
16

TSLAM: A Trust-enabled Self-Learning Agent Model

for Service Matching in the Cloud Market

WENJUAN LI, Hangzhou Normal University; Shanghai Jiao Tong University; University of Melbourne

JIAN CAO and SHIYOU QIAN, Shanghai Jiao Tong University

RAJKUMAR BUYYA, University of Melbourne

With the rapid development of cloud computing, various types of cloud services are available in the mar-

ketplace. However, it remains a significant challenge for cloud users to find suitable services for two major

reasons: (1) Providers are unable to offer services in complete accordance with their declared Service Level

Agreements, and (2) it is difficult for customers to describe their requirements accurately. To help users select

cloud services efficiently, this article presents a Trust enabled Self-Learning Agent Model for service Match-

ing (TSLAM). TSLAM is a multi-agent-based three-layered cloud service market model, in which different

categories of agents represent the corresponding cloud entities to perform market behaviors. The unique

feature of brokers is that they are not only the service recommenders but also the participants of market

competition. We equip brokers with a learning module enabling them to capture implicit service demands

and find user preferences. Moreover, a distributed and lightweight trust model is designed to help cloud en-

tities make service decisions. Extensive experiments prove that TSLAM is able to optimize the cloud service

matching process and compared to the state-of-the-art studies, TSLAM improves user satisfaction and the

transaction success rate by at least 10%.

CCS Concepts: • Information systems → Trust; • Theory of computation → Multi-agent learning;

• Computer systems organization → Cloud computing;

Additional Key Words and Phrases: Cloud market model, service preference learning mechanism, multi-agent

platform, trust management

ACM Reference format:

Wenjuan Li, Jian Cao, Shiyou Qian, and Rajkumar Buyya. 2019. TSLAM: A Trust-enabled Self-Learning Agent

Model for Service Matching in the Cloud Market. ACM Trans. Auton. Adapt. Syst. 13, 4, Article 16 (July 2019),

41 pages.

https://doi.org/10.1145/3317604

This work is supported by the National Natural Science Foundation of China under grant 61702151 and 61702320, National

Key Research and Development Plan under grant 2018YFB1003800, Zhejiang Provincial Natural Science Foundation under

grant LY17E070004 and the Research Project for Department of Education of Zhejiang Province under grant Y201635438.

Author’s addresses: W. Li, Qianjiang College, Hangzhou Normal University, Hangzhou, China; email: liellie@163.com;

J. Cao (corresponding author) and S. Qian, Computer Science and Technology, Shanghai Jiao Tong University,

Shanghai, China; emails: {cao-jian, qshiyou}@sjtu.edu.cn; R. Buyya, Cloud Computing and Distributed Systems

(CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia; email:

rbuyya@unimelb.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1556-4665/2019/07-ART16 $15.00

https://doi.org/10.1145/3317604

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

https://doi.org/10.1145/3317604
mailto:permissions@acm.org
https://doi.org/10.1145/3317604

16:2 W. Li et al.

1 INTRODUCTION

Cloud computing is an Internet-based platform for sharing all kinds of resources at different levels
[1, 2]. The most significant features of cloud computing include full virtualization, elastic resource
provision, and low-cost on-demand access to services on a subscription-basis model from any-
where and anytime. Since cloud computing offers services based on flexible pricing models, it has
gained wide attention from both academia and industry.

IT giants such as Google, Amazon, IBM, and Microsoft have invested a lot of manpower and
material resources into the cloud and developed relevant technologies and solutions. Many small-
and medium-sized enterprises have also been involved in this field, trying to gain a foothold in
the fiercely competitive market. Due to a large number of vendors entering the cloud market, a
wide range of cloud services are published in succession. As of 2015, the number of Chinese cloud
service enterprises exceeded 1,000, while still in the rapid development stage. It is estimated that
by 2020, the total monetary size of global cloud computing services will reach 100 billion [3].

It seems that cloud users can easily find their preferred services from a number of options. How-
ever, they become confused by the difficulties of finding suitable and high-performance services.
Taking cloud storage services as an example, a large number of providers offer services with simi-
lar functionalities but of different quality and price. Thus, for most ordinary users, it is difficult to
select services that best suit their preferences.

To help users select a suitable service, a couple of approaches have been proposed [4–6], how-
ever these are all based on an assumption, i.e., users’ requirements can be fully specified and
captured. Unfortunately, this may not always be true in practice. First, users have implicit re-
quirements that may be hard to express, or it may be that the user is not aware of particular
requirements. Sometimes, due to security or privacy concerns, users may not fully specify their
requirements. Therefore, current research on service matching cannot adapt to situations where
service requests are not well described. However, in cloud service markets, there is fierce compe-
tition between providers. As for providers, improving their QoS and user satisfaction is critical. To
achieve this goal, the first thing they have to do is understand user preferences and then provide
services according to the preference. However, as mentioned, when users have implicit require-
ments, it is not easy to obtain the preference simply by the accumulation of transaction data.

Another challenge is that the actual performance of cloud services is different to that claimed
by providers. Furthermore, performance may deteriorate even further if the service succumbs to a
malicious attack. Obviously, service matching based on wrong performance information leads to
wrong results. Therefore, many researchers have proposed trust-based service matching models
in which service matching decisions are made by recording and analyzing the trust-included past
performance of providers. References [7] and [8] proposed the use of trust to support QoS-aware
service scheduling. X. Li proposed a trust-based broker model to provide professional service rec-
ommendations through a third-party intermediary [9]. Our previous work [10] proposed a rec-
ommendation transaction-based cloud trust model and trust-enabled cloud workflow scheduling
model to achieve a relatively high transaction success rate. However, a common problem with
these models is that they all adopt a centralized architecture. Service matching and trust manage-
ment rely on a centralized broker, which can easily lead to a single point of failure and a situation
where the problem cannot be solved because the broker is under attack or is controlled by some
untrusted node.

The cloud service market is a self-organizing business system in which entities such as users
and service providers make deals in a collaborative and autonomic way [11, 12]. Currently, agent
technology is a popular way to construct cloud systems. Intelligent agents enable cloud entities
to have self-adaptive, decision making, and learning abilities and multi-agent systems allow the
cloud market to operate and evolve in its original way.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:3

To meet these requirements, we propose a Trust-enabled Self-Learning Agent Model (TSLAM)
for service matching in cloud computing environments. We use multi-agent technology to build
the architecture of the cloud service market model. Different categories of agents represent the
corresponding cloud entities to carry out market behaviors. Of these, the broker is a special type
of entity who undertakes the task of service recommendation and also participates in market com-
petition. A distributed and lightweight trust model is designed to help entities in service decisions.
Moreover, to improve user satisfaction, brokers are equipped with a learning module that enables
them to capture the implicit service demands and find the real service preferences of users.

To make the service matching process efficient, satisfactory and reliable, in the construction of
our approach, the following key questions are addressed:

• What is a suitable service matching framework in the cloud market and how do cloud en-
tities interact with each other?

• How to deal with trust issues in the service matching environment, including the definition
of trust, how to compute trust, how to update trust and how to make decisions about trust?

• How to better analyze cloud users’ service requests and learn their real service preferences,
especially when customers are not totally open with the details of their requirements?

The key contributions of this article are as follows:

1. the design of a three-layer and agent-based cloud service matching framework and inter-
action protocols.

2. a proposed distributed and lightweight trust model with the addition of a trust mechanism
in the service selection process to improve reliability.

3. the development of a learning mechanism for broker agents to learn their customers’ ser-
vice preferences when there are implicit service demands.

Furthermore, we carry out an extensive evaluation of the proposed algorithms on the multi-
agent platform and compare them to state-of-the-art studies.

The rest of the article is organized as follows. Section 2 describes the related work in detail.
TSLAM is proposed in Section 3. Section 4 introduces a distributed and lightweight trust manage-
ment model. Section 5 provides details of the operational mechanisms in TSLAM. The experiment
and analysis are presented in Section 6. Finally, conclusions are drawn and future work is suggested
in Section 7.

2 RELATED WORK

2.1 Broker-based Service Selection Model for Market-oriented Cloud Computing

Cloud computing is a network-based business platform. To ensure cloud systems operate more
efficiently and commercially, some researchers introduced the concept of market-oriented cloud
computing [13, 14]. With the rapid increase in the number of available cloud services, service se-
lection has become a core issue in a market-oriented cloud system. An efficient service scheduling
mechanism can reduce the waiting time of users and improve their satisfaction with services, How-
ever, it can also maximum the benefits of service providers. In a study of service matching models,
the broker-based model is the most popular. For example, R. Buyya et al. put forward a cloud
computing market framework, including users, service brokers and resource providers, in which
resource brokers assist in the collaboration between cloud users and cloud service providers [15].
B. Song et al. proposed a similar concept, called the cloud services market intermediary, which is
responsible for matching users and service providers through the auction mechanism [16]. These
mechanisms enable clouds to operate in a market-oriented manner. However, there are still many

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:4 W. Li et al.

challenges in building an efficient cloud service market, especially in relation to satisfying the QoS
demands of users.

S. Arifulina et al. proposed a situation-specific domain-specific language (DSL) for the service
broker to make an efficient service composition and to perform market-specific service matching
[17]. It is very practical research, but it only focuses on the matching language, the composition
process, and is somewhat context limited.

E. Badidi proposed a broker-based service framework for SaaS provisioning [18]. The broker in
the proposed framework can help consumers find suitable providers that can fulfill their functional
and QoS requirements and uses a multi-attribute negotiation model to negotiate with the selected
providers on behalf of the customers and monitors the behaviors of the providers. The negotiation
mechanisms in this article are detailed and complete. However, it neglects the realization and
application of the model.

T. Deng carried out a study on user behaviors (job arrival rate and job service time) to help
cloud broker make scheduling decisions [19]. However, no methods are provided to improve the
broker’s behaviors as a result of their findings.

D. Rane and A. Srivastava proposed a service broker-based trading framework for cloud com-
puting systems in which the broker is able to calculate users’ aggregated requirements and use
the newly defined service scheduling algorithm to find an optimized match between the aggre-
gated requirements with the offerings [20]. The article compares the cost and execution time of
the model. However, it doesn’t compare it with other similar models and the number of providers
is small.

M. Aazam and E. Huh proposed a resource estimate and pricing model for service broker in
inter-cloud environments on the basis of the historical record of each customer [21]. Mainly from
the perspective of service providers, it evaluates the performance of the model. The main problem
with this article is that it only predicts users’ resource requirements from a price perspective,
without fully considering other factors.

S. Aldawood proposed a brokerage model specifically for multi-cloud resource spot markets,
using a tuple space architecture to facilitate coordination and matched the lowest price resource
for customers [22].

One of the common problems of these strategies is that they neglect the security and trust risks
that possibly exist in business cloud markets. Therefore, some researchers have tried to add trust
or security factors into the service matching mechanisms of brokers.

S. Wagle et al. used a similarity-matching algorithm to design an SLA-assured brokering frame-
work matching the requirements of customers with the SLA offered by CSPs [23]. Here the broker
is more like an inter-cloud gateway whose responsibility includes service packaging, matching,
and monitoring. However, the authors do not give enough details about the implementation of the
framework.

