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Abstract
 As sensor networks become more pervasive there emerges a 
need for interfacing applications to perform common 
operations and transformations on sensor data. Web Services 
provide an interoperable and platform independent solution 
to these needs. A key challenge of using Web Services in this 
context is how to support ongoing sensor queries that persist 
over an extended period of time. In this paper we introduce
Web Service Resource Framework (WSRF) mechanisms into 
the core services implementation of the NICTA Open Sensor 
Web Architecture (NOSA). NOSA is a suite of middleware 
services for sensor network applications which are built upon 
the OpenGIS Consortium’s Sensor Web Enablement 
standard. WSRF expands the functionality of our services to 
handle simultaneous observational queries to heterogeneous 
Sensor Networks. It facilitates the adoption of a multi-user, 
multi-threaded service environment. Using components from 
the Globus Middleware platform, NOSA takes a major step 
forward to achieving the vision of a Sensor Grid. 

1. INTRODUCTION

The identification of common data operations and 
transformations on sensor data has fuelled the birth of the 
Sensor Web paradigm. Sensor Web combines sensors and 
sensor networks with a Service Orientated Architecture 
(SOA). A SOA allows us to discover, describe and invoke 
services from a heterogeneous software platform using XML 
and SOAP standards. When interlinked, geographically 
distributed services form what is called a Sensor Grid; this is 
a key step in the integration of sensor networks and the 
distributed computing platforms of SOA and Grid 
Computing. Services are defined for common operations 
including data query, retrieval and aggregation, resource 
scheduling, allocation and discovery. Sensor networks can be 
discovered, accessed and controlled over the World Wide 
Web. 

The NICTA Open Sensor Web Architecture [7] is built 
upon a uniform set of operations and standard sensor data 
representations as defined by the Open Geospatial 
Consortium [1] (OGC). The OGC is a geospatial standards 
authority that has defined a Sensor Web Enablement (SWE) 
method [2] which includes specifications of interfaces, 

protocols and encodings that enable discovering, accessing,
and obtaining sensor data as well as sensor-processing 
services. The following are the five core specifications of the
SWE which are implemented in the NOSA core services:
1. Sensor Model Language (SensorML) [3] – Information 

model and XML encodings that describe either a single 
sensor or sensor platform in regards to discovery, query 
and control of sensors.

2. Observation and Measurement (O&M) [4] – Information 
model and XML encodings for observations and 
measurement.

3. Sensor Collection Service (SCS) [15] – Service to fetch 
observations, which conform to the O&M information 
model, from a single sensor or a collection of sensors. It 
is also used to describe the sensors and sensor platforms 
by utilizing SensorML.

4. Sensor Planning Service (SPS) [5] – Service to help users 
build a feasible sensor collection plan and to schedule 
requests for sensors and sensor platforms.

5. Web Notification Service (WNS) [6] – Service to 
manage client sessions and notify the client about the 
outcome of the requested service using various 
communication protocols.
Although the core services work well in a Research and 

Development environment their capabilities fall short of 
expectations when the user load and complexity of 
observational queries is increased. These services are based 
on earlier development work on the NOSA core services [7].

Several groups are working on related work in the 
Sensor Web field. Microsoft has recently released the MSR 
SenseWeb Project [22] which allows users to publish their
sensor data on a portal web site. Microsoft has implemented 
its own XML ontology along with a set of querying and 
tasking mechanisms. Support is provided for sensors running 
TinyOS and devices such as webcams. Microsoft is not 
affiliated with the OGC Consortium and there is no support 
for Linux based operating systems. The current application of 
SenseWeb is limited to publishing data, with little support for 
post processing, although it is likely that this will change as 
the project matures. The GeoICT group at York University 
[23] have built an OGC SWE compliant Sensor Web 
infrastructure. They have developed a Sensor Web client 
capable of visualising geospatial data, and a set of stateless 
Web Services called GeoSWIFT [24]. The GeoSWIFT 



Sensing Server implements all the interfaces of a typical SCS 
and is capable of communicating with Webcams. There is no
implementation of a WNS or SPS, although some work has 
been done on a Registry Service.  The Sensorweb Research 
Laboratory at Washington State University is focusing its 
efforts on building a Volcano Monitoring Sensor Network 
and is working on a NASA funded in-situ Space Sensor 
Network. Their research is largely on low-level network 
topology and routing running on top of TinyOS. It is unclear 
as to the level of sophistication of their Services layer.

