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Cloud environments offer low-cost computing resources as a subscription-based service. These resources
are elastically scalable and dynamically provisioned. Furthermore, cloud providers have also pioneered new
pricing models like spot instances that are cost-effective. As a result, scientific workflows are increasingly
adopting cloud computing. However, spot instances are terminated when the market price exceeds the
users bid price. Likewise, cloud is not a utopian environment. Failures are inevitable in such large complex
distributed systems. It is also well studied that cloud resources experience fluctuations in the delivered per-
formance. These challenges make fault tolerance an important criterion in workflow scheduling. This article
presents an adaptive, just-in-time scheduling algorithm for scientific workflows. This algorithm judiciously
uses both spot and on-demand instances to reduce cost and provide fault tolerance. The proposed scheduling
algorithm also consolidates resources to further minimize execution time and cost. Extensive simulations
show that the proposed heuristics are fault tolerant and are effective, especially under short deadlines,
providing robust schedules with minimal makespan and cost.
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1. INTRODUCTION

Scientific workflows are used to compose and execute computational tasks that are
control and/or data dependent. They are used to perform high throughput computing
and data analysis [Lifka et al. 2013]. Numerous disciplines use scientific workflows to
perform large scale complex analyses. Workflows enable scientists to easily define com-
putational components, data, and their dependencies in a declarative way. This makes
the workflows easier to execute automatically, improving the application performance,
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and reducing the time required to obtain scientific results [Deelman et al. 2013; Juve
and Deelman 2010].

Scientific workflows are increasingly moving toward cloud computing, which offers
low-cost computing resources (e.g., networks, servers, and storage) as a subscription-
based service. These resources are elastically scalable, dynamically provisioned, and
delivered in a transparent manner without manual intervention [Sun et al. 2013]. As
a result, a large number of organizations are rapidly adopting cloud computing [Lifka
et al. 2013].

Although scheduling scientific workflows on cloud will immensely reduce cost and
makespan, cloud computing, like any other distributed system, is also prone to resource
failures. These failures are generally due to software faults, hardware faults, errors
in network, data staging issues, failures due to virtualization, disk errors, power is-
sues, and many others. These failures from a workflow application perspective can be
classified into (1) task failures, (2) Virtual Machine failures, and (3) workflow level fail-
ures [Hwang and Kesselman 2003]. Nonetheless, failures are inevitable whilst running
a complex application like workflows consisting of thousands of tasks.

Further, cloud resources also experience performance variations because of resource
sharing, consolidation, and migration, among other factors. Performance variation of
cloud resources affects the overall execution time (i.e., makespan) of the workflow. It
further increases the difficulty to estimate the task execution time accurately. Dejun
et al. [2010] show that the behavior of multiple “identical” resources vary in perfor-
mance while serving exactly the same workload. A performance variation of 4% to 16%
is observed when cloud resources share network and disk I/O [Armbrust et al. 2010].

Clouds are realizing the vision of utility computing by delivering computing re-
sources as services. The demand for cloud computing is facilitating cloud providers to
evolve various business models around these services. Most providers provision cloud
resources (e.g., Virtual Machines (VMs) instances) on a pay-as-you-go basis (similar to
On-Demand instances) charging fixed prices per time unit. However, Amazon, one of
the pioneers in this space, started selling idle or unused data center capacity through
bidding in an auction-like market as Spot Instances (SI) since December 2009. On-
demand and SIs have the same configurations and characteristics. Nonetheless, SIs
offers cloud users a reduction in costs of up to 70% for multiple applications like bag-
of-tasks, web services, and MapReduce workflows [Poola et al. 2014; Ostermann and
Prodan 2012; Voorsluys et al. 2011]. Significant cost reductions are achieved due to
lower Quality of Service (QoS), which makes SIs less reliable and prone to out-of-bid
failures. This introduces a new aspect of reliability into the Service Level Agreements
(SLAs) and the existing trade-offs making it challenging for cloud users [Javadi et al.
2011].

These challenges emphasize the necessity for an effective fault-tolerant and robust
workflow scheduling algorithm to mitigate resource failures and performance vari-
ations. Scientific workflows can also benefit from SIs with an effective bidding and
an efficient fault-tolerant mechanism. Such a mechanism can also tolerate out-of-bid
failures and further reduce the cost immensely.

Therefore, in this article, we present a just-in-time, fault-tolerant and adaptive
scheduling heuristic. It uses spot and on-demand instances to schedule workflow tasks.
It minimizes the execution cost of the workflow and at the same time provides a robust
schedule that satisfies the deadline constraint.

The key contributions of this article are (1) a just-in-time scheduling heuristic that
uses spot and on-demand resources to schedule workflow tasks in a robust manner and
(2) a replication strategy for cloud environments that utilizes different pricing models
offered by clouds.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 30, Publication date: February 2016.



Enhancing Reliability of Workflow Execution Using Task Replication and Spot Instances 30:3

2. RELATED WORKS

Cloud resources experience failures and performance variations that demand fault-
tolerance in a schedule. Studies [Dejun et al. 2010; Ostermann et al. 2010] have shown
that performance of VMs in a cloud environment exhibits variability, and it varies for
different instance types, different availability zone, different data centers, and differ-
ent times of the day. Ming and Humphrey [2012] has shown that there is significant
variation in VM startup and varies with size, operating system, and type of instance.
They also show that up to 8% of VMs fail while they are acquired. Failures in a dis-
tributed system are inevitable and they occur at multiple sources. Failures occur in
any of the following levels: hardware, operating system, middleware, network, storage,
and task or at the user level. Some of the most common reasons for failure are low
memory or disk space, network congestion, unavailability of input files at the right
moment, nonresponding services, errors in file staging, authentication, uncaught ex-
ception, missing libraries, task crashes, and many more [Plankensteiner et al. 2009].
Li et al. [2010] emphasize the need for fault tolerance in workflow applications on a
cloud environment. Prominent fault-tolerant techniques that can mitigate failures are
retry, alternate resource, checkpointing, and replication [Yu and Buyya 2005; Chen and
Yang 2007]. In essence, redundancy is fundamental in providing fault tolerance and it
is mainly in two forms: space and time [Gärtner 1999].

