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ABSTRACT

As sensor network deployments grow and mature there emerge a common set of operations and transfor-
mations. These can be grouped into a conceptual framework called Sensor Web. Sensor Web combines 
cyber infrastructure with a Service Oriented Architecture (SOA) and sensor networks to provide access 
to heterogeneous sensor resources in a deployment independent manner. In this chapter we present the 
Open Sensor Web Architecture (OSWA), a platform independent middleware for developing sensor ap-
plications. OSWA is built upon a uniform set of operations and standard data representations as defined 
in the Sensor Web Enablement Method (SWE) by the Open Geospatial Consortium (OGC). OSWA uses 
open source and grid technologies to meet the challenging needs of collecting and analyzing observa-
tional data and making it accessible for aggregation, archiving and decision making.
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INTRODUCTION

Sensor networks are persistent computing systems 
composed of large numbers of sensor nodes. These 
nodes communicate with one another over wireless 
low-bandwidth links and have limited processing 
capacity. They work together to collect informa-
tion about their surrounding environment, which 
may include temperature, light or GPS informa-
tion. As sensor networks grow and their ability 
to measure real-time information in an accurate 
and reliable fashion improves, a new research 
challenge, how to collect and analyze recorded 
information, presents itself.

Deployment scenarios for sensor networks are 
countless and diverse, sensors may be used for 
military applications, weather forecasting, tsu-
nami detection, pollution detection and for power 
management in schools and office buildings. In 
many of these cases the software management 
tools for data aggregation and decision making 
are tightly coupled with each application scenario. 
However, as these systems grow and mature, a set 
of common data operations and transformations 
begin to emerge. All application scenarios will 
need to query a sensor network and retrieve some 
observational data. Some scenarios may require 
information from historic queries be stored in a 
repository for further analysis. They may require 
regular queries to be scheduled and automatically 
dispatched without external operator intervention. 
Scenarios may need to share information among 
themselves to aid in decision making tasks. For 
example, a tsunami warning system may rely on 
water level information from two geographically 
distributed sets of sensors developed by competing 
hardware vendors. These requirements present 
significant challenges in resource interoperability, 
fault tolerance and software reliability. A solution 
to these emerging challenges is to implement a 
set of uniform operations and a standard repre-
sentation for sensor data which will fulfill the 
software needs of a sensor network regardless of 
the application or deployment scenario.

A Service Oriented Architecture (SOA) allows 
us to describe, discover and invoke services from 
heterogeneous platforms using XML and SOAP 
standards. Services can be defined for common 
operations including data aggregation, scheduling, 
resource allocation and resource discovery. We can 
exploit these properties by combing sensors and 
sensor networks with a SOA to present sensors 
as important resources which can be discovered, 
accessed and where applicable, controlled via 
the World Wide Web. We refer to this combina-
tion of technologies as the Sensor Web. Taking 
this concept a step further, when interlinked, 
geographically distributed services form what is 
called a Sensor Grid which is a key step in the 
integration of sensor networks and the distributed 
computing platforms of SOA and Grid Comput-
ing. The integration of Sensors Networks with the 
cyber infrastructure of Grid Computing brings 
several benefits to the community. The heavy 
load of information processing can be moved 
from sensor networks to the backend distributed 
systems. This separation is beneficial because 
it reduces the energy and power needed by the 
sensors, allowing them to concentrate on sensing 
and sending information. Cross-organizational 
collaboration is streamlined, because geographi-
cally distributed resources can be accessed over 
common Grid protocols. Data produced by het-
erogeneous resources can be combined with the 
aid of common XML formats, eliminating data 
incompatibility issues.

Figure 1 demonstrates an abstract vision of 
the Sensor Web; various sensors and sensor nodes 
form a web view and are treated as available 
services to all the users who access the Web. A 
researcher wishing to predict whether a tsunami is 
going to occur may query the entire Sensor Web 
and retrieve the response either from real-time 
sensors that have been registered on the web or 
from historical data in database. Data from all 
sources can be aggregated and used by modeling 
or visualization tools to aid in tsunami prediction. 
This can be shared among collaborative parties 
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which may run algorithms or transformations 
over the raw data with the aid of grid resources. 
In this way, individual resources can be coupled 
together to perform complex tasks which where 
not previously achievable.

Driven by the growing demand for data sharing 
among geographically distributed heterogeneous 
sensor networks the Open Geospatial Consortium 
(OGC) (Open Geospatial Consortium, 2008), a 
geospatial standards authority, has defined the 
Sensor Web Enablement (SWE) method. SWE 
includes specifications of interfaces and encod-
ings that enable discovering, accessing, and ob-
taining sensor data as well as sensor-processing 
services. These specifications form the blueprint 
upon which the Sensor Web architecture can be 
developed. In this chapter we present an imple-
mentation of the SWE method which we refer to 
as Open Sensor Web Architecture (OSWA). We 
explore the technologies and challenges that have 
arisen from our experiences with implementing 
the OSWA. A key aim of which is to provide a 
software infrastructure that simplifies the task 
of application development for heterogeneous 
wireless sensor networks. We present a critical 
analysis of the proposed standards developed for 
Sensor Web by the OGC including the challenges 

and benefits of working with standards bodies. 
We introduce the descriptions of core services 
and encodings which form the SWE, including 
Sensor Model Language, Observations and Mea-
surements, Transducer Model Language, Sensor 
Observation Service, Sensor Planning Service, 
Web Notification Service and Sensor Alert Service. 
We describe the design and architecture for each 
of the core services including the challenges and 
solutions in developing services for heterogeneous 
sensor hardware and operating system resources. 
We provide an analysis of a SunSPOT sensor 
network deployment using a gesture recognition 
application deployed onto OSWA which includes 
design and implementation details and results. Fi-
nally we conclude by proposing our vision for the 
future growth of Sensor Web and our OSWA.

RELATED WORK

The integration of sensor networks and grid 
computing into a sensor grid was initially 
outlined by Tham and Buyya (2005). Tham 
and Buyya introduced some early work in the 
field by proposing the possible implementation 
of distributed information fusion and distrib-

Figure 1. Abstract vision of the Sensor Web
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uted autonomous decision-making algorithms. 
Gaynor et al. (2004) presents a data-collection-
network approach to over come the technical 
problems of integrating resource constrained 
wireless sensors into grid applications. This 
takes the form of network infrastructure with 
a grid API to access heterogeneous sensor 
resources, referred to as Hourglass. Reichardt 
(2005) introduced the Sensor Web Enablement 
(SWE) method which is an important step in 
connecting sensor networks with web and cyber 
infrastructure. The method consists of a set of 
standard services and encoding which can be 
used to build a framework for discovering and 
interacting with web-connected sensors and for 
accessing sensor networks over the web.

52North (Simonis, 2004) is an initiative sup-
ported by the Institute for Geoinformatics at the 
University of Munster, Germany. 52North has 
developed an open source software set based on the 
SWE method. They have developed a set of Java 
web services based on the specifications and data 
encodings as well as several SWE clients capable 
of communicating with services and visualizing 
observational data. Services developed by 52North 
are deployed as standard Web Services, and the 
focus of this project is on geospatial data. Sensor 
observations are retrieved from a geographic in-
formation systems (GIS) database called PostGIS 
and encoded in SWE descriptions. PostGIS acts 
as an interface between the service and the sensor 
systems. Interfaces are defined so that new sensor 
databases or sources can be easily integrated into 
the architecture.

