
Article

Improving Productivity in Design and
Development of Information Technology
(IT) Service Delivery Simulation Models

Anton Beloglazov1, Dipyaman Banerjee2, Alan Hartman3,
and Rajkumar Buyya4

Abstract
The unprecedented scale of Information Technology (IT) service delivery requires careful analysis and optimization of service
systems. The simulation is an efficient way to handle the complexity of modeling and optimization of real-world service delivery
systems. However, typically developed custom simulation models lack standard architectures and limit the reuse of design and
implementation artifacts across multiple models. In this work, following the design science research methodology, based on a
formal model of service delivery systems and applying an adapted software product line (SPL) approach, we create a design artifact
for building product lines of IT service delivery simulation models, which vastly simplify and reduce the cost of simulation model
design and development. We evaluate the design artifact by constructing a product line of simulation models for a set of IBM’s IT
service delivery systems. We validate the proposed approach by comparing the simulation results obtained using our models with
the results from the corresponding custom simulation models. The case study demonstrates that the proposed approach leads to
5–8 times reductions in the time required to design and develop related simulation models. The potential implications of the
application of the proposed approach within an organization are quicker responses to changes in the business environment, more
information to assist in managerial decisions, and reduced workload on the process reengineering specialists.

Keywords
IT service delivery, service science, service systems, formal model, simulation, software product lines

Introduction

With the advent of Cloud computing and the proliferation of

Information Technology (IT) in all industries, services and

their delivery become crucial in the business world. In addition,

nowadays such services are often delivered on an unprece-

dented scale. For example, there are mobile service companies

in India, such as Bharti Airtel and Vodafone, that have more

than 150 million customers (Telecom Regulatory Authority

of India 2013). When services are delivered on a large scale,

it is essential to optimize the service delivery processes, as even

small inefficiencies have a huge economic impact.

IBM is one of the largest IT service companies and

requires design and optimization of numerous IT service

delivery lines at IBM’s Global Delivery Centers in India

and other geographies, where a range of services are deliv-

ered by large teams. Each service line follows different

processes for the service delivery and supports a range of

customers with different service level agreements (SLAs).

Currently, the optimization of each service line requires the

design and implementation of a specialized service simula-

tion model, which takes significant time and resources. This

work is intended to improve the productivity and reuse

of design and implementation artifacts in the global

optimization team by developing a more efficient service

simulation model design and implementation process.

To address the identified problem, we follow the design sci-

ence research methodology proposed by Peffers et al. (2007)

and the design science research guidelines defined by Hevner

et al. (2004). According to the formal model of service delivery

systems introduced by Banavar et al. (2010), we separate the

logic of service specific processes from the general processes

of service delivery and formalize interactions between the com-

ponents of a service delivery system. To capture the variability

among IT service delivery systems, we propose a novel appli-

cation of the software product line (SPL) methodology to the

development of families of IT service delivery simulation mod-

els. Based on the defined service delivery system model and

1 IBM Research, Melbourne, Australia
2 IBM Research, New Delhi, India
3 IBM Research, Haifa, Israel
4 Department of Computing and Information Systems, The University of

Melbourne, Australia

Corresponding Author:

Anton Beloglazov, IBM Research, Melbourne, Australia.

Email: anton.beloglazov@au.ibm.com

Journal of Service Research
2015, Vol. 18(1) 75-89
ª The Author(s) 2014
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1094670514541002
jsr.sagepub.com

http://www.sagepub.com/journalsPermissions.nav
http://jsr.sagepub.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094670514541002&domain=pdf&date_stamp=2014-07-01

analysis of the SPL knowledge base, we derive a unified mod-

eling language (UML) product line design and development

methodology tailored to building simulation models of service

delivery systems as an adaptation of the SPL approaches pro-

posed by Gomaa (2004) and Pohl, Böckle, and Linden (2005).

Applying the derived product line methodology and knowl-

edge from analysis of IBM’s sample IT service delivery sys-

tems, we design a model of a product line of IT service

delivery simulation models. The model can be used to develop

and implement simulation models of IT service delivery sys-

tems, while reducing the required time and resources. We

incorporate extensibility into the proposed model via variation

points and implement it as a framework in the AnyLogic simu-

lation environment (Borshchev and Filippov 2004), while doc-

umenting the variability and providing a set of reusable design

and implementation assets. Instead of representing a single

model, the proposed product line of simulation models spans

a variety of simulation models in the IT service delivery

domain. To create a concrete simulation model of a service

delivery system, a model designer specializes the product line

by specifying a set of required features, parameters, and com-

ponents. By specialization, the model designer transforms the

product line into the desired concrete model without the neces-

sity for redevelopment of the model architecture, and thus

reducing the development complexity and time.

The result of design science research is a purposeful IT arti-

fact addressing an important problem according to Hevner et al.

(2004). The problem addressed in this work is the lack of a

standard architecture and efficient design methodology that

could increase productivity and reuse in the design and imple-

mentation of IT service delivery simulation models. This work

contributes four innovative IT artifacts:

1. A model of IT service delivery systems encompassing a

description of the components of a service delivery sys-

tem and interactions between them in the form of a

workflow, as well as formal definitions of service

request (SR) characteristics, resource capabilities, and

dispatching and resource allocation processes.

2. A methodology for building product lines of simulation

models adapted from a combination of the SPL

approaches proposed by Gomaa (2004) and Pohl,

Böckle, and Linden (2005).

3. A product line of IT service delivery simulation models

designed by following the derived product line develop-

ment methodology.

4. A proof-of-concept instantiation of the product line for

a set of related service delivery systems implemented

and evaluated using the AnyLogic simulation

environment.

According to the definitions of research contributions in

design science given by Hevner et al. (2004), we argue that the

research contributions of this work are the models and methods

listed previously, as well as the proof-of-concept simulation

models implemented based on the instantiation of a product

line of simulation models for a set of IBM’s related IT service

delivery systems. The combination of the artifacts produced by

this work contributes to the solution of a heretofore unsolved

problem, namely, low productivity and reuse in the design and

implementation of IT service delivery simulation models.

The remainder of the article is organized as follows. In the

next section, we discuss the previous research in the areas of

service science and service simulation models, followed by the

research methodology applied in this work. Next, we design a

model of an IT service delivery system. Then, we introduce our

SPL methodology tailored to the design and development of

simulation models of service delivery systems. We apply the

proposed methodology to the design and development of a

product line of IT service delivery simulation models. This is

followed by an evaluation case study aimed at validating the

applicability and showing the efficiency of the proposed

approach. We conclude the article with a discussion and direc-

tions for future research.

Related Work

A substantial amount of research has been done in the explora-

tion, formalization, management, engineering, and optimiza-

tion of service systems (Zhang 2008). Maglio et al. (2006)

stated that according to a measurement of the labor job percen-

tages, the economies of the world are shifting labor from agri-

culture and manufacturing of goods into services. The authors

noted that service systems have gained tremendous importance,

as they are involved in numerous areas, for example, education,

public services, and IT services. They claim that to fully under-

stand service systems, it is necessary to establish a new aca-

demic discipline, service science. Chesbrough and Spohrer

(2006) seconded the call of Maglio et al. (2006) in their man-

ifesto for service science. Spohrer et al. (2007, 2008) laid a the-

oretical foundation in the form of definitions of the service

science abstractions. These research efforts show that studying,

understanding, modeling, and optimization of service systems

are important research challenges.

Alter (2010) proposed a framework for describing and ana-

lyzing service systems. The proposed framework is focused on

the business perspective of service systems and can be used to

describe any such system, for example, IT service systems

involving compositions of web services. However, the frame-

work does not cover the optimization of service systems, rather

it is applied to formalize a body of knowledge and organize the

information about services. In contrast, we propose an architec-

ture and an implementation of a product line of IT service

delivery simulation models, which can be used for the rapid

development of simulation models of services and their

simulation-based optimization.

There have been a number of research efforts aimed at the

development of simulation frameworks for modeling comput-

ing systems that conform to the service-oriented architecture

(SOA) principles. For example, Sarjoughian et al. (2008) pro-

posed a SOA-compliant simulation framework supporting the

hierarchical composition of service models. In comparison, the

76 Journal of Service Research 18(1)

scope of our research is broader, as the proposed product line of

IT service delivery simulation models covers not just software

systems but a more general class of service delivery systems

involving human resources and business processes.