O. Wenge et al. introduced a security governance-driven cloud brokerage model that uses the
security labeling of cloud products to ensure the security trading in ad hoc cloud collaboration
[24]. However, they only considered the security needs of the users and there is no technical
implementation or simulation of the model.

P. Pawar proposed a trust-enhanced OPTIMIS Cloud Broker (CBR) as a mediation layer to help
cloud users find a trustworthy cloud provider and discuss in detail the different role and function
of the broker [25]. The problem with the work is that it only fulfils the trust requirements of users
and ignores the other factors that can also affect a users’ selection.

W. Abderrahim and Z. Choukair proposed a cloud brokering architecture for dependability as a
means for trust assurance in service matching [26]. Similarly to the former paper, it mainly takes
into consideration the reliability factor in the service matching.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:5

M. Gupta and B. Annappa used a lightweight method to calculate trust and help users to find a
credible trading partner [27].

X. Li et al. proposed a trust-aware service brokering scheme named T-broker for the efficient
matching of cloud services to users [9]. T-broker combines direct experiences and feedback to
establish a hybrid and adaptive trust model to compute the overall trust degree of service resources.
The authors conducted experiments to demonstrate the performance of the model.

T-broker, which also adopts the trust broker model, appears similar to our model; however, it is
essentially different from ours.

(1) The architecture of cloud service markets is different. T-broker uses the centralized model
in which there is only one broker in the market who is in charge of both service match-
ing and trust management. However, in our model, there are many brokers who are also
competitors in the market.

(2) The trust management method is different. T-broker adopts the centralized trust manage-
ment approach. Cloud users rely entirely on a broker to make trust decisions, because
there is no trust module on the user side. However, trust management in our model is
distributed; that is, brokers manage their trust relationships while users manage theirs.

(3) The timing of service selection is different. Cloud users in T-broker have to use the services
recommended by the only broker, but in our model, users can choose whether to adopt
the services recommended by brokers or not.

(4) We add a learning ability to the brokers that helps them to understand user preferences,
even in the presence of implicit user requirements.

The common problem with the aforementioned trust-based broker models is that they use a
centralized broker, which may lead to a single-point failure. Once the centralized broker itself is
attacked or controlled by a malicious entity, it may result in market confusion. Furthermore, cloud
markets are self-organizing systems. The interaction between market entities is a dynamic and
adaptive process. The centralized control model neglects the autonomy and intelligence of the
market participants.

To ensure cloud services have autonomy and the ability of independent coordination, a natural
choice is distributed management. In this regard, K. Sim and his collaborators undertook a large
volume of work, including the multi-agent system for cloud resource management and a series of
service scheduling methods [28–34]. Unfortunately, their models did not consider trust issues.

Table 1 summarizes the features of the aforementioned broker-based service scheduling models.

2.2 Trust Management Model

Trust is a mechanism by which to solve reputation and reliability problems in an open environ-
ment. In recent years, researchers have made great achievements in the research of trust.

X. Li et al. proposed a dynamic trust model that can more accurately quantify and predict a user’s
cognitive behavior [35]. The advantages of this model are as follows: (1) it combines the human
cognitive model to optimize the weight of direct and feedback trust, and (2) it considers the impact
of the time decay factor in the evaluation of trust. Y. Tan et al. proposed a combination-weighted
approach based on relative entropy to evaluate user behavior [36]. The main contributions of this
article include the following: (1) it uses the combination weighting method to optimize the weight
of subjective and objective trust, and (2) it introduces a fuzzy comprehensive evaluation method
to compute combined trust. Some researchers proposed evolutionary algorithms combined with
trust mechanisms [37, 38]. But usually the time overhead of evolutionary algorithms affects the
practical application of these models. S. Wang proposed the trust assessment method based on
the cloud model [39]. The model is primarily suitable for the calculation of subjective trust. X. Xie

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:6 W. Li et al.

Table 1. The Comparison of Broker-based Service Scheduling Models

Method
Organization

mode
Application

scenario
Main function of

broker
Learning

ability
Security
aware

Market-Specific Service
Compositions:
Specification and
Matching [17]

Centralized On-The-Fly
Computing

Market-specific
service matching and
service composition

No No

A Cloud Service Broker
for SLA-based SaaS
provisioning [18]

Centralized Software-as-a-
Service (SaaS)
provision

Negotiation,
matching, monitoring

No No

Analysis of user behavior
in cloud broker [19]

Centralized Cloud computing
environment

User behavior
analysis

Yes No

Cloud Brokering
Architecture for Dynamic
Placement of Virtual
Machines [20]

Centralized Cloud market Calculate aggregated
requirements, service
scheduling

Yes No

Broker as a Service (BaaS)
Pricing and Resource
Estimation Model [21]

Centralized Inter-cloud
computing
environment

Service matching,
resource estimate,
pricing and billing

Yes No

A Coordination-Based
Brokerage Architecture
for Multi-cloud Resource
Markets [22]

Centralized Multi-cloud
resource spot
markets

Lowest cost service
matching

No No

SLA Assured Brokering
(SAB) and CSP
Certification in Cloud
Computing [23]

Centralized Cloud computing
environment

Service composition
and matching
language

No Partly

Towards Establishing
Security-Aware Cloud
Markets [24]

Centralized Ad hoc cloud
collaborations

Service matching,
security labelling and
negotiation

No Yes

Trust Assessment Using
Cloud Broker [25]

Centralized Cloud computing
environment

Trust-based service
selection

No Yes

The Promethee Method
for Cloud Brokering
withTrust and Assurance
Criteria [26]

Centralized Cloud market Service discover,
Service composition,
Service delivery

No Yes

Trusted Partner Selection
in Broker Based Cloud
Federation [27]

Centralized Cloud federation Trust evaluation,
service selection

No Yes

T-Broker: A Trust-Aware
Service Brokering Scheme
for Multiple Cloud
Collaborative Services [9]

Centralized Multi-cloud
environment

Trust-based service
matching

No Yes

Agent-based cloud
resource management
models [28–34]

Distributed Agent-based
cloud platform

Service scheduling No No

designed the double excitation and deception detection-based trust model [40]. The main contri-
butions of this article are as follows: (1) it proposes a trust time decay model, and (2) it introduces a
provider and user behavior incentive model. However, this model can only be applied to evaluate
the trust of providers. K. Ahmadi proposed a trust-based decision-making model for multi-agent
societies [41]. This model combines users’ subjective experience and recommendation trust;
however, it neglects the credibility of recommenders. We have also made some attempts in the
research of cloud trust management, such as the development of trust management architecture

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:7

for open cloud environments [42], the recommendation transaction-based lightweighting trust
management model [43], portfolio trust strategy based on fuzzy clustering [44]. However, in the
extremely complex and volatile cloud market environments, our trust models still need to solve
many problems, such as how to reduce the trust decision cost and how to provide customized
strategies for different trust requirements of different cloud entities.

In response to the question of trustworthiness in service selection, some researchers have also
proposed trust-based technologies. For example, X. Li proposed a trust-based and multi-attribute
service selection algorithm [45]. The main contribution of this article is that it combines trust
with the general service attributes to comprehensively evaluate the quality of service. However,
the problems with this work are as follows: (1) the test dataset is small, and (2) there is no detailed
description of how to deploy the model. C. Hu et al. proposed a trust and spanning tree-based
cloud service organization approach to help cloud users eliminate malicious and spurious services
[46]. This model can be applied to the scenario of credible service composition. Y. Wang et al. put
forward the community trust-driven service selection model [47]. The principle function of the
model is to predict the evaluation of users of the unknown services. X. Meng et al. proposed a
two-tier service selection approach for matching trustworthy and behavioral patterns [48]. The
main contribution of this article is that it can optimize the evaluation of the direct trust experi-
ence and the credible recommendation group thus to obtain a relatively higher trust evaluation.
However, the authors do not discuss how to test its performance though experiments. S. Yan et al.
proposed a service-oriented, user-centric trust model [49]. However, the trust evaluation process
seems a bit complex, which is not suitable for real-time cloud trading environments. C. Hang et al.
propose two distributed trust-aware service selection approaches for service-oriented computing
(SOC) environments [50]. The author did not introduce the implementation of the model. Some
researchers proposed service selection algorithms based on trust and QoS preferences, such as in
References [51–53]. We also proposed trust-based cloud workflow scheduling and service discov-
ery models [10, 54–56].

The existing service selection strategies based on the trust mechanism have some common prob-
lems: (1) Most of them adopt a centralized management method that is not completely reliable and
may cause a single point of failure, and (2) the measurement of trust is too complex to be well
integrated with the service selection process and also incurs a high system overhead.

3 TSLAM: A TRUST-ENABLED SELF-LEARNING AGENT MODEL

FOR SERVICE MATCHING

Despite the differences in the realization technology of the cloud for different service providers, the
techniques have become more mature. However, as a kind of commercial solution, the underlying
business architecture of cloud computing is still not perfect, especially due to a lack of built-in
business management strategies.

Therefore, not surprisingly, the concept of the market-oriented cloud computing model has been
put forward [15]. Under this concept, market mechanisms are developed and combined with ser-
vice provisioning, service billing and virtual machine scheduling approaches. The cloud is becom-
ing a thriving market.

To model the cloud market and to provide the system structure to support the cloud market, our
TSLAM is based on a multi-agent framework in which intelligent agents represent cloud market
entities to perform market behaviors.

As with any real market, some service providers may exaggerate the effects of service quality.
Moreover, fraudulent behavior cannot be avoided in the development of the cloud market. Trust
is a simple and safe alternative to a security strategy in the distributed network environment.
Therefore, trust is also introduced into the TSLAM.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:8 W. Li et al.

Fig. 1. Framework of TSLAM.

3.1 System Framework

The framework consists of three main components, i.e., user agents, service provider agents, and
broker agents (see Figure 1). User agents operate on behalf of users to submit service requests
according to their service requirements, select services, use services, and evaluate service quality.
On behalf of service providers, provider agents organize resources and deliver services to users.
Broker agents recommend cost-effective and high-credibility services to users.

There are many users and service providers in the cloud market, which leads to low efficiency
in service matching. Therefore, we add brokers to the market who act as intermediaries and co-
ordinators between users and service providers. Similarly to a broker in the real market, they can
make profits by providing matching services between users and service providers.

Two main reasons require brokers to have a learning ability: (1) Users have both explicit and im-
plicit requirements. Because of the multi-attributes and complexity of services that include many
different types of requirements (function, non-function, QoS, etc.), users may find it difficult to ac-
curately describe their complete requirements. Sometimes, for security or privacy reasons, users
may not entirely describe all their requirements; (2) the management of service providers incurs
costs, which means brokers should optimize the list of selected providers according to their cus-
tomers’ preferences and to increase the market success.

Obviously, the cost of service selection is an important user concern, so users tend to choose
only a small number of intermediaries (brokers) to cooperate with those whom they believe are
highly credible and can provide high quality recommendations. This means only those who pro-
vide referral recommendation services that match user preferences are able to survive in the long
run. Therefore, to provide accurate recommendations, broker agents should be equipped with a
certain learning capability to understand user preference and to optimize their behaviors.

In a commercial market like the cloud, there are various vague and uncertain factors. For exam-
ple, providers sometimes cannot provide services in full accordance with the SLAs. Some malicious
nodes profit from camouflage services. All of these require cloud entities to have sufficient reso-
lutions. Therefore, we design special trust mechanisms for the participants involved in market
transactions.