The GeoICT group at York University (Tao et 
al. 2004) has built an OGC SWE compliant Sensor 
Web infrastructure. They have developed a Sen-
sor Web client capable of visualizing geospatial 
data, and a set of stateless Web Services called 
GeoSWIFT. The GeoSWIFT Sensing Server 
implements all the interfaces of a typical obser-
vation service and is capable of communicating 
with Webcams. They have also created an initial 
Registry Service.

Microsoft has released the MSR SenseWeb 
Project (Suman, Jie & Feng 2006) which allows 
users to publish their sensor data on a portal 
web site. Microsoft has implemented its own 
XML ontology along with a set of querying and 
tasking mechanisms. The ontology is influenced 
by encodings introduced in the SWE method. 
Support is provided for sensors running TinyOS 
and devices such as webcams. Microsoft is not 
affiliated with the OGC Consortium and there is 
no support for Linux based operating systems. 
The current application of SenseWeb is limited to 
publishing data, with little support for post pro-
cessing, although it is likely that this will change 
as the project matures.

OSWA is an implementation of the SWE 
method that extends the typical Web Service inter-
face definitions by implementing them as Stateful 
Web Services called WSRF. To our knowledge 
there are no other published SWE implementa-
tions which use WSRF. WSRF opens the door for 
OSWA services to communicate with data and 
computational grid resources. OSWA supports 
heterogeneous sensor resources on TinyDB, Sun-
SPOT, TinyOS and Linux. Implementations such 
as GeoSWIFT and 52North typically support one 
or two sensor operating systems, although they 
include constructs to extend these. Microsoft’s 
SenseWeb Project includes support of TinyOS, 
but not Linux. No other SWE method implemen-
tations support the same diversity of operating 
systems as OSWA. In OSWA we have introduced 
a caching method into the service responsible for 
communicating with the sensor networks, this is 
a novel feature which improves performance and 
has not been implemented by any other research 
groups. There are many research groups work-
ing on sensor node middleware solutions. This 
is middleware which resides on top of the sensor 
operating system. Some notable projects include 
MiLAN (Heinzelman et al., 2004), Agilla (Fok, 
Roman & Lu, 2005), DSWare (Li, Son & Stank-
ovic, 2003) and MagnetOS (Barr et al., 2002). It 
is our intention to expand OSWA into the sensor 
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operating system level and provide a lower level 
middleware solution. Future research opportuni-
ties include developing a specific service for this 
purpose.

SENSOR WEB ENABLEMENT

As sensor network deployments grow obstacles 
begin to arise as an outcome of connecting het-
erogeneous sensor resources and sharing obser-
vational data. A research challenge presents itself 
in how to collect and analyze observational data 
from heterogeneous sensor networks and make 
it accessible for aggregation, archiving and deci-
sion making.

The Sensor Web Enablement (SWE) method 
is defined by the Open Geospatial Consortium 
(OGC); it includes specifications for interfaces, 
protocols and encodings which enable implemen-
tation of interoperable and scalable service-ori-
ented networks of heterogeneous sensor systems 
and client applications (Botts, Percivall, Reed, & 
Davidson, 2007). OSWA is an implementation of 
the SWE method which consists of the following 
XML encodings and interfaces:

1.  Sensor Model Language (SensorML): A 
set of standard models and XML schema for 
describing sensor systems and processes

2.  Observations and Measurements Schema 
(O&M): A set of standard models and XML 
schema for describing physical phenomena 
observed by sensor systems

3.  Transducer markup Language (TML): 
A XML schema and encoding for describ-
ing real-time streaming data recorded by 
transducers

4.  Sensor Observations Service (SOS): A 
web service interface definition for request-
ing observations from sensor networks and 
observation repositories

5.  Sensor Planning Service (SPS): A web 
service interface definition for scheduling 

and planning observational requests to sensor 
networks

6.  Web Notification Service (WNS): A web 
service interface definition for the transmis-
sion of messages between SWE services

7.  Sensor Alert Service (SAS): A web service 
interface definition for publishing and sub-
scribing to alerts from sensors

Services and encodings presented in the SWE 
method are decoupled from any particular deploy-
ment scenario. Interfaces are defined in such a 
manner that services responsible for performing 
independent tasks can co-ordinate with each 
other to complete a common goal. When coupled 
together services form a middleware layer which 
is capable of meeting the complex demands of a 
heterogeneous multi-user system.

The implementation of service interfaces, 
based on a common set of standards, has many 
advantages. Research groups or commercial 
companies are free to design their own service 
implementations with the confidence that ser-
vices will be capable of interacting with one 
another. A group at the University of Melbourne 
can build a SPS while another group in Europe 
builds a SOS. Service descriptions can be 
published on the World Wide Web so that both 
groups can use each other’s resources, mutually 
benefiting both teams. Standard models for data 
encoding such as SensorML, O&M and TML 
allow data to be shared among implementa-
tions and encourage collaboration among SWE 
implementations. The use of XML as a basis for 
the schemas allows for platform independence, 
software can be developed to run on Linux or 
Microsoft platforms with the confidence that 
there will be no data incompatibilities. The rich 
semantic capability of XML is well suited for 
data exchange, and capable of meeting growing 
needs in data encapsulation.

The feedback of user experience and contribu-
tion of ideas to standards bodies is an important 
step in developing a community and promoting 
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broader adoption of standards among researchers 
and businesses. Standards can only mature if they 
are underpinned by practical experience. However, 
in an emerging technology such as Sensor Web 
where feedback from deployment experience may 
be quite high, this presents an interesting challenge. 
Development efforts of pioneering adopters who 
have invested in early standards may seem in vain, 
as their systems can quickly cease to conform to 
the most recent standards release. The growth of 
XML tools is one technology which can ease this 
burden. A variety of tools exist which facilitate 
the generation of code from XML schemas. This 
it aids the developer by reducing some of the te-
dious works. Ultimately, however, it is important 
that researchers, developers and standards bodies 
work together to foster a strong community which 
can meet these challenges.

Moodley & Simonis (2006) raise some draw-
backs on the SWE approach. SWE does not have a 
formal conceptual model that links all the services 
and encodings together. This complicates the 
task of combing data with different granularities 
of time, space and measured phenomena. The 
encodings lack explicit semantics, so it is dif-
ficult to discover if two or more sets of observed 

phenomena are related. SensorML is an attempt 
at partially meeting this requirement. However, 
although it can be used to describe the sensors 
themselves, it does not provide a semantic de-
scription of the sensor and the phenomenon that 
it measures.

A vision for Sensor Web is to have service 
components working together to execute a user 
request and achieve a common goal as illustrated 
in Figure 2. A SWE enabled client is interested in 
retrieving observational data from a set of physi-
cal sensor nodes. The client knows the physical 
location of the sensors it is interested in, the 
duration for which it is interested in reading the 
observational data for (1 hour, 1 day, 1 week, etc.) 
and the observational data (light, acceleration, 
temperature, etc.) it requires. The client constructs 
a request containing this information and sends it 
to the SPS. The SPS then determines the Univer-
sal Resource Indicator (URI) of the appropriate 
SOS instance by querying a registry of available 
services. When a SOS instance comes online it 
automatically registers its capabilities with the 
Registry. If the client requires alerts, the SPS 
subscribes to a SAS, if events described in the 
alert request occur the SAS will automatically 

Figure 2. Sensor Web enablement service interaction
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inform the WNS, which will perform an action 
or communicate this information back to the cli-
ent. Once the subscriptions have been dealt with 
the SPS will query the appropriate SOS instance 
which will send the request to a sensor network 
and retrieve the observational result. The SPS 
will notify the WNS that the request has been 
completed; the WNS will forward the location of 
the observation data and the outcome of the plan 
to the SWE client. The client can then collect the 
observational data.