Redundancy in space is one of the widely used mechanisms for providing fault tol-
erance. Redundancy in space is achieved by providing duplication or replication of
resources. There are broadly two variants in this approach: task duplication and data
replication.

Task duplication creates replicas of tasks. Replication of tasks can be done concur-
rently [Cirne et al. 2007], where all the replicas of a particular task start executing
simultaneously. When tasks are replicated concurrently, the child tasks start its exe-
cution depending on the schedule type.

Schedules are of two types: first, where the child task starts only when all the replicas
have finished execution [Benoit et al. 2008]. In the other schedule type, the child tasks
start execution as soon as one of the replicas finishes execution [Cirne et al. 2007].

Replication of task is also done in a backup mode, where the replicated task is ac-
tivated when the primary tasks fail [Mosse et al. 1994]. This technique is similar to
retry or redundancy in time. However, here they employ a backup overloading tech-
nique, which schedules the backups for multiple tasks in the same time period to
effectively utilize the processor time.

Duplication is employed to achieve multiple objectives, the most common being fault
tolerance [Benoit et al. 2008; Kandaswamy et al. 2008; Yang et al. 2009; Hashimoto
et al. 2002]. When one task fails, the redundant task helps in completion of the execu-
tion. Additionally, algorithms also employ data duplication where data is replicated and
prestaged, thereby moving data near computation especially in data intensive work-
flows to improve performance and reliability [Chervenak et al. 2007]. Furthermore,
estimating task execution time a priori in a distributed environment is arduous. Repli-
cas are used to circumvent this issue using the result of the earliest completed replica.
This minimizes the schedule length to achieve hard deadlines [Darbha and Agrawal
1994; Ranaweera and Agrawal 2000; Dogan and Ozguner 2002; Tang et al. 2010], as
it is effective in handling performance variations [Cirne et al. 2007]. Calheiros and
Buyya [2013] replicated tasks in idle time slots to reduce the schedule length. These
replicas also increase resource utilization without any extra cost.

Task duplication is achieved by replicating tasks in either idle cycles [Calheiros and
Buyya 2013] of the resources or exclusively on new resources. Some schedules use a
hybrid approach replicating tasks in both idle cycles and new resources. Idle cycles are
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those slots in the resource usage time period where the resources are unused by the
application. Schedules that replicate in these idle cycles profile resources to find unused
time slots and replicate tasks in those slots. This approach achieves benefits of task
duplication and simultaneously minimizes monetary costs. In most cases, these idle
slots might not be sufficient to achieve the needed objective. Hence, many algorithms
place their task replicas on new resources. These algorithms trade off resource costs to
their objectives.

There is a significant body of work in this area encompassing platforms like cluster,
grids, and clouds [Darbha and Agrawal 1994; Benoit et al. 2008; Kandaswamy et al.
2008; Yang et al. 2009; Hashimoto et al. 2002; Ranaweera and Agrawal 2000; Dogan and
Ozguner 2002; Tang et al. 2010; Brandic et al. 2009]. Resources considered can either
be bounded or unbounded depending on the platform and the technique. Algorithms
with bounded resources consider a limited set of resources. Similarly, an unlimited
number of resources are assumed in an unbounded system environment. Resource
types used can either be homogeneous or heterogeneous in nature. Darbha and Agrawal
[1994] is one of the early works, which presents an enhanced Search and Duplication
Based Scheduling algorithm (SDBS) that takes into account the variable task execution
time. They consider a distributed system with homogeneous resources and assume an
unbounded number of processors in their system.

Resubmission and task redundancy are the most prominent fault-tolerant strategies
amongst workflow management systems [Plankensteiner et al. 2009]. They resolve
most failures mentioned previously in a distributed environment like the cloud. The
works by Benoit et al. [2008], Ranaweera and Agrawal [2000], and Calheiros and Buyya
[2013] are among the closest to our work.

Benoit et al. [2008] proposed an active replication heuristic for heterogeneous pro-
cessors, which are bounded. Alternatively, Ranaweera and Agrawal [2000] present a
replication based scheduling, which uses processor idle time. Their objective is to min-
imize makespan of workflow in a cluster environment. Similarly, Calheiros and Buyya
[2013] developed a heuristic for the cloud environment that uses processor idle time for
replication. These replicas also increase resource utilization without any extra cost.

In contrast, we employ both redundancy in space and time. We use task replication
and task retry to achieve fault tolerance, to minimize makespan, and also maximize
resource utilization, contrary to Benoit et al. [2008], Calheiros and Buyya [2013], and
Ranaweera and Agrawal [2000], who use only task replication. The combination of
task replication and task retry, saves both time and cost. Calheiros and Buyya [2013]
and Ranaweera and Agrawal [2000] replicated tasks only in idle time slots, whereas
our proposed algorithm replicates tasks both on idle slots as well as on new resources
providing higher tolerance to failures. The novelty of this approach is that it uses spot
instances in a judicious manner to save cost and provide fault tolerance. To the best
of our knowledge, this approach has not been used earlier. Additionally, our proposed
system model unlike Benoit et al. [2008], uses an unbounded number of processors,
which are heterogeneous in character.

3. BACKGROUND

In this section, we define important terminologies, concepts, and metrics that will be
further referred to in the text.

Workflow is represented by a Directed Acyclic Graph (DAG), G = (T , E), where T
is a set of nodes, T = {t1, t2, . . . , tn}, and each node represents a task. Additionally, E
represents a set of edges between tasks, which are control and/or data dependencies.
Each workflow is bounded by a user-defined deadline D. We also account for data
transfer times between tasks. The data transfer time between two tasks is computed
based on the size of the data transferred and the cloud data center internal network
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bandwidth. Additionally, each workflow task ti also has a task length leni given in
Million Instructions, which is used to estimate the task execution time.

Makespan, M, is the total elapsed time required to execute the entire workflow.
Deadline D is considered as a constraint measured relative to the workflow Submission
Time, ST, where makespan should not be more than the deadline (M � D). The
makespan of the workflow is computed as M = f inishtn − ST , where f inishtn is the
finish time of the exit node of the workflow.

