
Future Generation Computer Systems 29 (2012) 170–181
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Task granularity policies for deploying bag-of-task applications on global grids
Nithiapidary Muthuvelu a,∗, Christian Vecchiola b, Ian Chai a, Eswaran Chikkannan a, Rajkumar Buyya b

a Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
b Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Carlton,
Victoria 3053, Australia

a r t i c l e i n f o

Article history:
Received 23 July 2010
Received in revised form
20 March 2012
Accepted 22 March 2012
Available online 5 April 2012

Keywords:
Grid computing
Meta-scheduler
Lightweight task
Task granularity
Task group deployment

a b s t r a c t

Deploying lightweight tasks individually on grid resources would lead to a situation where
communication overhead dominates the overall application processing time. The communication
overhead can be reduced if we group the lightweight tasks at the meta-scheduler before the deployment.
However, there is a necessity to limit the number of tasks in a group in order to utilise the resources and
the interconnecting network in an optimal manner. In this paper, we propose policies and approaches
to decide the granularity of a task group that obeys the task processing requirements and resource-
network utilisation constraints while satisfying the user’s QoS requirements. Experiments on bag-of-task
applications reveal that the proposed policies and approaches lead towards an economical and efficient
way of grid utilisation.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Grid computing [1–3] connects geographically distributed
heterogeneous resources, forming a platform to run resource-
intensive applications. A grid application contains a large number
of tasks [4,5]; a meta-scheduler transmits each task file to a
grid resource for execution and retrieves the processed task
from the resource. The overall processing time of a task includes
task invocation at the meta-scheduler, scheduling time, task file
transmission to a resource, waiting time at the resource’s local job
queue, task execution time, and output file transmission to the
meta-scheduler.

A lightweight or fine-grain task requires minimal execution
time (e.g. less than one minute). Executing a large number of
lightweight tasks one-by-one on a grid would result in a low
computation–communication ratio as the total communication
time will be high due to the overhead involved in handling each
small-scale task [6]; the term computation refers to the task
execution time, whereas communication refers to the task and
output file transmission time. This issue can be explained from two
point of views.

• The communication overhead increases proportionallywith the
number of tasks.

∗ Corresponding author. Tel.: +60 383125429; fax: +60 383125264.
E-mail addresses: nithiapidary@mmu.edu.my, m.nithia@gmail.com

(N. Muthuvelu).

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.03.022
• The processing capability of a resource and the capacity of an
interconnecting network will not be optimally utilised when
dealing with lightweight tasks. For example:
– assume that a high-speed machine allows a user to utilise

its CPU for x seconds. Executing lightweight tasks one at
a time on the machine will miss the full processing speed
(e.g. x∗ Million Instructions per Second) of the machine
within x seconds due to the overhead involved in invoking
and executing each task;

– transmitting task and output files one-by-one to and from a
resource may underutilise the achievable bandwidth if the
files are very small.

Hence, deploying lightweight tasks on a grid would lead
to inefficient resource and network utilisation, resulting in an
unfavourable application throughput. This statement is proven
with experiments in Section 5.3.1 of this paper. The experiments
show that grouping the lightweight tasks before the deployment
increases resource utilisation and reduces the overall application
processing time significantly. This stimulates the need for optimal
task granularity (the number of tasks that should be grouped in a
batch) for each resource at runtime.

In this paper, we present the factors that highly affect the
decision on task granularity which result in a set of policies for
determining task granularities at runtime. The policies are then
incorporated in the scheduling strategies of a meta-scheduler
to be tested in a grid environment. Our goal is to reduce the
overall application processing time while maximising the usage of

http://dx.doi.org/10.1016/j.future.2012.03.022
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:nithiapidary@mmu.edu.my
mailto:m.nithia@gmail.com
http://dx.doi.org/10.1016/j.future.2012.03.022


N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181 171
resource and network capacities, and obeying the quality of service
(QoS) requirements.

The scheduling strategies are designed to handle computation-
intensive, parametric and non-parametric sweep applications.
They assume that all the tasks in an application are independent,
computational, and have a similar compilation platform.

The rest of the paper is organised as follows: The related
work is explained in Section 2. Section 3 describes the factors
involved in deciding the task granularity followed by the task
granularity policies. Section 4 presents the approaches to deal with
the issues induced by the task granularity policies. The process
flow of the proposed meta-scheduler is explained in a subsection
of Section 4. Section 5 brings the performance analysis of the
scheduling strategies. Finally, Section 6 concludes the paper by
suggesting future work.

2. Related work

Task granularity adaptation has been one of themost important
research problems in batch processing.

Algorithms pertaining to sequencing tasks in multiple batches
for executions on a single machine to minimise the processing
delays were demonstrated in [7,8]. Following from these exper-
iments, Mosheiov and Oron proposed an additional parameter,
maximum/minimum batch size, to control the number of tasks to
be grouped in a batch in [9].

James et al. [10] scheduled equal numbers of independent
jobs using various scheduling algorithms to a cluster of nodes.
However, their attempt caused an additional overhead as thenodes
were required to be synchronised after each job group execution
iteration.

Sodan et al. [11] conducted simulations to determine the
optimal number of jobs in a batch to be executed in a parallel
environment. The total number of jobs in a batch is optimised
based on minimum and maximum group size, average run-time
of the jobs, machine size, number of running jobs in the machine,
and minimum and maximum node utilisation. These simulations
did not consider varying network usage or bottlenecks. In addition,
the total number of jobs in a batch is constrained with static upper
and lower bounds.

Work towards adapting computational applications to con-
stantly changing resource availability has been conducted by
Maghraoui et al. [12]. A specific API with special constructs is used
to indicate the atomic computational units in each user job. Upon
resource unavailability, the jobs are resized (split or merged) be-
fore being migrated to another resource. The special constructs in
a job file indicates the split or merge points.

A few simulations have been conducted to realise the effect
of task grouping in a grid [13]. The tasks were grouped based on
resource’sMillion Instructions Per Second (MIPS) and task’sMillion
Instructions (MI). MIPS or MI are not the preferred benchmark
matrices as the execution times for two programs of similar MI but
with different compilation platforms can differ [14]. Moreover, a
resource’s full processing capacitymay not be available all the time
because of I/O interrupt signals.

In 2008 [15], we designed a scheduling algorithm that
determines the task granularity based on QoS requirements, task
file size, estimated task CPU time, and resource constraints on
maximum allowed CPU time, maximum allowed wall-clock time,
maximum task file transmission time, and task processing cost
per time unit. The simulation shows that the scheduling algorithm
performs better than conventional task scheduling by 20.05% in
terms of overall application processing time when processing 500
tasks. However, it was assumed that the task file size is similar
to the task length which is an oversimplification as the tasks may
contain massive computation loops.
In our previous work [16], we enhanced our scheduling
algorithm by treating the file size of a task separately from its
processing needs. The algorithm also considers two additional
constraints: space availability at the resource and output file
transmission time. In addition, it is designed to handle unlimited
number of user tasks arriving at the scheduler at runtime.

This paper is an improvement of our previous work [16,17].
We enhanced our scheduling strategies to coordinate with cluster-
based resources without synchronisation overhead. The strategies
support the tasks fromboth parametric and non-parametric sweep
applications. We developed a meta-scheduler, implemented our
proposed task grouping policies and approaches, and tested the
performance in a real grid environment. The user tasks are
transparent to the meta-scheduler and there is no need for a
specific API to generate the tasks.

3. Factors influencing the task granularity

Table 1 depicts the terms or notations and the corresponding
definitions that will be used throughout this paper.

