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Abstract—With the advance of smart manufacturing and
information technologies, the volume of data to process is
increasing accordingly. Current solutions for big data processing
resort to distributed stream processing systems, such as Apache
Flink and Spark. However, such frameworks face challenges of
resource underutilization and high latency in big data application
scenarios. In this article, we propose SPSC, a serverless-based
stream computing framework where events are discretized into
the atomic stream and stateless Lambda functions are taken
as context-irrelevant operators, achieving task parallelism and
inherent data parallelism in processing. Also, we implement a
prototype of the framework on Amazon Web service (AWS) using
AWS Lambda, AWS simple queue service, and AWS DynamoDB.
The evaluation shows that compared with Alibaba’s real-time
computing Flink version, SPSC outperforms by 10.12% when
the overhead is close.

Index Terms—Big data, cloud computing, intelligent industry,
serverless computing, stream processing.

I. INTRODUCTION

NOWADAYS, large amounts of data are generated to
process as the development of information and commu-

nication technologies, such as the Internet of Things (IoT),
industrial sensors, sensor networks, etc., which impact man-
ufacturing profoundly. With the technologies, data generated
from modern manufacturing systems are experiencing explo-
sive growth, which has reached over 100 EB annually [1].
The manufacturing data contains rich knowledge, driving the
transformation of the conventional manufacturing paradigm
to the intelligent manufacturing paradigm. Smart manufactur-
ing [2] utilizes the concepts of cyber–physical systems with the
IoT, cloud computing, service-oriented computing, artificial
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intelligence [3], [4] and data science, which would be the
hallmark of the next industrial revolution [5].

To deal with big data processing tasks, researchers resort
to distributed stream processing systems where data is
continuously generated as streams and processed by dis-
tributed and low-latency computational frameworks. The
typical distributed data stream processing frameworks include
open-source frameworks, such as Storm, Spark Streaming,
Flink, and Kafka Streams, and proprietary frameworks, such
as IBM Streams. Researchers have proposed combining cloud
and edge computing with stream processing systems to process
the data streams with short delays and deal with the large
volume of data. Apache Flink and Spark are general-purpose
streaming data processing frameworks.

However, existing methods are not suitable for the increas-
ing amount of data. On the one hand, an abundance of
computing infrastructure and resources remain underused with
the increasing growth of the IoT and edge computing. On the
other hand, due to the latency issues and networking overhead,
today’s cloud models suffer from high latency and response
time when processing large volumes and varieties of data.
The responsibilities of managing underlying infrastructure are
heavy for developers, and the process is mainly manual, task-
specific, and error-prone [6].

Fortunately, we identify that serverless comput-
ing [7], [8], [9], an emerging cloud computing paradigm, can
effectively solve the difficulties faced by cloud computing
when applied to collecting and processing industrial big data.
Serverless computing does not mean that there are no servers
in the cloud. Still, the operations of servers, such as application
and release, and scaling up and down, are handled by cloud
vendors other than users. Serverless computing is also known
as function as a service (FaaS) because cloud computing
users only need to write code and complete the running logic
of the application. Cloud computing providers should meet
other requirements for code operation, such as lightweight
virtualization, to execute functions, external databases to save
the status of functions, and monitoring and log services. These
backend services are the key to ensuring the safe and correct
execution of stateless function instances. Therefore, serverless
computing is featured as FaaS for cloud computing users and
backend-as-a-service (BaaS) for providers.

Introducing serverless computing to stream industrial data
processing solves the two challenges mentioned above. First,
cloud vendors can effectively improve the resource utilization
efficiency of their underlying hardware. Serverless computing
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can automatically scale up and down according to the request
arrival rate, meanwhile the traditional cloud computing model,
which requires reserving sufficient computing resources to
cope with the surge of industrial data. Moreover, because
serverless computing takes functions as the primary resource
application unit, lightweight virtualization is more agile than
virtualization schemes represented by virtual machines, reduc-
ing the execution delay of the stream processing system.