A key challenge of NOSA is how to support 
ongoing sensor queries which persist over time to 
heterogeneous sensor networks. This challenge is addressed 
by the following improvements to the NOSA architecture; (i) 
all services are implemented as stateful Web Services 
(WSRF), (ii) the SCS works with many different types of 
sensors, from TinyOS running on Mica2 and TinyDB to an
in-house sensor running Linux called NICTOR [21]
developed by NICTA, (iii) services are capable of handling 
concurrent requests from multiple users, (iv) a repository 
service has been added to store historic observation results.  

In Section 2 we provide background information on core 
services along with an analysis of their shortcomings. Section 
3 introduces stateful Web Services and describes the
improved architecture and design of NOSA. Section 4 
provides a performance evaluation of the SCS and presents 
recommendations for future development work.

2. BACKGROUND: CORE SERVICES

The aim of NOSA is to provide a software infrastructure 
that simplifies the task of application development for
heterogeneous wireless sensor networks. The overall structure 
of NOSA is outlined in Fig. 1. Services interface with low-
level components and provide tools for creating applications,
along with management of the lifecycle of data captured 
through sensor networks.
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Fig. 1: High-level view of NICTA Open Sensor Web 
Architecture.

The primary focus of the design and implementation 
of NOSA has been on the SWE core services including the
SCS, WNS, and SPS (which extend from the SWE) as well as 
the Sensor Repository Service (SRS) which provides a 

persistent data storage mechanism for sensor and observation 
data. O&M XML specifications have been implemented and 
are used to encode observational data recorded and retrieved 
from a sensor network. Fig. 2 illustrates an example of a
typical collection request on a sensor network and the 
resulting invocations on NOSA services. 

A client sends an XML observation request to a SPS 
instance. The request includes the sensors the client is 
interested in obtaining data from, the type of data, the 
duration of the query and any other relevant metadata. The 
SPS assesses the feasibility of the client’s requirements and 
registers the user details with the WNS. If the SPS can fulfil 
the requirements it forwards the observation onto the SCS 
which retrieves the observation data from the appropriate 
sensor network. Upon completion the SPS will notify the 
WNS and the WNS will forward this onto the client. 
Observational data may be stored in a repository which can
then be retrieved at the user’s convenience.  

The following subsections describe in detail the core 
set of NOSA services (SCS, SPS and WNS), and their 
limitations.
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Fig. 2: A typical invocation for Sensor Web client.

A. Sensor Collection Service
The SCS is responsible for communicating directly with 

the sensor networks. The SCS provides a proxy interface to 
both streaming data and query based sensor applications that 
are built on top of TinyOS [8] and TinyDB [9]. It collects
observational data produced by the sensor networks and 
encodes it into XML using the O&M specification. The SCS 
is deployed on an Apache Tomcat [10] servlet container.

The design of the SCS is currently limited to executing 
one query request at a time from a single connecting client. A 
major shortcoming of using Web Services is that they are
nominally stateless, i.e. they retain no data between 
invocations, and this limits their usefulness. For a typical 
Web Service an incoming query, such as retrieving the 
observations from a sensor network for any extended period 
of time and containing a regular periodic update frequency, is 
difficult to implement. Cookies can be used to manage 
session state but this essentially ties down the connecting 
client to being a web browser and limits the connectivity of 
the Web Service to console applications and services. A Web 
Service is incapable of sending automatic updates to a 



connecting client. It is the responsibility of the client to 
follow a request-response communication pattern. As the 
duration of an observational query increases and the sampling 
period at which results are produced decreases, the resulting 
communication traffic grows in proportion to the ratio of the 
query duration and the sampling period, making this solution 
unacceptable. A second major shortcoming of the SCS is that 
it is limited to working with sensors which are running 
TinyOS. This restricts the range of hardware vendors and 
limits the usefulness of NOSA.