Critical Path, C P, is the longest path from the start node to the exit node of
the workflow. Critical path determines the makespan of a workflow. The critical path
is evaluated in a breadth-first manner calculating the weights of each node. The node
weight is the maximum of the predecessor’s estimated execution time and data transfer
time calculated as per Equation (1),

weight(ti) = wi + max
tp∈pred(ti )

{weight(tp) + cp,i}, (1)

where pred(ti) is all the parent nodes of ti, and wi is the execution time of node ti on
an instance type chosen by the algorithm. cp,i is the data transfer time from node tp to
ti. The maximum weight among the exit nodes is the critical path time. When a node
completes execution its weight and data transfer time to all its child nodes is made
zero, and the critical path is recomputed.

Essentially Critical Tasks (ESCT ). It is important to define the notion of Earliest
Finish Time (EFT) and the Latest Finish Time (LFT) to explain ESCTs. To explain the
concept of EFT we introduce Earliest Start Time (EST), which is the earliest time a
task can start, given by Equation (2) [Abrishami et al. 2013],

EST (tstart) = 0,

EST(ti) = max
tp∈pred(ti )

{EST(tp) + MT(tp) + cp,i}, (2)

where MT (tp) is the Minimum Execution Time of tp on any instance type. This leads
to the definition of Earliest Finish Time (EFT ), which is the earliest a task can finish
its execution and is determined by Equation (3) [Abrishami et al. 2013].

EFT (ti) = EST (ti) + MT (ti). (3)

Finally, Latest Finish Time (LFT ) is the latest time a task has to finish execution so
that the deadline constraint is not violated. It is described by Equation (4) [Abrishami
et al. 2013].

LFT(texit) = D,

LFT(ti) = min
ts∈succ(ti )

{LFT(ts) − MT(ts) − ci,s}, (4)

where succ(ti) is all the children nodes of ti.
Hitherto, Essentially Critical Tasks are the tasks that have no slack time to finish

their execution, that is, if the EFT(ti) ≥ LFT(ti), then the task is an ESCT. In other
words, ESCT is not just a task on the critical path but a task that does not have any
slack time and must finish by their EFT; this is shown diagrammatically in Figure 1(b).
The algorithms schedule ESCTs on instances that offer low execution time to avoid
ESCTs further in the workflow execution.

Latest Time to On-Demand, LTO is the latest time the algorithm has to switch
to on-demand instances to satisfy the deadline constraint. The algorithm exploits the
spot market before the time flag LTO and switches to on-demand instance later. LTO
aids in choosing the right instance, to speed up or slow down and choose the apt pricing
model. It is determined for every ready task and the scheduling decisions are made
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Fig. 1. Figure (a) shows a workflow at time t0, where there is enough slack time. Under such situation the
tasks are scheduled onto spot instances. Figure (b) shows a workflow at time t1, where there is no slack time.
It also shows some completed tasks. Under such situation, Essentially Critical Tasks (ESCTs) are scheduled
onto on-demand instances and replicated on spot instances. Other tasks with slack time are scheduled on
spot instances.

Table I. List of Acronyms

Acronyms Description
ESCT Essentially Critical Tasks
LTO Latest Time to On-Demand
EFT Earliest Finish Time
EST Earliest Start Time
LFT Latest Finish Time
MT Minimum Execution Time
EIT Expected Idle Time of an instance
GT Gratis Time of an instance
MET End time of an Instance
ECT Estimated Completion Time of a task
MST Max Start Time of the task
CPT Critical Path Time of the remaining workflow
ERT Estimated task runtime
TCT Task Completion Time

based on the current time t and the LTO. LTO at time t is the difference between the
deadline and the critical path (LTOt = D − CPt), where CPt is the critical path at time
t for the remaining workflow. Additionally, Table I lists all the acronyms used in this
article.

Pricing models. In our model, we adapt two types of instances from the Amazon
model, which vary in their pricing structure. The two pricing models considered are (1)
On-Demand instance: the user pays by the hour based on the instance type; and (2) Spot
Instance: users bid for the instance and it is made available as long as their bid is higher
than the spot price. Spot prices change dynamically and it can change during the
instance runtime. The price of a SI (spot price) is determined by the provider based on
the instance type and demand within the data center, among other parameters [Javadi
et al. 2011]. The spot price of an instance varies with time and it is different for different
instance types. The price also varies between regions and availability zones. The users
participate in an auction-like market and bid a maximum price they are willing to pay
for SIs. The user is oblivious to the number of bidders and their bid prices. The user
is provided the resource/instance whenever their bid is higher than or equal to the
spot price [amz 2009]. However, when the spot price becomes higher than the user bid,
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Fig. 2. System architecture of fault-tolerant workflow management system.

Amazon terminates the resources. Users do not pay the bid price, they pay the spot
price that was applicable at the start time of the instance. Users are not charged for the
partial hour when terminated by the provider. Nevertheless, when the user terminates
the instance, they have to pay for the full hour.

Total cost, C, is the sum of the cost of all the instances used for the workflow
execution, based on their instance type and pricing model. The cost of each instance
is calculated as per the Amazon model. If the instance is an on-demand instance, the
on-demand price of that instance is used. If the instance is spot, the spot price of the
instance is used to calculate the cost. All partial hours are rounded to full hours for
both spot and on-demand instances (e.g., 5.1 hours is rounded to 6 hours).

Two metrics are used in this article to measure the robustness of a schedule. The
first metric is failure probability, Rp, which is the likelihood of the workflow to fail
before the given deadline [Shi et al. 2006], which can be formulated as follows:

Rp = (TotalRun − FailedRun)/(TotalRun), (5)

where TotalRun is the number of times the experiment was conducted and FailedRun
is the number of times the constraint, finishtn � D, was violated. This equation is based
on the methodology offered by Dastjerdi and Buyya [2012].

The second metric is the tolerance time, Rt, which is the amount of time a workflow
can be delayed without violating the deadline constraint. This provides an intuitive
measurement of robustness given the same schedule and resource to task mapping,
expressing the amount of uncertainties it can further withstand.