For cloud users, trust behaviors include the following: (1) recording, evaluating, and updat-
ing the trust of the corresponding brokers through the trading experience and (2) treating trust

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:9

as an important factor when choosing trading partners and only cooperating with credible bro-
kers. For brokers, trust behaviors include (1) recording, evaluating, and updating the trust of users
and providers through transactions. The trust degree of users is used as a weighting to compre-
hensively evaluate their satisfaction with providers and their trust in providers, which is one of
the most important factors for judging a recommendation, and (2) only selecting highly credible
providers when considering a recommendation services.

3.2 Segmentations of Brokers

Similarly to the real market, because of the information asymmetry problem, in the initial phase,
broker agents select provider agents to be managed randomly. However, with an increase in trans-
action numbers, especially when they collect feedback from a number of users, broker agents grad-
ually learn about the main preferences of their customers to choose some new service providers
to replace some old ones. This process happens in a random way, i.e., a broker agent who provides
miscellaneous services in the initial stage will eventually provide services with some common fea-
tures. For example, some broker agents provide high-quality and high-cost services, while some
broker agents provide cheap services of lower quality. Although they provide services with dif-
ferent features, they can all serve their customers well. This market segmentation phenomenon
can be observed in the real market. We realize the market segmentation of brokers by adding a
self-learning capability into their models.

3.3 Agent Interaction Protocols

The main processes for service matching include (1) provider agent and broker agent relationship
maintenance, (2) user agent and broker agent relationship maintenance, and (3) service matching.

(1) Provider Agent and Broker Agent Relationship Maintenance
Generally, a provider agent tries to register its service information with broker agents so
that it can have a chance to provide services. However, a broker agent updates its provider
agent list to optimize its business.

(2) User Agent and Broker Agent Relationship Maintenance
Initially, a user agent has to submit the request to broker agents in a random way. After
several rounds of interactions, the user agent knows who can provide better services so it
submits the requests to these agents in the future.

(3) Service Matching Process
Initially, a user agent sends a service request for a certain cloud service to its familiar
broker agents. The broker agents then recommend providers from their provider agent
lists. Then the user agent sends an “accept” message to the most suitable broker and a
“reject” to the others after selection. The broker agent who receives the “accept” message
forwards the service request to the corresponding provider. If the provider agrees to pro-
vide the service, then the broker will reply with a confirmation message to the user agent
and thus a transaction channel is constructed between the user agent and the provider.
After service invocation, the user agent sends evaluation feedback to the broker. The main
service matching process are shown in Figure 2.

Four types of messages are used in TSLAM: CFP, PROPOSE, CONFIRM, and INFORM. CFP mes-
sages are used for service/cooperation requests, PROPOSE messages are used for recommendation,
CONFIRM messages are used for confirmations, and INFORM messages are used for sending the
result, either the service or the evaluation. Table 2 shows the function of each kind of message.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:10 W. Li et al.

Fig. 2. Service matching process.

Table 2. Four Types of Messages

Message Representation Forms Sender Receiver Function

CFP

CFP (UserAgent,
Service_Description)

UserAgent BrokerAgent UserAgent asks BrokerAgent
for service recommedation

CFP (BrokerAgent,
Service_Description)

BrokerAgent ProviderAgent BrokerAgent asks
ProviderAgent to deal with a
new service request

PROPOSE PROPOSE (BrokerAgent,
Recom_Provider, SLA_Description)

BrokerAgent UserAgent BrokerAgent recommends
service to UserAgent

CONFIRM

CONFIRM (UserAgent,
ACCEPT/REJECT)

UserAgent BrokerAgent UserAgent agrees with the
recommendation or not

CONFIRM (ProviderAgent,
ACCEPT/REJECT)

ProviderAgent BrokerAgent ProviderAgent agrees to
provide service or not

CONFIRM (BrokerAgent,
ACCEPT/REJECT)

BrokerAgent UserAgent BrokerAgent confirms the
service to UserAgent

INFORM

INFORM (ProviderAgent, Result) ProviderAgent UserAgent ProviderAgent tells UserAgent
the result

INFORM (UserAgent,
ProviderAgent, Satisfaction)

UserAgent BrokerAgent UserAgent sends the
satisfaction of provider to
BrokerAgent

4 TRUST MANAGEMENT STRATEGY

4.1 The Definition of Trust

The concept of trust comes from sociology. In 1996, M. Blaze introduced trust into distributed
systems to solve the security problems of the Internet services. However, due to differences in the
context of different services, it is very difficult to give trust a universal definition. To better describe
the subsequent problems, this article gives trust a relatively comprehensive definition under the
deep analysis of former research.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:11

Definition 4.1 (Trust). This refers to the trust of the trustor in the trustee in the recognition
of the trustee’s identity and the trust of the trustor that the trustee will complete some special
task as expected over a specified period of time and in a particular context. Trust is the trustor’s
subjective evaluation of the trustee depending on their own experience and knowledge of the
trustee. Indicators of trust include authenticity, honesty, reliability, and stability.

Definition 4.2 (Trust Degree). This refers to the trust value that represents the trust degree of the
trustor in the trustee. In real applications, the trust degree may be jumpy or continuous.

Definition 4.3 (Direct Trust (DT)). DT is calculated on the basis of the direct transactions between
the trustor and the trustee. In this article, DT (A, B, tc) is used to represent the direct trust degree
of cloud entity A to B in a special transaction context (tc).

Definition 4.4 (Recommendation Trust (RT)). RT is calculated based on the recommendations of
the other entities with which the trustor is familiar. In this article, RT (A, B, tc) is used to represent
the recommendation trust of cloud entity A to B in a special context (tc).

Definition 4.5 (Function Trust (FT)). FT refers to the trust of the trustor in the trustee as to
whether or to what extent the functions provided by the trustee can meet the requirements of
the trustee.

Definition 4.6 (Experience Trust (ET)). ET is the trust of the trustor in the trustee as a result of
the direct interactions between them or feedback from the familiar entities of the trustor who have
direct interactions with the trustor. If ET is gained purely by the former, say, the direct transaction
experience of the trustor, then ET is equal to DT, which means DT is a special part of ET.

Definition 4.7 (Integration Trust (IT)). IT is the final assessment of the trustor in relation to the
trustee that is normally obtained by the integration of DT and RT, or by the combination of FT
and ET. In this article, IT (A, B, tc) is used to represent the integration trust of cloud entity A to B
in a special context (tc).

There are two types of computation models of behavior-based service trust: (1) DT plus RT
computation model, and (2) FT plus ET computation model. Equation (1) shows the general method
of the first model, and Equation (2) shows the second,

IT (A,B, tc) = α ∗ DT (A,B, tc) + β ∗ RT (A,B, tc), α + β = 1, (1)

IT (A,B, tc) = α ∗ FT (A,B, tc) + β ∗ ET (A,B, tc), α + β = 1. (2)

Since the distributed trust management method is adopted, this article uses the above two models
flexibly and selectively according to the different trust requirements of the different entities, with
the target of minimizing trust overhead.

4.2 Trust entities in TSLAM

Trust management in TSLAM is distributed and implemented on different nodes. There are pri-
marily three kinds of cloud entities: users, brokers, and providers. However, since providers com-
monly act as resource managers and service providers, they are not treated as trust implementers,
which means the QoS performance and the trust in the providers are evaluated, but they are not
subjective entities of trust. The active and subjective trust entities in TSLAM are cloud users and
brokers.

In addition, since services are recommended by brokers and many attributes of a service, such as
geographic location and the provider, are totally transparent to users, users do not have to maintain
a providers’ trust list. The only thing users need to do before choosing a service is to calculate

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:12 W. Li et al.

Fig. 3. Trust parties and their relationship in TSLAM.

Table 3. The Evaluation Indexes of User-to-broker Trust

Recommendation
accuracy (ra)

Recommendation
timeliness (rt)

Recommendation reliability (rr)

Initial score 50 100 50

Positive
experience

if ra < 100, ra = ra + 1 If service delivered &&
satisfaction>0.5, rr = rr + 1

Negative
experience

if ra > 0, ra = ra − 1 if rt > 0, rt = rt − 1
If service delivered &&
satisfaction<0.5, rr = rr − 1

If service not delivered, rr = 0

their trust in the services according to their functional attributes and the recommendation trust of
the recommenders (brokers). Therefore, the temporary trust of users in providers should be more
accurately called the trust of user in service. In all, there are four types of trust in TSLAM: (1) trust
of users in brokers, (2) trust of users in services, (3) trust of brokers in users, and (4) trust of brokers
in providers. Figure 3 shows the relations between the trust parties.

In TSLAM, trust between users and brokers is evaluated using direct transaction experience.
When users choose services, they evaluate the trust of a service by utilizing the combination of
the functionality of the service and the recommendation trust of the brokers, whereas the trust of
the brokers in providers is based on both direct experience and user feedback (recommendation).

4.3 The computation of the trust degree in TSLAM

4.3.1 Trust of the User in the Broker. Table 3 shows the evaluation indexes included in the user-
to-broker trust and the calculation method.

Recommendation accuracy measures the similarity of the recommended service to the actual
requirement. A positive recommendation experience means the service recommended by a certain
broker is accepted. In this case, the recommendation accuracy of the broker is increased by one
and that of the other brokers who also provide recommendations is decreased. Recommendation
timeliness means whether or not the broker can provide the service recommendation in time. If the
recommendation is offered within the deadline, then the value of the recommendation timeliness

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:13

Table 4. The Evaluation Indexes of User-to-service Trust

Functionality (f) Recommendation trust
Similarity(functionalities, provision) T (useri ,brokerk , tc)

Table 5. The Evaluation Indexes of

Broker-to-user Trust

Contribution (c)
Initial score 0

See Equation (5)

remains the same. Otherwise, it is reduced by one. Recommendation reliability means whether or
not the actual experience of the service is consistent with the recommended SLA. If so, then it is
increased by one, and if not, it is reduced by one.

The overall trust rating of a certain broker is the average value of the three indexes and is
normalized to the range of [0,1] using Equation (3),

T (useri ,broker j , tc) = α ∗
raj

100
+ β ∗

rtj

100
+ γ ∗

rr j

100
, α + β + γ = 1, (3)

where α , β , and γ are the weights of the above three factors in calculating the integrated trust.

4.3.2 Trust of the User in the Service. Two factors are taken into consideration in the calcu-
lation of user-to-service trust, as shown in Table 4. Functionality refers to the similarity of the
functionalities of the service to the actual requirements of the user. Recommendation trust is the
trust of the user in the broker who recommends the service. The overall user-to-service trust is
the combination of the two. Equation (4) shows the method,

T (useri , servicej , tc) = T (useri ,brokerk , tc) ∗
Reqi ∗ Proj

| |Reqi | |Proj | |
, (4)

where T (useri ,brokerk , tc) is the recommendation trust of useri in brokerk who recommends
servicej .Reqi is the service request vector and Proj is the provision vector. We use cosine similarity
to compare the similarity of the request and the provision.

4.3.3 Trust of the Broker in the User. The trust of the broker in the user in this article mainly
refers to the contribution of a certain user to the trading volume of the broker. The broker’s trust
in users is an evaluation of the credibility and importance of user feedback. The initial score and
the computation method of broker-to-user trust are shown in Table 5.