Therefore, we propose SPSC, a stream computing frame-
work to handle industrial data atop serverless computing
platforms in this article. We conceptually divide the events
of the processing process into several subsets and call them
atoms. The lowest level of operation of the framework is the
atomic level, and each computing unit is also designed to
perform atomic processing. In other words, the framework
workflow is a computational diagram of implementing trans-
actional microservices on the atomic flow using data flow
semantics. Therefore, Lambda functions become operators in
stream computing, and users only need to pay attention to
atomic-level transaction business logic when coding. Then,
we use Amazon Web service (AWS) simple queue service
(SQS) as a message queue to realize the communication
between operators and the storage of intermediate states. The
visibility of SQS ensures the At Least Once mechanism of the
framework. We also use AWS DynamoDB as the framework’s
persistent storage solution for state storage so that users
can quickly expand the database and do not need to design
data relationships. We believe that the proposal of SPSC can
provide a feasible and cost-effective way of thinking for Big
data processing in industry, and further improve the feedback
from data processing to production.

In this article, we have made the following contributions.
1) We propose a stream computing framework atop

serverless architecture. Our approach combines the fun-
damental idea of the stateful data flow model with the
serverless architecture, divides the event into atoms, and
then uses the stateless Lambda function to realize the
operator in the stream computing. We also use AWS
SQS and AWS DynamoDB as message queues and
persistent storage solutions.

2) Based on the designed framework, we propose a paral-
lel computing method. Operators are context-irrelevant
by discretizing the processing process into an atomic
stream, thus achieving task parallelism. The automatic
adjustment of the concurrency of Lambda instances and
the polling mechanism of message queues make data
parallelism an inherent framework attribute.

3) We have implemented a prototype of the framework
and evaluated the performance of our implementation.
According to our experimental results, compared with
Alibaba’s real-time computing Flink version, which is
charged according to the lease duration, our framework
can save 10.8% of the cost on average under the
same computing tasks. Our framework can improve the
performance by 10.12% on average when the overhead
is close.

In Section II, we provide a detailed introduction to the
background knowledge and motivation related to serverless

and data streaming processing. In Section III, we introduced
the design concept and some important features of SPSC.
In Section IV, we compared SPSC with Alibaba Flink and
concluded that SPSC would be more cost effective when its
performance was close. In Section V, we introduce research
on serverless applications and data processing.

II. BACKGROUND AND MOTIVATION

A. Serverless Computing

Serverless computing is a new paradigm of cloud com-
puting. Its typical feature is FaaS, which is evolved
from infrastructure-as-a-service (IaaS) [10] and platform-as-
a-service (PaaS) [11]. Compared with the traditional cloud
computing paradigm, serverless computing has the following
advantages in the processing and collecting industrial big
data. First, serverless computing provides more cost-efficient
cloud services because of its “pay as you use” billing mode.
Users only need to pay for how many cloud computing
resources they use. On the contrary, in the PaaS mode,
users need to charge for the occupied resources, even if the
resources are not used at all. Second, serverless computing
provides an excellent ability to automatically scale up and
down, effectively responding to the change and frequency of
industrial data volumes. Because the generation of industrial
data is a process of time series change, it is necessary to auto-
matically increase or decrease the function instances according
to the amount of data. Because serverless computing provides
a lightweight application execution environment, container
creation or destruction is faster than virtual machines. Third,
serverless computing can reduce the time and experience of
operation and maintenance personnel. Serverless computing is
not only featured as function-as-a-service but also as BaaS,
including object storage, load balancing, resource scheduling,
and other backend services, to meet the needs of serverless
computing.