Modeling service systems is a complex task, which is

explained by the complexity of modeling people, their knowl-

edge, activities, and intentions. Maglio et al. (2006) defined the

complexity of service systems as ‘‘a function of the number and

variety of people, technologies, and organizations linked

together in the value creation networks.’’ The high complexity

of service delivery systems makes simulation the most suitable

way to model and optimize such systems, which is indicated by

a range of research works aimed at the development of custom

simulation models of service delivery systems.

Diao et al. (2011) designed and implemented a simulation

model of a global IT service delivery system to support

model-based decision making. The modeled IT service deliv-

ery system is within the scope of the current work. The differ-

ence is that the simulation model design and development

approach proposed in this article is more general and can be

applied to creating a family of related models and managing

their variability in an efficient way. Anerousis, Diao, and

Heching (2011) investigated the trade-off between the cost

of service delivery and service quality using discrete-event

simulation. The simulation model was applied to minimize the

total cost of service delivery under a number of constraints.

Similarly, the model falls within the scope of the simulation

model design and development approach proposed in this arti-

cle. Our approach allows the optimization of service delivery

systems through parameter variation, for example, using the

OptQuest optimization engine built into AnyLogic.

Prashanth et al. (2011) proposed a stochastic optimization

algorithm for minimizing the staffing skill levels and shifts

of workers under SLA constraints in service delivery systems.

The approach proposed in this article is aimed at the efficient

design and development of IT service delivery simulation mod-

els and does not limit the choice of the optimization algorithm

to be applied for optimizing the models. In other words, any

suitable optimization algorithm can be applied once a simula-

tion model of the IT service delivery system of interest is

designed and implemented.

Diao and Heching (2012) proposed a closed loop perfor-

mance management scheme integrating service level and

service operations management to improve SR dispatching

policies. The idea is to enhance SLA management of the dis-

patching process by leveraging the information about the

request severity and SLA target time, as well as dynamic SLA

attainment levels in the system. The solution is orthogonal to

the simulation model design and development approach pro-

posed in this article, and can be integrated by implementing the

corresponding dispatching and resource allocation algorithms

that take advantage of the data collected by the system monitor

discussed in the next section.

Vemuri (1982) applied discrete-event simulation to model a

university research support service system. Kennedy (1969)

and Zaki, Ahmed, Cheng, and Parker (1997) developed

discrete-event simulation models to optimize a community

health service system and an emergency service system,

respectively. Rohleder, Bischak, and Baskin (2007) implemen-

ted a simulation model based on the system dynamics approach

to model a patient service system. Klievink and Janssen (2009)

built a simulation model of a public service delivery system

using game theory. These articles successfully addressed their

specific problems; however, a service delivery simulation

framework could vastly simplify and speed up the model

design and development processes. In this work, we address

this issue by developing and implementing a product line of

IT service delivery simulation models that relieves model

designers from the necessity for the redevelopment of a simu-

lation model architecture, and significantly increases the reuse

of design and implementation artifacts across multiple models.

Research Methodology

We follow the design science research methodology proposed

by Peffers et al. (2007). The methodology defines a process of

conducting research in design science consisting of a sequence

of six activities applied iteratively in order to refine the out-

comes of each step based on the obtained knowledge and expe-

rience. The research process followed in this work is problem

centered, which means it is initiated by a problem definition.

The problem definition has been derived from the need for

reducing the amount of manual work and creating opportunities

for efficient reuse of design and implementation assets in

IBM’s global service optimization team. The application of the

six activities of the research methodology can be summarized

as follows:

1. Problem identification and motivation, as given in the

introduction.

2. Definition of the objectives of the desired solution, as

discussed in the introduction and related work sections.

3. Design and development of the desired artifacts, which

in this research comprise creating a model of an IT ser-

vice delivery system, deriving an efficient product line

development methodology tailored to the construction

of product lines of simulation models, and designing a

model of a product line of IT service delivery simula-

tion models.

4. Demonstration of the solution by instantiating a product

line of simulation models for a set of IBM’s related IT

service delivery systems followed by the implementa-

tion of the designed simulation models in the AnyLogic

simulation environment.

5. Evaluation of the design artifacts through validation of

the simulation models by construction, as well as statis-

tical comparison of the results obtained from the base

simulation model of the product line with the results

from the corresponding custom simulation model, fol-

lowed by a comparison of the design and development

time required to implement new but related models.

Beloglazov et al. 77

6. Communication of the problem, its importance, pro-

duced design artifacts, and evaluation results to practi-

tioners, as well as managerial audiences.

In addition to applying the design science research metho-

dology proposed by Peffers et al. (2007), we follow the widely

accepted guidelines for conducting and presenting design sci-

ence research defined by Hevner et al. (2004), which together

with the work by Walls, Widmeyer, and Sawy (1992) created

the foundation of the research methodology discussed

previously.

A Model of an IT Service Delivery System

According to Hevner et al. (2004), rigorous methods should be

applied to both construction and evaluation of a design science

research artifact. In relation to the design process, we analyti-

cally model a general IT service delivery system through rigor-

ous mathematical formulations based on a previously defined

formal model of service delivery systems introduced by Bana-

var et al. (2010). According to their definition, a service system

is a network of providers and clients coproducing value through

service performances. We model a service system as a system

consisting of a set of clients submitting SRs; a set of service

providers, each containing a service delivery system; and a ser-

vice operating system (OS) management system.

Clients request services (SRs) from a service provider by

submitting SRs that contain a set of SR characteristics and an

entity defining the input for the service, for example, data con-

sumable by process tasks, other SRs or processes. SR charac-

teristics are used by the service delivery system to dispatch

the SR to the appropriate process and allocate the necessary

resources. Defined more formally, a service delivery system

is a set of interacting entities, such as people, processes, and

products, which are involved in the delivery of one or more ser-

vices. We model a service delivery system as a system of four

major components:

1. A process model.

2. A resource model.

3. A value model.

4. A service OS.

Service processes are sets of tasks connected in the form of

directed graphs with deterministic/nondeterministic, condi-

tional/nonconditional transitions. A service is delivered

through the execution of one or more service processes via per-

forming sequences of steps defined by these processes. A ser-

vice delivery system contains a finite set of process types

that define the service processes provided by the system. Once

an SR is received and the appropriate process type is selected,

an instance of the process type is created to serve the SR. The

process instance has access to the data included in the SR,

which can be used to pass parameters to the process instance.

Resources are allocated for a process instance on a per task

basis. Each process task contains information about resource

capabilities that are required for its execution. A process task

can also contain information about its performance characteris-

tics depending on the number and capabilities of the allocated

resources. Process tasks can create new SRs, that is, a process

can initiate other processes during its execution. Depending on

the process type and the input provided by the SR, the result of

the process execution returned to the client can vary, for exam-

ple, modified input entity, new data. It is important to note that

the purpose of a process execution may differ from the result

returned to the client, that is, the result may represent meta-

data describing the actual outcome of the process. In other

words, a process can have side effects.

A resource, in the context of a service delivery system, is a

broad term that spans IT resources (e.g., computing power,

storage, and communication lines), people, facilities (e.g.,

equipment and physical space), and so on. In other words, a

resource is an entity whose amount or capabilities can be mea-

sured, and which must be utilized in order to deliver a service.

Resources can be expendable and nonexpendable. Banavar

et al. (2010) defined resources as capability containers, that

is, resources are characterized by the capabilities they exhibit.

Each capability can have multiple levels, for example, repre-

senting different skills of people or performance characteristics

of equipment. A resource is described by the maximum levels

of its capabilities, under the assumption that it can also serve

the purpose of resources with lower capability levels. In addi-

tion, resources are described by the cost associated with their

usage per unit of time.

Coproduction in service systems stands for enhancing the

value accrued by all the stakeholders (i.e., the clients and pro-

viders) as a result of the service execution. A service delivery

system contains a value model that defines how the value of the

service provider and a client is enhanced during, and as a result

of, a service performance. Each process task influences the cli-

ent’s and provider’s value appreciations. Apart from the value

in terms of the cost, the value of a task can represent the task’s

contribution, or importance, to the service delivery process.

This information can be used to optimize a service delivery

process in order to maximize the combined value appreciation

by eliminating tasks that bring low value to the process.

Another aspect of the value model is the adjustment of the

value appreciation according to the SLAs negotiated between

a client and a service provider (Dhanesha, Hartman, and Jain

2009). For example, if the SLAs have been violated, the cli-

ent’s and provider’s value appreciations must be adjusted in

order to reflect this violation. In this case, the provider could

be penalized for causing an SLA violation by transforming

some of its value into the client’s value.