Our aim is to groupmultiple fine-grain tasks into a batch before
deploying the batch on a resource. When adding a task into a
batch or a group, the processing need of the batch will increase.
This demands us to control the number of tasks in a batch or the
resulting granularity. As a grid resides in a dynamic environment,
the following factors affect the task granularity for a particular
resource:

• The processing requirements of the tasks in a grid application.
• The processing speed and overhead of the grid resources.
• The resource utilisation constraints imposed by the providers

to control the resource usage [18].
• The bandwidths of the interconnecting networks [19].
• The QoS requirements of an application [20].

Fig. 1 depicts the information flow pertaining to the above-
mentioned factors in a grid environment. The grid model
contains three entities: User Application; Meta-Scheduler; and
Grid Resources. (1) The first input set to themeta-scheduler comes
from the user application which contains a bag of tasks (BoT).

• Tasks: A task (T ) contains files relevant to the execution
instruction, library, task or program, and input data.
• Task Requirements: Each task is associated with task require-

ments or characteristics which consist of the size of the task file
(TFSize), the estimated size of the output file (OFSize), and the
estimated CPU time of the task (ETCPUTime). The ETCPUTime is
an estimation given by the user based on sample task execu-
tions on the user’s local machine. In our context, the ETCPUTime
of a task is measured at the application or task level (not at pro-
cessor level): from the start of a task execution till the end of
the task execution.
• QoS: The user budget (UBudget) and deadline (UDeadline)

allocated for executing all the tasks in the BoT.

(2) The second input set to the meta-scheduler is from the
grid resources (GR) participating in the environment. The resource
providers impose utilisation constraints on the resources in order
to avoid the resources from being overloaded or misused [18,21].
The utilisation constraints of a particular resource, R, are:

• MaximumAllowed CPU Time (MaxCPUTime): Themaximum time
allowed for the execution of a task or a batch at a resource.
• Maximum Allowed Wall-Clock Time (MaxWCTime): The maxi-

mum time a task or a batch can spend at the resource. This en-
compasses task CPU time and task processing overhead at the
resource (task waiting time, and task packing and unpacking
overhead).



172 N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181
Table 1
Terms and definitions.

User application and task requirements
BoT Bag of Tasks
T A Task
TFSize Task File Size
ETCPUTime Estimated Task CPU Time
OFSize Output File Size
UBudget User Budget allocated for a grid application
UDeadline User Deadline for completing a grid application

Grid resources and resource-network utilisation constraints
GR A set of Grid Resources
R A grid Resource
MaxCPUTime Maximum allowed CPU Time
MaxWCTime Maximum allowedWall-Clock Time
MaxSpace Maximum allowed storage Space for the task and output files
PCost Task Processing Cost per time unit
MaxTransTime Maximum allowed file Transmission Time between the meta-scheduler and a resource

Task categories and the average requirements of each category
TFSizeCI Task File Size Class Interval
ETCPUTimeCI Estimated Task CPU Time Class Interval
OFSizeCI Output File Size Class Interval
TCat Task Category
AvgTFSize Average Task File Size of a task category
AvgETCPUTime Average Estimated Task CPU Time of a task category
AvgOFSize Average Output File Size of a task category

Average deployment metrics of each task category–resource pair
E.g. Average deployment metrics of a task category k on a resource j, TCatk − Rj

AvgSTRTimek,j Average meta-Scheduler To Resource task file transmission Time
AvgCPUTimek,j Average task CPU Time
AvgWCTimek,j Average task Wall-Clock Time
AvgPCostk,j Average task Processing Cost
AvgRTSTimek,j Average Resource To meta-Scheduler output file transmission Time
AvgOverheadk,j Average task processing Overhead
AvgTRTimek,j Average Task Turnaround Time
• Maximum Allowed Storage Space (MaxSpace): Maximum space
that a task or a batch (including the corresponding output files)
can occupy at the resource at a time.
• Task Processing Cost (PCost): The task execution cost per time

unit charged by a resource.

(3) The third input is the network utilisation constraint:

• Maximum Allowed File Transmission Time (MaxTransTime):
The tolerance threshold or the maximum time that a meta-
scheduler can wait for the task and output files to be transmit-
ted to and from a resource.

In order to form a task group, having these input sets, the policies
on task granularity can be generalised as follows.

Assuming that a bag of tasks contains n tasks,

BoT = {T0, T1, T2, T3, T4, . . . , Tn−1}; BoTTOTAL = n

and the grid environment consists of r resources,

GR = {R0, R1, R2, R3, R4, . . . , Rr−1}; GRTOTAL = r

the seven policies for determining the granularity of a task group,
TG, for a grid resource, Ri, would be:

Policy 1: TG CPU time≤ MaxCPUTimeRi
Policy 2: TG wall-clock time≤ MaxWCTimeRi
Policy 3: TG and output transmission time≤ MaxTransTimeRi
Policy 4: TG and output file size≤ MaxSpaceRi
Policy 5: TG turnaround time≤ Remaining UDeadline
Policy 6: TG processing cost≤ Remaining UBudget
Policy 7: Number of tasks in TG≤ Remaining BoTTOTAL

where, Policies 1–4 are related to resource-network utilisation
constraints, Policies 5–6 are on QoS requirements, and Policy 7 is
to check the task availability.
However, there are three issues that affect the task granularity
decision according to these seven policies as the grid resides in an
environment of heterogeneous resources and fluctuating network
conditions.
ISSUE I: A grid resource can be a supercomputer, a cluster
of multiple nodes, a node with multiple processing cores, etc.
The wall-clock time of a task is influenced by the speed of a
resource’s local job scheduler (e.g. SGE, PBS, LSF, Libra, thread-level
schedulers, etc.) and the current processing load of the resource. In
order to obey the Policies 2 and 5, one should know the overheads
of resources’ queueing systems in advance.
ISSUE II: Task CPU time differs according to the resources’
processing capabilities. For example, a group of five tasks might
be handled by Resource A smoothly, whereas it may exceed the
maximum allowed CPU time or wall-clock time of Resource B, in
spite of having a similar architecture as Resource A. In addition,
the CPU time highly depends on the programming model and
compilation platform of the task. Relevant to this issue is the
term ‘fine-grain’ or ‘lightweight’ which is very fuzzy in nature.
For example, an executable file with 20,000 instructions can be
a fine-grain task for a machine that processes 10,000 instructions
per second. However, a machine that processes 10 instructions per
second will consider the executable file as an average- or coarse-
grain task. Hence, we should learn the resource speed and the
processing need of the tasks prior to the task grouping in order to
obey Policies 1 and 6.
ISSUE III: Task grouping increases the file size to be transmitted
to and from the resources. Hence, the network will be overloaded
if there is no control over the number of files to be grouped into
a single batch. Here, we should consider the varying achievable
bandwidth and the latency of the interconnected network [19,22].
For example, the network bandwidth at time tx may support the



N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181 173
Fig. 1. The meta-scheduler and the information flow.
transmission of a batch of seven tasks, however, at time ty this
may result in a heavily-loaded network, leading to an unfavourable
transmission time (where x < y). Therefore, we should determine
the appropriate file size that can be transferred at a particular time
in order to utilise the achievable bandwidth and obey the Policies
3 and 5.

These issues are caused by the dynamic nature of a grid
environment. Hence, there is a need for periodic observations on
the status of the grid.