Rt = D − f inishtn. (6)

Replication factor is the ratio of the total number of replicas created to the number
of workflow tasks. This gives an estimate about the number of replicas created for a
workflow with a known number of tasks.

4. SYSTEM MODEL

The system architecture of our fault-tolerant workflow management system is pre-
sented in Figure 2. The workflow engine acts as a middle layer between the user ap-
plication and the cloud. Users submit a workflow application into the engine, which
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schedules the workflow tasks, provides fault tolerance mechanism, and allocates re-
sources in a transparent manner.

The task dispatcher analyzes the data and/or control dependencies between the tasks
and submits the ready tasks to the task scheduler. Ready tasks are those tasks whose
predecessor tasks have completed their execution and have received all input files, and
are prepared to be scheduled.

Fault-Tolerant Strategies. In this article, resource failures are considered, which refer to
anomalies. These anomalies are software, hardware, or any other faults in the environ-
ment causing disruption in task execution. Failures also arise from out-of-bid events
among SIs. As a workflow engine with limited knowledge of the application, replication
in time and space are employed to address these failures. Failures in any distributed
system including cloud is shown to follow a Weibull distribution [Javadi et al. 2012;
Yigitbasi et al. 2010; Iosup et al. 2007; Tang et al. 2014; Kondo et al. 2010; Litke et al.
2007; Plankensteiner et al. 2009]. Weibull distibution is used in this article to model
resource failures similar to the one used in Javadi et al. [2012]. To mitigate such fail-
ures, fault-tolerant strategies such as task duplication, retry, and checkpointing can
be employed. Checkpointing saves states of a running process periodically to a reliable
storage. These saved states are called checkpoints. The process will be restarted from
its last checkpoint or the saved state after a failure.

In this article, we employ task duplication and retry as fault-tolerant mechanisms.
Task duplication and resubmission are the most prominent mechanisms used to miti-
gate failures in most worklfow management systems [Plankensteiner et al. 2009]. Here
task duplication is used when the deadline is short and resubmission is employed when
the deadline is relaxed. These mechanisms are effectively used in a dynamic fashion
based on the deadline constraint.

Resource Allocation. The task scheduler chooses the instance type and also the pricing
model (e.g., spot or on-demand). This module allocates the appropriate resource as
chosen by the task scheduler.

The task scheduler employs a scheduling algorithm to find a suitable cloud resource for
every task. The details of the proposed scheduling algorithm are outlined in the next
section. This proposed fault-tolerant scheduling algorithm is a generic algorithm that
can be used by workflow management system scheduler, provided it supports cloud
resources and can provision spot instances.

Runtime Estimation. To determine the runtime of a workflow task on a particular in-
stance type, we use Downey’s analytical model [Downey 1997]. Downey’s model requires
a task’s average parallelism A, coefficient of variance of parallelism σ , the task length,
and the number of cores of the target instance type to estimate the runtime. We have
used the model of Cirne and Berman [2001] for generating the values of A and σ for
each task.This model has been shown to capture the behavior of moldable jobs in par-
allel production environments. With the use of these two models the task’s runtime is
estimated on different instance types.

Failure estimator estimates the Failure Probability (FP) of a particular bid price (bidt)
based on the spot price history. The history price of one month prior to the start of
the execution and the spot prices until the point of estimation is used. The failure
probability estimator analyzes the spot price history for the bid value in consideration,
for which the total time of the spot price history, HT, and the total out of bid time,
OBTbidt , for the bid bidt is measured. The total out of bid time is the aggregated time
in history when the spot price was higher than the bid bidt. These two factors are used
to estimate the probability of failure as shown in Equation (7). This estimation is used
while evaluating the bid value and also while scheduling the task.

FPbidt = OBTbidt/HT. (7)
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Bidding strategy evaluates the bid price that can be used in bidding for a spot instance.
The bidding strategy used in this article is explained in detail in Section 5.

Resource optimization method ensures that resource utilization is maximized. It tries
to minimize the number of resources used for a workflow execution by assigning tasks
on already running resources to save cost and also maximize utilization.

The problem we address in this work is to find a mapping of workflow tasks onto
heterogeneous VM types, using a mixture of on-demand and SIs such that the cost of
workflow execution is minimized within the deadline. The schedule should also be ro-
bust against resource failures including premature termination of SIs and performance
variations of the resources.

Assumptions: Data transfer cost between VMs are considered to be zero, as in most
public clouds, data transfer inside a cloud data center is free. The data center is assumed
to have sufficient resources, avoiding VM rejections due to resource contention. This
is not a prohibitive assumption as the resources required are much smaller than the
data center capacity.

5. PROPOSED APPROACHES

Replication is the most widely used mechanism for enhancing availability and relia-
bility of services. Replication can be done either in time (task resubmission) or space
(task duplication). The rationale behind task replication with n number of replicas is
that it can tolerate (n-1) failures without affecting the makespan of the workflow. The
downside of task duplication is consumption of extra resources. Task resubmission or
retry is an effective fault-tolerant strategy where tasks are resubmitted onto a new
resource only when resources fail, hence it is cost effective although it increases the
makespan of the workflow.

In this article, the proposed heuristic employs both these fault-tolerant mechanisms.
When the deadline is short, it employs task duplication and as the deadlines become
lenient it employs task retry to mitigate failures. The working of this heuristic is
depicted in Figure 1. The proposed heuristics are detailed in the next subsection.

5.1. Heuristics

Scheduling workflow tasks onto heterogeneous VMs is an NP-Complete problem
[Johnson and Garey 1979]. Hence, we propose an adaptive, just-in-time heuristic. The
task dispatcher dispatches ready tasks to the scheduler. It monitors the execution of
tasks and resubmits the task if it fails, or submits the child task when all its parent
tasks have completed execution. The scheduler maps these ready tasks onto the best
suitable resource, such that cost and makespan is minimized and the schedule is fault
tolerant. We detail the working of the proposed heuristics in this section.