B. Sensor Planning Service
The SPS is a scheduling service which interfaces 

between a client or service and the SCS.  It accepts XML 
based plans which contain a listing of observational 
requirements along with a duration value and update period. 
The SPS will check the feasibility of the plan utilizing a rule 
engine. Predefined rules are used to check the boundary 
conditions of observation query values, whether a SCS 
service exists, and if it is capable of fulfilling the request. A 
scheduler composes the user’s plan into a collection request 
and invokes an observation call on the SCS. The resulting 
observation data is archived in a database and a notification is 
sent to the WNS indicating the outcome of the collection 
request. The client is free to retrieve the observational data 
once it is notified by the WNS. A shortcoming of the SPS is 
its inability to manage the scheduling of more than one user 
plan at a time. The level of user plan sophistication is limited 
to very simple requests, which further restricts the usefulness 
of the service.

C. Web Notification Service
The WNS service performs the basic functionality of 

acting as a communication relay between services and clients. 
Clients register with the WNS through the SPS. When a SCS 
returns an observation result to the SPS, the WNS is notified
of the operation. The WNS, in turn, notifies the registered 
user of the operation. The architecture is flexible enough to 
include a variety of communication plug-ins, however only 
the email protocol has been implemented. Similarly to the
SPS and the SCS the WNS can only process one user request 
at any one time. 

As a Web Services platform, the NOSA core services 
work well in a single user, single sensor network 
environment, where all sensors run the same Operating 
System and resource limits are low and can be easily 
anticipated.  Such an environment is very little use outside a 
research laboratory. To overcome these limitations, we have 
extended our Sensor Web implementation to include stateful 
Sensor Web services.

3. STATEFUL SENSORWEB SERVICES DESIGN

The introduction of stateful Web Services into the NOSA 
architecture aims to provide a cohesive solution to the 
shortcomings experienced in development of the core 

services. Stateful Web Services provide access to data values 
that persist across and evolve as a result of Web Service 
interactions. The Web Service Resource Framework (WSRF)
[12] defines conventions for managing state so that 
applications discover, inspect and interact with stateful 
resources in standard and interoperable ways as defined by 
the OASIS standards body. Stateful Web Services provide all 
the benefits of Web Services including standardization and
interoperability. At the time of development there exist two 
major implementations of the WSRF protocol, these 
implementations were the most mature in their completeness
of the specifications.

Apache WSRF [13] is an Apache Axis-based web 
application. It uses an XML schema to compile Java 
interfaces and classes that can then be used to access and 
modify XML instance data [14].

Java WS Core is a component of the Globus Toolkit
[15].  The Globus Toolkit is a set of software components for 
building distributed systems and it is a popular Grid 
middleware platform. The Java WS Core comes as a set of 
JAR API files, which are deployed in conjunction with the
service in a Tomcat container. The Globus Java WS Core was 
chosen over the Apache implementation because it required 
the least amount of rework to be done to existing services. 
Under Globus, minor modifications were made to existing
WSDL and Java files, whereas, the Apache method of 
generating Java from WSDL was error prone when OpenGIS 
schemas were introduced into the WSDL. The Globus toolkit
also provides additional components which in future 
development works may prove useful.         

In the following sections we detail the advantages of 
WSRF to the NOSA core services and discuss the 
architectural modifications necessary to implement these.

A. Sensor Collection Service
The SCS is the largest and most important service in the 

NOSA architecture. Its core classes are illustrated in Fig 3.
When implemented as a Web Service, the network traffic 
involved in executing observational queries becomes 
unacceptable on a sensor network that requires the SCS to 
provide regular, near real-time updates to a connecting client 
or service. WSRF offers a solution to this problem with the 
introduction of the WS-BaseNotification [16] specification, 
which defines a notification-subscription interaction pattern. 
Using the Globus WS-Notification and WS-Resource APIs 
the SCS defines a resource. A resource is an entity that 
encapsulates the state of a stateful Web Service [17].
  When the SCS receives an incoming SOAP request it creates 
a resource object and generates a unique resource key. This 
resource key is returned to the client and all further 
communication exchanges between the client and service 
include the resource key. When the client subscribes to the 
service resource, the subscription ensures that any changes of 
state which occur on the resource (e.g. new observational 
results received from a sensor network) will automatically be 
forwarded to the client. This process is illustrated in Fig 4.
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Fig 3: Core classes which make up the SCS and their 
relationships. 
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The benefits of notification subscription become 
apparent when the number of simultaneous connecting clients 
is increased, because the network traffic overhead is reduced 
by close to half. Fig 5 compares the network traffic between 
the response-request of a typical Web Service and notification 
subscription pattern of the newly implemented WSRF.