T (brokeri ,user j , tc) =
User_Adopt_Number j

TotalRecommedation_Numberi
, (5)

where User_Adopt_Number j indicates the number of times the user has adopted the broker’s
recommendation, andTotalRecommedation_Numberi refers to the total number of successful rec-
ommendations of the broker.

4.3.4 Trust of the Broker in the Provider. The trust of the broker in the provider includes
the direct experience with the provider (reliability) and the feedback of the users (satisfaction).
Table 6 shows the indexes of broker-to-provider trust. Reliability refers to whether or not the
provider offers the agreed service. Satisfaction is calculated based on the satisfaction of the user’s
feedback combined with the user’s trust.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:14 W. Li et al.

Table 6. The Evaluation Indexes of Broker-to-provider Trust

Reliability (r) Satisfaction (s)
Initial score 100 50
Positive experience if s < 100, s = s + 1
Negative experience if r > 0, r = r − 1 if s > 0, s = s − 1

The overall trust rating of a certain provider is the average value of the two indexes and is
normalized to the range of [0,1] using Equation (6),

T (brokeri ,provider j , tc) = α ∗
∑n

k=1T (brokeri ,userk , tc) ∗ sk j

100
+ β ∗

r j

100
, α + β = 1, (6)

where α and β are the weights of the two indexes in calculating the integrated trust.
T (brokeri ,userk , tc) is the trust of brokeri inuserk and sk j is the satisfaction ofuserk with Servicej .

4.4 Trust Decision

In a cloud market, when A wants to trade with B, A first checks the trust of B T (A,B, tc). If
T (A,B, tc) is greater than a certain threshold, then A starts to transact with B; otherwise, A will
not continue. However, different trust entities use trust in different ways. For users, trust is the
most basic factor on which they decide whether or not to adopt the broker’s recommendations,
while user-to-service trust is the basis for service selection. As for brokers, the broker-to-provider
trust determines whether or not a certain provider will be recommended to some users, while
broker-to-user trust determines to which extend the user influences the judgement of the broker.

5 AGENT BEHAVIOR IMPLEMENTATION

5.1 Learning Agents

Learning has the advantage of allowing agents to initially operate in unfamiliar environments and
to become more competent as time goes by. The most important distinction is between the “learn-
ing element,” which is responsible for making progress, and the “performance element,” which is
responsible for selecting external actions.

The learning element uses feedback from the “critic” on how the agent performs and determines
how the performance element should be modified so that the agent will do better in the future. The
performance element is what we have previously considered the entire agent: It takes in percepts
and decides on actions. The learning agent model is shown in Figure 4.

5.2 User Agent

5.2.1 User Behaviors. User agents simulate cloud users’ behaviors with the aim of meeting their
needs and achieving their goals. Therefore, behaviors of user agents comprise four parts: (1) gener-
ation of requests, (2) sending requests, (3) choice of services, and (4) use and evaluation of services.

Figure 5 shows the main algorithm flowchart of user agents. First, user agents periodically and
randomly generate a new service request according to service preferences. Second, they send re-
quests to several broker agents they trust. Third, they choose service partners according to the
similarities between the recommendation services and their requirements. Last, they consume the
selected services, send feedback on their satisfaction to the brokers and then update the recom-
mendation trust of the brokers.

It is natural that users tend to cooperate with brokers with a larger volume of transaction records
and a higher degree of trust. Therefore, when user agents choose services, the decision they make is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:15

Fig. 4. Learning agent model.

based on the combination of the similarity of the recommended service with the recommendation
trust of the recommender/broker.

When a user agent receives a recommendation message PROPOSE (BrokerAgent, Recom_

Provider, SLA_Description) from a broker agent, it compares the real service demand with the pro-
vision and then chooses the most suitable one. At the same time, it updates the trust value of the
corresponding partners. Algorithm 1 shows the above process.

In TSLAM, cloud users use Equation (4) introduced in Section 4.3.2 to compute the expected
satisfaction (similarity) of the different services recommended by the different brokers. If no service
is chosen or no broker replies, then the user discards this request and sends a new request after a
certain time. In addition, in every fixed period, as long as the number of brokers is not saturated,
users try to find new brokers.

5.2.2 Reflection of the Implicit Requirements. In TSLAM, Service_Description in CFP (User-
Agent,Service_Description) is the only open part of the user request that is slightly different from
Request_Detail, which is the complete description of the request. Because of this, brokers do not
know the exact service preferences of their customers. Moreover, since users use their real service
preferences to choose and evaluate the services, brokers may gradually learn the preferences
using the learning mechanisms.

5.3 Broker Agent

Broker agents represent the third-party agencies in the cloud market, specializing in service rec-
ommendation. The main behaviors of a broker agent are as follows: (1) select appropriate providers
to manage from the provider list, (2) recommend appropriate services to users, (3) maintain the
credibility of their users and resource providers, and (4) try to learn their customers’ service pref-
erence from the historical transaction data for the subsequent selection of service resources.

Of these behaviors, the core ones are service matching and service preference learning. Figure 6
shows the main processes of the service matching algorithm. First, brokers listen to the service re-
quests from users, and, once received, they immediately start the service recommendation process.
Brokers select the most suitable services according to the specific service-matching rule from the
services they manage. Once the recommendation is adopted, the broker contacts the correspond-
ing provider for confirmation and after this, he sends a confirmation to the user. Finally, based on
the performance of the provider and the user during the transaction, the broker updates their trust
values.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:16 W. Li et al.

Fig. 5. Algorithm flowchart of user agents.

The main difference between this article and the general service matching process is that, in
this article, the service requests of users are semi-open, which means brokers can only calcu-
late the similarity of the open part and thus recommend a service. However, the attributes of the
recommended services are completed. Therefore, brokers can gradually learn the real intent and
preferences of users according to whether or not they adopt the services and the final evaluation

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:17

ALGORITHM 1: When user agents receive message PROPOSE (BrokerAдent , Recom_Provider ,
SLA_Description)

Calculate_similarity (Request_Detail , SLA_Description)

if all recommendations received or timeout then

brokeri with smallest similarity→ chosen_broker

send CONFIRM(UserAдent , ACCEPT) to chosen_broker

Recommendation_accuracy[chosen_broker] += 1;

foreach brokeri ∈ request_Broker []

if reply in due time then

if (brokeri <> chosen_brokeri) then

send CONFIRM (UserAдent , REJECT)

Recommendation_accuracy[brokeri] −= 1;

end if

else

Recommendation_timeliness[request_brokeri] −= 1

if trust[request_brokeri]← 0 then

remove(request_brokeri,Blist)

end if

end if

update_trust (brokeri , Recommendation_accuracy[brokeri],

Recommendation_timeliness[brokeri])

end for

end if

Wait_for_confirm (chosen_broker)

if msg == ACCEPT then

Consume service . . .

Satisfaction = Evaluate_service();

if Satisfaction >= 0.5 then

Recommendation_reliability[chosen_broker] += 1;

else

Recommendation_reliability[chosen_broker] −= 1;

end if

Send_satisfaction(chosen_broker);

else

Recommendation_reliability[chosen_broker] = 0;

end if

update_trust (chosen_broker , Recommendation_reliability[chosen_broker]);

of the services. In addition, we add the trust factor into the process of service recommendation.
Brokers update the trust of the providers according to the performance before trading (service
registration) and during the trading, the value of which will influence the next recommendation.
Furthermore, the user’s contribution to the broker’s trading volume also directly affects the weight
of the satisfaction evaluation offered by the user, because the broker’s aim in obtaining the data is
to adjust their resource/service structure to improve the satisfaction of their important customers.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:18 W. Li et al.

Fig. 6. Service-matching flowchart of broker agents.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:19

A trust-enabled service recommendation mechanism and learning mechanism are introduced
in the following sub-section.

5.3.1 Recommendation Mechanism. In TSLAM, Rrecommend is used to express the probability
that a certain provider is recommended. Here, Rrecommend is affected by three factors: matching
factor, sales factor, and trust factor (including satisfaction and reliability).

The recommendation probability is the result of the these three factors. Equation (7) shows the
computation of Rrecommend ,

Rrecommend = α ∗ Rmatch + β ∗ Rsale + γ ∗ Rtrust . (7)

Here,Rr ecommend is the recommendation probability of a certain provider,Rmatch is the matching
factor, Rsale is the sales factor, Rtrust is the trust factor, and α , β , andγ are the weights of the above
factors, and the sum is 1.

Matching factor Rmatch represents the similarity between the user’s request and the resources,
which is the similarity of vectorU (p1,p2,p3, . . . ,pn) to S (p1,p2,p3, . . . ,pn). Here cosine similarity
is used to calculate Rmatch using Equation (8),

Rmatch =

∑
Spk j

×U p i j√∑
Spk j

2 ×
√∑

U p i j

2
, (8)

where Spk j
is the jth attribute value of the service Sk and Upi j

is the the requirement value of user
i for the jth attribute

The sales factor is the rank of providers managed by the broker and the popularity of the cloud
service providers. Sales factors can be calculated by Equation (9),

Rsale = 1 − ranki

Nprovider
, (9)

where ranki is the sales ranking of provider i in the broker agent and Nprovider—the number of cloud
providers managed by the broker.

The trust factor reflects the degree of reliability and satisfaction of a provider. In TSLAM, we
use Equation (6) to calculate the value, which is introduced in the trust section.

Although the requests sent by users are not complete, this doesn’t affect service matching.
Brokers compute the similarity of the open part of a request to the corresponding part of a
service (using cosine similarity), which is the first factor of recommendation. The probability
that a provider is chosen by users (popularity) is the second factor, which is consistent with
the sales factor in a real market, because a hotspot is more likely to be selected, and the user
satisfaction combined with the recommendation trust of the user is the final factor. Therefore,
TSLAM comprehensively considers the function and non-function attributes of the requirements,
because the user’s QoS preference will gradually manifest in his satisfaction rating of the service.

When broker agents receive a message CFP (UserAgent,Service_Description), Algorithm 2 is
executed.

ALGORITHM 2: When broker agents receive message CFP (UserAдent , Service_Description)

foreach provideri ∈ Plist
Calculate Rrecommend[provideri]

end for

Provideri with maximum Rrecommend → Recom_provider
send PROPOSE(BrokerAдent , Recom_Provider , SLA_Description)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:20 W. Li et al.

Algorithm 2 shows that when a broker agent receives a query from user agents, he chooses a
specific provider according to the Rrecommend value. However, the user also has the right to accept
or reject the recommendation. When a broker agent receives a message CONFIRM (UserAgent,
ACCEPT/REJECT), Algorithm 3 is executed.