The service OS is that part of a service delivery system that

is responsible for managing the resources and processes (Bana-

var et al. 2010). In our work, we model the service OS as con-

sisting of the following components: contract negotiator,

dispatcher, process manager, resource manager, system moni-

tor, complaint resolver, and failure manager. Each component

is modeled as a state-dependent control object and is defined as

a process. The service OS management system is the compo-

nent of a service system that manages the service OS processes

78 Journal of Service Research 18(1)

themselves. The purpose of this component is to monitor the

operation of the service delivery system and adjust its behavior

according to predetermined policies. The service OS manage-

ment system is capable of adding and removing instances of

service OS processes, as well as modifying their parameters

or changing algorithms. For example, to satisfy the quality of

service requirements, extra instances of service OS processes

can be created due to an increasing rate of incoming SRs. The

operation of the service delivery system components as parts of

the service delivery system workflow is detailed in the next

section.

Service Delivery System Workflow

Having introduced the main components of the service system

model, we can now describe a typical service delivery system

workflow shown in Figure 1. For this example, we assume that

there is only one instance of each service OS process. However,

depending on a specific scenario, it is possible to have multiple

instances of dispatchers, process managers, resource managers,

and so on. Moreover, the number of instances can be dynami-

cally adjusted according to the policy of the service OS

management system. All the service OS components are

connected through queues that can be priority-based or can

enforce any other policy. Another purpose of the queues is

to distribute SRs among multiple instances of service OS

processes.

Service delivery starts when a client submits an SR to the

service delivery system. Once submitted to the system, the

SR gets into the dispatcher’s queue. The dispatcher processes

SRs sequentially fetching them one by one from the queue. It

analyzes the SR’s characteristics and selects the appropriate

process type to serve the request. The dispatcher forwards the

SR along with the selected process type to the process manag-

er’s queue.

The purpose of the process manager is to manage the pro-

cess life cycle: (1) instantiation of the process; (2) scheduling

of the process tasks; (3) management of the process preemp-

tion; and (4) destruction of the process on completion. Once the

SR is received by the process manager, it creates a new instance

of the process according to the process type assigned to the SR

by the dispatcher. The process manager schedules the process

tasks by organizing the control flow around them. The resource

allocation is done on a per task basis. Thus, prior to the actual

execution of a task, the process manager submits a request for

resource allocation for this task to the resource manager. Dur-

ing the resource allocation phase, the process is suspended.

When the request for resource allocation is received, the

resource manager fetches the resource availability (RA) data

from the RA database to determine the set of resources that are

currently available. The RA data reflect the state of resources

and can represent the information about busy resources, shifts

of the workers, weekends, resource downtimes, and so on.

Once a set of available resources is determined, the resource

manager applies a resource allocation algorithm to find a subset

of resources that correspond to the SR characteristics and the

resource capabilities required by the process task.

As an example, sophisticated resource allocation algorithms

may also initiate preemption of processes with a lower priority,

or apply statistical analysis of the request arrival distribution,

and possibly keep resources in reserve to manage the overall

performance of the system over time. If some of the resource

requirements cannot be satisfied, the request is queued until the

resources are available. According to its resource allocation

policy, the resource manager selects the actual resources to

be allocated to the process task out of the set of suitable and

available resources. Then, the resource manager updates the

availability data of the allocated resources by setting their state

to ‘‘busy.’’ It is also possible that the resource manager for var-

ious reasons allocates multiple independent tasks at the same

time to a single resource. In that case, the resource multitasks

by either switching between the tasks in a time-shared manner,

such as round-robin, or processing the tasks sequentially in the

order of their priorities, while the inactive tasks become

suspended.

Once the resources are allocated, the process manager

resumes the suspended process task and initiates its actual exe-

cution. Upon the completion of the task execution, the

resources are released, and the control flow is passed to the next

process task if it is required. The results of the process execu-

tion and the statistical data are passed to the system monitor,

which stores the data and, if necessary, checks whether the per-

formance requirements have been satisfied. The service execu-

tion result and statistical data are then sent back to the client as

a result of the service invocation.

The contract negotiator handles the process of negotiating

the service contract terms with the client and altering them

when needed. If the contract terms have been violated during

or as a result of the service delivery, the client may lodge a

complaint, which is then processed by the complaint resolver.

The role of the failure manager is to monitor and handle any

failures that occur in the system. If a failure occurs, the failure

manager requests suspension of the involved processes and

Process
manager

Resource
availability

Suspended
processes

System
tatisticssSLA

Process
instances

Process
types Resources

5

6 74

8

9

10

2

11

18

12

Service delivery system

17

Client

3

13

1

Resource
managerDispatcher

System
monitor

Contract
negotiator

Failure
manager

Complaint
resolver

15

16

14

Figure 1. The service delivery system workflow.

Beloglazov et al. 79

release of the resources, and marks the resources experiencing

the problem as ‘‘unavailable.’’ Once the problem is eliminated,

it sets the state of the resources to ‘‘available’’ and sends a

request for resumption of the suspended processes.

Dispatching SRs

Clients submit SRs to a service delivery system from a set of SRs

R¼ fri i ¼ 1; 2;:::;Rj g. Each SR is described by a set of charac-

teristics and contains data that can later be passed to a process

task. The characteristics are used by the dispatcher and resource

manager to select the appropriate process type and allocate the

required resources. A service system contains a set of n SR char-

acteristics, with each of them containing a set of possible values.

In other words, there are n sets Cj of SR characteristic values,

where j ¼ 1, 2, . . . , n. An SR is assigned a value for each char-

acteristic. That is, each SR ri is described by an n-tuple of the

values of n SR characteristics (c1, c2, . . . ,cn), where

c1 2 C1; c2 2 C2; :::; cn 2 Cn. The set C of all possible n-tuples

of n SR characteristic values is defined in (1).

C ¼ fðc1; c2; :::; cnÞjc1 2 C1; c2 2 C2; :::; cn 2 Cng ð1Þ

The relation between the set of SRs and the set of all possi-

ble n-tuples of SR characteristic values is defined as a function

f : R! C.

SRs are assigned the appropriate process types by a dis-

patcher. The dispatcher analyzes the characteristics of an SR

and according to its dispatching algorithm assigns the corre-

sponding process type. A service delivery system contains a set

of process types P ¼ fpk jk ¼ 1; 2; :::;Pg. The relation between

the set of all possible n-tuples of SR characteristic values and

the set of process types is defined as a function g : C ! P.

Therefore, we can define a dispatching algorithm d as a com-

posite of the functions f and g, d ¼ g�f. The domain of d is R;

the range of d is P.

Example. Let SRs of a service delivery system focused on IT

infrastructure support be described by three characteristics:

SR type C1¼ fhardwareProblem, softwareProblemg, SR prior-

ity C2 ¼ flowPriority, highPriorityg, and SR complexity C3 ¼
fsimple, moderate, complexg. In this case, an SR reporting a

low-priority complex software problem is described by a triple

(softwareProblem, lowPriority, complex). For this example, the

set X of all possible triples of SR characteristic values in the

system is defined as shown in equation (2).

X ¼ fðc1; c2; c3Þjc1 2 C1; c2 2 C2; c3 2 C3g: ð2Þ

Resource Allocation

The purpose of a resource is to provide one or more capabilities

that can be employed during a service process execution in

order to deliver the service. A capability is defined by a totally

ordered or unordered set of its levels. An example of a capabil-

ity can be the level of Java development skills

X ¼ fxljl ¼ 1; 2; :::;Xg, which is totally ordered under the �

relation. Another example of a totally ordered set of capability

levels is the central processing unit (CPU) speed of a server

Y ¼ fypjp ¼ 1; 2; :::; Yg. An example of a capability with an

unordered set of its levels is the tools that a person can work

with Z ¼ fzqjq ¼ 1; 2; :::;Zg. A resource can have multiple

capabilities, which are defined by the maximum level of each

capability provided by the resource if the capability levels are

ordered, or by an enumeration of the capability levels if they

are unordered. It is assumed that a resource can provide a capa-

bility at all levels lower than its maximum if the capability lev-

els are ordered.

Let Ai be one of the m available resource capabilities

described by a set of its levels. Then, the resources of a service

delivery system are described by m sets of capability levels for

each capability Ai, where I ¼ 1,2, . . . , m. The set A of all pos-

sible m-tuples of resource capabilities is defined in (3).