4. Implementation of the meta-scheduler

In our meta-scheduler, the issues mentioned in Section 3 are
tackled using three approaches in the following order:

• Task Categorisation: Categorising the tasks according to their
requirements.
• Task Category–Resource Benchmarking: Learning the be-

haviour of the grid in response to the executions of the cate-
gorised tasks.
• Average Analysis: Learning the behaviour of the grid periodi-

cally in response to the executions of the categorised tasks.

These three approaches and the process flow of the meta-
scheduler are explained in the following subsections.

4.1. Task categorisation

The tasks in a parametric-sweep BoT are similar in terms of task
file size,while varying in terms of CPU time and output file size. The
tasks in a non-parametric sweepBoT vary in terms of CPU time, and
the task and output file size. When adding a task into a group, the
TFSize, ETCPUTime, and OFSize of the task group get accumulated.
Hence, the scheduler should select themost appropriate tasks from
the BoT (in a timely manner) so that the resulting task group
satisfies all the seven policies. This demands the need for proper
task file management and file searching strategies.

Here, we arrange the tasks in a tree structure based on certain
class interval thresholds applied to TFSize, ETCPUTime, and OFSize.
This approach divides the tasks into categories according to the
task file size class interval (TFSizeCI), followedby the estimated task
CPU time class interval (ETCPUTimeCI), and then the output file size
class interval (OFSizeCI).

Algorithm1 depicts the level 1 categorisation inwhich the tasks
are divided into categories (TCat) based on TFSize of each task and
the TFSizeCI . The range of a category is set according to TFSizeCI . For
example, the range of:

TCat0: 0 to (1.5× TFSizeCI)
TCat1: (1.5× TFSizeCI) to (2.5× TFSizeCI)
TCat2: (2.5× TFSizeCI) to (3.5× TFSizeCI)
Algorithm 1: Level 1 Task Categorisation.
Data: Requires TFSize of each T and TFSizeCI

1 for i← 0 to BoTTOTAL do
2 if Ti−TFSize < TFSizeCI then
3 TCatID← 0
4 else
5 ModValue← Ti−TFSize mod TFSizeCI
6 BaseValue← Ti−TFSize −ModValue
7 ifModValue < TFSizeCI/2 then
8 TCatID← (BaseValue/TFSizeCI)− 1
9 else

10 TCatID← ((BaseValue+ TFSizeCI)/TFSizeCI)− 1

11 Ti belongs to TCat of ID TCatID

The category ID (TCatID) of a task is 0 if its TFSize is less than the
TFSizeCI (line 2, 3). Otherwise, themod and base values (line 5, 6) of
the TFSize are computed to determine the suitable category range.
For example, when TFSizeCI = 10 size unit, then

tasks with (0 < TFSize < 15) belong to TCat0
tasks with (15 ≤ TFSize < 25) belong to TCat1
tasks with (25 ≤ TFSize < 35) belong to TCat2
This is followed by level 2 categorisation in which the

categories from level 1 are further divided into sub-categories
according to ETCPUTime of each task and ETCPUTimeCI . A similar
categorisation algorithm is applied for this purpose. For example,
when ETCPUTimeCI = 6 time unit, then the tasks in

TCat0 with (0 < ETCPUTime < 9) belong to TCat0−0
TCat0 with (9 ≤ ETCPUTime < 15) belong to TCat0−1
TCat1 with (0 < ETCPUTime < 9) belong to TCat1−0
TCat1 with (9 ≤ ETCPUTime < 15) belong to TCat1−1
Subsequently, level 3 categorisation divides the categories from

level 2 into sub-categories based on OFSize and OFSizeCI . For
example, when OFSizeCI = 10 size unit, then the tasks in

TCat0−0 with (0 < OFSize < 15) belong to TCat0−0−0
TCat0−0 with (15 ≤ OFSize < 25) belong to TCat0−0−1
TCat0−1 with (0 < OFSize < 15) belong to TCat0−1−0
TCat0−1 with (15 ≤ OFSize < 25) belong to TCat0−1−1
Fig. 2 presents an instance of task categorisation when

TFSizeCI = 10, ETCPUTimeCI = 6, and OFSizeCI = 10. The
categories at each level are created only when there is at least
one task belonging to that particular category. For each resulting
TCat , the average task requirements are computed, namely,
average task file size (AvgTFSize), average estimated task CPU time
(AvgETCPUTime), and average output file size (AvgOFSize). These
average task requirements will be used by the meta-scheduler in a
later process (in Section 4.2).



174 N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181
Fig. 2. Task categorisation.
This file organisation allows themeta-scheduler to easily locate
the category that obeys the seven policies. Then, it selects a task file
from the particular category to be added into a batch.

The order of the categorisation process can be altered; e.g. in
level 1 categorisation, the tasks can be divided according to
ETCPUTimeCI instead of TFSizeCI . The resulting categories are not
affected by the categorisation order, but merely depend on the
class interval used at each level. Small class intervals can be used
to increase the number of resulting categories in order to achieve
better accuracy when selecting a task for a batch.

4.2. Task category–resource benchmarking

As mentioned in Section 3, the performance and overhead
of the resources or the network cannot be estimated based on
somewritten specifications. Hence,we suggest a benchmark phase
where a few tasks are selected from the BoT and deployed on the
resources. This is to study the behaviour of the grid when dealing
with the user tasks before scheduling the entire BoT.

For this purpose, first, we determine the dominating categories
based on the total number of tasks in the categories. Then, we
select p tasks from the first 20%–50% of the dominating categories
and send to each resource. The total number of benchmark tasks,
BTasksTOTAL, with m dominating categories can be expressed as:

BTasksTOTAL = m× p× GRTOTAL. (1)

Upon retrieving the processed output files of a benchmark task,
the remaining UBudget and UDeadline are updated accordingly.
Then, the following seven deployment metrics of the task are
computed:

task file transmission time (meta-scheduler to resource); CPU
time; wall-clock time; processing cost; output file transmission
time (resource to meta-scheduler); processing overhead (task
waiting time, and task packing and unpacking time at the
resource); and turnaround time.

Finally, after completing all the benchmark tasks, the aver-
age of each deployment metric is computed for each task cate-
gory–resource pair. For a category k, the average deployment met-
rics on a resource j are expressed as average deployment metrics
of TCatk − Rj, which consist of:

average task file transmission time (AvgSTRTimek,j); average
CPU time (AvgCPUTimek,j); average wall-clock time
(AvgWCTimek,j); average processing cost (AvgPCostk,j); average
output file transmission time (AvgRTSTimek,j); average process-
ing overhead (AvgOverheadk,j); and average turnaround time
(AvgTRTimek,j).

It can be noticed that not all the categories are participating
in this benchmark. Therefore, the average deployment metrics of
those categories will be updated based on the average ratio of the
categories participated in the benchmark. For example, assume
that TCat0, TCat1, and TCat3 have participated in the benchmark.
The average CPU time of TCat2 for a resource j can be updated as
follows:

AvgCPUTime2,j based on TCat0
= AvgETCPUTime2 × (AvgCPUTime0,j/AvgETCPUTime0)

AvgCPUTime2,j based on TCat1
= AvgETCPUTime2 × (AvgCPUTime1,j/AvgETCPUTime1)

AvgCPUTime2,j based on TCat3
= AvgETCPUTime2 × (AvgCPUTime3,j/AvgETCPUTime3).

Assuming that m task categories have participated in the
benchmark phase, then the AvgCPUTime2,j can be formulated as,

AvgCPUTime2,j =


AvgETCPUTime2

×

m−1
k=0

(AvgCPUTimek,j/AvgETCPUTimek)


m

where k denotes the TCatID in the benchmark and k takes
specific values in the range {0, 1, 2, . . . , TCatTOTAL − 1}.