Fig. 1(a) shows the typical framework design of a serverless
computing platform. Among the components of a serverless
platform, Gateway is usually the platform’s entrance respon-
sible for receiving user requests. Controller is usually the
core of the framework and undertakes the functions of user
request processing, load balancing, function instance creation
and destruction, etc. Executor is the execution environment of
functions, usually lightweight containers or virtual machines,
such as Docker, gVison, or Firecracker [12]. Open-source
serverless computing platforms include OpenWhisk [13],
OpenFaas [14] and Fission [15]. Fig. 1(b) shows the frame-
work of OpenWhisk. Its Gateway uses the open-source reverse
proxy server NGINX, and the Pod is composed of a Docker
container in the Kubernetes cluster corresponding to the execu-
tor. Commercial serverless computing frameworks include
Amazon’s AWS Lambda, Google Cloud and Alibaba Cloud’s
Function Compute. The architecture of AWS Lambda is shown
in Fig. 1(c). After the frontend receives the user’s request, the
worker manager will schedule and start the function instance.
The function metadata will be sent to the corresponding
worker for execution. Our subsequent work will be based on
AWS Lambda.
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(a) (b) (c)

Fig. 1. Architectures of serverless platforms. (a) Typical serverless framework. (b) OpenWhisk. (c) AWS lambda.

B. Data Stream Processing

Stream processing is the processing of data which are
produced in a stream of events. Unlike traditional batch
processing, where static data are stored in a database, a file
system, or other forms of mass storage and handled as needed,
stream processing processes dynamic or continuous data as
an event upon receiving one from the stream. A stream is
an unbounded sequence of events generated continuously in
time from the source to the sink. Stream processing pipelines
often involve multiple operations, such as filters, aggregations,
analytics, transformations, enrichment, branching, joining, etc.
As unbounded and global datasets are increasingly becoming
common and essential in day-to-day business [16], most data
are born as continuous streams, such as sensor measurements,
Weblogs, mobile usage statistics, and financial trades. The
stream processing market is experiencing exponential growth
with applications relying heavily on real-time analytics, infer-
encing, and monitoring, such as telecommunications, smart
cities, health care, transportation [17], retail, manufacturing,
advertising, cyber security [18], and finance.

Data processing systems are evolving to be more stream-
oriented, where each data record is continuously processed as
it arrives by distributed and low-latency computational frame-
works. Currently, multiple distributed data stream processing
frameworks, open source (Storm, Spark Streaming, Flink,
and Kafka Streams) and commercial (IBM Streams), exist
for ingesting, processing, storing, indexing, and managing
streaming data. Research on data stream processing engines
has diverged into four directions: 1) query-based systems, such
as NiagaraCQ [19], TelegraphCQ [20], and AsterixDB [21]; 2)
online distributed machine learning systems, such as scalable
advanced massive online analysis (SAMOA) [22]; 3) stream-
ing graph analytics systems, such as GraphJet [23]; and
4) general purpose streaming data processing frameworks,
such as Flink and Spark Streaming, with low-latency and
a distributed parallel processing architecture. Apache Flink
is an open-source distributed stream processing framework
for stateful computations over unbounded and bounded data

streams. Spark is a unified analytics engine for large-scale data
processing supporting high-level APIs and general execution
graphs.

Under several emerging application scenarios, such as oper-
ational monitoring of extensive infrastructure [24], IoT [25],
and smart cities, data streams must be processed under very
short delays, and the data volume is enormous [26]. These data
stream processing frameworks have to be scalable and effi-
cient. To meet these challenges, architecture has been proposed
to use cloud computing to enable data stream processing as
the resource elasticity and fault tolerance features of cloud
computing. Here, describe several public cloud solutions for
processing streaming data. Amazon Kinesis Streams [27] is
a service that enables continuous data intake and processing
for several types of applications, such as data analytics and
reporting, infrastructure log processing, and complex event
processing. Google Cloud Dataflow [28] is a programming
model and managed service for developing and executing a
variety of data processing patterns, such as extract, trans-
form, and load (ETL) tasks, batch processing, and continuous
computing. Azure stream analytics (ASA) enables real-time
analysis of streaming data from several sources, such as
devices, sensors, websites, social media, applications, and
infrastructures, among other sources [29].

C. Amazon Cloud Services

Since serverless computing is featured as FaaS for cloud
customers and BaaS for cloud vendors, we adopt the following
three backend services in addition to AWS Lambda. We use
Amazon S3 to store the raw data and AWS SQS as the com-
munication channel between Lambdas and AWS DynamoDB
to persist the results.