ALGORITHM 3: When broker agents receive message CONFIRM (UserAдent , ACCEPT/REJECT)

if (msg == ACCEPT) then

send CFP (BrokerAдent , Service_Description) to Recom_provider
Waiting for reply message CONFIRM (ProviderAдent , ACCEPT/REJECT)
if (reply == ACCEPT) then

Send CONFIRM (BrokerAдent , ACCEPT) to user agent
Total_recommendation_num++;
User_adopt_num[user]++;
update_trust(user_list);
wait for user consume the service. . . .
wait for the user’s feedback..
if Satisfaction >= 0.5 then

satisfaction[Recom_provider] += 1;
else

satisfaction[Recom_provider] −= 1;
end if

else

Send CONFIRM (BrokerAдent , REJECT) to user agent
Reliability[Recom_provider] −= 1;

end if

else

reject_num + +
if reject_num > N then

Delete Recom_provider from Plist
end if

end if

update_trust (Recom_provider , Reliability[Recom_provider], satisfaction[Recom_provider]);
if (trust[Recom_provider] <= 0) then

Delete Recom_provider from Plist
end if

Algorithm 3 shows that when a broker agent receives a user agent’s acceptance, he or she
launches the application to the corresponding service provider. If the provider agrees to offer ser-
vices, then he or she confirms to the user that the service is available. If the provider refuses to
provide the services, then its trust value is reduced. However, if the user rejects the service, then
it increases the reject time of this provider. When the reject time of a specific provider exceeds
a threshold, the provider is deleted from the local recommendation list. When the transaction
is completed, the broker agent updates the provider’s satisfaction degree according to the user’s
feedback on the service.

5.3.2 Learning Mechanism. The free market, at the beginning, was in a state of chaos, because
entities did not know the specific circumstances of the other partners, including their abilities,
preferences, and so on. However, to maximize their interests, in the process of a continuous game,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:21

Fig. 7. Learning process of brokers.

they eventually reach a relatively stable and balanced situation. This state of equilibrium in spon-
taneous free markets needs to evolve over a long time. To accelerate the process, a learning ability
is added in the operation mechanism of the broker agent. The learning ability of market agents
has many advantages: (1) It reinforces the law of the survival of the fittest, that is, brokers and
providers who care about the real needs of users are continuously strengthened, while those who
do not confirm the appropriate service face the possibility of elimination; (2) it accelerates mar-
ket differentiation, which means that brokers will gradually learn their customers’ preferences and
make clear their market positioning. When brokers can learn the main requirements of their clients
very well and strengthen themselves in this respect, due to the randomness of the initial stage of
service requests and responses, over time, they will inevitably lead to market differentiation along
with the entire cloud services market being divided into different types.

Figure 7 shows the learning process of the brokers in TSLAM. Brokers constantly study and
learn something new from trading history. They collect transaction data, and according to a certain
rule, determine the service samples to enter the positive or negative set. Second, to eliminate the
influence of dimensions of the different service attributes, data normalization is performed. When
they gather a specific amount of transaction data, brokers start the learning module. In this article,
the decision tree algorithm is adopted to obtain the learning result. At intervals, if the managed
providers of the broker are not saturated, it tries to find out more from the market. At this point, to
input the service attributes of the providers to the learning result of the decision tree, brokers can
obtain the judgement of whether or not to continue cooperation. Therefore, the learning module
helps brokers to revise their resource strategies to become more competitive in the cloud market.

The idea of this article is different to traditional recommendation systems, because here, the
target of broker learning is not to recommend additional services, but to adjust the structure of
the services they manage to improve user satisfaction. Moreover, user preferences in this article
are not directly applied to each service matching, but to adjust the provider/service structure of a
broker. The recommended providers or services that are adopted by the users and the satisfaction
that is higher than a certain threshold become positive samples, and those rejected multiple times
enter the negative sample set, thereby constructing the training set and generating the decision
tree. When brokers want to introduce more providers, they use the decision tree model to make
the judgement. Obviously, since new providers are selected according to user preferences, they
are closer to the real requirements of the users and since the adjustment is ongoing, this ensures
that even if users have implicit service requirements, the overall service attributes of the broker
are gradually approaching the real service demand of users.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:22 W. Li et al.

Fig. 8. Main flowchart of the learning algorithm.

(1) The main parts of the learning mechanism
In TSLAM, the learning mechanism consists of three parts: training, elimination and

selection. The training uses the transaction samples to build the decision tree. Given the
constraint that the number of providers managed by a broker agent is less than a cer-
tain threshold, this is in line with the reality that managing resources also incurs a cost.
The elimination deletes those unfavorable providers (providers with big reject_number) to
maintain a more competitive team. The selection periodically adds new and competitive
providers. Figure 8 shows the flow of the learning algorithms where the diagram on the
left shows how brokers adjust the service structure, and the diagram on the right shows
how they build the decision tree.

(2) Decision tree-based learning and selection algorithm
In TSLAM, the decision tree algorithm is used to decide whether a provider is suitable

or not. This algorithm comprises two parts: training and selection. In the training, the
training set is organized according to the previous trading records of users’ feedback, af-
firmation, rejection, and satisfaction. In our model, the accepted resources are treated as
positive reception, while service resources that are rejected several times are counterex-
amples, providing the basis for the follow-up resource selection for brokers. The selection
helps brokers find suitable providers who can guarantee to meet their customers’ pref-
erences according to the results of the training process. To better deal with continuous
values that seem more common in the transaction context, the C4.5 algorithm is used to
build the decision tree. The basic steps of the algorithm are shown as follows.

In the structure of the decision tree, each internal node represents a property and the branch
of the node indicates the possible result of the attribute. In TSLAM, node attributes include price,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:23

ALGORITHM 4: Broker agents build the decision tree

Input: traininд_data, success_transaction_num, attributeList
Output: the root of the decision tree
if ((!traininд_data.isEmpty())&&(success_transaction_num > γ)) then

DecisionTree dt = new DecisionTree(attributeList , traininд_data);
dt .buildDT ();
root = dt .дetRoot ();

endif

network bandwidth, memory size, and so on. The branch nodes are the values of the corresponding
attributes, namely the attribute value under the restriction of service acceptance. Algorithm 5
shows the detail of builtDT().

When a decision tree is built, broker agents are able to select the appropriate providers. Algo-
rithm 6 shows how to make decisions based on this.

ALGORITHM 5: The procedure of buildDT ()

Input: node , traininд_data, attribute_List
Output: the decision tree
if (all samples in traininд_data are in one category) then

node .setDecision(yes or no);
return;

else

node .setDecision(“node”);
endif

Node_List childtree;
foreach attributei ∈ attribute_List

entropy = calNodeEntropy(traininд_data, attributei);
if(entropy < minEntropy) then

minEntropy = entropy;
chose_attribute = attributei ;

endif

endfor

tmpList = attribute_List .remove(chose_attribute);
attvalues = chose_attribute .attributevalue;
foreach val ∈ attvalues

Node newnode;
newnode .setValue(val);
childtree .add(newnode);

foreach(data ∈ traininд_data)
if(data.getvalue(chose_attribute).equals(val))then

data_subset .add(data);
endif

buildDT(newnode,data_subset , tmpList);
endfor

endfor

node .setChildren(childtree);

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:24 W. Li et al.

ALGORITHM 6: Judging whether a provider can be selected

Input: PS_Data, root
Output: judдe(Boolean value: yes or no)

boolean judдe = false;
Node node = root ;
while (node .getDecision().equals(“node”))
do

if (!node .hasChild()) then

break;
endif

Node_List childtree = node .getChildren();
foreach child ∈ childtree

PS_Value = PS_Data.getvalue(child .getAttribute());
if(child .getValue().equals(PS_Value))then

node = child;
break;
endif

endfor

done

if(node .getDecision().equals(“yes”)) then

judдe = true;
endif

return judдe;

(2) A simple example to show how the learning mechanism works
Following is a simple example to illustrate how the decision tree algorithm can help to choose

providers that meet the service preference of the users.
When providers in the provider list are chosen or rejected by the users, they are added into the

training list. For example, the training list managed by a broker is shown in Table 7.
Using the above training data, the decision tree is built. Figure 9 shows the result.
Then when the broker wants to choose providers that meet the service preferences of the cus-

tomers, it uses the decision tree to make the judgement. For example, Provideri whose capability
is pi(low, small, no) will not be chosen for the broker’s service pool, because it goes to the decision
of “no.” Learning mechanism is an iterative process. Thus, after several iterations, broker agents
gradually make clear their mainstream types of services.

Although service requests in this article are assumed to be incomplete and include implicit de-
mands, this means that in the service matching step, brokers can only calculate the similarity
between the open part of a service request and the provision and based on it, they perform rec-
ommendations. However, this does not prevent brokers from gradually learning user preferences
through multiple transactions, because brokers grasp the complete information of the services,
which enables them to understand the implicit requirements of users whether or not the service is
adopted and the user’s satisfaction after using the service. Moreover, brokers adjust their provider
structure at regular intervals, and the providers selected by user preferences are closer to the ac-
tual needs of users. In this way, brokers have a greater chance of successful recommendations in
the future.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:25

Table 7. The Training List

PID price storage reliable Yes/no
1 high big yes yes
2 high big no No
3 high medium yes No
4 high small yes No
5 high medium no No
6 mid medium no No
7 mid big yes Yes
8 mid medium yes Yes
9 mid big no No
10 mid medium yes Yes
11 low big no Yes
12 low medium yes Yes
13 low big yes Yes
14 low small no no
15 low medium no no

Fig. 9. Decision tree in the example.

5.4 Provider Agents

Provider agents are the managers and organizers of cloud resources, or can simply be seen as
the cloud resource pool. The core behaviors of provider agents are as follows: (1) complete the
registrations in the cloud platform, (2) determine whether or not to provide a service according
to the load or other factors after the broker agents’ service requests are received, and (3) provide
service to cloud users.

When provider agents receive a message CFP (BrokerAgent, Service_Description) from a broker
agents, Algorithm 7 is executed.

6 PERFORMANCE EVALUATION

6.1 Experiment Design

Simulations are adopted in the subsequent experiments, because real environments, especially
cloud service markets, are extremely complicated and have many fuzzy and uncontrollable factors,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:26 W. Li et al.

Table 8. Comparison of Multi-agent Simulation Tools

Name
Open
source Domain

Simplicity/
Learnability Performance Scalability User support Popularity

JADE Yes Distributed
applications
composed of
autonomous
entities

User-friendly
GUI, many
familiar features,
easy to learn
(many examples)

High High High (FAQ,
mailing list,
defect list, API,
docs)

High
(most
popular)

JadeX Yes Distributed
applications
composed of
autonomous
BDI entities

User-friendly
GUI, many
features, average
to learn

High High Average (docs,
mail contact)

High

JACK No Dynamic
and complex
environ-
ments

User friendly GUI,
easy to learn

High High High (extensive
documentation
and supporting
tools)

High

EMERALD Yes Distributed
applications
composed of
autonomous
entities

User-friendly
GUI, many
familiar features
(based on JADE
platform), easy to
learn

High (on
JADE)

High (on
JADE)

Average (docu-
mentation, mail
contact)

Low

ALGORITHM 7: When provider agents receive CFP(BrokerAдent , Service_Description)

Evaluate the service request
if the request is beyond its capability then

Send CONFIRM(ProviderAдent , REJECT) to the broker agent
else

Send CONFIRM(ProviderAдent , ACCEPT) to the broker agent
endif

which cause difficulty in repeating experiments under the same conditions, and also adjusting
one single index and its value in each experiment and accurately measuring the impact of our
methods on service matching. Therefore, we evaluate our approach using JADE [57], a multi-
agent framework by deploying it on the Ali-Cloud server ECS, configured with a four-core CPU,
16G memory and operating system Windows Server2012 64bit Chinese Edition.