A similar rule is applied to update the other task deployment
metrics in the following order:

AvgSTRTimei,j =


AvgTFSizei

×

m−1
k=0

(AvgSTRTimek,j/AvgTFSizek)


m

AvgCPUTimei,j =


AvgETCPUTimei

×

m−1
k=0

(AvgCPUTimek,j/AvgETCPUTimek)


m

AvgRTSTimei,j =


AvgOFSizei

×

m−1
k=0

(AvgRTSTimek,j/AvgOFSizek)


m

AvgPCosti,j =


AvgCPUTimei,j

×

m−1
k=0

(AvgPCostk,j/AvgCPUTimek,j)


m

AvgOverheadi,j =


m−1
k=0

AvgOverheadk,j


m

AvgWCTimei,j = AvgCPUTimei,j + AvgOverheadi,j



N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181 175
Fig. 3. Process flow of the meta-scheduler system.
AvgTRTimei,j = AvgWCTimei,j + AvgSTRTimei,j
+ AvgRTSTimei,j

where,

k denotes the TCatID in the benchmark and k takes specific
values in the range {0, 1, 2, . . . , TCatTOTAL − 1}.

i denotes the TCatID missed the benchmark and i takes
specific values in the range {0, 1, 2, . . . , TCatTOTAL − 1}.

j = 0, 1, 2, . . . ,GRTOTAL − 1 (Grid resource ID).
m = Total categories in the benchmark.

In short, this benchmark phase studies the response or
performance of the grid resources and the interconnecting
network on each task category.

4.3. Average analysis

Task categorisation and task category–resource benchmarking
help the meta-scheduler to learn the behaviour of the grid. Now,
we can group the tasks according to the seven policies as in
Section 3.

However, as the grid operates in a dynamic environment,
the deployment metrics of a task category may not reflect the
latest grid environment after a time period [23]. Hence, the meta-
scheduler should update the deploymentmetrics of each TCatk−Rj
pair periodically based on the latest processed task groups.

A group or batchmay contain tasks from various categories. The
batch is accepted by a resource as a single task. Upon execution, the
deployment metrics can only be computed for a batch rather than
for the individual tasks in the batch. Hence, our meta-scheduler
practices the followings steps to update the deployment metrics
of each TCatk − Rj pair:

For a resource Rj,

1. Get the latest processed task groups and their ‘actual’ deploy-
ment metrics. Here, we select groups that were successfully
processed by Rj within the last 10 min.

2. Identify the tasks and their categories in each group. Based on
the previous TCatk−Rj averagemetrics, compute the ‘estimated’
task deployment metrics that each group should obtain.

3. For each group, compute the ratios ‘estimated’: ‘actual’ of the
seven deployment metrics. Use these ratios to estimate and
update the latest TCatk − Rj average details.

4. For those categories which did not participate in the latest
processed task groups, update their TCatk − Rj average details
based on the ratios of the participated categories as explained
in Section 4.2.

This periodic average analysis on the latest processed task
groups will keep updating the meta-scheduler with the current
performance of each TCatk − Rj pair.
4.4. The meta-scheduler

We developed a meta-scheduler that practices the proposed
task granularity policies and approaches to schedule and deploy
fine-grain tasks on individual and cluster-based resources. The
meta-scheduler is implemented in Java using multi-threading
features. Fig. 3 presents the process flow of the entire meta-
scheduler system.

There are eight modules involved in the system, namely, Con-
troller, Task Categorisation, Benchmark, Task Grouping-Dispatching,
Output Fetching, Constraint Fetching, Average Analysis, and Task
Granularity.

(1) The Controller manages the flow of the meta-scheduler. It
ensures that the QoS requirements are satisfied at runtime. (2)
The Task Categorisation categorises the user tasks as mentioned
in Section 4.1. (3) Then, it invokes the Benchmark which selects
BTasksTOTAL benchmark tasks from theBoTwhichwill be dispatched
(4,5) to the grid resources by Task Grouping-Dispatching. (6) The
Output Fetching then collects the processed benchmark tasks.

After the benchmark phase, (7,8) the Average Analysis studies
the task category–resource average deployment metrics. (10) The
Constraint Fetching keeps retrieving the resource-network utilisa-
tion constraints periodically, which will be used as conditions in
task grouping policies.

(12) Having the categorised tasks, (9) TCatk − Rj average
deployment metrics, and (11) the resource-network utilisation
constraints, the Task Granularity determines the number of tasks
from various categories that can be assigned into one batch for
a particular resource. When selecting a task from a category, the
estimated deployment metrics of the group are accumulated from
the average deployment metrics of the particular task category.
The resulting task granularity must satisfy all the seven policies
mentioned in Section 3 of this paper.

The task categorisation process derives the need for enhancing
Policy 7 to control the total number of tasks that can be selected
from a category. Hence, the Policy 7 can be expressed as follows:

Policy 7: Total tasks in TG from a TCatk ≤ size_of (TCatk)

where,

k = 0, 1, 2, . . . , TCatTOTAL − 1 (TCatID).

(13,14) After setting the task granularity, the Task Grouping-
Dispatching groups the selected tasks and transfers the group to
the designated resource. Technically, the module compresses the
selected tasks into one file. (15) The processed groups are then
retrieved by the Output Fetching, and the remaining UBudget and
UDeadline are updated accordingly. The cycle (10–15) continues for
a certain time period and the Controller signals the Average Analysis
to update the average deployment metrics of each TCatk − Rj
based on the latest processed task groups. The subsequent decision
on task granularity will be according to the updated average
deployment metrics.



176 N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181
Table 2
Grid resources.

ID Resource name (location) Total nodes Total cores Operating system, speed, RAM

R0 ibm.mygridusbio.net.my (MIMOS, Malaysia) 8 8× 4 CentOS, 2.60 GHz, 15 GB
R1 sun.mygridusbio.net.my (MIMOS, Malaysia) 16 16× 8 CentOS, 2.20 GHz, 32 GB
R2 belle.csse.unimelb.edu.au (UNIMELB, Australia) 1 1× 4 Ubuntu, 2.80 GHz, 2 GB
R3 sigs.mmu.edu.my (MMU, Malaysia) 1 1× 4 OpenSUSE, 2.40 GHz, 2 GB
Eliminating synchronisation overhead: The resources are hetero-
geneous in terms of processing speed. When a partic-
ular resource completes its benchmark tasks, a set of
instances of Average Analysis, Constraint Fetching, Task
Granularity, and Task Grouping-Dispatching are initiated
for that resource. Thus, the subsequent task scheduling,
grouping, and deployment activities can be conducted for
the resource without a delay. This eliminates the syn-
chronisation overhead; there is no need for the meta-
scheduler to wait for all the resources to complete their
benchmark tasks before performing the next iteration of
task grouping and deployment.

The grid resources are not synchronised throughout
the scheduling process. A task group is dispatched to a
resource when the resource becomes idle.

Scheduling tasks to cluster nodes: In our grid environment, there
is no direct connection between the meta-scheduler and
the cluster nodes. Themeta-scheduler can only access the
head or master node of the cluster. It then submits the
tasks to the cluster job queueing system which assigns
the tasks to the idle nodes in the cluster. Therefore, before
planning the task deployment, there is a need to enquire
the cluster job queueing system about the number of idle
nodes. The meta-scheduler prepares sufficient number
of task groups so that it can utilise all the idle nodes
simultaneously.