Amazon S3: Amazon Simple Storage Service (Amazon S3)
is an object storage service allowing users to store, protect
and retrieve data from “buckets” at any time from anywhere.
Amazon S3 focuses on two key components: 1) buckets and 2)
objects that work together to create the storage system. Users
create buckets to store objects in the cloud. Objects are data
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Fig. 2. Overview of the serverless stream computing framework.

files, including documents, photos, and videos, identified by a
unique key. The use cases of Amazon S3 include data lakes,
mobile applications, IoT devices, and big data analytics.

AWS SQS: AWS SQS is a managed service by AWS to
handle message queueing, releasing developers from setting
up and maintaining a queue system. AWS SQS is built on
the broad mechanism of message queues and provides high-
level APIs that developers can use to communicate with
the service. SQS is frequently used to decouple distributed
backend services or accommodate mismatches in service
scalability.

AWS DynamoDB: DynamoDB is a NoSQL serverless
database provided by AWS which follows a key-value store
structure and adopts a distributed architecture for high avail-
ability and scalability. In DynamoDB, data is organized in
tables containing items, and each item contains a set of key-
value pairs of attributes. As in any serverless system, there’s
no infrastructure provisioning needed with DynamoDB.

III. DESIGN

This section gives a detailed overview of SPSC, a stream
processing framework atop serverless computing platforms.

A. Overview

The application mainly includes parallel workflow, com-
munication, and fault tolerance. Fig. 2 shows the designed
stream computing framework based on the AWS services,
which reduces users’ hardware requirements. In the hypo-
thetical industrial scenario, the intelligent sensors collect and
upload the raw data to the low-cost persistent storage service
S3 provided by AWS. Generally speaking, production data
analysis in industrial scenarios does not require too high-real
time, and the raw data is persistent and massive. Using S3
can save considerable storage costs. When the raw data is
uploaded to S3, the Lambda instance of the presubmit operator
will be triggered to perform the initial processing of the
data. Then the intermediate states of the data will be pushed
into the queue of AWS SQS. The messaging mechanism of
SQS itself can ensure that the intermediate state will only be

processed by one Lambda instance, avoiding the additional
cost caused by redundant processing. Similarly, the pushed
message in the queue will trigger the start of the instance of
the process operator. The process operator is the coding entry
of the user program logic. The intermediate states between
process operators are also transferred through SQS queues
to ensure real time and nonrepetitive processing. The last
process operator, which can be regarded as the exit of the
user program, stores the results in the structured NoSQL
database AWS DynamoDB, thus making the calculation results
persistent. The framework should deal with and recover from
the failure of computing nodes to deal with the unbounded
input of stream computing. Hence, we design a Lambda
function to handle failures in the computing procedure.

B. Parallel Workflow

First, the framework abstracts the computing task into the
concept of the atomic stream. The data in the stream should be
cut as small as possible to meet the concept of data elements.
All kinds of operators in the framework operate based on the
level of data elements, which are the lowest and indivisible
processing levels.

Atomic Stream: Atomic stream is a relatively ordered,
distributed, and immutable atomic stream. Processors generate
atomic streams, and consumers consume them. To ensure
the indivisibility of atoms, we stipulate that consumers must
complete all the work of consuming and processing the
atom it holds before consuming and processing the next
atom. Consumption must follow atomic order. Producers must
produce atoms after consuming and processing and before
consuming and processing the subsequent ones. The result-
ing atomic production order will establish the atomic order,
enabling us to combine the roles of producers and consumers
safely. An operator can assume the roles of producers and
consumers at the same time, reducing the difficulty of user
coding while maintaining end-to-end fault tolerance between
micro-services. In practical coding, atomic streams can be
understood as data flowing between processors.