A ¼ fðB1;B2; :::;BmÞjB1 � A1;B2 � A2; :::;Bm � Amg ð3Þ

The capabilities of each resource are described by an

m-tuple from A. There can be several resources with the same

capabilities. Let the system contain a set of resources

E ¼ feiji ¼ 1; 2; :::;Eg. Then, there is a relation between the

resources and their capabilities q : E! A. At any point in time

t, a resource ei is characterized by its state stðeiÞ 2 S, which

shows, for example, whether the resource is occupied or can

accept further SRs. Since several resources can have the same

capabilities and taking into account the time-dependent states

of resources, the inverse relation of q is defined as

q�1 : A; S ! }ðEÞ, where }(E) is the power set of E.

Each process type contains a set of tasks

T ¼ ftuju ¼ 1; 2; :::;Tg. Resources are allocated on a per task

basis. The relation between process tasks and their minimum

required resource capabilities is defined by a function

h : T ! Al, where l is the number of resources required by the

process task.

Based on the given definitions, a set of l sets of resources

satisfying the capability requirements of a task tu 2 T can be

determined as follows: (1) applying h to the task tu to obtain a

set of required capabilities and (2) applying q�1 to each of the

l required capabilities and a state from S to obtain a set of suit-

able resources for each capability. Once a task is mapped on a set

of suitable resources, the selection of a particular resource or

subset of the suitable resources is done by a resource allocation

algorithm of the resource manager. The resource mapping func-

tion and resource allocation algorithm can be arbitrarily complex

and can accept extra parameters as required by the modeler.

According to the defined resource allocation algorithm, the

resource manager evaluates the SR characteristics, required

and available resources, required performance characteristics,

and possibly other factors, and then allocates the appropriate

resources to the process task. For example, for a particular pro-

cess task, the resource manager is able to map the specified pri-

ority and complexity of an SR to the Java development skills

and CPU performance of a server required to meet the priority

and complexity requirements.

80 Journal of Service Research 18(1)

There are multiple possible scenarios of resource allocation,

which depend on the system requirements. Some examples of

resource allocation scenarios are listed subsequently:

1. If there is one or more available resources for each

required set of capabilities, the resource allocation algo-

rithm selects one resource out of the available set of

resources for each required set of capabilities.

2. If the task is high priority and there are no suitable

resources available (e.g., they are all busy), the task can

be assigned to busy resources, which suspend their cur-

rent tasks and switch to the high priority task. The mul-

titasking strategy is not fixed by the model. For

instance, apart from the mentioned priority-based pre-

emption, multitasking can be implemented by time-

sharing round-robin scheduling. The suspended tasks

can be tied down to the original resource, or can be

moved to a global queue, from which other resources

can retrieve and resume them. When the high priority

task is finished, the resources switch back to the sus-

pended tasks if those are still not processed.

3. If the task is low priority and there are no suitable

resources available, the task is moved to a priority-

based queue of deferred tasks to wait for the required

resources to become available.

In addition, a process task may contain information on its

performance characteristics depending on the number of allo-

cated resources (if multiple resources with the same capability

are supported by the process task) and different levels of the

resource capabilities.

Example. Continuing the example from the previous section,

assume that the system receives an SR with the following char-

acteristics (databaseProblem, lowPriority, complex). The SR

(SR1) reports an issue of slow response time of some Database

(DB) queries in a production system, which requires investiga-

tion and optimization. By analyzing the SR characteristics, the

dispatcher assigns the SR to a process consisting of the follow-

ing tasks: (1) creation of a DB snapshot for testing purposes

requiring the capabilities of a DB server and DB administrator;

(2) profiling and optimization of the problematic DB queries

requiring the capabilities of a DB layer programmer at the com-

plex level; and (3) deployment of the optimized DB layer in the

production system requiring the capabilities of a DB adminis-

trator. Based on the analysis of the resource capabilities

required by the process tasks, the resource manager instantiates

the process and assigns a DB server to all the tasks, DB admin-

istrator to Tasks 1 and 3, and DB layer programmer capable of

handling complex problems to Task 2.

While Task 2 is still being served, a new SR (SR2) comes

into the system with the following characteristics (businessLo-

gicModification, highPriority, simple) requiring an addition of

a new field in the customer domain model. The SR gets dis-

patched to a process type consisting of the following tasks:

(1) modification of the DB schema requiring the capabilities

of a DB layer programmer with basic skills; (2) modification

of the business logic layer requiring the capabilities of a busi-

ness logic layer programmer; and (3) deployment of the sys-

tem. Due to the unavailability of other staff members and

high priority of the new SR, Task 1 gets allocated to the same

DB programmer working on Task 2 of SR1. The DB program-

mer suspends the processing of SR1 and switches to SR2. The

suspended task is kept assigned to the programmer and gets

moved into his queue of deferred tasks. Once Task 1 of SR2

is completed, the DB programmer resumes the work on Task

2 of SR1. In this context, the partial execution of the task 2

of SR1 is represented by elements of F, which in a simple case

could just be percentages of the task completion. The resources

are released upon the completion of the corresponding tasks.

When the processes are completed, the results are sent to the

clients reporting the outcomes of the processes and required

statistical information.

Designing a Product Line of IT Service
Delivery Simulation Models

The SPL methodology is motivated by the desire to improve

software development efficiency and maximize code reuse.

First introduced by Clements and Northrop (2001), this meth-

odology extends the software architecture design approach to

span whole families of software systems. SPL explicitly cap-

tures the commonality and variability of different but related

software products. The explicit description of variability is

necessary to document the anticipated changes and the places

where these changes may occur. Clements and Northrop

(2001) defined an SPL as ‘‘a set of software-intensive sys-

tems sharing a common, managed set of features that satisfy

the specific needs of a particular market segment or mission

and that are developed from a common set of core assets in a

prescribed way.’’

In our work, we apply the SPL methodology to model and

design an architecture of a product line of IT service delivery

simulation models. The SPL methodology allows the modeling

of a variety of simulation models, reducing the time and cost of

the development of new simulation models of IT service deliv-

ery systems. According to our survey and analysis of different

SPL approaches and their applicability to the case of modeling

a product line of simulation models, we have chosen a combi-

nation of the SPL approaches proposed by Gomaa (2004) and

Pohl, Böckle, and Linden (2005). In particular, we apply the

integrated variability model and phases of the PLUS approach

proposed by Gomaa (2004) including dynamic modeling, while

splitting the feature model into external features, which are

derived from use cases, and internal features, which are defined

by the architectural variability that is not dependent on the use

cases. Moreover, we use the feature model as a representation

of all the variability introduced in the product line, which like

the orthogonal variability model proposed by Pohl, Böckle, and

Linden (2005) creates a single view of variability. In contrast to

complete decoupling of variability information at lower archi-

tectural levels as in the orthogonal variability model, the

Beloglazov et al. 81

variability is defined via feature conditions, which simplifies

the development.

Use Case Modeling

The first phase of the Product Line UML-based Software Engi-

neering (PLUS) approach proposed by Gomaa (2004) is use

case modeling. During this phase, functional requirements for

the product line are specified and modeled as UML use case

diagrams. During the use case modeling, functional require-

ments are defined as sequences of interactions between actors

(users of the system) and the system, which is considered to

be a black box. In other words, use cases define the external

functional requirements of the system. Functional requirements

and the associated use case diagrams are divided into three

categories: kernel, optional, and alternative. Kernel use cases

capture functional requirements that must be met by all mem-

bers of the product line. Optional use cases are needed only by

some members of the product line. Alternative use cases

describe functional requirements that are different for different

members of the product line. Apart from the categorization of

use cases, there are other mechanisms of incorporating varia-

bility into a use case model. Small variations can be expressed

as conditional alternative branches in a use case. Use cases can

extend each other through extension points using the

‘‘extends’’ relationship and conditions. The ‘‘includes’’ rela-

tionship can be used to include an abstract use case into several

independent use cases.

The main use case of an IT service delivery system is when a

client requests service from the system by submitting an SR.

Therefore, we define the ‘‘Request Service’’ use case as a ker-

nel use case (Figure 2). During use case modeling, the system is

considered to be a black box; therefore, the ‘‘Request Service’’

use case contains two basic actions: A client submits an SR and

the system returns the SR processing results. To provide flexi-

bility in the design of future systems, the use case definition

includes four extension points: <before request>, <after

request>, <before results>, and <after results>. These extension

points can be used by other use cases to extend the basic func-

tionality of the system.