When a processed task group is retrieved by the
Output Fetching, the meta-scheduler plans the next task
group to the cluster. Throughout the scheduling process,
themeta-scheduler keeps track of the average number of
nodes available in the cluster. This value will be used by
the Average Analysis tomeasure the average performance
of the cluster resource as awhole instead of the individual
cluster nodes.

5. Performance evaluation

In this section, we conduct three phases of experiments using
our meta-scheduler to realise the effects of the task granularity
policies. The following subsections deliver detailed explanations
on the experimental set-up and the performance analysis.

5.1. Grid environment

Table 2 presents the information of four grid resources used for
our experiments. MIMOS, Malaysia [24] is an active site connected
to the EGEE infrastructure [25]. For our experiments, we use two
PBS clusters, namelyR0 andR1, fromMIMOS,R2 from theUniversity
of Melbourne (UNIMELB), Australia, and R3 from Multimedia
University (MMU), Malaysia. The client machine which runs the
meta-scheduler is located in MMU, the same domain as R3. The
machine is equipped with a dual-core CPU of 2.00 GHz and 3 GB
RAM.

The client machine communicates with MIMOS and UNIMELB
resources via conventional Internet connections, whereas it uses
Intranet access to MMU resources. Simple SSH, SCP, and RSH
protocols are used for authentications, file transmissions, and task
executions.
5.2. Grid applications

The experiments are conducted using two types of BoT
applications, namely, parametric and non-parametric sweep
applications.
Application 1: Non-parametric sweep application: This BoT com-
prises instances of six computational programs, namely, heat dis-
tribution, linear equation, finite differential equation, and three
versions of PI computation. The instances of each program are to
be executed using various parameter sets. There are 634 tasks in
this BoT and the requirements of the tasks are TFSize (7–10 KB),
ETCPUTime (0.07–10 min), and OFSize (0.05–5950 KB).

The majority of the tasks are considered fine-grain: 79.02% of
the tasks have ETCPUTime ≤ 2 min and 78.86% of the tasks have
OFSize ≤ 1000 KB.
Application 2: Parametric sweep application: As a test case for
the parameter sweep application, we use the Evolutionary Multi-
Objective Optimiser (EMO) [26]. EMO is an evolutionary optimiser
based on genetic algorithms [27] and it constitutes a perfect
candidate to devise a parameter sweep scenario: the optimiser
is a simple console application whose behaviour can be tuned
by more than 25 parameters. The EMO application supports
the optimisation of the well-known benchmark problems in the
field [28] and can be extended by integrating the function to
optimise for real life applications. In order to cover a reasonable
domain of possible scenarios for real life cases, we generate
149 tasks by exploring different combinations of the following
parameters:

Number of Generations: The number of iterations that the
algorithm is repeated before terminating; the values range from
50 to 500 stepping by 50.

Number of Individuals: The number of sampling points used
at each iteration to evaluate the function to optimise; the
values: 50, 100, 200, 300, 500.

With this tuning, the requirements of the tasks in this BoT are
TFSize (120 KB), ETCPUTime (0.002–30min), andOFSize (0.47–57.71
KB). 78.52% of the tasks have ETCPUTime ≤ 5 min. The remaining
tasks can be considered as average- or coarse-grain as their
ETCPUTime ranges up to a maximum of 30 min.

In our meta-scheduler, the tasks in both the applications are
categorised according to: TFSizeCI = 1 KB, ETCPUTimeCI = 1 min,
and OFSizeCI = 500 KB.

5.3. Performance analysis

Three phases of experiments are conducted for our perfor-
mance analysis.

5.3.1. Experiment phase I
The goal of this phase is to analyse and compare the overhead

involved in individual task deployment with group-based task
deployment. We select 50 tasks with ETCPUTime ≤ 1 min
and OFSize ≤ 16 KB from the non-parametric sweep BoT for
further deployment on R0. It involves 10 experiments and the task
granularity for each experiment is indicated in Table 3.

http://ibm.mygridusbio.net.my
http://sun.mygridusbio.net.my
http://belle.csse.unimelb.edu.au
http://sigs.mmu.edu.my


N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181 177
Table 3
Task granularities for experiment phase I.

Experiment I II III IV V VI VII VIII IX X

Task granularity 1 2 4 6 8 10 12 14 16 18
Total task groups 50 25 13 9 7 5 5 4 4 3
Total file transmissions 100 50 26 18 14 10 10 8 8 6
Fig. 4. Performance charts from experiment phase I.
Experiment I reflects the conventional task deployment where
the tasks are transmitted to R0 one-by-one; the task granularity
is set to one. This induces 50 task executions and 100 file
transmissions (50 for task file and 50 for output file transmissions).

In Experiment II, two tasks are grouped together before the
deployment process. This incurs 25 task groups and 50 file
transmissions. In Experiment X, 18 tasks are grouped into a batch.
Thus, only three task groups are created and sent to R0 for
executions. Throughout these experiments, all the eight nodes of
R0 were free of processing loads, thus we could occupy the entire
PBS queue of the cluster.

Fig. 4 shows the performance charts of the 10 experiments.
Fig. 4(a) indicates that the conventional method consumes 14.45
min,whereas grouping two tasks before the deployment consumes
8.08 min. This shows a performance improvement of 44.09%.
The minimum application turnaround time is achieved with an
improvement of 65.38% when the granularity is eight (with
seven task groups). One of the factors contributing towards this
achievement is the utilisation of seven processing nodes in parallel,
where one task group is assigned to one node.
Fig. 4(b) presents the transmission time involved in each
experiment. The conventional method with 100 file transmissions
spent 11.18 min, in contrast with a total of 1.71 min spent by the
seven task groups of granularity eight. The transmission time is
further analysed in terms of average time as shown in Fig. 4(c).
We notice that, when the granularity is 16, the average output
file transmission time reaches the peak with 23.32 s. However,
there are only four output files to be transmitted, thus the overall
transmission time still shows a better performance of 83.03% as
compared to the conventional method.

Fig. 4(d) and (e) show the average task and output file size, and
the resulting file size-transmission time ratio respectively. Despite
the fluctuating network condition, the ratio reveals that an average
of 0.73 KB of the task file are handled in one second during the
conventional task deployment. On the other hand, the four task
groups (granularity 16) are handled at 10.25 KB/s. This reveals that
a better network utilisation can be achieved if we group the small
files before the transmission and deployment activities.

The exact execution time of the 50 tasks in each experiment
ranges from 8.69 min to 8.92 min. The ‘actual’ turnaround



178 N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181
Table 4
Resource-network utilisation constraints.

Utilisation constraints Set I Set II
R1 R2 R3 R1 R2 R3

MaxCPUTime (min) 2 5 4 10 10 8
MaxWCTime (min) 7 10 8 20 30 15
MaxSpace (MB) 8 10 15 10 15 20
MaxTransTime (min) 4 6 5 4 6 5
PCost (cost units per ms) 5 4 4 5 4 4

time of a task is (transmission time + execution time + other
overheads), whereas the ‘estimated’ turnaround time is (execution
time + transmission time). In order to realise the impact of
task grouping on the overall application processing overhead,
we computed the average ‘actual’ turnaround time and average
‘estimated’ turnaround time of all the tasks. Then, we scaled the
summation of average ‘actual’ and ‘estimated’ turnaround time to
100% as shown in Fig. 4(f).