The SWE presents a framework of service de-
scriptions and XML schemas for communication 
protocols. A research challenge lies in the design 
and architecture of the services and specifications in 
a robust, efficient, platform independent and secure 
manner. In OSWA we attempt to tackle this challenge, 
using the SWE method as a basis upon which to build 
robust platform independent middleware.

OPEN SENSORWEB 
ARCHITECTURE

The OSWA is an implementation of the SWE 
method. The various components defined for 
OSWA are outlined in Figure 3. We can identify 
four core layers namely Fabric, Services, Devel-
opment and Application. Fundamental services 
are provided by low-level components whereas 
higher-level components provide tools for creating 
applications and management of the lifecycle of 
data captured through sensor networks.

We use the SWE specifications as a blueprint 
upon which to base our Service layer. It is impor-
tant to feed back real-world deployment experi-
ence into the design and architecture of services. 
Ultimately deployment experience should drive 
standards improvement, although, given the na-
ture of standards this often a lengthy process. It is 
through the early embrace of emerging technolo-
gies that we can demonstrate their advantages that 
can then lead to improvements in standards. With 
this in mind, we have implemented the Service 
layer as a set of WSRF services. The move to 

Figure 3. High level view of OSWA
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WSRF grew out of a need to support on going 
queries which persist over time to services. These 
queries require state information which is difficult 
to implement in traditional Web Services. WSRF 
changes the dynamics of the SWE framework 
because services are no longer passive sources 
for data to be pulled from. They are active data 
sources which push data out to clients following 
a publish-subscribe paradigm. In future work 
we plan to explore the introduction of additional 
services, such as an Operator Deployment Service 
which can facilitate the deployment of applica-
tion specific operators onto the physical sensor 
networks. Operators could communicate with one 
another to form an overlay network which would 
be hardware transparent and capable of enforcing 
efficient network communication, fault tolerance, 
resource management and discovery, code man-
agement and energy saving schemes.

A key aim of the OSWA is to provide a software 
infrastructure that simplifies the task of application 
development for heterogeneous wireless sensor 
networks. Once services have been deployed we 
can further abstract the details of the services 
into interfaces which we couple together to form 
an API, this forms the basis of the Application 
Development layer. Developers can then use 
the API to build and deploy sensor applications, 
define relationships between services and build 
job scheduling schemes through an interactive 
GUI. A challenge in the development of services 
is to decouple as much application specific logic 
from the service code base as possible. It can be 
difficult to develop services which are neutral 
to the deployment scenario but still fulfill the 
idiosyncrasies of a particular application. For 
example, a set of services which comprise a tsu-
nami monitoring application may also be used 
for pollution detection. Both of these applications 
may have the commonality of measuring water 
temperature or displacement from the same set 
of sensors but have quite different post process-
ing, scheduling and result outcomes. A common 
approach is to express these idiosyncrasies using 

a XML model. Although this often introduces 
additional computational processing time which 
may not be acceptable in real time applications, 
it is important that XML models can provide the 
semantic descriptions necessary to encapsulate 
this information.

The Sensor Fabric layer includes the Operat-
ing System and application code deployed onto 
physical sensors which allows them to record 
observations and network among themselves. 
Currently it is up to developers to program and 
deploy applications at the Fabric layer. This is not 
an ideal situation as it requires the programmer 
to directly interface with the sensors and manage 
the storage, processing, recording and transport 
of observation data. Furthermore physical access 
to individual sensors is required, making it dif-
ficult to update code on large numbers of remote 
sensing nodes. A solution to this problem is to 
deploy a sensor node middleware onto the sensors 
themselves. The middleware acts as an interface 
to the underlying operating system and provides 
code management, allocation and migration facili-
ties. It is our intention to expand OSWA into the 
fabric layer and provide a multi tier middleware 
solution. The Operator Deployment Service is a 
step in this direction.

Technologies such as Java, Tomcat, XML, 
SOAP and Web Services provide great opportuni-
ties for developing platform independent applica-
tions but come with a cost. OSWA is written in 
the Java programming language. Java was chosen 
because it is a platform independent object oriented 
programming language, software libraries released 
by sensor hardware vendors such as Crossbow and 
Sun are available as Java Archived Repositories 
(JAR) files which are simple to use. A disadvan-
tage of using Java is that it is not as fast in its 
execution time when compared to a lower-level 
language like C. Java comes with a memory and 
resource footprint which may affect performance 
when large numbers of simultaneous requests are 
to be processed by services. However, constant 
improvements in JVM technologies mean this 
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situation can only improve with time. The platform 
heterogeneity and ease of programming outweigh 
any disadvantages associated with Java.

A challenge of OSWA is how to support 
ongoing sensor queries which persist over time 
to heterogeneous sensor networks. Traditional 
Web Services are stateless, making it difficult 
to create and maintain persistent relationships 
between services. Stateful Web Services provide 
access to data values that persist over time and 
evolve as a result of Web Service interactions. 
The Web Service Resource Framework (WSRF) 
defines conventions for managing state so that 
applications discover, inspect and interact with 
stateful resources in standard and interoperable 
ways, as defined by the OASIS standards body. 
Java WS Core is a component of the Globus 
Toolkit, a set of software components for build-
ing distributed systems and it is a popular Grid 
middleware platform. WSRF is underlined by 
a notification-subscription interaction pattern. 
A client subscribes to a service resource and if 

any changes of state occur on that resource, the 
service will automatically notify the client of the 
changes. This eliminates the need for a client to 
poll the service for changes, as is typical from 
Web Services, thus reducing the network traffic 
among services and improving performance. The 
introduction of WSRF is a key step forward in 
evolving sensor web technologies into a sensor 
grid. Services are deployed on an Apache Tomcat 
container. Tomcat is a servlet container which 
provides an environment for java code to run 
on. It is written in Java and is a stable and free 
technology maintained by volunteers.

SOAP is used as the communication protocol 
between clients and services; SOAP relies on XML 
as its message protocol and HTTP for negotiation 
and transportation. The use of XML comes with 
a processing burden. Transformations need to be 
performed between the data views of XML and 
Java object. Managing these relationships manu-
ally can be cumbersome and error prone. One 
solution is to automatically generate Java objects 

Figure 4. Conceptual model for SensorML processes (Botts, 2007)
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from XML schema using a Java-to-XML binding 
framework like XMLBeans.

For the remainder of this section we discuss 
each of the components defined in SWE method, 
introduce the architecture of these components as 
implemented by us in the OSWA, and explore the 
relationships between services and encodings.

Sensor Model Language

SensorML is used to describe the processes and 
processing components associated with the mea-
surement and post-measurement transformation of 
observations (Botts, 2007). A process is any entity 
that takes an input, applies a set of well-defined 
methods, and results in an output. Processes can 
be linked together into executable process chains 
which describe the mapping from input to output 
between components. This conceptual model for 
processes in SensorML is illustrated in Figure 4. 
Process chains are useful in deriving high-level 
information, which is not otherwise attainable from 
a single process. For example, a process chain 
could include the retrieval of raw observational 
results and the on-demand processing of those 
results into more meaningful output. SensorML 
is particularly useful in describing sensor systems 
and in the processing and analysis of sensor 
observations. Observations recorded by sensor 
systems and encoded in the O&M specification 
can be encoded within SensorML and described as 
a SensorML process. SensorML is robust enough 
to handle the processing of data from virtually 
any sensor whether mobile, in-situ or remotely 
sensed, or active or passive.