Another kernel use case is ‘‘Sign Service Contract,’’ which

represents the necessity to establish a service contract agreement

between a client and the provider prior to the actual service

delivery. Often, service providers offer default service contract

terms that are implicitly accepted by clients by submitting SRs.

However, this is not always the case; therefore, the use case

includes two extension points: <before signing> and <after sign-

ing> the contract. An example of a use case extension is an

optional use case ‘‘Negotiate Contract Terms’’ that extends

‘‘Sign Service Contract’’ at the <before signing> extension

point. This use case is enabled if the ‘‘Contract Negotiation’’ fea-

ture is supported by the system. This use case represents the abil-

ity of a client to negotiate and adjust the service contract terms

before requesting the service from the service provider.

‘‘Lodge a Complaint’’ is a kernel use case that extends the

‘‘Request Service’’ use case at the ‘‘after results’’ extension

point. This use case is invoked when a client disputes the

results of the service delivery due to, for example, a violation

of the SLAs. The ‘‘Return Process Metadata’’ use case is an

optional extension of the kernel ‘‘Request Service’’ use case

at the <after results> extension point. This use case is enabled

if the system supports the ‘‘Process Metadata’’ feature. If it is

enabled, the data describing the process of the service execu-

tion, such as performance characteristics or any required inter-

mediate results, are collected and returned to the client along

with the service process execution results.

Feature Modeling

Once the functional requirements of a system are captured in a

use case model, the next step is to derive features from the use

cases. A feature is a requirement or characteristic that is pro-

visioned by one or more members of the product line. Features

are used to differentiate members of the product line and

determine common and optional functionality. Features can

be kernel, optional, alternative, or parameterized. Features

may depend on each other using the ‘‘requires’’ or ‘‘mutually

includes’’ relationships.

According to the PLUS approach, all features are derived

from the use case model. However, based on the idea of inter-

nal variability proposed by Pohl, Böckle, and Linden (2005),

we extend this by dividing features into external and internal.

External features capture the external functional requirements

of the system and are derived from the use cases. On the other

hand, internal features are invisible to the users of the system

and are determined by its internal architecture. Internal fea-

tures are architectural features in the sense that they define

variations of the internal system architecture without affect-

ing the external functional requirements. Therefore, internal

features usually define lower level variability and depend

on a subset of the external features. A combination of the

external and internal feature models provides a single view

 extends
(before signing)

Client

before request, after request,
before results, after results

«kernel»
Request Service «kernel»

Lodge a
Complaint

before return,
after return

«optional»
Return Process Metadata

[Process Metadata]

before signing,
after signing

«kernel»
Sign Service Contract

extends
(after results)

extends
(after results)

before negotiation, after
negotiation

«optional»
Negotiate Contract Terms

[Contract Negotiation]

Figure 2. The use case diagram.

82 Journal of Service Research 18(1)

of the product line’s variability, as all variations are defined

using feature conditions.

Since external features are derived from use cases, we

define three kernel features: ‘‘SR Processing,’’ ‘‘Contract Sign-

ing,’’ and ‘‘Complaint Resolution.’’ We also define two

optional features: ‘‘Process Metadata’’ and ‘‘Contract Negotia-

tion.’’ The relationships between these features are depicted in

Figure 3. According to the use case model, the ‘‘Process Meta-

data’’ feature depends on the kernel ‘‘SR Processing’’ feature,

whereas the ‘‘Contract Negotiation’’ feature depends on the

‘‘Contract Signing’’ feature. Therefore, in the feature model,

we define that the ‘‘Process Metadata’’ and ‘‘Contract Negotia-

tion’’ features require the kernel ‘‘SR Processing’’ and ‘‘Con-

tract Negotiation’’ features, respectively, via the ‘‘requires’’

relationship. We define five optional internal features that

depend on the kernel ‘‘SR Processing’’ feature: ‘‘System Mon-

itoring,’’ ‘‘Service OS Management,’’ ‘‘Process Suspension,’’

‘‘Failure Management,’’ and ‘‘Process Preemption.’’ The rela-

tionships between the internal features are depicted in Figure 4.

The ‘‘System Monitoring’’ feature represents the capability

of the service delivery system to continuously monitor the sys-

tem operation and collect data describing the system state, such

as metrics of the performance, cost, and so on. The ‘‘Service

OS Management’’ feature describes an additional ability of the

service delivery system to manage its service OS processes by

real-time changes of their parameters, algorithms, number of

instances, and so on, according to predetermined policies and

data collected by the system monitoring component. The ‘‘Pro-

cess Suspension’’ feature allows the system to suspend the exe-

cution of service processes and resume them later. The

‘‘Failure Management’’ feature applies the process suspension

to interrupt the service processes that are using the resources

affected by a failure. The processes are resumed when the fail-

ure is eliminated. The ‘‘Process Preemption’’ feature allows the

resource manager to preempt service processes that are utiliz-

ing the resources, which must be allocated to SRs with higher

priorities.

In our approach, the feature model plays the role of the

variability model proposed by Pohl, Böckle, and Linden

(2005). It is used to define the variability via feature conditions.

We apply the defined feature model to specify feature condi-

tions at the lower levels of the product line architecture, such

as the static and dynamic models. The PLUS approach applies

iterative development; therefore, all the variability introduced

at the lower architectural levels is reflected in the feature model

during the next iterations. The hierarchies of external and inter-

nal features can be further extended when necessary using the

‘‘extends’’ and ‘‘mutually includes’’ relationships and introdu-

cing additional optional or alternative features.

Static Modeling

In static modeling, the objects participating in the system’s

operation are determined and categorized using stereotypes;

relationships between them are established using UML class

diagrams. At this stage, the variability is defined through inter-

faces, abstract classes, inheritance, and parameterization.

Classes can be kernel, optional, and alternative, corresponding

to the defined external and internal features. For our model, we

use a convention that all the classes in the static model are rep-

resented by interfaces and, therefore, each of them can be

extended to implement the variability.

According to the PLUS approach, we divide the objects into

two main categories: state dependent objects and entities.

State-dependent objects are the objects that implement the con-

trol flow of the system. These objects are active in the sense

that apart from reacting to external events, they can initiate

activities themselves independently of the external environ-

ment and other state dependent objects. On the other hand, enti-

ties are passive objects, they do not perform actions; rather

these objects are acted on by state-dependent objects and are

used to store data and states of other objects in the system.

Figure 5 shows the kernel and optional state dependent

objects constituting our model as well as their relationships.

According to the model, the service delivery system consists

of four kernel state dependent objects: Dispatcher, Resource

Manager, Process Manager, and Complaint Resolver; and four

optional state-dependent objects: OS Manager, Failure Man-

ager, System Monitor, and Contract Negotiator. The function-

ality of these objects corresponds to the service delivery system

workflow introduced earlier.

«kernel»
SR Processing

«optional»
Contract

Negotiation

«optional»
Process Metadata

«kernel»
Complaint
Resolution

requiresrequires requires

«kernel»
Contract
Signing

Figure 3. The external features diagram.

«optional»
System

Monitoring

«optional»
Process

Suspension

«optional»
Service OS

Management

«optional»
Failure

Management

«optional»
Process

Preemption

requires requires requires

«kernel»
SR Processing

requires requires

Figure 4. The internal features diagram.

Beloglazov et al. 83

We split the entity model into three parts: SR, resource, and

process type–related entities. An SR contains a single collec-

tion of SR characteristics, which in turn contains multiple SR

characteristics. The model of resource-related entities divides

the resources into two categories: OS resources and regular

resources. OS resources are utilized by service OS processes,

such as Dispatcher, Resources Manager, and so on. OS Manag-

er’s decision on adding and removing instances of OS pro-

cesses may rely on the availability of OS resources. In

contrast, regular resources are allocated to service processes.

All resources contain information on their availability using the

resource availability data abstraction. Similar to SRs, each

resource embodies a collection of resource capabilities contain-

ing a set of resource capability values.

Similar to the resource entity model, process types are split

into OS process types and regular processes types. OS process

types represent classes of service OS processes (e.g., Dis-

patcher and Resource Manager), whereas instances of service

processes are created based on regular process types. Regular

process types contain sets of process tasks that are executed

in order to deliver the service. Each instance of a process con-

tains the corresponding process type data abstraction and is

stored in a process pool.

Dynamic Modeling

During the dynamic modeling phase, UML communication

diagrams are developed to represent message passing, control,

and sequencing between the objects comprising the system.