Notification subscription permits connections to 
exist for a predefined duration or until the client terminates 
the connection. The responsibility of the SCS in managing the 
duration of its own connections facilitates the offload of some 
responsibilities handled by the SPS to the SCS. Clients can 
now choose to directly subscribe to the SCS for a given 
duration and update period. Previously this level of 
scheduling would have been handled by a scheduling service, 
such as the SPS.

The introduction of WSRF has additional advantages 
in that it facilitates the transition of the SCS from a single-
user towards a multi-user system. A resource factory handles 
the assignment of unique identifiers for each connection.
Multithreading is handled automatically by the Tomcat 
container. For each new connection Tomcat creates a new 
instance of the SCS and manages its memory. Concurrency is
implemented within the SCS to ensure that shared data does 
not interfere between SCS instances. The unique identifiers 
assigned to each connection by the WSRF libraries facilitate 
multithreading and help ensure concurrency. The move 
towards operating in a heterogeneous sensor network 
environment is another key development of the SCS. The 
SCS has been expanded from being capable of only 
connecting to sensors running TinyDB and TinyOS on 

Crossbow Mica2 motes, to include a Linux based operating 
system running on NICTA developed sensors called 
NICTORs.
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Fig 5: Network communication traffic, of a typical Web Service 
vs. a Web Service implemented with WSRF, between a client 
(typically SPS) and the SCS. 

NICTORs interface with the SCS through a MySQL 
database. In addition, development work has been done to 
completely implement all interfaces as defined by the SCS 
specification [18], making the SCS an OpenGIS standards 
compliant implementation. This includes an implementation 
of the SensorML specification which has been developed to 
satisfy our minimum requirements.

interface
SensorPlanningService

submitRequest(..)

SensorPlanningServiceImpl abstraction

SPSSchedulerinterface
Scheduler abstraction

interface
RuleEngine

Rules

abstraction

uses

BasicLogic

uses

Fig 6: Core classes of the SPS and their relationships

B. Sensor Planning Service
The introduction of WSRF to the SPS expands the 

service’s capabilities to include the processing of multiple 
user plans simultaneously. The core classes which comprise 
the SPS are illustrated in Fig 6. Synchronization constructs 
have been added to ensure concurrency and prevent shared 
memory corruption. Multi threading is handled by Tomcat in 
much the same way as for the SCS. Architectural 
improvements to the SPS are very similar to those made to 
the SCS. The SPS implements a notification subscription 
interaction pattern. Once clients subscribe to the SPS they are
notified periodically when data is ready to collect. With the 
offload of some responsibilities from the SPS to the SCS, the 
SPS now has the potential to execute plans which were 
previously not possible. Such plans include a finer level of 



scheduling, e.g. Query the SCS every 100ms for 5 minutes, 
every hour for a period of 3 months.  An operator may be 
deployed on the SPS capable of performing transformations 
on observational data, which may include operations such as 
distributed anomaly detection [19]. Users may be interested in 
the retrieval of observational data from historic queries, 
which can be facilitated by the SPS with calls to the SRS. 
Plans can also use historic observational data to reduce 
duplicate observation results. The implementations of some of 
these higher-level scheduling options still remain for future 
work.

C. Sensor Repository Service 
In previous versions of the SPS a DataCollector interface 

was implemented whose task was to store observational data 
collected from the SCS. This interface has since been 
decoupled from the SPS and implemented as the SRS. The 
SRS is as a WSRF service which implements one routine 
saveObservation() that accepts O&M XML encoded data. 

The SRS maintains a store of historical data which 
can be used by the SPS to further improve the quality of 
service provided to connecting services. Historical data stored 
in the SRS could be used by advanced SPS execution plans 
which require aggregate or statistical information on historic 
observation results. No OpenGIS specification exists to this 
date for a SRS service. It is our intention to feedback our 
experiences to the OGC consortium in the near future.
Additional work in defining the query interface and 
parameters necessary to facilitate these requests remains to be 
done.

interface
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WebNotificationServiceImpl abstraction
interface

AccountManager

AccountManagerImpl
interface

CommunicationProtocol

interface
Email

Notification
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usesuses

Fig 7: Core classes of the WNS and their relationships

D. Web Notification Service
The WNS has been implemented as a WSRF service in a 

similar fashion to the SCS and SPS. The core classes are 
illustrated in Fig 7. Besides this, however, no major 
modifications have been made to the baseline WNS code. 