The SOS uses SensorML to describe the capa-
bilities and metadata of any available sensor nodes. 
The SPS accepts user scheduling plans described 
as SensorML processes which it then executes. 
In OSWA Java objects defined by SensorML 
models are derived with the aid of XMLBeans. 
These objects are then used by the two services, 
to encode or decode the XML data. A SWE client 
may also use these objects as necessary.

Observations and 
Measurements Schema

The O&M schema is an encoding for observa-
tions and measurements retrieved from a sensor 
network by the SOS. The purpose of the O&M is 
to alleviate the need for sensor-specific or research 
independent data formats for describing data re-
trieved from sensor networks. An observation is 
any event which has a value that describes some 
phenomenon. The term measurement is used to 
identify a numeric quantity associated with the 
observation. The phenomenon is a property of an 
identifiable object, which is the feature of interest 
of the observation (Cox, 2007). For example, if a 
sensor network is deployed in a room to measure 
the light intensity, the observed property would 
be lux, the photometric unit for describing illumi-
nance and the feature of interest would be light. 
An Observation model identifies the real-world 
observation target for which observations are 
made; an extract of this model is illustrated in 
Figure 5. This includes the value of the observed 
property and may include a description of the 
process used to generate the result. Using our light 
example the value recorded in an office might be 
320 lux, the process could be the procedure used 
for recording light. Constructs exist for describ-
ing the sampling time and result time for a time 
sequence of observations. An observation may 
have metadata associated with it, such as a geo-
spatial location. Observations can be composed 
into collections, which share some commonali-
ties such as the same sampling time or the same 
feature of interest.

The SOS is responsible for returning obser-
vational data encoded in the O&M specification, 
which can be real-time data retrieved from a sensor 
network or archived data. In OSWA, O&M objects 
are generated with the aid of XMLBeans, these 
are used by the SOS and by SWE clients.
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Transducer Markup Language

TML defines a set of models which are used in 
describing the data captured from transducers, 
along with methods for communicating real-time 
sensor data. TML includes information necessary 
for the post-processing of data by the eventual 
recipient. A transducer is typically a group of 
devices which can capture real-time data from 
multiple phenomena. Transducers work in two 
ways, they can sense data or data can be sent to 
them to produce some sort of predetermined result. 
An advantage of TML is that it makes it possible 
to share data across application domains. It can 
be used for retrieving data from live sources or 
archived sources.

TML is a recent addition to the SWE set of 
encodings, in our OSWA we are yet to implement 
it and have no access to a transducer device. The 
SOS is primary responsible for returning the sets 
of transducer results encoded in TML. It is the 
responsibility of the SOS to communicate with 
the transducer device.

Sensor Observation Service

The SOS is a service responsible for forwarding 
requests to the sensor network and retrieving the 
recorded observational results. It acts as an interme-
diary between the client and real time or archived 
sensor observation data. It provides a common 
interface to communicating with sets of hetero-
geneous networks and archived data sources. The 
SOS communicates with the sensor network via a 
base station node which acts as a bridge between 
the service and sensor nodes. Observational results 
retrieved from the sensors are returned to the cli-
ent encoded in the O&M specifications. Metadata 
describing the sensor platform (hardware capacity, 
sensor types) is returned in the SensorML encoding. 
SWE enabled clients can connect directly to the 
SOS to retrieve near real-time data, or for complex 
queries the SPS can facilitate lifecycle management 
and coordinate data retrieval from multiple SOS 
instances simultaneously.

The SOS is composed of three core opera-
tions DescribeSensor, GetObservation and Get-

Figure 5. O&M model extract (Na, 2007)
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Capabilities. GetObservation is responsible for 
returning observations from a sensor network, 
GetCapabilities returns metadata information 
about the SOS service and DescribeSensor is 
responsible for returning metadata information 
about the sensor nodes. Other operations include 
RegisterSensor, and InsertObservation, which 
are used to support transactions along with six 
enhanced operations including GetResult, Get-
FeaturesOfInterest, GetFeaturesOfInterestTime, 
DescribeFeatureOfInterest, DescribeObserva-
tionType and DescribeResultModel.

In OSWA we implement all the core operations 
described in the specification, they include GetOb-
servation, DescribeSensor and GetCapabilities. 
These interfaces provide sensor descriptions and 
observational data from a heterogeneous set of 
sensor networks which include TinyOS running 
on Mica2, MicaZ and Imote2, NICTOR sensors 
developed by NICTA running Linux and SunSPOT 
sensors running Java. The architecture of the SOS 
is illustrated in Figure 6.

A client connects to the SOS interface through 
the Globus WSRF library. The client can be a user 
connecting with a SWE client or a service, such 

as the SPS, initiating the connection on behalf of 
a user executable plan. Once the connection has 
been negotiated calls to the DescribeSensor or 
GetCapabilities operations are directed through 
a proxy class to a database connector. The da-
tabase connector communicates with a Postgr-
eSQL database to retrieve metadata information 
describing the sensor hardware (DescribeSensor) 
and the offerings that are available from the SOS 
(GetCapabilities). This information is encoded in 
SensorML and returned to the client, which will 
use it to determine if the SOS service is capable 
of fulfilling an observational request. The client 
will send a GetObservation request to retrieve 
observational data from the sensor network. The 
request will contain a SQL-like syntax, informa-
tion encapsulated in the syntax may include; the 
sensor network type (vendor), the location of 
the network, the observed phenomenon (light, 
temperature, acceleration, etc.), a threshold value 
(only values temperature values greater than 0 
degrees Celsius), the duration for which to sense 
the data, the update frequency for observations, 
and the network ID’s of sensors to be queried. 
This information may vary with each applica-

Figure 6. Architecture of the SOS
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tion context. The proxy will distribute the query 
request to the appropriate network connector. It is 
the responsibility of the connector to communicate 
with the base station and retrieve the observational 
results. In most cases this is facilitated by a daemon 
which forwards queries to the serial port that the 
base station is connected to. The observational 
data recorded by the sensors is then published on 
a TCP/IP port and is available for the connector 
class to retrieve. In some cases, such as for the 
NICTOR sensors, this interface occurs via a da-
tabase. NICTORS are unique in that they publish 
their observational results directly to a MySQL 
database. Once the observation data has been col-
lected it is encoded into the O&M specification 
and returned to the client.

As part of a continued effort to enhance the per-
formance of the SOS we have introduced a cache 
mechanism into the SOS architecture. A bottle-
neck of the SOS has been the inability of sensor 
networks to handle more than one query at a time, 
without some special operators or middleware 
deployed onto the sensors. When an observational 
query is sent to a sensor network that query must 
return a result before a consecutive query can be 
fulfilled. In a system with multiple concurrent 
users, all users are interested in an immediate 
response, which can lead to a major performance 
bottleneck. To overcome this bottleneck, a cache 
mechanism has been developed that consists of 
a two-level cache chain incorporated with query 
aggregation rules and a partial matching scheme 

Figure 7. Architecture of cache mechanism
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to improve accuracy and performance. The cache 
mechanism handles the parsing of cached queries 
and the predicting of results for current queries. 
Query results are stored in a local cache, incom-
ing queries are checked against historical ones 
and if the query strings are similar and lie within 
a timeout the cached results are returned instead 
of sending a query to the sensor network.

The key components of the Cache mechanism 
are illustrated in Figure 7: where the cache inter-
faces with the proxy and connector components 
of the SOS architecture.