As for the conventional method, the ‘estimated’ time is only
10% of the 100%. The ‘actual’ time is 9 times more than the
‘estimated’ time. Better performance is observed starting from
granularity eight with ‘actual’ time 60% and ‘estimated’ time 40%.
The minimum overhead is achieved with granularities 14 and 16
with the ‘actual’ time being 55% and ‘estimated’ time being 45%.

5.3.2. Experiment phase II
Upon realising the need for task grouping, in this section, we

test the performance of the proposed meta-scheduler based on
resource-network utilisation constraints (Policies 1–4) and task
availability (Policy 7). We plan four experiments for performance
comparisons:

Experiment I: Conventional scheduling where a task is deployed
as a resource or a cluster node becomes available.

Experiment II: Grouping is done based on the policies with the
maximum task granularity set to 20.

Experiment III: Grouping is done based on the policies with no
limit imposed on the task granularity.

Experiment IV: Grouping is done based on the policies for
resources with extended utilisation constraints.

Experiment I is conducted using the conventional task deploy-
ment method. Experiments II–IV follow the proposed approaches
and process flow shown in Section 4. All the 634 tasks from the
non-parametric sweep BoT are used in this phase.

At the time of the experiments, the entire PBS queue of R0
was reserved for other users and on average, only six nodes were
available from R1. Hence, in total we used eight processing nodes
from R1, R2, and R3 throughout the experiments. Table 4 shows
the utilisation constraints imposed on the three resources. Set I
constraints are used in Experiments II and III, while the extended
constraints in Set II are used in Experiment IV.

During Experiments II–IV, themeta-scheduler arranges the 634
tasks into 25 categories based on the class intervals mentioned in
Section 5.2. The resulting task categories are:

0–328, 1–59, 2–32, 3–16, 4–21, 5–12, 6–12, 7–7, 8–9, 9–10,
10–8, 11–9, 12–16, 13–12, 14–8, 15–6, 16–8, 17–6, 18–3, 19–14,
20–14, 21–9, 22–6, 23–6, 24–3.

For example, 0–328 indicates 328 tasks in category 0.

The first 30% dominating categories are 0, 1, 2, 4, 3, 12, 19.
Two tasks from each dominating category are deployed on every
resource during the benchmark phase; 14 tasks per resource.
Hence, in total, 42 tasks are processed by the three resources before
the first average analysis iteration.

Table 5 shows the number of groups and the corresponding
task counts deployed on the resources during the experiments. In
Table 5
Task deployment, experiment phase II.

Resource Deployment Experiment
I II III IV

R1
Groups 301 193 166 89
Tasks 301 388 352 426

R2
Groups 109 35 32 25
Tasks 109 58 83 63

R3
Groups 224 49 47 31
Tasks 224 188 199 145

Total Groups 634 277 245 145
Tasks 634 634 634 634

Experiment II, the meta-scheduler limits the maximum number
of tasks in a group to 20 and in total, 277 task groups are
formed at runtime. In Experiment III, no such condition is
imposed, hence, 245 groupswith higher granularities are deployed
on the resources. When the resource MaxCPUTime,MaxWCTime,
and MaxSpace are extended to support higher granularities in
Experiment IV, in total, only 145 groups are created by the meta-
scheduler.

The group count indicates the total task and output file
transmission iterations to and from the resources. Experiment IV
involves only 145 × 2 file transmission iterations as compared to
634 × 2 transmission iterations in the conventional deployment.
The task count conveys the granularity of the groups (the number
of tasks) processed by each resource. For example, in Experiment
III, R1 (with six active nodes) processed 166 groups with 352
tasks which is 55.52% of the total tasks; R2 handled 32 groups
with 83 tasks; and R3 executed 47 groups with 199 tasks. Out
of the participating eight processing nodes, R3 delivers a better
performance as it completed 31.39% of the tasks. This is due to
the domain of R3 which is same as the meta-scheduler and R3 is
a dedicated machine for our experiments.

The performance charts of Experiment Phase II are presented in
Fig. 5. Conventional task deploymentwithout any prior planning or
analysis consumes 377.83 min to complete the 634 tasks. Experi-
ment II–IV spent 51.20%, 48.47%, and 67.51% of the conventional
time respectively as conveyed in Fig. 5(a). The minimum applica-
tion turnaround time is achieved in Experiment III when the task
granularity is decided merely based on the resource-network util-
isation constraints. Table 6 lists the granularity for each resource
during Experiment III and the number groups created at runtime.
For example, for R2, apart from the 14 benchmark tasks, only 18
task groups are created; 12 groups hold one task each (12 : 12);
one group has two tasks (1 : 2); three groups contains nine tasks
each (3 : 27); and two groups has 14 tasks each (2 : 28).

On the other hand, when the resource-network utilisation
constraints are extended in Experiment IV, we notice that the
turnaround time has increased to 255.08 min. Grouping many
tasks until reaching the extended constraints (MaxCPUTime,
MaxWCTime, and MaxSpace) results in course-grain groups. Each
node will handle fewer groups with higher granularities. This
reduces the optimal degree of parallelism suitable for this BoT. In
addition, course-grain task groups increases the overhead at the
resource site: task packing and unpacking time, and task waiting
time. We observed that, on average, the wall-clock time of a task
in Experiment IV is 13.61 min and the relevant overhead is 6.25
min. In contrast, as presented in Fig. 5(c), Experiment III reduces
the overhead up to 89.44%.

Another interesting observation is the processing cost which
depends on the task CPU time and the charges imposed by the
resources. Fig. 5(d) shows the total task CPU time utilised at the
resources (as for R1, the average CPU time consumed at each node
is computed). When handling the higher granularity tasks with



N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181 179
Fig. 5. Performance charts from experiment phase II.
Table 6
Task deployment, experiment III.

Granularity Group:Task
R1 R2 R3

1 (Benchmark) 14:14 14:14 14:14
1 116:116 12:12 12:12
2 8:16 1:2 –
3 – – 7:21
4 10:40 – 1:4
5 6:30 – 4:20
6 1:6 – 3:18
7 3:21 – 2:14
9 – 3:27 1:9

12 1:12 – –
13 4:52 – –
14 – 2:28 –
15 3:45 – –
29 – – 3:87

Total Groups:Tasks 166:352 32:83 47:199

lower degree of parallelism, the nodes spend more time for task
decompression, I/O operations, and output compression. Hence,
the total CPU time increases in Experiments II–IV as compared to
the conventional task deployment. The impact can be seen on the
resulting processing cost in Fig. 5(b). In short, we can conclude that
Experiment III provides the best application turnaround timewhen
the grouping is done based on the resource-network utilisation
constraints. However, QoS requirements need to be considered in
order to utilise the resources in an economical manner.

5.3.3. Experiment phase III
In Experiment Phase II, we realise the need for considering

QoS requirements when grouping the tasks. Hence, in this
Experiment Phase III, the meta-scheduler considers all the seven
policies pertaining to resource-network utilisation constraints,
QoS requirements, and task availability. The policies and task
grouping approaches are tested on the EMOapplication using three
experiments:

Experiment I: Conventional scheduling where a task is deployed
as a resource or a cluster node becomes available.
Experiment II: Grouping is done based on the policies with no
limit imposed on the task granularity.

Experiment III: Grouping is done based on the policies for
resources with extended utilisation constraints.

Resource-network utilisation constraints similar to those
shown in Table 4 are used for this phase. Set I constraints are
applied for Experiment II and Set II constraints for Experiment III.