Once the scheduler receives a task from the task dispatcher, it estimates the critical
path. The critical path will potentially be different for every instance type used to
estimate it. Therefore, after a task completes its execution, its critical path weight is
made zero and for every ready task the critical path time is recomputed. Based on
the deadline and the estimated critical path time, the time flag LTO is computed. The
difference between LTO and the current time dictates the type of resource and the
pricing model that will be selected.

The heuristic acts based on the position of the time flag LTO with respect to the
current time. We explain the heuristics in four possible scenarios. Scenarios 1 and 2
are when LTO is ahead of the current time connoting sufficient slack time to complete
workflow execution before the deadline. Under such circumstances, tasks are mapped
to spot instances. Scenario 1 illustrates the task mapping onto running instances to
consolidate resource usage reducing cost and time. In scenario 2 tasks are mapped onto
new spot instances, when no suitable running instance was found. On the other hand,
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ALGORITHM 1: FindFreeSlot(t, InstanceList, P)
input: task t, InstanceList, PriceModel P
output: Suitable VM

1 types ← available instance types;
2 estimates ← compute estimated runtime of task ti on each type ∈ types;
3 minComplTime ← MaxValue;
4 for ∀v ∈ InstanceList do
5 if P = ANY or v.pricemodel = P then
6 ERT ← estimates(tv);
7 GT ← MET − EIT;
8 ECT ← D − CPT − ERT;
9 if EIT ≤ MST and ERT ≤ GT then

10 TCT ← EIT + ERT;
11 if TCT < ECT and TCT < minComplTime then
12 minComplTime ← TCT;
13 suitableVM ← v;

14 return suitableV M;

in scenarios 3 and 4, when the LTO is before the current time, then the algorithm has
to choose an expensive and high performing machine to speed up the execution to meet
the deadline. Here, tasks are duplicated to provide fault tolerance as there is no slack
time. Replication is done on spot instances to save cost. Hitherto, fault tolerance is
achieved by replication. Tasks are either replicated in time or in space based on the
deadline, LTO, and the current time.

5.1.1. Scenario 1: Mapping Task on Already Running Spot Instances. First, let us consider the
case in which the LTO is conveniently ahead of the current time. In such a case, the
algorithm first tries to map the tasks onto spot instances as they are cheap and even
if they fail due to out-of-bid events, there is enough slack time to rerun them. Before
mapping onto spot instances the heuristic searches for free slots among the resources
already in use. If no free slot is found, the scheduler searches for resources, which are
running and can finish within the task’s latest finish time. The latest finish time is the
time beyond which if any delay occurs it will violate the workflow deadline.

Free slots are unused idle time periods in instances before the end of their charged
time period. Algorithm 1 describes the methodology of finding these free slots. This
method explores only among the specified instances of a particular price model stated
by the function call. Here, for every instance in use, the time it will become idle is
estimated, that is, Expected Idle Time (EIT). Further, Gratis Time (GT) is computed,
which is the difference between EIT and the end time, MET, until which the machine is
leased. This gives an estimate of the available idle time in that resource. Furthermore,
Estimated Completion Time (ECT) and Max Start Time (MST) for the task is estimated.
ECT is computed as shown in line 8 of Algorithm 1, where ERT is the Estimated task
Runtime on that instance type and CPT is the Critical Path Time, which is the time
taken on the slowest instance. ECT is a virtual task deadline indicating that the task
has to finish within this time to avoid any delay. Hence, the task has to complete its
execution before ECT. If the conditions EIT ≤ MST and ERT < GT are met, then task
completion time (TCT) is computed as shown in line 10. Finally, the suitable instance is
selected if the TCT on that instance is less than the ECT and its TCT is the minimum
among all considered instances.

In the event when no free slots are found, the algorithm finds a suitable running
instance that can be used instead of starting a new instance. The rationale being that
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Fig. 3. Generation of bid value through Intelligent Bidding Strategy.

such instances are readily available, saving boot time. The method FindRunningVM
is very similar to the method FindFreeSlot, the prominent difference being in line 9 of
Algorithm 1, where the condition ERT ≤ GT is omitted. In other words, the algorithm
does not validate if the estimated task runtime is less than or equal to the gratis time.

5.1.2. Scenario 2: Mapping Task on a New Spot Instance. When no running instance has ei-
ther a free slot or is capable of honoring the deadline, the heuristic investigates further
and checks whether there is sufficient time to run on a new spot instance. If so, the
bid price is estimated using a bidding strategy, then the failure probability for that bid
price is estimated. Here, Intelligent Bidding Strategy is used to estimate bid prices,
which was proposed in Poola et al. [2014]. This strategy takes into account the current
spot price (pspot), on-demand price (pOD), LTO, FP of the previous bid price, the Current
Time (CT), α, and β. α, as seen in Equation (8), dictates how much higher the bid value
must be above the current spot price. The lower the value of α, the higher is the value
of the bid with respect to the spot price. β determines how fast the bid value reaches
the on-demand price. The increase in bid price closer to the on-demand price as the CT
reaches closer to the LTO is attributed to the parameter β. The higher the value of β,
the faster the bid reaches closer to on-demand price. FP of the previous bid is used as
a feedback to the current bid price; the current bid price varies in accordance to the FP
adding intelligence to the bidding strategy. The bid price is calculated as per Equation
(8). The bid value increases gradually with the workflow execution and as the CT moves
closer to the LTO. The bid starts around the initial spot price and ends closer to the on-
demand price. The rationale of increasing the bid price is to lower the risk of out-of-bid
events as the execution nears the LTO making sure that the deadline constraint is not
violated. Figure 3 shows the bid price (BID) generated by the bidding strategy as ex-
plained earlier for the spot price at different LTO times. It also shows that the bid value
steeps up toward the end to reach closer to the on-demand price. The bidding strategy
considers all these factors and calculates a bid value in accordance to the situation.

bid = eγ ∗ pOD + (1 − eγ ∗ (β ∗ pOD + (1 − β) ∗ pspot)), (8)
where, γ = (−α(LTO − CT))/FP.