A CacheManager maintains a cache chain, 
which gives orders of precedence to the available 
caches. Upon receiving an observation request 
the CacheManager checks with the RuleEngine 
to determine if it should query the Cache. The 
RuleEngine maintains a series of parameters, 
which are designed to improve the accuracy of 
the Cache in order to maximize the cache hit 
rate. The query SQL string is used as a key for 
caches. The CacheManager checks each Cache 
in the cache chain and returns a hit if the SQL 
string exists. If the RuleEngine determines that 
the CacheManager is unlikely to retrieve a cache 
hit, i.e. if the Cache is full, or entries are expired 
or don’t match the key, control is returned to the 
CacheManager which redirects the query to the 
physical sensor network. When the sensor net-
work returns observational results the proxy will 
forward these to the CacheManager which will 
update the cache chain along with parameters in 
the RuleEngine.

The RuleEngine analyses the observational 
results and makes changes to the tolerance pa-
rameters of Estimate and Threshold. Estimate is 
a numeric value given to the rate of change ob-
served in the environment by the sensor network. 
A small Estimate is given to a rapidly changing 
environment; a larger estimate is assigned to a 
stable environment. The Estimate is determined 
by analyzing the difference between consecutively 
recorded observations returned by the sensor 
network. The RuleEngine uses the Estimate to 

determine if a query should be checked against 
the Cache or not. If the current time exceeds the 
last update time of a cached result plus the Es-
timate, then the request is redirect to the sensor 
network, because the environment is changing 
fast, thus any observation cached will already be 
out of date. This ensures that the Cache is queried 
only in circumstances where we are confident 
that a cache hit is as close as possible to a cor-
rect reflection of the physical environment. The 
Estimate is initialized in the configuration file 
and dynamically changed by the RuleEngine at 
runtime to reflect the changing environment. The 
Threshold is a dynamically changing parameter 
that adapts to the cache size, frequency of entries 
being cached and the values of entries.

The Caches are strung together to form a 
cache chain. Typically, the memory cache takes 
precedence over the database and is limited in 
size. Upon receiving an incoming observation 
request, the SOS calls the CacheManager. If a 
cache is hit, the cached result is returned as the 
observational result to the client. If a cache miss 
occurs, the CacheManager will insert the observa-
tion request into a queue of observational requests 
to be retrieved from the sensor network. When an 
item is removed from the queue, a second check 
is made by the CacheManager to determine if any 
observational results have been cached while the 
current request has been waiting in the queue. If a 
cache hit occurs, the result is returned to the client. 
If there is a miss, the SensorProxy will query the 
physical sensor network. The observational results 
retrieved are then written by the CacheManager to 
the Cache, following the precedence of the cache 
chain, and fed back to the RuleEngine. A cache 
hit can occur if two cache keys (query strings) are 
“similar”, which means that they are exactly the 
same or their values lie within the tolerance Thresh-
old. The responsibility of determining whether 
two keys are similar is given to the Comparer. If 
a cache miss occurs, the Comparer can still use 
existing cached entries to achieve a cache hit by 
using partial matching schemes. When writing a 
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new entry to the cache, if a cache entry already 
exists with the same key, the new observational 
results will replace the stale data. Otherwise, a 
new key entry is allocated and a new result entry 
is placed into the cache. If the cache is full, we 
employ two eviction strategies, Least Recently 
Used (LRU) and least rank. Although other more 
complex cache eviction strategies exist, LRU is 
our primary choice because it works well in an 
environment where there is a high temporal lo-
cality of reference in the workload (that is, when 
most recently reference objects are most likely 
to be referenced again in the near future). After 
being stored in the cache, the result is feedback 
to the RuleEngine.

Sensor Planning Service

The SPS is responsible for providing a high level 
planning, scheduling, tasking, collection, process-
ing, archiving of requests for all services. A SWE 
client can submit a SensorML encoded plan to the 

SPS, the plan must contain the observation request, 
location of the sensors, duration of the request and 
any other relevant metadata or post-measurement 
processing requirements. The SPS is responsible 
for discovering available SOS instances from a 
registry of services and capabilities, processing and 
scheduling the plan, managing subscription requests 
to the SAS and forwarding notifications to the WNS. 
Use of the SPS should be limited to circumstances 
where observational data from more than one SOS 
instances is required, where the connection duration 
may persist over some period of time, and where 
post-processing, such as data aggregation from 
several sensor networks or archived observation 
sources is required. We define these types of requests 
as complex observational requests.

In a similar fashion to the SOS there are both 
mandatory and optional operations which are 
required to be implemented. GetCapabilities, De-
scribeTasking, Submit, and DescribeResultAccess 
are all mandatory operations. GetCapabilities is 
responsible for returning metadata information 

Figure 8. Architecture of the SPS
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regarding the capabilities of the SPS. DescribeT-
asking returns information about all parameters, 
which need to be set by a client, to perform a 
Submit request. The Submit operation submits the 
user plan for scheduling and execution by the SPS. 
DescribeResultAccess returns the SOS location 
that the SPS communicates with in order to access 
observational data from a particular sensor. Op-
tional operations which may also be implemented 
include GetFeasability, GetStatus, Update and 
Cancel. GetFeasability provides feedback to the 
client on the feasibility of executing the plan, this 
includes checking the validity of the parameters, 
and locating a SOS instance and checking the 
instance can fulfill the request. GetStatus returns 
the current status of the request. Update allows 
the client to update a previously submitted plan 
and Cancel terminates a plan.

In the OSWA we implement all the mandatory 
and optional operations. The architecture of our 
SPS is based heavily on earlier design work our 
team did in developing a Grid resource broker 
called Gridbus. The Gridbus Broker is a sched-
uler for distributed data-intensive applications 
on global grids (Venugopal, Nadiminti, Gibbins, 
Buyya, 2008). The architecture of the SPS is il-
lustrated in Figure 8.

A client will initialize a SOAP connection 
with the SPS using Globus WSRF libraries. If it 
is the first time that the client is connecting to the 
SPS it may query the GetCapabilities operation 
in order to retrieve metadata information about 
the service. The operation may return details 
describing the hardware and software of the 
server, the organization responsible for operat-
ing the server, the accessible sensor systems (in 
the form of SOS URI’s) along with the physical 
location and observational phenomenon recorded 
by the sensor networks. The client may send a 
DescribeResultAccess request to determine the 
SOS location responsible for a particular sensor 
it is interested in. This data can then be used in 
the construction of the plan. The client will also 
need to discover what parameters it needs to set 

in order to perform a Submit operation. It is the 
responsibility of the DescribeTasking operation 
to provide this information. The client uses De-
scribeTasking response to construct a user plan 
that will contain all the information necessary to 
execute a GetObservation operation on a SOS 
instance, along with any pre-processing, post 
measurement processing, archiving, notification, 
duration and any other tasking it wishes to perform 
on the observational data.

When the client performs a Submit operation 
an interpreter decodes the user plan and constructs 
a job. A Job is an object that encapsulates all the 
content described in the user plan. If the user plan 
specifies the client to be notified of the Job comple-
tion via the WNS (email, SMS, Instant Message, 
phone call), the SPS registers the Job with the 
WNS. The state of the Job at anytime throughout 
its lifecycle is maintained by a Hibernate database. 
The Job is placed in a queue and scheduled for 
execution. A Service Monitor thread sits in the 
background and discovers any new SWE service 
instances that may be accessible on the network. 
When the Job is ready for execution a dispatcher 
subscribes to the SOS instance identified in the 
Job, the dispatcher calls the GetObservation 
operation which communicates with the sensor 
network and retrieves the observational results. 
Notifications are sent by the SOS back to the 
SPS as the Job executes, these are forwarded to 
the Job Monitor which updates the Job state in 
the database. Whenever the SPS receives a Get-
Status request it retrieves the current state of the 
job from the database and returns it to the client. 
Once the observation is completed the SOS re-
turns the results to the Job Monitor encoded in the 
O&M specification. The results are then written 
to the local file system and if any post processing 
requirements are included in the plan these are 
performed. Post-processing may include error 
checking, performing additional calculations or 
data transformations. Upon completion the data 
is returned to the client, for more complex plans 
which persist over time, or which may require 
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alternative communication means (SMS, email 
etc..) the WNS is notified which in turn notifies 
the client over the clients preferred protocol.