Workflow: Workflow consumes atomic stream and generates
atomic stream. Workflow is a directed acyclic graph (DAG) of
sources, procedures, and links. Workflow has a source, which
is the event intake point of workflow. Procedures are stateful
operators that use atoms and generate atoms. Workflow has a
sink point, which can be considered as the exit of workflow:
the exit of calculation results. The workflow needs to conform
to the principles of atomic processing. It always uses and
processes one atom at a time; it does not need to process two
atoms simultaneously. Nested workflows are not supported.
Workflow has an input source and an output sink, just like the
source and sink in other stream computing systems. In short,
a workflow can be understood as a defined function, requiring
input (atomic stream) and returning output (atomic stream)
after internal processing is completed.

Parallel Method: To improve the throughput and efficiency
of stream computing, common parallel methods are task
parallelism and data parallelism. Task parallelism allows tasks
from different operators to perform calculations on the same or
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different data in parallel to better utilize the cluster’s comput-
ing resources. Data parallelism performs the same operation
in parallel on the data subset, allowing the processing of large
amounts of data and spreading the computing load to multiple
computing nodes. In the serverless architecture, the operators
implemented by the Lambda function and triggered by the
specified data flow naturally have the task parallel attribute.
By cutting the processing process into multiple context-
independent processing operators, the framework realizes the
on-demand startup of operators, thus saving costs while
ensuring throughput. The instantiation of lambda functions
will automatically obtain instance resources from the public
reservation pool to perform computing tasks and dynamically
tilt computing resources for each function based on utilization.
The feature of AWS SQS service that can only be seen
by one person at the same time automatically manages the
data subsets. The above features of AWS services enable the
framework to automatically generate several operator instances
to process atoms in parallel while avoiding some common
problems of data parallelism. On the serverless architecture,
users can code highly reliable stream computing logic by
applying the idea of task parallelism and data parallelism
without having too much relevant knowledge.

C. State Storage

The data processed by the stream processing system is often
borderless: data will always be input from the data source,
and users need to see the real-time results of SQL queries. At
the same time, the computing nodes in the stream processing
system may make errors and failures and expand and shrink
in real time according to the user’s needs. In this process,
the system should efficiently transfer the intermediate states
of the calculation between nodes and persist the results to the
external system to ensure uninterrupted calculation. Common
state storage solutions, such as embedded storage, require
the computing nodes to manage the state storage, which is
not applicable in the dynamically generated, stateless, and
storage-and-calculation separation serverless architecture. The
stateless nature of Lambda functions makes the serverless-
based stream computing framework only adopt the architecture
of storage and computing separation.

Separation of Storage and Computing: The storage respon-
sibility and calculation responsibility of the system are
separated. The storage node is only responsible for data
storage, while the calculation node is only responsible for
the calculation, that is, to execute business logic. Such a
design is called the separation of storage and computing. Each
instance is the same for the stateless computing instances
generated by Lambda instantiation and naturally supports
horizontal expansion. The generated instances of the same
type obtain the states by polling and then process them
to achieve load balancing easily. Failover is also simpler
and faster. If an instance fails, the computing task on it
will be acquired by other instances. Developers can focus
on computing business logic without paying attention to
such troublesome storage problems as data consistency, data
reliability, and data read and write performance, significantly

reducing development difficulty and improving development
efficiency.

Message Queue: Stream computing systems usually do
not need message queues because they can communicate
directly between functions, and the end-to-end exactly once
mechanism is also guaranteed in other ways. However, the lack
of direct communication between instances on the serverless
platform makes implementing the end-to-end exactly once
mechanism challenging. The message queue service provided
by the service provider, such as AWS SQS, can ensure that
each message pushed to the queue will be shared by only one
object at the same time. After a while, if the object does not
perform other operations on the message, the message will be
released to other objects. Set its visibility time to be longer
than the instance lifetime in the framework; you can think
that when a message is released to other objects, the previous
instance has failed, thus realizing the failover. Therefore, in
the framework’s design, we use AWS SQS as the message
queue to complete the communication between operators and
intermediate state storage.