During Experiments II and III, the meta-scheduler produced
19 categories comprising the 149 tasks. Two tasks from 20% of
the dominating categories are selected for the benchmark phase.
Eventually 64 groups are created in Experiment II and 56 groups in
Experiment III.

Fig. 6 shows the resulting time and cost consumptions upon
performing task grouping based on the seven policies. The
conventional deployment required 96.81 min to complete all
the 149 tasks in the BoT. Experiment II consumed 73.48 min,
revealing a performance improvement of 24.10%. Experiment III
with extended constraints used 89.77 min which is only 7.27%
better than the conventional method.

Chart (b) shows the total processing cost charged for the three
experiments. Experiment II results in the minimum cost which
saves 11.01% of the amount spent for the conventional method.
Meanwhile, Experiment III could save up to 2.9%.

It can be noticed that when grouping the tasks according to the
extended utilisation constraints, we should limit the number of
tasks in the group in order to achieve the minimum application
processing time and cost. This is a major concern in a commercial
grid where the users reserve the resources in advance [29]. The
users have limited budget to process all the application tasks
within the reserved period. In such a scenario, heuristic methods
can be used to adaptively limit the task granularity by learning the
grid status, and predicting the time and budget utilisation prior to
the task grouping and deployment.

The design of themeta-scheduler can be extended to accommo-
date a service-oriented grid environment [30] in which grid ser-
vices are available through web service interfaces (e.g. the Open
Grid Service Architecture (OGSA)) [31,32]. Themeta-scheduler can
cooperate with the grid data management service (e.g. Globus Re-
liable File Transfer (RFT) [33]) for transmitting task and output files
to and from the grid resources. In addition, the gridmonitoring and



180 N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181
Fig. 6. Performance charts from experiment phase III.
information service, and the resource allocation manager service
can be used for learning the specification of the grid resources, ex-
ecuting the tasks, and formonitoring the task progress [34]. During
the deployment, multiple task can be grouped into a single task ex-
ecution service [32] according to the task granularity policies pro-
posed in this paper.

6. Conclusion

In this paper, we proposed policies and approaches for deciding
the task granularity at runtime based on resource-network
utilisation constraints, QoS requirements, and the latest average
task deployment metrics. Our idea is implemented in a meta-
scheduler which is tested in a real grid environment. The meta-
scheduler deals with individual and clustered nodes without any
synchronisation overhead. The approaches in the meta-scheduler
support both parametric and non-parametric sweep BoTs. The
experiments show that our proposed approaches lead towards an
efficient and economical way of utilising the grid resources.

Our approach can be adapted to accommodate work-flow
applications, data-intensive applications, and task migrations. In
addition, the policies and task grouping can be coordinated with
grid resource reservation techniques in order to achieve a better
resource utilisationwithin the reserved or allocated time slots. The
policy set given in this paper can be extended to control memory
usage and total running or waiting tasks as desired by the resource
providers.

Acknowledgements

This paper is an extended version of ICA3PP 2010 [16]. Here,
we would like to acknowledge e-ScienceFund, Ministry of Science,
Technology, and Innovation (MOSTI), Malaysia, and Endeavour
Awards, Department of Innovation, Industry, Science and Research
(DIISR), Australia, for supporting the research work and the
development of the meta-scheduler described in this paper. We
would also like to thank MIMOS for providing resources for our
experiments.
Role of the funding source

The fund fromMOSTIwas used to initiate this project in terms of
resource set-up, consultations, simulations, and conference paper
publications. The awards from DIISR gave the opportunity to
conduct the extended research work (towards the development
of the meta-scheduler) at the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, Dept. of Computer Science and
Software Engineering, The University of Melbourne, Australia.

References

[1] C. Kesselman, I. Foster, The Grid: Blueprint for a New Computing Infrastruc-
ture, 2. a. ed., Morgan Kaufmann Publishers, 2003.

[2] M. Baker, R. Buyya, D. Laforenza, Grids and grid technologies for wide-area
distributed computing, Software: Practice and Experience 32 (15) (2002)
1437–1466.

[3] B. Jacob, M. Brown, K. Fukui, N. Trivedi, Introduction to Grid Computing, IBM
Publication, 2005.
[4] F. Berman, G.C. Fox, A.J.G. Hey (Eds.), Grid Computing — Making the Global
Infrastructure a Reality, Wiley and Sons, 2003.

[5] S. Venugopal, R. Buyya, W. Lyle, A grid service broker for scheduling e-science
applications on global data grids, Concurrency and Computation: Practice and
Experience 18 (2006) 685–699.

[6] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal, D. Abramson,
Neuroscience instrumentation and distributed analysis of brain activity data:
a case for escience on global grids: Research articles, Concurrency and
Computation: Practice and Experience 17 (15) (2005) 1783–1798.

[7] E.G. Coffman Jr., M. Yannakakis, M.J. Magazine, C. Santos, Batch sizing and job
sequencing on a singlemachine, Annals of Operation Research 26 (1–4) (1990)
135–147.

[8] T. Cheng, M. Kovalyov, Single machine batch scheduling with sequential job
processing, IIE Transactions 33 (5) (2001) 413–420.

[9] G. Mosheiov, D. Oron, A single machine batch scheduling problem with
bounded batch size, European Journal of Operational Research 187 (3) (2008)
1069–1079.

[10] H. James, K. Hawick, P. Coddington, Scheduling independent tasks on meta-
computing systems, in: Proceedings of Parallel and Distributed Computing
Systems, Fort Lauderdale, US, 1999, pp. 156–162.

[11] A.C. Sodan, A. Kanavallil, B. Esbaugh, Group-based optimizaton for parallel
job scheduling with scojo-pect-o, in: Proceedings of the 22nd International
Symposium on High Performance Computing Systems and Applications, IEEE
Computer Society, Washington, DC, USA, 2008, pp. 102–109.

[12] K.E. Maghraoui, T.J. Desell, B.K. Szymanski, C.A. Varela, The internet operating
system:Middleware for adaptive distributed computing, International Journal
of High Performance Computing Applications 20 (4) (2006) 467–480.

[13] W.K. Ng, T. Ang, T. Ling, C. Liew, Scheduling framework for bandwidth-
aware job grouping-based scheduling in grid computing, Malaysian Journal
of Computer Science 19 (2) (2006) 117–126.

[14] J.H. Stokes, Behind the benchmarks: Spec, gflops, mips et al.
http://arstechnica.com/cpu/2q99/benchmarking-2.html, 2000.

[15] N. Muthuvelu, I. Chai, E. Chikkannan, An adaptive and parameterized job
grouping algorithm for scheduling grid jobs, in: Proceedings of the 10th
International Conference on Advanced Communication Technology, volume
2, 2008, pp. 975–980.

[16] N. Muthuvelu, I. Chai, E. Chikkannan, R. Buyya, On-line task granularity
adaptation for dynamic grid applications, in: Proceedings of the 10th
International Conference on Algorithms and Architectures for Parallel
Processing, volume 6081, 2010, pp. 266–277.

[17] N. Muthuvelu, I. Chai, E. Chikkannan, R. Buyya, Batch resizing policies and
techniques for fine- grain grid tasks: the nuts and bolts, Journal of Information
Processing Systems 7 (2) (2011) 299–320.

[18] J. Feng, G. Wasson, M. Humphrey, Resource usage policy expression and en-
forcement in grid computing, in: Proceedings of the 8th IEEE/ACM Interna-
tional Conference onGrid Computing, IEEEComputer Society,Washington, DC,
USA, 2007, pp. 66–73.