Sensor Alert Service

The SAS specification provides an interface for 
sensor nodes to advertise and publish alerts. Cli-
ents can subscribe to data that matches specific 
criteria, for example when the battery is low or if 
an observation value is returned above or below 
a threshold value. When this data becomes avail-
able the SAS notifies the client. Intelligent sensors 
can connect to the SAS and make their resources 
available to clients for subscription. The SAS uses 
the Extensible Messaging and Presence Protocol 
(XMPP), a decentralized open XML-based pro-
tocol targeted at near real-time communication, 
to publish sensor data.

The SAS specification outlines ten operations 
that can be requested by a client and performed 
by a SAS server. The required operations include 
GetCapabilities, Subscribe, CancelSubscrip-
tion, RenewSubscription, DescribeAlert, and 
DescribeSensor. The remainder of the operations 
are optional, they include GetWSDL, Advertise, 

CancelAdvertisement and RenewAdvertisement.
The SAS is a new addition to the SWE method 

and therefore it is yet to be implemented in the 
OSWA. We will briefly describe the proposed 
functionality of the interfaces, which are illus-
trated in Figure 9.

GetCapabilities returns metadata describing 
the abilities of the SAS implementation. The 
Subscribe operation allows clients to subscribe 
to the advertised capabilities. CancelSubscription 
terminates the subscription and RenewSubscrip-
tion restarts the subscription. DescribeAlert returns 
the structure of the data observed by a particular 
sensor. This includes the physical phenomenon 
being observed and format of the recorded data. 
Upon receiving a return value the client has enough 
information to Subscribe to the alert. GetWSDL 
returns the WSDL description of the SAS inter-
face. Advertise allows sensors to advertise their 
capabilities to a SAS instance. Sensors or data 
producers calling Advertise will be added to the 
sensor pool and are available to clients for subscrip-
tion. CancelAdvertisement allows the advertising 
sensor source to terminate the relationship and 
be removed from the pool. RenewAdvertisement 
restarts the advertisement.

Figure 9. SAS overview (Simonis, 2007)
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Web Notification Service

The WNS is an asynchronous messaging service 
whereby users can subscribe and receive noti-
fications, over one of several protocols, on any 
interesting phenomena that may occur in any 
SWE service. Any service can call the WNS to 
send a notification. The WNS handles two noti-
fication methods, one-way, where notifications 
from services are forwarded to the client and 
two-way where a response is expected from the 
client. A variety of communication clients can 
be programmed into the WNS model, including 
email or SMS. This allows for users to program 
their mobile devices to accept notifications 
describing processing errors or completed SPS 
plan requests.

Mandatory operations defined for the WNS 
include GetCapabilities, RegisterUser, and DoNo-
tification. Optional operations are DoCommuni-
cation and DoReply. GetCapabilities works in a 
similar fashion to previously mentioned services, 
returning metadata about the WNS. RegisterUser 

allows a client to register to receive notifcations 
and DoNotification initiates the notification of 
the registered user. DoCommunication is called 
to initiate the communication with the user, and 
DoReply accepts a user response to a two-way 
notification.

In the OSWA we implement the mandatory 
operations described in the WNS specification. 
The mandatory operations are used to perform 
one-way communication whilst optional opera-
tions are only required for two-way notification. 
The architecture of the WNS is illustrated in 
Figure 10.

Clients can discover the capabilities of the 
WNS by calling the GetCapabilities operation, 
this returns the available communication protocols 
implemented by the WNS. When a client calls the 
RegisterUser operation on the WNS the user is 
assigned a registration ID by the Account Manager 
which is then stored in a Postgres database. The 
client case can be any SWE service, however it 
will typically by the SPS, as this is responsible 
for managing the scheduling of user plans. When 

Figure 10. The architecture of the WNS as implemented in OSWA



465

Sensor Web

some interesting event occurs the SPS will send a 
DoNotification request to the WNS. This is handled 
by a Notification class which discovers the user 
details from the Account Manager and notifies an 
end-user client with an appropriate communication 
protocol. In the OSWA we implement email as the 
preferred protocol, although an interface exists so 
virtually any protocol can be easily added.

In the following section we present the prob-
lem of gesture recognition and build and deploy a 
gesture recognition application using the OSWA 
to access real-time observational data produced 
by SunSPOT sensors, transform the observational 
results and visualize the data.

CASE STUDY: A GESTURE 
RECOGNITION APPLICATION

From GUIs to multi-touch surface pads, speech 
to gesturing, the ways we interact with computers 
are diversifying more than ever before. To demon-
strate the usability of the OSWA we implemented 
a prototype arm gesture recognition system, trying 
to free the user from the keyboard and mouse and 
incorporate a more natural gesture user interface 
utilizing sensors, machine learning and sensor 
web. This requires the user to hold a sensor node 
in their hand and perform a gesture with their 
arm. Each unique gesture has a different semantic 
meaning, this may include a letter of the alphabet, 
moving to the next slide in a presentation or open-
ing and closing a browser window. In this section 
we introduce the problem of gesture recognition; 
we outline the idiosyncrasies and challenges in 
building a gesture recognition system. We intro-
duce the software components which we need to 
meet these challenges and use the SOS to collect 
and process gesture data, which we forward to a 
SWE client for visualization.

Human motion is an inherent continuous 
event and difficult to predict. Theoretically, the 
human motion recognition problem is similar to 
voice recognition which is well studied. The main 

difference is that human motion occurs in three 
dimensional space, which requires measurements 
to be recorded for at least three axes. To recognize 
human gestures first we need to capture gesture 
data and transmit it for further processing. This 
raw data can then be analyzed by recognition 
algorithms in order to extract some useful mean-
ing or content.

SunSPOT (Sun Small Programmable Object 
Technology) is an open source software package 
and hardware sensor node developed by Sun 
Microsystems. Developers can customize both 
virtual machine source code and circuit board 
design to meet their own special requirements, 
using Java to write applications and deploy them 
on the physical devices. SunSPOT devices come 
with a light sensor, temperature sensor, and ac-
celerometer integrated onto the sensor board.

There are two main challenges in for gesture 
recognition. The first challenge is segmentation, 
i.e., how to identify the beginning and end of 
a motion in a multi-attribute data stream. The 
second challenge is to recognize the segmented 

Figure 11. Variations in acceleration data from 
the X, Y and Z axis produced by similar motions

Figure 12. Variations in acceleration data from 
the X, Y and Z axis produced by similar gestures 
with different durations
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stream with a high level of accuracy. To fulfill 
these requirements there are several challenges 
which need to be addressed (Li, Zheng, & Prab-
hakaran, 2007):

Similar motions may look different: • Due 
to variance in speed and direction, similar 
motions can have variations in a multi-
attribute data stream. Figure 11, illustrates 
the raw acceleration data produced by ges-
tures of a small (10 centimeter) diameter 
circle and a larger diameter (60 centime-
ters) circle.

• Similar motions vary in duration: 
Different people may perform the same 
gesture in different ways. Even the same 
person can not perform exactly the same 
gesture at the same speed twice. The sen-
sor sampling rate may differ as well. This 
data series is illustrated in Figure 12.