6.1.1 The Selection of the Simulation Tool. In the past two decades, to study multi-agent sys-
tems, the research community and many companies have developed a variety of agent platforms,
which give researchers many choices. Currently, JADE is the most popular, since it is industry
driven, free, open source, high performance, and stable. Reference [58] analyzed, classified, and
compared 24 multi-agent simulation tools in many aspects. Here, we select 4 that are in complete
compliance with FIPA specifications for comparison, because FIPA standards specify many pow-
erful and well tested protocols that enable agents to cooperate and interoperate in the dynamic,
flexible and reconfigurable cases. From Table 8, we can see that JADE has more advantages over
the others.

6.1.2 The Simulation System Based on JADE. The agent-based cloud market system comprises
five parts: communication network, JADE main container, agent libraries, agent behaviors, and
runtime interface. Figure 10 shows the overall design of the simulation platform.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:27

Fig. 10. Overall design of the simulation system.

The communication network provides the interactive environment and communication chan-
nels for different types of agents. JADE’s main container provides a runtime environment for the
execution of all the other agents, which is created automatically when a JADE platform starts. It
consists of three components: Agent Management System (AMS), Directory Facilitator (DF), and
Agent Communication Channel (ACC). AMS provides white page and life cycle services, main-
tains Directory of Agent Identifiers (AID) and the states of all agents. DF provides a yellow page
service. ACC controls all the message exchanges of the platform.

The agent library is the container of agent instances. Despite the automatically generated agents
of JADE, in TSLAM, there are three types of agents: provider agents, broker agents, and user agents.
Thus, agent libraries are used to store instances of the agents. In a self-organizing system, agents
use behaviors to sense the surroundings, and they also use behaviors to actively adjust and in-
fluence the surroundings. In TSLAM, we design three types of agent behaviors: self-maintenance
behaviors, market-related behaviors, and additional function behaviors. Self-maintenance behav-
iors contain the basic behaviors for keeping the survivability, dynamics, and sociality of an agent

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:28 W. Li et al.

Fig. 11. UML diagram of agent classes.

Fig. 12. UML diagram of service classes.

in the lifecycle. Market-related behaviors are designed to carry out the transactions and service
evaluations in a cloud market. Additional function behaviors include the active learning mech-
anisms and the trust management mechanisms. The learning mechanisms are mainly found in
broker agents, helping them analyze their customers’ service preferences and optimize resources.
The trust management mechanisms ensure cloud entities conduct transactions under credible con-
ditions thus improving the success rate of transactions.

The runtime interface is a user-friendly interface that allows observers to observe the transac-
tions in the market.

The simulation system is developed on NetBeans IDE 8.1. Figures 11 and 12 show the UML
diagram of the agents.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:29

The main ideas of the development are as follows. First of all, we start Multi-Brokers, Multi-
Users, Multi-Providers three agents after launching the IDE. Multi-Brokers will automatically gen-
erate the specified number of LearningBrokers, Multi-Users will automatically generate the speci-
fied number of UserAgents, and Multi-Providers will automatically generate the specified number
of ProviderAgents. Each market agent, such as LearningBroker, UserAgent, and ProviderAgent,
randomly completes its own parameter configuration at the time of creation, then registers with
the JADE Main Container and requests a list of global agents. Under the control of a certain prob-
ability and saturation, UserAgent will register with some LearningBrokers, and ProviderAgent is
also the case. Those successfully registered ProviderAgents form the initial provider collection of
several LearningBrokers. Because the registration is done at a certain probability, this ensures the
initial resource structure and customer group for each broker are random. In the process of market
transactions, each UserAgent issues a new service request periodically according to its preference.
The familiar LearningBrokers perform service recommendation, and then the UserAgent makes
a selection. Then the UserAgent and the ProviderAgent directly interact. After the transaction,
UserAgent sends the service evaluation to the LearningBroker.

The main process of learning is as follows: When a LearningBroker recommends a service for
a certain UserAgent, it decides whether the service sample can be added into the learning base
according to a certain threshold of service satisfaction and also whether the recommended service
is adopted or not. In addition, each time when the number of transactions accumulates to a certain
amount, a LearningBroker starts the learning algorithm and obtains the user preference to guide
the next iteration selection of providers.

In the simulation system, ServiceRequest class and SeviceRecommendation class both inherit
from the Concept class. Moreover, to distinguish the service requests initiated by a same user but
at a different time, a Time_Stamp attribute is supplemented by the class.

6.1.3 The Implementation of the Simulation Environment. There are many types of cloud ser-
vices, such as cloud storage services, cloud virtual machine services, cloud database services, and
so on, provided by different providers and each having different performance attributes. Although
different services differ in their attributes, service matching processes are almost the same. There-
fore, without loss of generality, we select the cloud server service as the targeted service in our
experiments.

Take the cloud server service offered by the largest cloud service provider Ali-Cloud as an ex-
ample. The main service parameters comprise three categories: instance (including operating sys-
tem, geography, CPU + memory, price), disk (including disk type, capacity, price), and bandwidth
(including specifications and price). The type of operating system and the geography are both the
hard constraints and have little effect on the service classification in the virtualized scenario, there-
fore, in the simulation experiments, we select (1) CPU+memory (ram), (2) disk capacity (space),
(3) bandwidth (bd), and (4) price as the metrics. To better demonstrate the reliability and availabil-
ity of services, we also include an indicator (5) reliability (reliable). The value of each attribute in
the following experiments is derived from the SLA of the Ali-Cloud ECS service [59].

Table 9 shows the principal types of ECS and their SLA parameters. As can be seen from the
data in the table, Ali-Cloud provides corresponding solutions for different demands, and even for
the same type of demand, it provides a wide range of performance options. However, this is not
conducive to the analysis of user preferences in the subsequent experiments. To simplify the clas-
sification problem and highlight the differences between the different types of user requirements,
based on the Ali-Cloud ECS service types, we let the value of a service be in the reference range but
take a relatively large value on the corresponding category attribute, while taking a small value

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:30 W. Li et al.

Table 9. The SLA Parameters of Ali-Cloud ECS Service

Service Type CPU + Ram Disk Capacity Bandwidth Price/year

Beginner 1core + 0.5GB→ 16core + 32GB 20—500GB 0.1—1.2Gbps From �570.00

Universal 2core + 8GB→ 64core + 256GB 20—500GB 1—20Gbps From �2070.00

Computation 2core + 4GB→ 64core + 128GB 20—500GB 1—20Gbps From �1643.00

Ram 2core + 16GB→ 56ore + 480GB 20—500GB 1—20Gbps From �2646.00

Storage 8core + 32GB→ 56ore + 224GB 20—500GB 3—17Gbps From �16497.00

Local SSD 4core + 32GB→ 64ore + 512GB 20—500GB 0.8—10Gbps From �9036.00

High frequency
computation

2core + 4GB→ 56ore + 160GB 20—500GB 1.5—10Gbps From �2499.96

GPU 2core + 8GB→ 54ore + 480GB 20—500GB 10—25Gbps From �5697.00

FPGA 8core + 60GB→ 56ore + 224GB 20—500GB 5—10Gbps From �22455.00

Ebmg5 8core + 32GB→ 96ore + 384GB 20—500GB 6—10Gbps From �15493.68

Table 10. The Main Parameters of the Experiments

User
number

Broker
number

Provider
number

Service
frequency

Max connected
brokers

Max managed
providers Service type

50 20 1000 1/min/user 5/user 100/broker reliable/bandwidth/
space/ram/price

on the other attributes. In addition, to eliminate the impact of the dimension, we normalize the
data between 0 and 100.

The initialization phase of the simulation experiment generates a series of user agents, broker
agents and provider agents. Each user agent has its unique preference, therefore, its service re-
quests are generated randomly on the basis of the preference. Each provider agent also has the
above five properties, in accordance with the performance differences, which are randomly as-
signed a value between 1 and 100. User agents at regular intervals (in this experiment it is per
minute) produce a new service request, and they only tell the broker agent part of their demands,
say, only three dimensions of the accurate demands, i.e., using a semi-open mode. However, when
the transactions are finished, the service satisfaction is evaluated according to the complete service
demands. Therefore, the broker agent does not know the exact user service preference and has to
sum up and learn in the long run after a number of services have been supplied. Table 10 shows
the parameters of the subsequent experiments.

To verify the performance of TSLAM, the experiments are conducted from the following three
aspects: (1) whether or not the broker agent can accurately learn the user agents’ service prefer-
ences with an increasing number of iterations, and whether or not they can determine the main-
stream service type on their own so as to achieve market differentiation; (2) in the dual role of
the trust and learning mechanism, whether or not the success ratio and user satisfaction can be
improved and whether or not the cloud market can evolve faster; and (3) the efficiency of the trust
mechanism.

6.2 Experiment 1: The Effect of the User Preferences Learning Model

Fifty user agents were generated randomly in the experiment, each of which chose one service
preference from a total of five kinds (price, ram, space, bd, reliable) randomly in the initial stage.
At the same time, twenty broker agents and one thousand service providers were produced. Broker

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:31

Fig. 13. Cloud market differentiation revolution in the ideal environment.

Fig. 14. Cloud market differentiation evolution in the presence of 10% malicious providers.

agents were responsible for putting up a communicating bridge between users and providers, and
they needed to learn the service preferences of their users constantly during the transactions.
Provider agents were responsible for providing services with different performance, reliability
and cost. The purpose of the experiment was to observe the division process of the broker agents.
We conducted two groups of experiments, one of which was in an ideal environment, in which
providers always provided services in accordance with the quality of claims, the other was in the
presence of a small amount (10%) of malicious providers who provided services below their stated
quality. The differentiation results of the broker agents are shown in Figures 13 and 14.

In the chart, the vertical axis represents the number of brokers whose main service type is one
of the five in the market and the horizontal axis represents the number of iterations. Thus, changes
in the curve reflect the changing number of brokers with different service types reflecting the
influence of the learning mechanism. It can be seen from the experiment results that in the early
iteration, the service tendency of each broker agent varied, showing that the learning process

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:32 W. Li et al.

continued and the differentiation was not very clear, then at a later stage, changes gradually
eased, after which ultimately, the broker agent’ preferences no longer changed, which indicates
not only the convergence of the algorithm but also the cloud market reaching an equilibrium
state. In addition, the comparison of Figures 13 and 14 shows that this algorithm, regardless of
the ideal state, or in the presence of malicious providers was able to ensure the effectiveness of
the differentiation. However, convergence speed under ideal conditions was relatively faster.

6.3 Experiment 2: Performance Comparison of Cloud Market

under Different Strategies

In TSLAM, the trust mechanism is used to find the “bad” trading entities. Here, “bad” or “malicious”
indicates the behaviors of providers that do not provide services in accordance with the declared
quality, do not respond in a timely manner caused by congestion, make false recommendations,
and so on. At the same time, the learning mechanism in TSLAM helps brokers learn the users’
service preferences and determine their market positioning.

To better analyze the performance of TSLAM, several models were compared: (1) the proposed
model in this article (TSLAM), (2) agent-based cloud service matching model [33] (G&Sim model),
(3) T-broker model [9], (4) the price priority model (Price model), (5) the performance priority
model (Performance model), and (6) random trading model (Random model).