5.1.3. Scenario 3: Mapping Task to an On-Demand Instance. Let us now examine the case
where LTO is behind the current time, that is, there is no slack time, or when the
estimated bid price is higher than the on-demand price, or the failure probability
is higher than the threshold. In such cases the algorithm tries to find a suitable
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ALGORITHM 2: Schedule(t)
input: task ti
output: DecisionList
/* Variable Initializations */

1 vms ← all VMs currently in the pool;
2 types ← available instance types;
3 estimates ← compute estimated runtime of task ti on each type ∈ types;
4 decisionList ← null;
5 Recompute CP and LTO.
6 timeLef t = LTO − currentTime
7 if timeLeft > 0 then // If there is sufficient slack time, then find a running
instance

8 decision ← FindFreeSlot(ti, vms, PriceModel.ANY);
9 if decision.allocated = true then decisionList.add(decision);

10 if decision.allocated = false then
11 decision ← FindRunningVM(ti , vms, PriceModel.ANY);
12 if decision.allocated = true then decisionList.add(decision);

13 timeLeft = timeLeft − vmInitTime
14 if timeLeft > 0 then // Initialize a new spot instance as no running instance was

found
15 bid ← EstimateBidPrice(ti, type);
16 if bid > on-demand price then
17 Map to on-demand instance and decisionList.add(decision).

18 failProb ← EstimateFailureProbability(bid);
19 if failProb < threshold then
20 Map to spot instance and decisionList.add(decision);

21 InstanceList ← FindSuitableInstances(C P, D) ; // Find Instance types that can
honor the deadline
/* Finding on-demand instances as sufficient slack time is not available */

22 decision ← FindFreeSpace(ti, InstanceList, PriceModel.ONDEMAND);
23 if decision.allocated = true then decisionList.add(decision);
24 if decision.allocated = false then
25 decision ← FindRunningVM(ti , InstanceList, PriceModel.ONDEMAND);
26 if decision.allocated = true then decisionList.add(decision);

27 decision ← FindCostPerfEffectiveVM(ti, InstanceList); // Finding an appropriate
new on-demand instance

28 compute EFT and LFT for task ti
29 if Number of Replicas of ti ≤ 1 then /* Task Duplication under short deadline */
30 if EFT +V MinitT ime ≥ LFT then
31 unusedInstance ← instances not used to map replicas of Ti
32 repDecision ← FindFreeSpace(ti, unusedInstance, PriceModel.ANY);
33 if repDecision.allocated = true then decisionList.add(repDecision);
34 if repDecision.allocated = false then
35 repDecision ← FindRunningVM(ti , unusedInstance, PriceModel.ANY);
36 if repDecision.allocated = true then decisionList.add(repDecision);

37 if null = repDecision then
38 InstanceList ← FindSuitableInstances(C P, D)
39 InstanceType ← FindCostPerfEffectiveVM(ti, InstanceList);
40 bid ← EstimateBidPrice(ti, InstanceType);
41 if bid > on-demand price then
42 Map to on-demand instance and decisionList.add(repDecision).

43 Map to spot instance and decisionList.add(repDecision);

44 return decisionList;
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ALGORITHM 3: FindSuitableInstances(estimates)
input: estimates
output: Eligible Instance List

1 types ← available instance types;
2 InstanceList ← null
3 for ∀i ∈ InstanceTypes do
4 CPTasks ← computeCPTasks(i);
5 prevTask ← null;
6 CPTime ← 0;
7 for ∀t ∈ CPTasks do
8 if prevTask �= null then
9 edgeTime ← edgeTime(prevTask, t);

10 CPTime + = estimates(t) + edgeTime;
11 prevTime ← t;

12 totalCPTime = CPTime + VMInitTime;
13 if totalCPTime ≤ D − currenttime then
14 InstanceList.add(i);

15 return InstanceList;

on-demand instance, as on-demand instances have higher QoS guarantees. Before
finding an instance, a list of suitable instance types that can honor the deadline are
found as shown in Algorithm 3.

In this method, Find Suitable Instances, critical tasks are determined for every
instance type. Ideally, the critical path can vary for different instance types and so do
the tasks on it. In other words, tasks have different runtimes on different instance types
and therefore, critical path will also change based on the instance type used to estimate.
Hence, this method evaluates the critical path per instance type and maintains a list
of critical tasks per instance type. This computation is done initially, and when a task
finishes execution, the task dispatcher checks whether the task was critical and if it
was the critical paths for those instance types (i.e., where the completed task was
critical) are recomputed. This increases efficiency and avoids computing critical paths
for every task mapping. Once the critical path tasks are computed, lines 7–12 adds the
task runtime, the transfer time for all the tasks on the critical path. Finally, the total
critical path time is computed and if this is less than the remaining deadline, then the
instance type is added into the eligible instance list.

This instance list is a list of instance types that can comply with the deadline con-
straint. Akin to scenario 1, the algorithm first tries to find a free slot among the
instance list; if no free slot is found, then an instance is found among the running
instances that can execute the task without delaying the deadline. If no instances are
found, then FindCostPerfEffectiveVM method calculates the cost of the estimated crit-
ical path times with their respective on-demand prices. The instance that can execute
with the lowest cost is selected. The algorithm does not select an instance type with
lowest price; it selects an instance whose price to performance ratio is the lowest.

5.1.4. Scenario 4: Task Duplication Under Short Deadline. Critical tasks are replicated to
provide fault tolerance when the deadline is short. We propose two variants of this
heuristic. The two heuristics are very similar, with the difference being the tasks they
replicate.

Essential Critical Path Task Replication (ECPTR) heuristic: Algorithm 2 de-
tails its working. Here, when the LTO has passed the current time, and the task has no
slack time, then a replica is created. In other words, all ESCTs are replicated. Similar
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to the scenarios presented before, first free slots are found among the instances that
have not been used to map the replicas of the task considered. If no free slots are
found, then a running instance is found that can be used to the map the task without
violating the deadline. When neither free slots nor running instances are found, the
heuristic maps the replica onto a spot instance. The type of spot instance is decided
by methods FindSuitableInstances and FindCostPerfEffectiveVM as shown in lines 38
and 39. Finally, using the bidding strategy a bid price is estimated for the spot price and
if this bid price is less than the on-demand price, then a spot instance is instantiated
mapping the replica task.