Persistent Storage: The final results of stream computing, or
some states that do not need immediate processing temporarily,
need to be persisted to the external storage system. For
example, if we want to count the production data in the past
five minutes, and some of the earlier data arrive later than the
later data due to network communication and other reasons, in
this case, we can only store the states in the persistent storage
database, and then sort it before processing. The disordered
and temporarily stored message queue obviously does not
support the above requirements. NoSQL, which does not need
to design data relations in advance, is easy to expand and
can be used on demand, is widely used in persistent storage
systems of stream computing systems. AWS DynamoDB,
a fully hosted cloud NoSQL database service provided by
Amazon, can realize seamless expansion and automatically
delete expired items from the table. We use it as a framework
for persistent storage system.

D. Fault Tolerance

The problem of unbounded input stream in the stream
computing system has brought many new challenges to Fault
Tolerance, such as low latency, exactly once mechanism, and
so on. Many stream computing tasks are 7 × 24 h without
interruption, with end-to-end second delay. It is extremely
difficult to quickly recover to normal in case of unexpected
problems, such as network flash, machine failure, and so on,
without affecting the correctness of the calculation results.
Moreover, the statelessness and separation of components of
the serverless architecture make the fault-tolerant design of
this framework different from the traditional stream computing
system.

Timeout: Traditional stream computing system operators
will exist for a long time once generated, while Lambda
instances have a limited and short survival time. To save
the cost of repeatedly generating instances, the framework
is designed to continuously process atoms once an operator
instance is generated until atoms cannot be obtained or times
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out. Therefore, it can be considered that the instance running
timeout will be a common exception in the running process.
Considering the startup costs that can be saved, we think it
is acceptable that a very small amount of data is delayed due
to timeout exceptions. We set a timeout exception handling
function. When the instance senses that it is about to timeout,
it will throw a timeout exception and invoke the function.
The exception handler invokes the operator function again
according to the received event. In fact, because of the high
substitutability of operator instances, even if the function is
not restarted, other working instances will poll the processing
atoms. However, restarting it makes the number of concurrent
instances of the operator stable and can reduce the fluctuation
of throughput as much as possible.

At Least Once: Due to the statelessness and nondirect
communication of Lambda instance running, the snapshot
recovery mechanism commonly used in stream computing
systems, such as Flink, is obviously difficult to implement.
That is to say, it is very difficult to achieve Exactly Once on the
serverless architecture which is hard to perceive and maintain
the running state. However, the design of storing intermediate
states through message queues and serving as communication
channels between operators makes it easy for the framework
to implement At Least Once. AWS SQS guarantees that a
message will only be owned by one object at the same time.
When the visibility time setting is exceeded, if the message
has not been processed by the owner, it will be returned to the
queue and opened to other objects. By setting the visibility
time slightly longer than the instance survival time, we can
ensure that each atom will be processed at least once.

IV. EVALUATION

In order to verify the performance of the prototype of
our framework, we compare its performance with that of the
serverless real-time computing platform launched by Alibaba
Cloud in this section.

A. Environment

We deploy the framework prototype on the AWS platform
and use the services provided by the supplier. As designed
in the framework, we create AWS SQS queues and AWS
DynamoDB tables for the prototype. Then, we create S3
buckets to store randomly generated source data. Next, we
deploy the prototype code on AWS Lambda and allocated a
concurrent quota of 40 instances. Among them, to improve the
throughput of reading data from slow S3 storage, ten reserved
concurrent accesses is allocated for the precommit operator of
the source. In other words, there are still 30 instances left in
the public reservation pool.

For the Flink version of Alibaba Cloud’s real-time com-
puting platform, we have rented it in a pay-as-you-go way.
According to the official manual, 1 CU = 1 core CPU + 4 GB
memory. CU corresponds to the CPU computing capacity
of the underlying system. When creating a workspace, the
system deploys a development console for each cluster. Each
development console and its necessary components require
about 2 CU of control resources. So we rented 6 CU, 2 for

controlling resources and 4 for the actual calculation. Other
configurations, such as the database RDS, use the default
configuration 4 RCU.