The G&Sim model is one of the most representative agent-based cloud service matching models.
The T-Broker model appears to be similar to TSLAM, which is also a trust-based service matching
model. The latter three models are the subtraction models of TSLAM, which are obtained by re-
moving some mechanisms from the complete proposed model in this article. The Price model and
Performance model remove the learning part of TSLAM and adopt different recommendation rules.
The Price model aims to minimize cost, while the Performance model recommends services with
the best function attributes. The Random model removes both the learning and trust mechanism
from TSLAM and uses a random recommendation method.

Although the other models do not consider a situation where implicit requirements exist, this
doesn’t matter, because in the service matching step, brokers can calculate the similarity between
the open part of a request and the corresponding part of a service. Moreover, after the transactions,
users evaluate the services based on their complete demands, which ensures user satisfaction is
comprehensive and meaningful.

However, another problem is that T-broker is actually essentially different from TSLAM, be-
cause it uses a centralized broker. In the case of a centralized broker, since there is only one service
matching broker in the market, without any other options, users have to accept the recommen-
dation, so the transaction success rate can be always maintained at a high level. Thus, comparing
the success rate and convergence rate with T-broker doesn’t make much sense. Therefore, in the
following experiments, T-broker is only used in the comparison of user satisfaction.

In this article, user satisfaction refers to the identical degree of the users’ actual obtained re-
source level with their expected resource level. Since we consider five aspects of QoS requirements:
price, ram, space, bandwidth, and reliability, we use Equation (10) to calculate a single user’s sat-
isfactory degree,

Sati = ln

(
μ (Epricei)

Pricei
+
ρ (Erami)

Rami
+
φ (Espacei)

Spacei
+
τ (Ebdi)

Bdi
+
ω (Ereliablei)

Reliablei

)
, (10)

where Epricei is the expected price ofuseri . Accordingly, Erami , Espacei , Ebdi , and Ereliablei are
the expected ram, space, and bandwidth of useri . The total user satisfaction is the average value

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:33

Fig. 15. Empirical result of user satisfaction under different strategies (without malicious providers).

Fig. 16. Empirical result of transaction success rate under different strategies (without malicious providers).

of all the users,

Sat =
1

n

n∑
i=1

Sati . (11)

We carried out two sets of experiments in different situations: (1) an ideal cloud market envi-
ronment (without any malicious providers) and (2) an unstable market environment (with 40%
malicious providers). Figures 15, 16, and 17 show the experiment results of the ideal market envi-
ronment and Figures 18 and 19 show the results of the second situation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:34 W. Li et al.

Fig. 17. Empirical result of convergence speed under different strategies (without malicious providers).

Fig. 18. Empirical result of user satisfaction under different strategies (with 40% malicious providers).

The experiment results of these different strategies are compared. The horizontal coordinate
represents the total number of transactions. Figure 15 reflects the changed curve in user satisfac-
tion, Figure 16 reflects the variation in the transaction success rate, and Figure 17 shows the change
in the curve of the market convergence ratio (the volatility of the stability of the broker in a very
small range). By processing, the results of the experiment data were limited to within 0–1.

From the experiment results, we can see that the transaction success rate and the user satisfac-
tion of TSLAM are higher than the other models. The random trading model has the worst effect,
which indicates that the free market is chaotic and inefficient. TSLAM is equipped with a learning
module, which ensures the brokers gradually learn user preferences through the accumulation of
transaction volume. Thus, in the new round of the provider introduction, brokers are able to select

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:35

Fig. 19. Empirical result of success transaction rate under different strategies (with 40% malicious providers).

providers based on the preferences, thereby optimizing its resource structure and making it closer
to the users’ demands. From the curve, we can see that user satisfaction and success rate are al-
ways on the rise. Without a learning ability, the other models do not perform as well as TSLAM.
However, T-broker uses a centralized mechanism, and the only broker in the market manages all
the service providers. This measure enables the broker to implement recommendations for users,
so the initial satisfaction is higher than TSLAM. Nevertheless, T-broker has no learning ability for
the potential demands of users, so it can maintain the performance at a certain level, but not at
a significant rise. The Price model and the Performance model remove the learning module from
TSLAM. So, when faced with users’ implicit requirements, they use a one-size-fits-all approach,
either minimizing the cost or maximizing the functional performances, hence their satisfaction is
lower than TSLAM. The G&Sim model is a similar situation.

From the perspective of convergence rate, TSLAM converges faster than the other models. The
reason for this is that after a period of transactions, brokers are clear about their customers’ real
requirements, and the providers that are managed by one broker gradually become saturated as the
recommendation success rate and the positive samples increase, which indicates that the status of
the broker is stable and the service classification is finished. However, we also notice that although
there are no trust or learning mechanisms in the other models, with the increasing number of
transactions, the transaction success rate and user satisfaction gradually increase, despite the pace
of ascension being slower than TSLAM. This can be explained by the fact that an implicit learning
mechanism does exist in the fundamental layer of the traditional markets that is gained through
the numerous direct exchanges and transactions between consumers and providers, despite the
fact that this process is very slow.

The second set of experiments has 40% of malicious providers in the market. To highlight the
contrast effect, malicious providers here are not those who do not provide services according to
their SLAs but are those who do not provide services at all. The purpose of the experiments is
to observe the impact of trust plus the learning mechanism on service matching. Figures 18 and
19 show the results. It can be seen that the G&Sim model and Random model are most affected
by the untrusted nodes, and their performance drops obviously, because they do not have a trust
mechanism. T-broker has a trust-equipped broker to help users find services. Price model and Per-
formance model retain the trust module of TSLAM. Trust-enabled service matching models help

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:36 W. Li et al.

Fig. 20. Empirical results of user satisfaction with different ratios of malicious providers.

Fig. 21. Empirical results of transaction success rate with different ratios of malicious providers.

cloud entities to gradually know the integrity of others, and hence avoid trading with malicious
nodes. All these strategies reduce the likelihood of invalid or false transactions and improve user
satisfaction. Moreover, TSLAM again performs better than the other models in terms of satisfaction
and success rate owing to the additional learning ability.

In conclusion, the learning and trust mechanisms in TSLAM improve the efficiency of the cloud
services market and accelerates market differentiation.

6.4 Experiment 3: Evaluation of the Effectiveness of the Trust Mechanism

This set of experiments individually assesses the impact of the trust mechanism on the perfor-
mance of the cloud market. Different proportions of malicious nodes, including malicious provider
nodes and malicious broker nodes, were specially added in the experiments. Malicious providers
refer to those providers who refuse to serve in accordance with the claims of the SLA or perform
a denial of service attack on the connected users because of service congestion or other reasons.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:37

Fig. 22. Empirical results of user satisfaction with different ratios of malicious brokers.

Fig. 23. Empirical results of transaction success rate with different ratios of malicious brokers.

Malicious brokers are those who provide false recommendations or close the service interface after
the users have accepted their recommendation. Figures 20–23 show the results of the experiments.

Figures 20 and 21 reflect the results of the experiments by adding different proportions of ma-
licious providers. The abscissa represents the malicious provider proportion. To evaluate whether
the trust mechanism can effectively assist the other trading mechanisms, the timely detection of
the malicious nodes and market stability maintenance, the proportion of malicious providers in
the experiment is increased from 0% to 100%, although the ratio of malicious nodes in the real
market may not be so high.

It can be seen from the experiment results that even if bad providers who refuse to provide
services according to the SLA exist, a trust-injected cloud service trading model can still ensure
the overall success rate of transactions and customer satisfaction.

Figures 22 and 23 show the experiment results with different proportions of malicious brokers.
It can be seen that even if some bad brokers who occasionally offer false recommendations exist,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:38 W. Li et al.

Fig. 24. Effect of trust on total execution time.

Fig. 25. Percentage of increased time overhead by trust.

trust mechanism-assisted cloud market trading strategy is still able to maintain a high transaction
success rate, customer satisfaction and market stability.

To measure the overhead of trust, we also compared the impact on the total execution time with
and without trust. The results in Figures 24 and 25 show that the total execution time is very close.
Figure 25, which is quantified by a percentage of the additional time overhead, indicates that the
actual increased system execution time is negligible in large-scale transactions. In addition, a few
nodes show a shorter execution time when trust is loaded, because after the trust mechanism has
been running for a period of time, since the users have accumulated the reputation of others, they
are more likely to select a reliable transaction partner, thereby avoiding the re-selections in the
random transactions, thus, to a certain extent, reducing the time.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:39

7 CONCLUSIONS AND FUTURE WORK

This article presented a novel cloud market model based on the multi-agent platform and trust
mechanism. The new model uses smart agents to replace the behaviors and targets of the different
entities in the cloud market, comprising a three-layered cloud trading structure. Relying on the
dual role of trust and learning mechanisms, the efficiency of the market is improved and mar-
ket differentiation is accelerated. The introduction of the trust mechanism helps the cloud entity
better identify honest and dishonest candidates in the market, thus improving the ratio of success-
ful transactions. The learning mechanism helps brokers better analyze their customers’ service
preferences for subsequent development, accelerates the classification and differentiation, and ul-
timately realizes market convergence. Three kinds of simulation experiments based on the JADE
platform verify the validity of the model from different perspectives.

However, there are still some imperfections in TSLAM. For example, the number of providers
managed by a broker has a definite limit (called saturation). Obviously, the more providers a broker
manages, the easier he can find a suitable service for the user. But at the same time, the cost of
management and selection increases, which means it is not the case where the bigger the better.
Unfortunately, at present, we have not drawn a final conclusion as to the most suitable number.
Furthermore, we also need to investigate how often the learning module should run, how many
transaction times is the best base for learning, what is the best method to generate positive and
negative samples, and so on. All these problems will become our future work.

ACKNOWLEDGMENTS

The authors thank the editor and the anonymous reviewers for their insightful and constructive
comments and suggestions on improving this article.

REFERENCES

[1] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic. 2009. Cloud computing and emerging IT platforms: Vision,

hype, and reality for delivering computing as the 5th Utility. Fut. Gener. Comput. Syst. 25, 6 (2009), 599–616.

[2] P. Liu. 2015. Cloud Computing (3rd ed.). Electronic Industry, Beijing, China.

[3] China Information and Communication Research Institute. 2016. Cloud Computing White Paper. Technical Report.

China Information and Communication Research Institute.

[4] T. Cuong, H. Nguyen, E. Huh, and C. Hong et al. 2016. Dynamics of service selection and provider pricing game in

heterogeneous cloud market. J. Netw. Comput. Appl. 69 (2016), 152–165.

[5] G. Hao, Y. Jun, and M. Yi. 2014. Trust-oriented QoS-aware composite service selection based on genetic algorithms.

Concurr. Comput.: Pract. Exper. 26, 2 (2014), 500–515.

[6] M. Abourezq and A. Idrissi. 2015. Integration of Qos aspects in the cloud service research and selection system. Int.

J. Adv. Comput. Sci. Appl. 6, 6 (2015), 111–122.

[7] S. Yan, X. Zheng, and D. Chen. 2010. A user-centric trust and reputation method for service selection. In Proceeding

of the International Symposium on Intelligence Information Processing and Trusted Computing. IEEE, 101–105.

[8] Y. Kim and K. Doh. 2013. Quantitative trust management to support QoS-aware service selection in service-oriented

environments. In Proceedings of the IEEE International Conference on Parallel and Distributed Systems. IEEE, 504–509.