Furthermore, when a resource fails, the tasks on the resource are resubmitted as
ready tasks to the scheduler. In such case, the task duplication is done only when the
number of replicas of the task is zero or one as shown in line 29. In other words, we
do not have more than one replica at any particular time for a given task. When the
execution of the task finishes, all the replicas are terminated, so that the resources can
be freed to accommodate other tasks.

The other heuristic is Critical Task Replication (CTR). Here, all the critical tasks
are replicated, that is, once the LTO has moved past the current time then all tasks are
replicated. The replicated tasks are mapped to spot instances to minimize cost. This
heuristic is very similar to Algorithm 2, the only difference being, the validation in
line 30 is omitted in this heuristic. In other words, under short deadline all tasks will
be replicated, although only one replica will be created for a given task at any time.

5.2. Time Complexity

The time complexity for calculating the critical path and recomputing the same for all
ready tasks is O(n2) in the worst case, where n is the number of tasks. The complexity
of algorithm for finding a suitable instance for every task is O(n). The complexity of
finding the suitable instance depends on the number of instances considered, which is
negligible. Hence, the asymptotic time complexity of the algorithm is O(n2).

6. PERFORMANCE EVALUATION

6.1. Simulation Setup

We used CloudSim [Calheiros et al. 2011] to simulate the cloud environment. It was
extended to support workflow applications. It was also extended to model the Amazon
spot market. It uses Amazon spot market traces to simulate spot prices.

Application Modeling: The Laser Interferometer Gravitational Wave Observatory
(LIGO) workflow with size of 1,000 tasks was considered. Its characteristics are ex-
plained in detail by Juve et al. [2013]. This workflow covers all the basic components
such as pipeline, data aggregation, data distribution, and data redistribution.

Resource Modeling: A cloud model with a single data center is considered. The
VMs/cloud resources are modeled similar to Amazon EC2 instances. We have con-
sidered nine instance types (m1.small, m1.medium, m1.large, m1.xlarge, m3.xlarge,
m3.2xlarge, m2.xlarge, m2.2xlarge, m2.4xlarge) for on-demand instances and SIs. The
prices of on-demand instances are adapted from the Linux based instances of Amazon
EC2 US West region (North California Availability Zone (AZ)). The spot price history
is taken from the same region from the period of June 2014–September 2014. The
characteristics of the spot prices for all instances are given in the Table II. Here, we
have reported the average spot price, standard deviation (St Dev), and minimum and
maximum spot prices for the period considered and also the peaks, which is the num-
ber of times the spot price was higher than its on-demand price. A charging period
of 60 minutes is considered. A boot/startup time of 100 seconds is considered for each
instance [Ming and Humphrey 2012].
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Table II. Spot Instance Characteristics for US West Region (North California AZ)

Instance Average St Dev Max Min Peaks
m1.small 0.063283 0.055774 0.24 0.0071 570

m1.medium 0.008131 7.30E-05 0.0085 0.008 0
m1.large 0.0163 5.79E-04 0.025 0.016 0
m1.xlarge 0.229384 0.478334 1.92 0.0322 132
m2.xlarge 0.042649 0.116727 1.07 0.0161 18

m2.2xlarge 0.089227 0.204482 2.45 0.0321 48
m2.4xlarge 0.115971 0.160712 2 0.0645 2
m3.xlarge 1.37942 1.763904 6 0.5 167

m3.2xlarge 1.495879 0.544046 2 0.064 64

Failure Modeling: Failures are modeled by Weibull distribution similar to many
other prominent works [Javadi et al. 2012; Yigitbasi et al. 2010; Iosup et al. 2007; Tang
et al. 2014; Kondo et al. 2010; Litke et al. 2007; Plankensteiner et al. 2009]. We assume
these resources to be fail-stop processors, implying that after a failure the resource does
not become available again. Further, the failures are considered to be independent. The
distribution models the time to failure for a particular resource. The parameters of the
Weibull distribution are modeled similar to the parameters used in Javadi et al. [2012].

Baseline Algorithms: We compare our proposed heuristics, ECPTR and CTR (de-
tailed in Section 5) with two baseline approaches:

(1) Conservative with Intelligent Bidding (CIB): This approach was proposed in Poola
et al. [2014], which also uses spot instances to reduce cost. It uses retry as a fault-
tolerant mechanism, whereas the proposed solution in this article uses both retry and
replication. This is one of the few works that use spot instances for workflow scheduling
for fault tolerance, hence we use this as a baseline for our work.

(2) Essential Critical Path Task Replication without Resource Maximization Algo-
rithm (ECPTRRM): We introduced this approach, which is similar to ECPTR without
resource utilization maximization. This algorithm performs similarly to ECPTR but
does not place tasks on the same resource maximizing its usage. ECPTRRM demon-
strates the effect of maximizing resource utilization on makespan and cost.

6.2. Results

In this section, we analyze the performance of our heuristics. We investigate them
on the parameters of fault tolerance, makespan, cost, and resource utilization. Each
experiment was run 100 times, with each run starting at a different point in the trace.
In other words, for each run we choose a date and time randomly between the start date
and end date of the spot market trace to create randomness in the spot prices. We have
run for three different combinations of deadline: (1) short deadline (35,000–45000),
(2) moderate (47,500–57,500), and (3) relaxed deadline (60,000–70,000) as shown in
Figures 4–10. Next, we present results and their analysis on the performance of our
heuristics with regard to different parameters.

6.2.1. Fault Tolerance. Providing fault-tolerant schedules is the main objective of this
proposed algorithm. Figures 4 and 5 show the performance of our heuristics with
respect to two metrics, failure probability and tolerance time. The details of the metrics
were mentioned earlier in Section 3.

The failure probabilities of the different algorithms are shown in Figure 4. It can be
observed that under relaxed deadline, all algorithms have substantially lower failure
probabilities. When the deadline is short, it can be observed that the heuristics CTR
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Fig. 4. Failure probability of algorithms with vary-
ing deadline.

Fig. 5. Tolerance time of algorithms with varying
deadline (with 95% confidence interval).