Communication diagrams model different scenarios and are

parameterized by internal and external features. Communica-

tion diagrams can be kernel, optional, and alternative. Variant

diagrams show the impact of particular variation points in the

original diagram and depict only the required modifications

of the original diagram. Using UML state charts, state machine

modeling describes the internal behavior of state-dependent

objects defined during the static modeling phase. Due to the

lack of space, we do not include the dynamic model and state

machine model diagrams in this article; however, the interested

reader may find them online.1

Implementation in AnyLogic

We have implemented the proposed model of a product line

of IT service delivery simulation models as a Java frame-

work in the AnyLogic simulation environment (Borshchev and

Filippov 2004). The AnyLogic simulation environment has

been chosen for its approach to the model development, which

is a combination of graphical interface-based modeling using

an extensive library of components with the ability to program

the behavior of custom components in Java. The implementa-

tion of our framework features generic interfaces and abstract

classes with pre-implemented base functionality. The frame-

work contains all the necessary components, which can be

used directly, extended, or completely overridden if required.

This adds to the flexibility in the design of simulation models,

as the base architecture and components of the framework are

reusable and customizable in accordance with the product line

model.

Evaluation

Evaluation is an essential component of a design science

research process (Hevner et al. 2004). In our work, the resulting

IT artifacts are built upon each other in the following sequence:

(1) the model of an IT service delivery system is a base for

defining requirements and deriving a methodology for building

product lines of IT service delivery systems; (2) the methodol-

ogy is applied to design a model of a product line of IT service

delivery simulation models; and finally (3) the product line

model is used to build an instantiation of a product line of a set

of IBM’s related IT service delivery systems represented by a

base model and a number of its major modifications, as dis-

cussed in the following sections. This sequence of derivations

automatically validates the functionality and completeness of

the artifacts, as well as their consistency with the requirements

and constraints of the problem, as long as the final artifact, that

is, the instantiation, is validated and evaluated.

Since the whole proposed approach of applying the SPL

methodology to designing families of IT service delivery simu-

lation models is novel, a comparison with alternative solutions

is not feasible. Therefore, we evaluate the instantiation of the

product line of IT service delivery simulation models in the fol-

lowing two ways:

1. We construct a proof-of-concept product line of several

related IBM’s IT service delivery systems and imple-

menting the corresponding simulation models in the

«kernel»
«composite»

Service Delivery System

«kernel»
«state dependent»

Dispatcher

«kernel»
«state dependent»

Resource Manager

«kernel»
«state dependent»
Process Manager

«kernel»
[Complaint Resolution]

«state dependent»
Complaint Resolver

«optional»
[Contract Negotiation]

«state dependent»
Contract Negotiator

«optional»
[Failure Management]

«state dependent»
Failure Manager

«optional»
[System Monitoring]

«state dependent»
System Monitor

«optional»
[OS Management]
«state dependent»

OS Manager

*

*

*

* *

*

*

*

1

Dispatches service requests

Uses SLA data
Use ssystem statistics

Modifies
resources availability

Process suspension
and resumption

M
onitors system

 state

Allocates resources for processes

Figure 5. The static model diagram of state-dependent objects.

84 Journal of Service Research 18(1)

AnyLogic simulation environment. We validate the

correctness of the implemented model by establishing

a statistical equivalence between the results produced

by the base simulation model of the product line and the

results from the corresponding custom simulation

model using real data as the input for simulations.

2. We show that the artifacts satisfy the defined objectives

of reducing the development efforts by comparing the

time taken to produce a set of related simulation models

based on the product line with the time required to pro-

duce the corresponding custom simulation models esti-

mated by an experienced IT service delivery simulation

model designer.

Proof-of-Concept Validation

In order to validate the proposed approach, we implemented a

proof-of-concept product line of simulation models of a family

of real-world IT service delivery systems in the domain of data

center management (Banerjee, Dasgupta, and Nirmit, 2011).

The related IT service delivery systems were represented by

a base simulation model of the product line and a set of related

simulation models produced through major modifications of

the base model. The simulation models have been implemented

using the AnyLogic simulation environment and the frame-

work described in the previous section. The validation con-

sisted in showing the correctness and applicability of the

proposed product line of IT service delivery simulation models

to modeling real-world systems through a comparison of simu-

lation results produced by a model implemented using the pro-

posed framework with results produced by the corresponding

custom simulation model that has been specifically designed

and implemented to model the service delivery system.

In the domain of data center management, customer-

owned IT infrastructures are supported and managed by spe-

cialized third-party service providers. Customers submit SRs

that are remotely processed by Service Workers (SWs) of

the service providers. The base IT service delivery system

simulated in this case study is one of IBM’s IT service

delivery systems, which is described in detail by Banerjee,

Dasgupta, and Nirmit (2011).

The modeled service delivery system serves several cus-

tomer accounts. SRs submitted by each account are

characterized by their complexity and priority, which are

mapped onto SR characteristics. There are two levels of com-

plexity C1 ¼ flowComplexity, moderateComplexityg, and 4

priority levels C2 ¼ f1; 2; 3; 4g. In our experiments, we used

real workload traces and statistics collected from the modeled

IBM’s service delivery system. Both the product line based and

custom simulation models were supplied with the same input

data. The workload traces used in the simulation have been

obtained from six customer accounts, which are anonymized

due to confidentiality concerns.

The complexity and priority of an SR follow probability distri-

butions shown for each account in Table 1. The arrival times of

SRs follow an exponential distribution with the arrival rate chang-

ing every hour on a 7-day cycle for each account independently.

Due to the large number of arrival rates, we do not include them in

this article. Each SR requires a period of time to be processed,

which is referred to as the service time and is log-normally distrib-

uted with the mean and standard deviation defined separately for

each combination of complexity and priority, as shown in Table 2.

SRs waiting in the queue are ordered based on their priority: high

priority SRs are served first. Moreover, if no resource is available

for a just arrived high priority SR, a lower priority SR is pre-

empted, and the released SW starts working on the high priority

SR. The preempted SR waits in a queue for the SW to become

available and resume the processing.

At every point in time, there are a number of SWs each

capable of serving SRs with some maximum level of complex-

ity. The capabilities of SWs are mapped onto the corresponding

resource capabilities from the set of available resource capabil-

ities A1 ¼ flow, medium, highg. An SW is available between

the specified start and end times of his shift at specific days

of week, which are modeled as resource availability changing

Table 1. SR Parameter Probability Distributions.

Account 1 Account 2 Account 3 Account 4 Account 5 Account 6

SR complexity probabilities
Low complexity 0.92 0.76 0.75 0.62 0.89 0.68
Medium complexity 0.08 0.24 0.25 0.38 0.11 0.32

SR priority probabilities
Priority 1 0.09 0.43 0.04 0.36 0.00 0.33
Priority 2 0.04 0.14 0.48 0.13 0.02 0.08
Priority 3 0.86 0.40 0.34 0.46 0.46 0.56
Priority 4 0.01 0.03 0.14 0.05 0.52 0.03

Note. SR ¼ service requests.

Table 2. Service Time Distribution Parameters.

Priority 1 Priority 2 Priority 3 Priority 4

Low complexity SRs
Mean 42.02 53.20 32.73 42.52
SD 51.29 53.99 35.14 38.90

Moderate complexity SRs
Mean 56.83 68.13 50.74 55.50
SD 57.47 65.10 50.37 48.26

Note. SD ¼ standard deviation; SR ¼ service request.

Beloglazov et al. 85

depending on the time of the day and day of the week. Nor-

mally, a highly skilled SW works on SRs with the maximum

complexity, which the SW is capable of serving. There is a pol-

icy, referred to as the swing policy, according to which highly

skilled SWs start working on SRs with a lower complexity

when a specified threshold on the number of pending SRs with

the lower complexity is exceeded. For the purposes of this case

study, a pull-based dispatching policy was applied (Banerjee,

Dasgupta, and Nirmit, 2011). According to this policy, an

SW that becomes available fetches the next SR from the global

prioritized queue of SRs.

The metric of interest in this case study is the response time.

The response time is the time period from the moment when an

SR enters the system to the moment when its processing is

completed and it exits the system. We focus on this metric,

as it describes the overall system operation encompassing the

dispatching of SRs, resource allocation, preemption, and so

on. We aim to obtain a nonstatistically significant difference

in the response times produced by the model implemented

using the proposed approach and the custom model.