[9] X. Li, H. Ma, F. Zhou, and W. Yao. 2015. T-Broker: A trust-aware service brokering scheme for multiple cloud collab-

orative services. IEEE Trans. Inf. Forens. Secur. 10, 7 (2015), 1402–1415.

[10] W. Li, J. Wu, Q. Zhang, K. Hu, and J. Li. 2014. Trust-driven and QoS demand clustering analysis based cloud workflow

scheduling strategies. Clust. Comput. 17, 1 (2014), 1013–1030.

[11] K. Sim. 2006. A survey of bargaining models for grid resource allocation. ACM SIGECOM: E-comm. Exch. 5, 5 (2006),

22–32.

[12] M. Mamei and F. Zambonelli. 2003. Self-organization in multi agent systems: A middleware approach. In Proceedings

of the International Workshop on Engineering Self-Organising Applications (ESOA’03). Springer, Berlin, 233–248.

[13] J. Holland and J. Miller. 1991. Artificial adaptive agents in economic theory. Am. Econ. Rev. 81, 2 (1991), 365–370.

[14] A. Toosi, K. Vanmechelen, F. Khodadadi, and R. Buyya. 2016. An auction mechanism for cloud spot markets. ACM

Trans. Auton. Adapt. Syst. 11, 1 (2016).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

16:40 W. Li et al.

[15] R. Buyya, C. Yeo and S. Venugopal. 2008. Market-oriented cloud computing: Vision, hype, and reality for delivering it

services as computing utilities. In Proceedings of the 10th IEEE International Conference on High Performance Computing

and Communications. IEEE, 5–13.

[16] B. Song, M. Hassan, and E. Huh. 2009. A novel cloud market infrastructure for trading service. In Proceedings of the

International Conference on Computational Science and Its Applications. IEEE, 44–50.

[17] S. Arifulina, F. Mohr, G. Engels, M. Platenius, and W. Schafer. 2015. Market-specific service compositions: Specifica-

tion and matching. In Proceedings of the IEEE World Congress on Services. IEEE, 333–340.

[18] E. Badidi. 2013. A cloud service broker for SLA-based SaaS provisioning. In Proceedings of the International Conference

on Information Society (i-Society’13). IEEE, 61–66.

[19] T. Deng. 2017. Analysis of user behavior in cloud broker. In Proceedings of the 2017 8th IEEE International Conference

on Software Engineering and Service Science (ICSESS’17). IEEE, 157–160.

[20] D. Rane and A. Srivastava. 2015. Cloud brokering architecture for dynamic placement of virtual machines. In Pro-

ceedings of the 2015 IEEE 8th International Conference on Cloud Computing. IEEE, 661–668.

[21] M. Aazam and E. Huh. 2014. Broker as a service (BaaS) pricing and resource estimation model. In Proceedings of the

2014 IEEE 6th International Conference on Cloud Computing Technology and Science. IEEE, 463–468.

[22] S. Aldawood, F. Fowley, C. Pahl, D. Taibi, and X. Liu. 2016. A coordination-based brokerage architecture for multi-

cloud resource markets. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and

Cloud Workshops (FiCloudW’16). IEEE, 7–14.

[23] S. Wagle. 2014. SLA assured brokering (SAB) and CSP certification in cloud computing. In Proceedings of the 2014

IEEE/ACM 7th International Conference on Utility and Cloud Computing. IEEE, 1016–1017.

[24] O. Wenge, D. Schuller, and R. Steinmetz. 2014. Towards establishing security-aware cloud markets. In Proceedings of

the 2014 IEEE 6th International Conference on Cloud Computing Technology and Science. IEEE, 1027–1032.

[25] P. Pawar, M. Rajarajan, T. Dimitrakos, and A. Zisman. 2014. Trust assessment using cloud broker. In Proceedings of

the 8th IFIP International Conference on Trust Management (IFIPTM’14). Springer, 237–244.

[26] W. Abderrahim and Z. Choukair. 2015. Trust assurance in cloud services with the cloud broker architecture for

dependability. In Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing and Com-

munications (HPCC’15). IEEE, 778–781.

[27] M. Gupta and B. Annappa. 2016. Trusted partner selection in broker based cloud federation. In Proceedings of the 2016

International Conference on Next Generation Intelligent Systems (ICNGIS’16). IEEE, 1–6.

[28] K. Sim. 2009. Agent-based cloud commerce. In Proceedings of the IEEE International Conference on Industrial Engineer-

ing and Engineering Management. IEEE, 717–721.

[29] K. Jun, L. Boloni, and K. Palacz et al. 2000. Agent-based resource discovery. In Proceedings of the 9th IEEE Heterogeneous

Computing Workshop. IEEE, 43–52.

[30] K. Sim. 2006. Grid commerce, market-driven G-negotiation, and grid resource management systems. IEEE Trans.

Manage. Cybernet. B 36, 6 (2006), 1381–1394.

[31] K. Sim. 2013. Complex and concurrent negotiations for multiple interrelated e-markets. IEEE Trans. Cybernet. 43, 1

(2013), 230–245.

[32] K. Sim. 2010. Towards complex negotiation for cloud economy. In Proceedings of the International Conference on Grid

and Pervasive Computing (GPC’10): Advances in Grid and Pervasive Computing. Springer, Berlin, 395–406.

[33] J. Gutierrez-Garcia and K. Sim. 2015. Agent-based cloud bag-of-tasks execution. J. Syst. Softw. 104, 6 (2015), 17–31.

[34] S. Son and K. Sim. 2015. Adaptive and similarity-based tradeoff algorithms in a price-timeslot-QoS negotiation system

to establish cloud SLAs. Inf. Syst. Front. 17, 3 (2015), 565–589.

[35] X. Li and X. Gui. 2010. Cognitive model of dynamic trust forecasting. J. Softw. 21, 1 (2010), 163–176.

[36] Y. Tan and C. Wang. 2015. Trust evaluation based on user behavior in cloud computing. Microelectron. Comput. 32,

11 (2015), 147–151.

[37] S. Sanadhya and S. Singh. 2015. Trust calculation with ant colony optimization in online social networks. Proc. Com-

put. Sci. 54, 8 (2015), 186–195. DOI: https://doi.org/10.1016/j.procs.2015.06.021

[38] E. Ugur, S. Sen, and A. Burak. 2015. GenTrust: A genetic trust management model for peer-to-peer systems. Appl.

Soft Comput. 34, 9 (2015), 693–704.

[39] S. Wang, L. Zhang, and H. Li. 2010. Evaluation approach of subjective trust based on cloud model. J. Softw. 21, 6 (2010),

1341–1352.

[40] X. Xie, L. Liu, and P. Zhao. 2012. Trust model based on double incentive and deception detection for cloud computing.

J. Electr. Inf. Technol. 34, 4 (2012), 812–817.

[41] K. Ahmadi and V. Allan. 2016. Trust-based decision making in a self-adaptive agent organization. ACM Trans. Auton.

Adapt. Syst. 11, 2, Article 10 (2016), 25.

[42] W. Li, L. Ping, and X. Pan. 2009. Trust model to enhance security and interoperability of cloud environment. In

Proceedings of the 1st International Conference on Cloud Computing (CloudCom’09). Springer, Berlin, 69–79.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

https://doi.org/10.1016/j.procs.2015.06.021

Trust-enabled Self-Learning Agent Model for Cloud Service Matching 16:41

[43] W. Li, L. Ping, and X. Pan. 2010. Use trust management model to achieve effective security mechanisms in cloud

environment. In Proceedings of the 1st International Conference on Electronics and Information Engineering (ICEIE’10).

IEEE, 14–19.

[44] W. Li, L. Ping, Q. Qiu, and Q. Zhang. 2012. Research on trust management strategies in cloud computing environment.

J. Comput. Inf. Syst. 8, 4 (2012), 1757–1763.

[45] X. Li, J. He, and Y. Du. 2015. Trust based service optimization selection for cloud computing. Int. J. Multimedia Ubiq.

Eng. 10, 5 (2015), 221–230.

[46] C. Hu, J. Liu, and J. Liu. 2011. Services selection based on trust evolution and union for cloud computing. J. Commun.

32, 7 (2011), 71–79.

[47] Y. Wang, J. Zhou, and H. Tan. 2015. CC-PSM: A preference-aware selection model for cloud service based on consumer

community. Mathematical Problems in Engineering, Hindawi Publishing Corporation Article ID 170656 (2015), 13.

[48] X. Meng, J. Ma, D. Lu, and Y. Wang. 2014. Trust and behavioral modeling based two layer service selection. J. Xidian

Univ. 41, 4 (2014), 198–204.

[49] S. Yan and X. Zheng. 2010. A user-centric trust and reputation method for service selection. In Proceedings of the 2010

International Symposium on Intelligence Information Processing and Trusted Computing. IEEE, 101–105.

[50] C. Hang and M. Singh. 2011. Trustworthy service selection and composition. ACM Trans. Autonom. Adapt. Syst. 6, 1,

Article 5 (2011), 17.

[51] H. Wang, C. Yu, L. Wang, and Q. Yu. 2015. Effective bigdata-space service selection over trust and heterogeneous QoS

preferences. IEEE Trans. Serv. Comput. 11, 4 (2015), 644–657.

[52] B. Cao, B. Li, and J. Liu. 2013. An on-demand service composition method based on trustworthy quality of service. J.

Xi’an Jiaotong Univ. 47, 2 (2013), 131–138.

[53] R. Du, J. Tian, and H. Zhang. 2013. Cloud service selection model based on trust and personality preferences. J.

Zhejiang Univ. (Eng. Sci.) 47, 1 (2013), 53–61.

[54] W. Li, J. Wu, J. Cao, and K. Hu. 2016. Trust-based multi-attribute decision resource location algorithm for peer-to-peer

cloud systems. Syst. Eng.- Theory & Practice 36, 4 (2016), 1047–1056.

[55] W. Li, L. Ping, J. Li, and Q. Qiu. 2012. Cloud service discovery algorithm based on trust fuzzy comprehensive evalua-

tion. ICIC Expr. Lett. B 3, 2 (2012), 1–6.

[56] W. Li, X. Pan, Q. Zhang, and L. Ping. 2011. A novel job scheduling model to enhance efficiency and overall user

fairness of cloud computing environment. In Proceedings of the 1st International Conference on Cloud Computing and

Services Science (CLOSER’11), 1–5.

[57] Jade company. JADE document. Retrieved from http://jade.tilab.com/.

[58] K. Kravari and N. Bassiliades. 2015. A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18, 1 (2015), 1–18.

[59] Ali-Cloud. The SLA of Ali-Cloud ECS (plastic Compute Service). Retrieved from https://cn.aliyun.com/product/ecs?

spm=5176.doc29692.416540.27.rz9CKZ

[60] J. Xu. 2015. A cloud service self-organizing based inter-cloud mechanism and its platform research. M.S. dissertation,

Shanghai Jiao Tong University, 2015.

Received February 2018; revised February 2019; accepted March 2019

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 4, Article 16. Publication date: July 2019.

http://jade.tilab.com/
https://cn.aliyun.com/product/ecs?spm=5176.doc29692.416540.27.rz9CKZ
https://cn.aliyun.com/product/ecs?spm=5176.doc29692.416540.27.rz9CKZ