• Similar motions may have different 
meanings: Illustrated in Figure 13 are the 
accelerometer readings from three gestures 
with similar motions, but with different 
semantic meanings. Complete motions are 
concatenated by brief transitions, and the 
motion candidates in a stream can contain 
these transitions. Hence, the difference 
between a complete motion and motion 
candidates with missing or extra segments 
needs to be captured.

• Different motions may follow similar 
trajectories but in different directions: 
For example Figure 14 illustrates a clock-
wise circle and a counter clockwise circle 
which follow a similar trajectory but may 
produce two different results.

These challenges show that a solution to the 
gesture recognition problem is non-trivial. For a 
gesture recognition system we first need to seg-
ment the data, i.e., we need to identify the start 
and end of the data stream. We can achieve this 
manually with the SunSPOT nodes by holding and 

releasing a button to explicitly mark the beginning 
and end of a gesture. To recognize the human mo-
tion in the stream we can use a Hidden Markov 
Model (HMM) (Baum & Petrie, 1966). Hidden 
Markov is defined as a set of states of which one 
state is the initial state, a set of output symbols, 
and a set of state transitions. Each state transition 
is represented by the state from which the transi-
tion starts, the state to which transition moves, 
the output symbol generated, and the probability 
that the transition is taken. HMM are especially 
known for their applications in temporal pattern 
recognition such as speech (Rabiner, 1989). In 
the context of gesture recognition, each state 
could represent a set of possible hand positions. 
The HMM which holds the highest probability 
of state transitions could be determined as the 
user’s most likely gesture. HMM need to be 
trained before they can be used for recognition. It 
is important to determine the appropriate number 

Figure 13. Variations in acceleration data from 
the X, Y and Z axis produced by the motion of 
three similar gestures with unique character 
outcomes

Figure 14. Variations in acceleration data from 
X, Y & Z axis produced by similar trajectories in 
different directions
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of states for each gesture to maximize accuracy 
and performance.

We implemented the gesture recognition 
system in the SOS component of the OSWA. We 
only use the SOS because we are interested in 
near-real time observational data from the sensor 
network. We have no need to schedule the data 
so we don’t use the SPS. Likewise there are no 
notifications to be sent so we don’t use the WNS. 
The architecture of gesture recognition system 
with relation to the SOS and its components is 
illustrated in Figure 15.

We develop a small application in Java which 
we deploy on the SunSPOT module, the applica-
tion uses the onboard accelerometer to capture 
arm movement and forward it to a base station 
node. Acceleration data from all X, Y and Z axes 
(Figure 16) is significant as is tilt on all 3 of these 
axes. These 6 parameters are later analyzed by the 
Recognition Module. The base station simply acts 

as a relay, forwarding packets to the SunSPOT 
sensor and forwarding the observational results 
back to a serial port.

One problem with directly using the serial port 
is that only one application can interact with at 
any time. A solution to this is the Sun SPOT Serial 
Forwarder which opens a packet source and lets 
applications connect over a TCP/IP socket.

To interface with the SOS we implement a 
connector (SunSPOTConnector) and a recogni-
tion (Recognizer) module. The architecture of 
these components with relation to existing SOS 
components is illustrated in Figure 17. The Sun-
SPOTConnector interfaces with the SunSPOT 
Serial Forwarder. The recognition module is 
invoked by the SunSPOTProxy to analyze the 
data series observed by the SunSPOT sensors. 
The SunSOPTObservationFormatter encodes the 
observational result returned from the sensors into 
the O&M format, which is later returned to the 
SWE client. The Recognizer performs the HMM 
transformation on the raw observation data. Two 
open source components are used by the Recog-
nizer, the Gesture and Activity Recognition Toolkit 
(GART) (GART, 2008) and the Hidden Markov 
Model Toolkit (CU-HTK) (“HTK Speech Recog-
nition”, 2008). GART is a prototyping toolkit for 
the rapid creation of gesture-based applications, 
developed by the Contextual Computing Group at 
the Georgia Institute of Technology. It attempts to 
minimize the complexity of underlying machine 
learning algorithms and encapsulates functions 

Figure 15. Architecture of the gesture recogni-
tion system with relation to existing SOS com-
ponents

Figure 16. X, Y and Z axes on Sun SPOT accel-
erometer (SunSPOT, 2008)
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provided by CU-HTK. The CU-HTK is a portable 
toolkit for building and manipulating HMM, it 
is primarily used in speech recognition research. 
CU-HTK was developed in partnership with the 
Machine Intelligence Laboratory at Cambridge 
University and Microsoft.

Prior running the experiment, we use the 
SunSPOT sensors to produce a segmented sample 
of acceleration data for the HMM. We do this by 
running a small host side application and repeating 
a set of predefined training gestures. The result-
ing training data is maintained as a set of XML 
files that hold all raw gesture samples along with 
their names and configuration arguments. All 
consecutive observational data produced during 
the use of the system is used to improve on the 
initial gesture library and build up an experience 
set. This training need only be done once, during 
execution the CU-HTK loads the experience set 
from disk and compares it to the recorded gesture 
data. The identified gesture data is encapsulated 
in the O&M encoding by SunSOPTObservation-
Formatter and returned to the SWE client

The GUI client is a simple SWE client deployed 
as a Java desktop application that interfaces with 

user. The client uses WSRF to connect to the SOS 
and when a gesture is identified it prints the result 
in a text box. The gesture result consist of a letter of 
the alphabet which mapped to a particular motion 
recorded by the sensors. Figure 18 is a screenshot 
of system in action. For illustration purposes the 
GUI client, SOS instance and Sun SPOT Serial 
Forwarder are running on a single machine. One 
gesture is performed and the raw acceleration data 
series is printed out in the console. The identified 
gesture is returned and printed in GUI client.

To evaluate the performance of the gesture 
training and recognition system, test cases were 
chosen from EdgeWrite (“EdgeWrite Text”, 
2008) a unistroke text entry method developed 
by University of Washington. Its benefits include 
increased physical stability, tactility, accuracy, 
and the ability to function with minimal sensing. 
Instead of testing a whole character set in this 
experiment, we selected two sets of characters. 
As illustrated in Figure 19, each set has its own 
characteristics. In set S1, the shape and track of 
each gesture is unique. The Recognizer should 
be able to identify these characters easily. In set 
S2 the six gestures share similarities among each 

Figure 17. Architecture of the SunSPOT proxy and connector
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other. When compared to S1 we expect the level 
of recognition accuracy for S2 to be lower. We 
want to know the difference of accuracy between 
these two gesture sets.

Because the HMM is a supervised learning 
algorithm more training samples will lead to a 
higher recognition accuracy. So for each gesture 
set we train two versions of the sample sets:

• Version 1(V1): 5 samples per gesture. User 
specific, trained by one developer
Version 2(V2):•  10 samples per gesture. 
Non user specific (relative), trained by two 
individuals each taking turns in producing 
gestures

Compared with V1, V2 contains more training 
samples, so it should get higher accuracy result. 

When we run each of these sample sets on the two 
gesture sets we get a total of four training sets, 
these are illustrated in Table 1.

10 gestures were performed on each of the 
training sets to evaluate the performance of the 
system. Table 2 depicts a summary of the accuracy 
after the experiment. Generally, the recognition 
accuracy of S1 is higher than S2, which is to be 
expected because characters in S1 are unique. 
V2 achieves higher accuracy for both character 
sets because it contains more training samples 
than V1.