We conducted a set of t-tests to compare the response times

obtained from the two simulation models for all combinations

of accounts, complexity, and priority. The resulting p values

are listed in Table 3. All the t-tests resulted in p values > .05,

which means that there are no statistically significant differ-

ences in the response times produced by the models. Therefore,

we accept the null hypothesis that there is no difference in the

response time produced by the two simulation models. This

fact demonstrates the correctness of the proof-of-concept simu-

lation model implemented based on the proposed framework

and product line of IT service delivery simulation models.

Comparison of Design and Development Time

In order to evaluate the productivity gains brought by the pro-

posed approach, we implemented three major modifications in

the initial service delivery simulation model described in the

previous section to produce three new models with similar but

different functionality. The aim of this experiment is to evalu-

ate the time taken to implement new but related models com-

pared with implementing the corresponding modifications in

the custom simulation model. The first modification was the

implementation of a push-based dispatching policy, in which

the dispatcher assigns SRs to SWs as soon as they arrive (Bane-

rjee, Dasgupta, and Nirmit, 2011). Each SW maintains his own

queue of pending SRs prioritized by the deadline. If the shift of

an SW ends before all of his SRs have been processed, the

remaining SRs are reinserted into the dispatcher’s queue. This

dispatching policy supports preemption: Each SW maintains

his own queue of preempted SRs waiting for the SW to become

available and resume the processing.

The second modification was the implementation of the

swing policy similarly to the original model, but in addition

to assigning low complexity SRs to medium skill SWs, moder-

ate complexity SRs are assigned to high skill SWs. The third

modification was the implementation of rest breaks during the

shifts of SWs. Each SW can take three rest breaks during his shift,

where the total duration of breaks is calculated from the specified

efficiency parameter of SWs. The duration of each of the three

breaks is calculated according to the 1:4:1 proportions, respec-

tively. A break is scheduled randomly during every one third of

the shift. SWs cannot accept new SRs during their breaks. If an

SR is currently being served, its processing is suspended at the

beginning of the SW’s break and resumed at the end of the break.

The development time taken for the implementation of the

described modifications along with time estimates for the corre-

sponding custom model modifications suggested by an experi-

enced model designer are shown in Table 4. The results

indicate that for these particular modifications, the application

of the proposed framework and product line of IT service delivery

simulation models has led to 5–8 times reductions in the develop-

ment time compared with the time required to implement these

modifications in the custom simulation model. This is explained

by the fact that in contrast to the custom model, the proposed

model takes advantage of the standard architecture provided by

the product line of IT service delivery simulation models, its flex-

ibility and extensibility leading to significant productivity gains,

while providing correct simulation results as demonstrated by our

case study presented in the previous section.

Discussion

Hevner et al. (2004) argue that design science research must be

presented both to technology-oriented and management-

oriented audiences. Due to the confined space, the current article

Table 3. p Values From the Conducted t-Tests for Comparing the
Response Times Produced by the Simulation Models.

Priority 1 Priority 2 Priority 3 Priority 4

Low complexity SRs
Account 1 0.948 0.870 0.194 0.627
Account 2 1.000 0.206 0.222 0.064
Account 3 0.982 0.806 0.964 0.991
Account 4 0.921 0.655 0.601 0.578
Account 5 0.993 0.845 0.923 0.875
Account 6 — 0.990 0.797 0.084

Moderate complexity SRs
Account 1 0.855 0.786 0.383 0.893
Account 2 0.886 0.589 0.518 0.240
Account 3 0.869 0.965 0.983 0.432
Account 4 0.513 0.831 0.701 0.777
Account 5 0.729 0.841 0.902 0.924
Account 6 — 0.850 0.476 0.793

Note. SR ¼ service requests.

Table 4. Design and Development Time Comparison.

Modification Product Line Custom Model

Push-based dispatch 5 hours 40 hours
High-medium swing 2 hours 12 hours
Rest breaks of SWs 3 hours 15 hours

Note. SWs ¼ Service Workers.

86 Journal of Service Research 18(1)

focuses on the technological component of the communication

to provide sufficient details enabling the implementation of the

proposed artifacts. This is important to allow organizations and

practitioners to take advantage of the benefits provided by the

artifacts. This section is tailored to managerial audiences and

clarifies the implications of the proposed solutions and effective

ways of applying the produced artifacts within organizations. In

addition, following Gregor and Hevner (2013), contributions of

this work to the existing literature in the area are discussed.

This article describes a methodology and tools for modeling

and optimizing the operational aspects of service delivery sys-

tems. The artifacts are relevant to service managers and process

engineers who need to improve the performance of a variety of

similar but distinct service delivery processes. Simulation is an

efficient approach to both evaluating service delivery systems

during the design process, and optimizing existing service deliv-

ery systems by varying parameters of the service processes.

However, the design and development of simulation models of

service delivery systems is a resource and time consuming task

requiring highly skilled specialists in process engineering.

The related literature explored design, modeling, simulation,

and optimization of service delivery systems as discussed in the

related work section. Many research efforts focused on the analy-

sis and optimization of particular instances of service delivery sys-

tems, for example, Kennedy (1969), Zaki, Ahmed, Cheng, and

Parker (1997), and Anerousis, Diao, and Heching (2011). This

work extends the current body of knowledge in several ways. First

of all, it distills the components of an IT service delivery system

and their interactions, and mathematically formalizes the con-

cepts of SR characteristics, resource capabilities, and dispatching

and resource allocation processes, thereby building upon and

extending the work of Maglio et al. (2006), Spohrer et al. (2007,

2008), and Banavar et al. (2010). This work contributes a metho-

dology for developing product lines of simulation models based

on the SPL approaches proposed by Gomaa (2004) and Pohl,

Böckle, and Linden (2005). It also demonstrates the application

of the methodology to the design and development of a product

line of IT service delivery simulation models. Finally, it presents

a proof-of-concept instantiation of the product line utilizing the

AnyLogic simulation environment (Borshchev and Filippov

2004), which validates and showcases the proposed approach.

The proposed approach is general in a sense that it can be

applied to creating families of simulation models of IT service

delivery systems and managing their variability in an efficient

way. Instead of developing a special simulation model for each

service delivery system, model designers can now develop a

product line of domain-specific IT service delivery simulation

models. Then, to instantiate a simulation model of a concrete

IT service delivery system, they can specialize the developed

product line by specifying the required features, parameters,

and components at the predefined variation points. The product

line development methodology enables flexibility of the

approach by efficiently managing extensions of existing com-

ponents and additions of new components and variation points.

In addition to increasing the productivity of model designers

by enabling the reuse of both architectural and implementation

artifacts across the multiple models, the approach allows the

optimization of IT service delivery systems through the applica-

tion of various optimization techniques, such as metaheuristics.

The potential implications of the application of the proposed

approach within an organization are quicker responses to

changes in the business environment, more information to assist

in managerial decisions, and reduced workload on the process

reengineering specialists.

Conclusions and Future Directions

This work applies the design science research methodology to

address the problem of excessive manual work and low reuse of

design and implementation assets in the development of

IT service delivery simulation models in IBM’s global service

optimization team. We have applied an adapted SPL metho-

dology to design and develop a model of a product line of

IT service delivery simulation models. We based the proposed

model on the formal model of service delivery systems intro-

duced by Banavar et al. (2010).

We have implemented a proof-of-concept instantiation of

the proposed product line model for a set of IBM’s related IT

service delivery systems as a Java framework in the AnyLogic

simulation environment, which has been used to validate and

evaluate the proposed approach. The results of the simulation

experiments have shown that the model implemented based

on the product line produces correct results, while due to the

reuse capabilities and extensibility provided by the product line

reducing the design and development time required for produc-

ing new but related simulation models by 5–8 times compared

with developing the corresponding custom simulation models.

In summary, this work makes the following contributions:

(1) a workflow model of an IT service delivery system and for-

mal definitions of SR characteristics, resource capabilities, and

dispatching and resource allocation processes; (2) a methodol-

ogy for building product lines of simulation models adapted

from a combination of the SPL approaches proposed by Gomaa

(2004) and Pohl, Böckle, and Linden (2005); (3) a product line

of IT service delivery simulation models designed by following

the proposed methodology; and (4) a proof-of-concept instan-

tiation of the product line for a set of related IT service delivery

systems.

An important future research direction is further mathemat-

ical formalization and analysis of the IT service delivery sys-

tem model, which would provide more insights and improve

our understanding of service delivery systems. Another inter-

esting research direction is extension of the proposed model

to accommodate a more general class of service delivery sys-

tems spanning other domains, such as public service delivery.