Fig. 6. Mean makespan of the proposed algorithms
against the baseline with varying deadlines (with
95% confidence interval).

Fig. 7. Showing the effect of resource consolidation
on makespan for ECPTR heuristic (with 95% confi-
dence interval).

and ECPTR perform considerably better than the baseline CIB. Failure probabilities of
CTR and ECPTR are lower than CIB by 79.75% and 72.36%, respectively, on average
under short deadlines. This is a strong indication that our heuristics have a high
probability of success in spite of failures in the environment.

Figure 5 depicts the results with respect to the tolerance time. It can be observed
that the baseline algorithm CIB has negative tolerance time under short deadlines.
This implies that CIB algorithm is not fault tolerant under short deadline, whereas
on the other hand, both the proposed heuristics CTR and ECPTR have significantly
positive tolerance time. This suggests that they are fault tolerant and can withstand
more failures and performance variations given the same schedule. It is also evident
from the figure that ECPTR has a higher tolerance time than CTR and this difference
becomes larger as the deadline becomes relaxed. Additionally, the tolerance time of
CIB and ECPTR become similar as the deadline is relaxed. This is due to the fact that
CIB and ECPTR perform similarly to each other under relaxed deadlines.

6.2.2. Effect on Makespan. Makespan is the other important objective that we consider.
We attempt to minimize it especially when the deadline is short. Figures 6 and 7 are
presented, showing the performance of our algorithms with respect to makespan. The
working of our algorithms with respect to the baseline algorithm is depicted in Figure 6.
Additionally, the effect of resource maximization on makespan is shown in Figure 7.

The proposed heuristics in comparison with the baseline generates a schedule with
makespan lower than the baseline. Figure 6 shows the results with a 95% confidence
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Fig. 8. Mean execution cost of the proposed algo-
rithms against the baseline with varying deadline
(with 95% confidence interval).

Fig. 9. Replication factor for the algorithms with
varying deadline.

interval. It can be observed from the figure that CTR outperforms both CIB and ECPTR,
which is essentially because CTR generates more replicas. Task duplication helps
generate effective schedules with lower makespan in spite of failures and performance
variations.

ECPTR has makespan lower than CIB by 14.47%, 25.14%, and 32.17%, respectively,
when the deadline is short, moderate, and relaxed, respectively. Similarly, CTR has a
makespan lower by 43.43%, 56.44%, and 55.95% under short, moderate, and relaxed
deadlines, respectively, against CIB algorithm. Furthermore, schedules generated by
CTR are 23.93% lower in makespan than ECPTR schedules.

Figure 7 shows the results when resource consolidation is done. The effect on
makespan is minimal when the deadline is short, the reason being compaction of
resource is not possible to a significant extent due to deadline constraints. Whereas,
under moderate and relaxed deadlines, ECPTR generates schedules with 11.37% and
14.24% lower makespan, respectively, when compared to ECPTRRM. This reinforces
that maximizing resource utilization reduces makespan. It reduces data transfer time,
and the boot time needed to initialize new instance, by mapping two or more tasks onto
the same resource.

These experiments solidify the fact that task duplication and maximizing resource
utilization help lower the makespan significantly.

6.2.3. Effect on Cost. Execution cost is the third objective we strive to minimize. The
proposed algorithms use a mixture of spot and on-demand instances to reduce cost.
Here, spot instances are used for replication when the deadline is tight and spot in-
stances are used as the primary resource when there is sufficient slack time. This
dynamic approach makes the best use of the available pricing models to significantly
reduce cost. Cost savings when using spot instances are quantified in the article [Poola
et al. 2014].

However, in Figure 8, the costs of algorithms ECPTR and CTR are higher than the
baseline algorithm. This increase is attributed to the replicas these algorithms cre-
ate. It can be further noticed that the cost of ECPTR is higher than CTR, as ECPTR
generates more replicas than CTR. Figure 9 shows the number of replicas created by
each algorithm for different deadlines. It can also be observed that as the deadline be-
comes more relaxed, the number of replicas is also reduced and this is more significant
for ECPTR heuristic. Similarly, the cost difference between CIB and ECPTR is also
reduced as the deadline becomes relaxed.

Apart from the efficient use of pricing models, effective resource usage also reduces
costs considerably. Figure 10 testifies to this; it can be observed here that the cost of
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Fig. 10. Showing the effect of resource consolidation on cost for ECPTR heuristic (with 95% confidence
interval).

ECPTR is much lower than the ECPTRRM algorithm. When tasks are packed into a
single resource the costs can be reduced significantly. Figure 10 shows that when the
deadline is short, execution cost of ECPTR is 38.86% lower than ECPTRRM and it is
24.34% lower under relaxed deadlines.

7. CONCLUSIONS AND FUTURE DIRECTIONS

Cloud computing offers low-cost computing services as a subscription based service,
which are elastically scalable, and dynamically provisioned. Additionally, it also offers
attractive pricing models like on-demand and spot instances, because of which scientific
workflow management systems are rapidly moving toward it.

However, cloud environments are prone to failures and performance variations
among resources. Failures are traditionally mitigated using replication and this in-
creases the execution cost and time. Whereas with the innovative pricing models cloud
offers, the cost for providing fault tolerance can be drastically reduced. In this article,
we have proposed two just-in-time adaptive workflow scheduling heuristics for clouds.
These heuristics use on-demand and spot instances to provide fault-tolerant schedules
whilst minimizing time and cost. They are fault-tolerant against performance varia-
tions, out-of-bid failures, and resource failures. Extensive simulations have shown that
the proposed heuristics generate schedules with significantly lower failure probabili-
ties. The makespan of these schedules are also much lower than the baseline algorithm.
These heuristics are also shown to maximize resource utilization. These experiments
establish that pricing models offered by cloud providers can be used to reduce costs
and makespan and at the same time offer robust and resilient schedules.

As future work, we will extend this work for multiple data centers considering data
transfer cost between different regions. The prices of resources change across data
centers. Hence, we will develop a task placement strategy considering the varying
prices between regions and also the associated data transfer costs. This model can
be further extended for a multicloud environment, extending the number of pricing
models.
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