Tables 3, 4, 5 & 6 are confusion matrices which 
expand on the recognition accuracy detail for each 
of the four training tests in Table 2. A confusion 
matrix is used in machine learning to illustrate 
correct and incorrect classification results. For 
each confusion matrix the x-axis represents the 

Figure 18. Gesture recognition system in action

Figure 19: Two character sets



470

Sensor Web

actual gesture performed and the y-axis represents 
the recognized gesture by system. For example, 
in Table 3, cell nn (shadowed area) is 70% which 
means 70% of gesture n was correctly recognized 
by system. On the other hand, gesture n has been 
incorrectly recognized as a and g at 20% and 10% 
respectively.

Statistically, the HMM recognition engine 
works well with a minimum of 75% accuracy. 
Using more training samples, it easily reaches 
96%. As we predicted, the higher the level of 
training samples, the greater the level of accuracy 
we can expect from the system. The more motion 
is recorded about one particular user, the more 
the system can recognize their actions. In this 
example we use letters of the alphabet because 

they offer a suitable amount of complexity in 
gesture variance. The accuracy of results pro-
duced by alphabet set gives us confidence in the 
performance of our system. The core concept of 
gesture recognition can be expanded to a variety 
of deployment scenarios. A user can use perform 
hand gestures during a presentation which may 
result in changing slides, or initializing a multime-
dia component. The user does not need physical 
access to the computing system and is free to be 
mobile and interact with the audience during the 
course of the presentation.

In this experiment, we successfully imple-
mented a gesture recognition system using Sun-
SPOT sensors, a machine learning algorithm and 
OSWA. The SOS was used to retrieve real time 

Table 1. Improved Sample matrix 

S1 S2

V1 N1 N3

V2 N2 N4

Table 2. Summary of accuracy 

S1 S2

V1 85% 75%

V2 96% 78%

Table 3. Confusion matrix of N1 

85% a g n t x s

a 70% 30% 0 0 0 0

g 0 100% 0 0 0 0

n 20% 10% 70% 0 0 0

t 0 20% 0 80% 0 0

x 0 10% 0 0 90% 0

s 0 0 0 0 0 100%

Table 4. Confusion matrix of N2 

96% a g n t x s

a 100% 0 0 0 0 0

g 0 100% 0 0 0 0

n 0 0 100% 0 0 0

t 0 0 0 100% 0 0

x 10% 0 0 0 90% 0

s 0 10% 0 0 0 90%

Table 5. Confusion matrix of N3 

75% o c f g q Ø

o 70% 0 0 0 20% 10%

c 0 30% 0 50% 0 10%

f 0 0 90% 10% 0 0

g 0 0 0 100% 0 0

q 10% 0 0 40% 60% 0

Ø 0 10% 0 0 0 100%

Table 6. Confusion matrix of N4 

78% o c f g q Ø

o 80% 0 0 0 20% 0

c 0 90% 10% 0 0 0

f 0 0 90% 0 10% 0

g 0 0 0 40% 60% 0

q 10% 0 0 20% 80% 0

Ø 0 10% 0 0 10% 90%
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observation data from the SunSPOT sensors. The 
raw observation results were transformed using 
a Gesture Recognition and a HMM toolkit and 
forwarded to a SWE client for visualization. Ad-
ditional development work which was required 
to implement the application consisted of: intro-
ducing an application specific Connector class to 
the SunSPOT proxy interface, a data formatter 
class to encapsulate the application specific ac-
celeration data, a recognition module to perform 
post-processing on the raw observational data, 
and the visualization capabilities in the form 
of a text box on the SWE client. Besides these 
modifications the SOS provided all the necessary 
architecture components to fulfill our objective. 
With the additional components added to the 
architecture we could run our experiment and 
measure the accuracy of the gesture recognition 
algorithm. The algorithm saw improved perfor-
mance in accuracy with the help of more training 
samples, reaching 96% accuracy at its peak. The 
combination of OSWA and gesture recognition 
has the potential to free the user physical access 
to a computing system and provide them with an 
accurate alternative.

CONCLUSION AND FUTURE WORKS

In this chapter we have introduced Sensor Web 
and the OGC SWE method. Sensor Web provides 
a conceptual framework where geographically 
distributed services can provide access to hetero-
geneous sensor resources regardless of the deploy-
ment scenario. The SWE method outlines a set 
of common data description formats and service 
interfaces which when implemented can realize the 
vision of a Sensor Web. Application independent 
data description formats are important for sharing 
data from heterogeneous sensor resources among 
independent deployment scenarios. A common set 
of Service descriptions encourages the develop-
ment of services by research organizations and 
businesses to communicate with one another in 

order to achieve cross-organizational collabora-
tion, mutually benefiting stakeholders. OSWA is 
one implementation of the SWE Method which 
implements services as stateful web services using 
WSRF. OSWA is developed in Java and imple-
ments all the mandatory operations defined for 
the SOS, WNS and SPS, along with encodings for 
SensorML and O&M schema. The SOS provides 
access to a set of heterogeneous sensors and sensor 
operating systems including hardware developed 
by Crossbow running TinyOS, SunSPOT’s run-
ning Java and NICTOR sensors running Linux. 
The SPS is built on the architecture of the Gridbus 
Broker, a mature broker application. A gesture rec-
ognition application has been presented in order to 
demonstrate the functionality of the SOS, a major 
OSWA component. This case study illustrates the 
ability of OSWA to meet the needs of almost any 
deployment scenario. Future developments which 
we intend to commit resources to include:

An operator service, capable of hiding • 
hardware implementation details from us-
ers. Users could use the operator service to 
automatically deploy and update applica-
tions on the sensor nodes without the need 
to physically access the sensor network. An 
overlay network would be deployed on the 
sensors which would be hardware transpar-
ent and capable of fulfilling the demands of 
the operator service. The overlay network 
would manage energy efficiency, security 
and automatic network configuration.
A GUI IDE providing access to service • 
operations and allowing users to visually 
construct applications, service plans and 
sensor deployments. Users could drag-and-
drop GUI elements which would result in 
the generation of code that could automati-
cally be deployed on the sensor network by 
the operator service. Users could visually 
construct SPS plans and describe service 
interactions.
Data driven workflows, which could be de-• 
ployed on the overlay network and across 
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services. Sensor observations could auto-
matically trigger service interactions and 
perform complex tasks.
An implementation of the SAS along with • 
the TML encoding.
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KEY TERMS AND DEFINITIONS

Observations and Measurements: A set of 
standard models and XML schema as defined in 
the Sensor Web Enablement method by the Open 
Geospatial Consortium for describing physical 
phenomena observed by sensor systems.

Sensor Alert Service: A web service interface 
definition as defined in the Sensor Web Enable-
ment method by the Open Geospatial Consortium 
for publishing and subscribing to alerts from 
sensors.

SensorML: A set of standard models and XML 
schema as defined in the Sensor Web Enablement 
method by the Open Geospatial Consortium for 
describing sensor systems and processes.

Sensor Observation Service: A web service 
interface definition as defined in the Sensor Web 
Enablement method by the Open Geospatial Con-
sortium for requesting observations from sensor 
networks and observation repositories.

Sensor Planning Service: A web service 
interface definition as defined in the Sensor Web 
Enablement method by the Open Geospatial Con-
sortium for scheduling and planning observational 
requests to sensor networks.

Sensor Web: The combination of sensor 
networks and a service oriented architecture, so 
that sensors are viewed as resources which can 
be controlled and accessed over the World Wide 
Web.

TML: An XML schema and encoding as de-
fined in the Sensor Web Enablement method by the 
Open Geospatial Consortium for describing real-
time streaming data recorded by transducers.

Web Notification Service: A web service 
interface definition as defined in the Sensor Web 
Enablement method by the Open Geospatial 
Consortium for the transmission of messages 
between SWE services.