B. Performance Metrics

We have carried out the same experiments on the prototype
and the leased Alibaba Cloud real-time computing platform,
and the evaluation metrics of their performance are as follows.

Throughout: The number of events successfully transmitted
by the computing framework in unit time. The unit of through-
put in this experiment is events/second. Throughput reflects
the system’s load capacity and how much data the system
can process per unit of time under the corresponding resource
conditions. Throughput is often used for resource planning but
also to help analyze system performance bottlenecks to make
corresponding resource adjustments to ensure that the system
can meet the processing capacity required by users. Suppose
the merchant can make 20 lunches per hour (throughput:
20 lunches per hour), and a delivery boy can only deliver
two lunches per hour (throughput: 2 lunches per hour). The
bottleneck of this system is in the delivery of the boys, which
can arrange ten delivery boys for the merchant.

Latency: The time of the event from entering the system to
exiting the system. The unit of latency in this experiment is a
microsecond. Latency reflects the real-time processing of the
system. Many real-time computing services, such as financial
transaction analysis, have high requirements for latency. The
lower the latency, the stronger the real-time data. Suppose it
takes 5 min for the merchant to make lunch and 25 min for
the brother to deliver. In this process, the user feels a latency
of 30 min. If the latency becomes 60 min after changing the
delivery plan, and the food is cold when delivered, the new
plan is unacceptable.

Cost: General ledger of all cloud services leased. Since
the cloud service leased in this experiment comes from two
cloud service providers in different regions, and the currency
charged is their local official currency, we have converted
the two according to the exchange rate at the time of the
experiment, which is about 6.7 yuan to 1 USD. The charging
standard of Alibaba Cloud’s real-time computing platform is
0.133 USD/CU/hour, and the bill is calculated from the time
the workspace is generated. It also includes the SLB service
and database service it provides. For SLB, the unit price of
each instance is 0.01 USD per hour. RDS is used by default for
databases, and its price is 0.055 USD/hour/RCU. Furthermore,
the price per million write request units is 1.20 USD. The
billing of AWS cloud services includes the billing of Lambda,
SQS, and DynamoDB. For Lambda, when the memory is
128M, the price for each instance to run 1 ms is 2.1 ×
10−9 USD. When the memory is expanded proportionally,
the price can also increase proportionally. For SQS, the first
1 million requests are free, and the price of 1 million to
100 billion requests is 0.40 USD per million requests. The
number of demand requests for our framework should be
within the latter range. For DynamoDB, the price per million
write request units is 1.25 USD.
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(a) (b)

Fig. 3. Average results obtained by counting several random windows. (a) Throughput of Alibaba Flink and prototype. (b) Latency of Alibaba Flink and
prototype.

TABLE I
COST CALCULATION

C. Performance

In order to test the performance of the framework itself,
we conducted input-output tests on both. Specifically, in the
prototype, we set two operators: 1) the precommit operator and
2) the processing and sink operator. The precommit operator
randomly generates a message, records the timestamp, and
then pushes it into the SQS queue. The processing operator
writes the processing time after receiving the message from the
queue, which is the output time, and then writes it to the table.
The same applies to Alibaba Cloud’s real-time computing
platform, where a job that generates and writes data to the
database is published. Then, we randomly grab several 5-min
windows and count the average throughput and latency of the
two during this period.

Fig. 3 shows the throughput and latency of the experi-
mental results. As seen from Fig. 3(a), the throughput of
the prototype we built has no significant defects compared
with Ali Flink. It can achieve a considerable increase in
throughput with the increase of allocated RAM. Throughput
does not increase linearly. It is speculated that communication
with SQS limits its linear growth. Therefore, the relationship
between communication queues and throughput can be stud-
ied. Compared with Ali Flink, the latency of the prototype
has increased significantly, which is understandable. The time
cost of communicating with external cloud services, such
as SQS, must be higher than the internal communication of
main memory in Ali Flink. Comparing performance between
different configurations is not significant, but it proves that our
framework can realize the functions of a stream computing
system.