4. PERFORMANCE EVALUATION

The evaluation of service capabilities has been limited to 
the SCS. This service has had the most improvements made 
to it and its performance is the cornerstone of good 
performance for all the other services. Two experiments were 
carried out: in the first the focus was on the Crossbow 

sensors, in the second on the NICTOR sensors. Both 
experiments test the robustness of the SCS in a multi-user, 
multi-threaded heterogeneous sensor network environment.
Fig 8 illustrates the experimental setup.

The experimental platform was developed using 
Crossbow’s MOTE-KIT4x0 MICA2 Basic Kit [20] which 
consists of 3 Mica2 Radio boards, 2 MTS300 SensorBoards, 
and a MIB510 programming and serial interface board.

Fig 8: NICTOR sensors with their case removed and Crossbow 
mica2 motes connected to a workstation with client simulation 
software running in the background.

Two Mica2 motes were setup for sensing observational data. 
Light values were recorded at a sampling period of 100ms for 
a duration of 10 seconds. Once values where recorded the 
getObservation query would terminate. The numbers of 
simultaneous connections tested were {1, 2, 4, 8, 16, 32}. The 
relative response time is illustrated in Fig 9.  The results 
illustrate that as the number of simultaneous clients steadily 
increases so does the response time. The minimum and 
maximum response time values for each group of 
simultaneous connections tend to vary greatly from the 
average. As the number of clients is increased this difference 
grows larger, in the case of Crossbow sensors the SCS does 
not scale well. Degradation in the performance is an outcome 
of the limited concurrency available at the sensor network 
level. Only one query can be processed by the sensor network 
at a time and so consecutive queries must be placed in a
queue until the current query returns its results. A possible 
solution to this problem could be the introduction of a query 
cache. In this approach, if a new query is received that is 
similar to one which has recently been executed, then the
result can be anticipated as being the same and resulting 
observational data could then be pulled from the cache. This 
would reduce the number of duplicate queries sent to the 
sensor network and improve the scalability.

The second experiment was performed using 2 
NICTOR sensors. One was programmed to act as the base 
station; the other was responsible for recording observations.
A soil moisture sensor was connected to the sensing node. 
Observations where recorded for a duration of 2 seconds at a 
sampling period of 20ms. Once observations were retrieved 
the connection was terminated. Fig 10 illustrates the results. 



As the number of simultaneous clients increases so does the 
overall average response time of each connection. The
minimum and maximum response times fall closer to the 
average when compared to results produced by the Crossbow 
sensors. The primary reason behind this is that the NICTOR 
sensors are interfaced through a MySQL database, which 
does not require the results of the previous query to be 
returned before a new query is sent. Hence we see an 
improvement in the scalability of the SCS. This is in contrast 
with the Crossbow sensors which wait till results are returned 
from the current query before a new query is sent. 
Implementing a caching mechanism could further improve 
the scalability of the SCS when dealing with NICTOR 
sensors. 
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 Fig 9: Duration of time recorded for simultaneous clients 
sending a getObservation() request to the SCS Mica2 motes.
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NICTOR sensors. 

5. CONCLUSION

The move from Web Services to WSRF addresses the 
limitations of the NOSA core services. WSRF facilitates the 
ability of the SCS to handle simultaneous observational 
queries to heterogeneous sensor networks. The functionality 
of the SCS is extended to include tasks previously assigned to 
the SPS. This allows the SPS to concentrate on executing 
plans of increased detail and complexity. WSRF improves the 
performance of services by reducing the amount of network 
traffic, using the notification subscription communication 
model. Additional services have been added in the form of the 
SRS, which separates data storage tasks from the SPS. The 
adoption of Globus Middleware for the WSRF 

implementation is a significant step forward towards
achieving a Sensor Grid. Potential for future work exists in 
the implementation of operators for the SPS and improvement 
of scheduling capabilities, and the implementation of a 
caching mechanism to improve performance of the SCS. 
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