A product line of service delivery simulation models following

such a generic model could be applied to a wide variety of ser-

vice delivery systems. An expanded application area would

lead to the creation of multiple variants of system components

that can be efficiently managed using the techniques of the

product line development methodology.

Beloglazov et al. 87

Acknowledgment

The authors would like to thank Julia Rubin (IBM Research, Haifa,

Israil) and the anonymous reviewers for their constructive comments

and suggestions on enhancing the article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to

the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship,

and/or publication of this article.

Note

1. Extra materials. http://github.com/beloglazov/jsr-2014.

References

Alter, Steven (2010), ‘‘Service System Fundamentals: Work System,

Value Chain, and Life Cycle,’’ IBM Systems Journal, 47 (1), 71-85.

Anerousis, Nikos, Yixin Diao, and Aliza Heching (2011), ‘‘The Cost

of Service Quality in IT Outsourcing,’’ in Proceedings of the 2011

IFIP/IEEE International Symposium on Integrated Network

Management (IM), Dublin, Ireland 773-784.

Banavar, Guruduth, Alan Hartman, Lakshmish Ramaswamy, and

Anatoly Zherebtsov (2010), ‘‘A Formal Model of Service Deliv-

ery,’’ in Handbook of Service Science, Paul P. Maglio, Cheryl A.

Kieliszewski, and James C. Spohrer, eds. Service Science:

Research and Innovations in the Service Economy, New York,

NY, USA: Springer, 481-507.

Banerjee, Dipyaman, Gargi Dasgupta, and Nirmit Desai (2011),

‘‘Simulation-Based Evaluation of Dispatching Policies in Service

Systems,’’ in Proceedings of the 2011 Winter Simulation Confer-

ence, 779-791.

Borshchev, Andrei and Alexei Filippov (2004), ‘‘AnyLogic—Multi-

Paradigm Simulation for Business, Engineering and Research,’’

in Proceedings the 6th IIE Annual Simulation Solutions Confer-

ence, 1-17.

Chesbrough, Henry and Jim Spohrer (2006), ‘‘A Research Manifesto

for Services Science,’’ Communications of the ACM, 49 (7), 35-40.

Clements, Paul and Linda Northrop (2001), Software Product Lines.

Boston, MA, USA: Addison-Wesley.

Dhanesha, Ketki A., Alan Hartman, and Anshu N. Jain (2009), ‘‘A

Model for Designing Generic Services,’’ in Proceedings of the

IEEE International Conference on Services Computing, 435-442.

Diao, Yixin and Aliza Heching (2012), ‘‘Closed Loop Performance

Management for Service Delivery Systems,’’ in Proceedings of the

2012 IEEE Network Operations and Management Symposium

(NOMS), 61-69.

Diao, Yixin, Aliza Heching, David Northcutt, and George Stark (2011),

‘‘Modeling a Complex Global Service Delivery System,’’ in Pro-

ceedings of the 2011 Winter Simulation Conference (WSC), 690-702.

Gomaa, Hassan (2004), Designing Software Product Lines with UML:

From Use Cases to Pattern-Based Software Architectures. Boston,

MA, USA: Addison-Wesley.

Gregor, Shirley and Alan R. Hevner (2013), ‘‘Positioning and

Presenting Design Science Research for Maximum Impact,’’ MIS

Quarterly, 37 (2), 337-356.

Hevner, Alan R., Salvatore T. March, Jinsoo Park, and Sudha Ram

(2004), ‘‘Design Science in Information Systems Research,’’ MIS

Quarterly, 28 (1), 75-105.

Kennedy, Fredric D. (1969), ‘‘Development of Community Health

Service System Simulation Model,’’ IEEE Transactions on Sys-

tems Science and Cybernetics, 5 (3), 100-207.

Klievink, Bram and Marijn Janssen (2009), ‘‘Improving Integrated Service

Delivery: A Simulation Game,’’ in Proceedings of the 10th Annual

International Conference on Digital Government Research, 73-78.

Maglio, Paul P., Savitha Srinivasan, Jeffrey T. Kreulen, and Jim

Spohrer (2006), ‘‘Service Systems, Service Scientists, SSME, and

Innovation,’’ Communications of the ACM, 49 (7), 81-85.

Peffers, Ken, Tuure Tuunanen, Marcus A. Rothenberger, and Samir

Chatterjee (2007), ‘‘A Design Science Research Methodology for

Information Systems Research,’’ Journal of Management Informa-

tion Systems, 24 (3), 45-77.

Pohl, Klaus, Günter Böckle, and Frank van der Linden (2005), Soft-

ware Product Line Engineering: Foundations, Principles, and

Techniques. New York, NY: Springer-Verlag.

Prashanth, Lakshmanrao A., Horabailu L. Prasad, Nirmit Desai, Sha-

labh Bhatnagar, and Gargi Dasgupta (2011), ‘‘Stochastic Optimi-

zation for Adaptive Labor Staffing in Service Systems,’’ in

Proceedings of 9th International Conference on Service Oriented

Computing (ICSOC), 487-494.

Rohleder, Thomas R., Diane P. Bischak, and Leland B. Baskin (2007),

‘‘Modeling Patient Service Centers with Simulation and System

Dynamics,’’ Health Care Management Science, 10 (1), 1-12.

Sarjoughian, Hessam, Sungung Kim, Muthukumar Ramaswamy, and

Stephen Yau (2008), ‘‘A Simulation Framework for Service-

Oriented Computing Systems,’’ in Proceedings of the Winter Simu-

lation Conference, 845-853.

Spohrer, Jim, Paul P. Maglio, John Bailey, and Daniel Gruhl (2007),

‘‘Steps Toward a Science of Service Systems,’’ The Computer

Journal, 40 (1), 71-77.

Spohrer, Jim, Stephen L. Vargo, Nathan Caswell, and Paul P. Maglio

(2008), ‘‘The Service System is the Basic Abstraction of Service

Science,’’ in Proceedings of the 41st Annual Hawaii International

Conference on System Sciences, 104-113.

Telecom Regulatory Authority of India (2013), ‘‘Information Note to

the Press,’’ Press Release No. 92, Telecom Regulatory Authority of

India, New Delhi.

Vemuri, Seshagiri Rao (1982), ‘‘A Simulation Based Methodology for

Modeling a University Research Support Service System,’’ Socio-

Economic Planning Sciences, 16 (3), 107-120.

Walls, Joseph G., George R. Widmeyer, and Omar A. El Sawy (1992),

‘‘Building an Information System Design Theory for Vigilant

EIS,’’ Information systems research, 3 (1), 36-59.

Zaki, Ahmed S., Hsing Kenneth Cheng, and Barnett R. Parker (1997), ‘‘A

Simulation Model for the Analysis and Management of an Emergency

Service System,’’ Socio-Economic Planning Sciences, 31 (3), 173-189.

Zhang, Liang-Jie (2008), ‘‘EIC Editorial: Introduction to the Body of

Knowledge Areas of Services Computing,’’ IEEE Transactions on

Services Computing, 1 (2), 62-74.

88 Journal of Service Research 18(1)

http://github.com/beloglazov/jsr-2014
845-853

Author Biographies

Anton Beloglazov is a researcher at IBM Research—Australia. He

works in the areas of Cloud computing, distributed systems, and simu-

lation. He holds a PhD in Computer Science from the University of

Melbourne, Australia. This work has been done during his internship

at IBM Research Laboratory in Bangalore, India.

Dipyaman Banerjee is a researcher at IBM Research—India. He

works in the areas of Cloud computing, and analysis and optimization

of IT service systems. He holds an MS degree in Computer Science

from the University of Tulsa, Oklahoma. His research interests also

include distributed systems, machine learning, and game theory.

Alan Hartman is a senior researcher at IBM Research—Israel. He

leads the research efforts on data privacy issues. He was the service

science lead for IBM Research India from 2008 to 2011. He holds a

PhD in Mathematics from the University of Newcastle, Australia.

He has published widely on combinatorial mathematics, software

engineering, and service science since 1977.

Rajkumar Buyya is professor of Computer Science and Software

Engineering; and Director of the Cloud Computing and Distributed

Systems (CLOUDS) Laboratory at the University of Melbourne, Aus-

tralia. He is also serving as the founding CEO of Manjrasoft, a spin-off

company of the University, commercializing its innovations in Grid

and Cloud Computing.

Beloglazov et al. 89

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