In order to compare the advantages of our framework, we
calculated the costs that customers usually care about most,
as shown in Table I. Much overhead comes from reading
and writing data to the database because persistent storage is
always expensive. However, generally speaking, the request
to write records to the database is far lower than the request
in the input-output experiment, so the cost calculation of
database storage should be removed. From the perspective
of processing costs per million businesses, our framework
has a slight advantage over Ali Flink; that is, it can save
10.8% of the cost on average when processing the same
business volume. Although throughput and cost are not strictly
linear, we can still estimate the approximate throughput of the
prototype at the same cost by linear interpolation. We estimate
that if Lambda’s overhead cost is 1.028 USD, its estimated
throughput is 8812 events/s. Our framework is expected to
improve the performance by 10.12% at the same cost.

V. RELATED WORK

A. Serverless Computing and Its Application

Serverless computing [7], [8], [9] is a promising paradigm
of next-generation cloud computing. It has been widely used
in many fields thanks to its more lightweight virtualization
runtime and faster startup and destruction time than virtual
machines. In distributed machine learning and deep neural
network training [30], the parallel ability that serverless
computing can provide can optimize the training speed of data
parallelism or pipeline parallelism [31], [32], [33], [34], [35].
LambdaML Jiang et al. [33] is a general machine learning
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training platform atop serverless computing, and conduct a
comprehensive study on the different aspects, like communi-
cation channel, synchronization, and cost efficiency. Siren [35]
also employs AWS Lambda, the most representative serverless
computing platform, for distributed model training and designs
a reinforcement learning algorithm to guide the resource
configuration for functions. In addition, serverless computing
can also be applied to deploying the pretraining model [36],
[37], [38], [39] to deal with the inference task of changing
requests. Because serverless computing has good scalability
and an efficient startup rate, the operation and maintenance
personnel do not need to consider the system’s load balancing
and concurrent processing when deploying model reasoning
tasks. In addition to the training and deployment tasks of
machine learning, other high-performance computing tasks
can also benefit from serverless computing platforms, such
as video processing [40], [41], [42], [43], high-dimensional
matrix operations [44], [45], workflow tasks [46], [47], [48],
etc.

B. Serverless Computing for Data Processing

Reference [49] introduces a serverless architecture for big
data analysis. As the data size is increasing daily, it is
tough and complex to design the exact architecture for data
analysis, including server management, storage, clustering,
algorithm deployment, etc. The misconfiguration would lead
to the underuse of resources and infrastructure and unnec-
essarily high costs. With the challenges of scalability and
efficiency that big data processing systems face, researchers
have turned to serverless (Fuction-as-a-Service) to strengthen
big data analysis. Nastic et al. [6] proposed a serverless
real-time data analytics platform for edge computing. As
the user-defined functions are seamlessly and transparently
hosted and managed by the serverless platform, it releases the
developers of the burden of resorting to optimal management
of underlying infrastructure on the edge side. Rahman and
Hasan [49] presented the serverless architecture for big data
analytics with a serverless extensive data application on AWS.
With the serverless paradigm, developers can concentrate on
implementing data analytics applications rather than underly-
ing infrastructure and pay only for consistent execution rather
than particular server components. Portals [50] is a server-
less, distributed programming model that blends the exactly
once processing guarantees of stateful dataflow streaming
frameworks with the message-driven compositionality of actor
frameworks. With Portals, the decentralized application can
be built dynamically and scale on demand, guaranteeing strict
atomic processing.

VI. CONCLUSION

In this article, we proposed SPSC, a stream computing
framework built on serverless architecture to cope with indus-
trial data. By dividing and abstracting the events into atoms
and atomic streams, SPSC realizes task and data paral-
lelism and achieves high throughput and efficiency of stream
computing. Combined with AWS components, such as AWS
SQS and AWS DynamoDB, SPSC achieves abilities of at least

once guarantee and persistent storage for stream computing
applications in the serverless computing environment. Through
extensive evaluation, we show that SPSC exceeds Alibaba’s
real-time computing Flink version by 10.12% in performance.
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