[19] R.G.O. Arnon, Fallacies of distributed computing explained.
http://www.webperformancematters.com/, 2007.

[20] N. Ranaldo, E. Zimeo, A framework for qos-based resource brokering in grid
computing, in: Proceedings of the 5th IEEE European Conference on Web
Services, the 2nd Workshop on Emerging Web Services Technology, Vol. 313,
Halle, Germany, Birkhuser, Basel, 2007, pp. 159–170.

[21] M. Rahman, R. Ranjan, R. Buyya, Cooperative and decentralized workflow
scheduling in global grids, Future Generation Computer Systems 26 (5) (2010)
753–768.

[22] B. Lowekamp, B. Tierney, L. Cottrell, R.H. Jones, T. Kielmann, M. Swany, A
hierarchy of network performance characteristics for grid applications and
services, June 2003.

[23] P. Huang, H. Peng, P. Lin, X. Li, Static strategy and dynamic adjustment:
an effective method for grid task scheduling, Future Generation Computer
Systems 25 (8) (2009) 884–892.

[24] Malaysian institute of microelectronic systems (mimos),
http://www.mimos.my/.

[25] Enabling grids for e-science (egee), http://www.eu-egee.org/.
[26] M. Kirley, R. Stewart, Multiobjective evolutionary algorithms on complex

networks, in: Proceedings of 4th International Conference EvolutionaryMulti-
Criterion Optimization, in: Lecture Notes Computer Science, vol. 4403, 2007.

[27] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA,
1989.

http://arstechnica.com/cpu/2q99/benchmarking-2.html
http://www.webperformancematters.com/
http://www.mimos.my/
http://www.eu-egee.org/


N. Muthuvelu et al. / Future Generation Computer Systems 29 (2012) 170–181 181
[28] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for
evolutionary multi-objective optimization, in: Evolutonary Multiobjective
Optmization, Springer-Verlag, 2005, pp. 105–145.

[29] E. Elmroth, J. Tordsson, Grid resource brokering algorithms enabling advance
reservations and resource selection based on performance predictions, Future
Generation Computer System 24 (6) (2008) 585–593.

[30] I. Foster, C. Kesselman, J.M. Nick, S. Tuecke, Grid services for distributed system
integration, Computer 35 (6) (2002) 37–46.

[31] V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D. Wegener, J. Kindermann,
W. Dubitzky, Grid-enabling datamining applicationswith datamininggrid: An
architectural perspective, Future Generation Computer System 24 (4) (2008)
259–279.

[32] T. Glatard, J. Montagnat, D. Emsellem, D. Lingrand, A service-oriented
architecture enabling dynamic service grouping for optimizing distributed
workflow execution, Future Generation Computer Systems 24 (7) (2008)
720–730.

[33] R.K. Madduri, C.S. Hood, W.E. Allcock, Reliable file transfer in grid environ-
ments, in: Proceedings of the 27th Annual IEEE Conference on Local Computer
Networks, IEEE Computer Society, Washington, DC, USA, 2002, pp. 737–738.

[34] G. von Laszewski, J. Gawor, C.J. Peña, I. Foster, Infogram: a grid service
that supports both information queries and job execution, in: Proceedings
of the 11th IEEE International Symposium on High Performance Distributed
Computing, IEEE Computer Society, Washington, DC, USA, 2002, pp. 333–342.

Nithiapidary Muthuvelu received her B.IT degree from
Universiti Tenaga Nasional, Malaysia, in August 2003 and
M.IT degree from theUniversity ofMelbourne, Australia, in
December 2004. She is teaching at Multimedia University,
Malaysia, since 2005. Currently, she is pursuing her
Ph.D study in the field of grid computing at Multimedia
University. Her research interests include: Distributed
and Parallel Processing, Genetic Algorithms, and Data
Communication. She is a member of the IEEE Computer
Society.

ChristianVecchiola is a Postdoctoral fellow at Cloud Com-
puting and Distributed Systems (CLOUDS) Laboratory, De-
partment of Computer Science and Software Engineer-
ing, the University of Melbourne, Australia. His primary
research interests include: Grid/Cloud Computing, Dis-
tributed Evolutionary Computation, and Software Engi-
neering. Since he joined the CLOUDS Laboratory, he fo-
cused his research activities and development efforts on
two major topics: middleware support for Cloud/Grid
Computing and distributed support for evolutionary algo-
rithms. Dr Vecchiola completed his Ph.D. in 2007 at the

University of Genova, Italy with a thesis on providing support for evolvable Soft-
ware Systems by using Agent Oriented Software Engineering. He has been actively
involved in the design and the development of the AgentService,which is a software
framework for developing distributed systems based on Agent Technology.
Ian Chai received his B.Sci. and M.Sci. in Computer
Science from the University of Kansas and his Ph.D.
in Computer Science from the University of Illinois
at Urbana-Champaign. Since 1999, he has taught at
Multimedia University in Cyberjaya, Malaysia.

Eswaran Chikkannan received his B.Tech, M.Tech, and
Ph.D degrees from the Indian Institute of Technology
Madras, India where he worked as a Professor in
the Department of Electrical Engineering until January
2002. Currently he is working as a Professor in the
Faculty of Information Technology,MultimediaUniversity,
Malaysia. Dr. C. Eswaran served as a visiting faculty and
research fellow in many international universities. He has
supervised successfully more than 25 Ph.D/M.S students
and has published more than 150 research papers in
reputed International Journals and Conferences. Prof. C.

Eswaran is a senior member of IEEE.

Rajkumar Buyya is Professor of Computer Science and
Software Engineering andDirector of the CloudComputing
and Distributed Systems (CLOUDS) Laboratory at the
University ofMelbourne, Australia. He is also serving as the
founding CEO of Manjrasoft Pty Ltd., a spin-off company
of the University, commercialising its innovations in Grid
and Cloud Computing. He has authored and published
over 300 research papers and four text books. The
books on emerging topics that Dr. Buyya edited include,
High Performance Cluster Computing (Prentice Hall, USA,
1999), Content Delivery Networks (Springer, Germany,

2008) and Market-Oriented Grid and Utility Computing (Wiley, USA, 2009). He
is one of the highly cited authors in computer science and software engineering
worldwide (h-index=48, g-index=104, 12500+ citations).

Software technologies for Grid and Cloud computing developed under Dr.
Buyya’s leadership have gained rapid acceptance and are in use at several academic
institutions and commercial enterprises in 40 countries around the world. Dr.
Buyya has led the establishment and development of key community activities,
including serving as foundation Chair of the IEEE Technical Committee on Scalable
Computing and four IEEE conferences (CCGrid, Cluster, Grid, and e-Science). He
has presented over 200 invited talks on his vision on IT Futures and advanced
computing technologies at international conferences and institutions in Asia,
Australia, Europe, North America, and South America. These contributions and
international research leadership of Dr. Buyya are recognised through the award of
‘‘2009 IEEE Medal for Excellence in Scalable Computing’’ from the IEEE Computer
Society, USA. For further information on Dr. Buyya, please visit his cyberhome:
www.buyya.com.

http://www.buyya.com

	Task granularity policies for deploying bag-of-task applications on global grids
	Introduction
	Related work
	Factors influencing the task granularity
	Implementation of the meta-scheduler
	Task categorisation
	Task category--resource benchmarking
	Average analysis
	The meta-scheduler

	Performance evaluation
	Grid environment
	Grid applications
	Performance analysis
	Experiment phase I
	Experiment phase II
	Experiment phase III


	Conclusion
	Acknowledgements
	References


