.

VI. CONCLUSION AND FUTURE WORK

This paper leverages the notion of technical debt to model
the utility of service composition. Specifically, we identified

Figure 6: Predicted and actual utility for a service composition

Figure 7: Example of good and bad debt

key technical debt indicators that contribute to the accumu-
lation of technical debt during the execution of a composite
service. The model, enhanced by time series forecasting of re-
quests workload, can identify and estimate the future debt and
utility for service composition. In future work, we will study
the time-sensitivity and its impacts over taking technical debt
aware proactive decision for dynamic service recomposition.
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