
A Sensor Web Middleware with Stateful Services
for Heterogeneous Sensor Networks

Tomasz Kobialka 1, Rajkumar Buyya 2, Christopher Leckie 1, Ramamohanarao Kotagiri
1 NICTA Victoria Laboratory, GRIDS Lab2

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

{tkob, raj, caleckie, rao}@csse.unimelb.edu.au

Abstract
 As sensor networks become more pervasive there emerges a
need for interfacing applications to perform common
operations and transformations on sensor data. Web Services
provide an interoperable and platform independent solution
to these needs. A key challenge of using Web Services in this
context is how to support ongoing sensor queries that persist
over an extended period of time. In this paper we introduce
Web Service Resource Framework (WSRF) mechanisms into
the core services implementation of the NICTA Open Sensor
Web Architecture (NOSA). NOSA is a suite of middleware
services for sensor network applications which are built upon
the OpenGIS Consortium’s Sensor Web Enablement
standard. WSRF expands the functionality of our services to
handle simultaneous observational queries to heterogeneous
Sensor Networks. It facilitates the adoption of a multi-user,
multi-threaded service environment. Using components from
the Globus Middleware platform, NOSA takes a major step
forward to achieving the vision of a Sensor Grid.

1. INTRODUCTION

The identification of common data operations and
transformations on sensor data has fuelled the birth of the
Sensor Web paradigm. Sensor Web combines sensors and
sensor networks with a Service Orientated Architecture
(SOA). A SOA allows us to discover, describe and invoke
services from a heterogeneous software platform using XML
and SOAP standards. When interlinked, geographically
distributed services form what is called a Sensor Grid; this is
a key step in the integration of sensor networks and the
distributed computing platforms of SOA and Grid
Computing. Services are defined for common operations
including data query, retrieval and aggregation, resource
scheduling, allocation and discovery. Sensor networks can be
discovered, accessed and controlled over the World Wide
Web.

The NICTA Open Sensor Web Architecture [7] is built
upon a uniform set of operations and standard sensor data
representations as defined by the Open Geospatial
Consortium [1] (OGC). The OGC is a geospatial standards
authority that has defined a Sensor Web Enablement (SWE)
method [2] which includes specifications of interfaces,

protocols and encodings that enable discovering, accessing,
and obtaining sensor data as well as sensor-processing
services. The following are the five core specifications of the
SWE which are implemented in the NOSA core services:
1. Sensor Model Language (SensorML) [3] – Information

model and XML encodings that describe either a single
sensor or sensor platform in regards to discovery, query
and control of sensors.

2. Observation and Measurement (O&M) [4] – Information
model and XML encodings for observations and
measurement.

3. Sensor Collection Service (SCS) [15] – Service to fetch
observations, which conform to the O&M information
model, from a single sensor or a collection of sensors. It
is also used to describe the sensors and sensor platforms
by utilizing SensorML.

4. Sensor Planning Service (SPS) [5] – Service to help users
build a feasible sensor collection plan and to schedule
requests for sensors and sensor platforms.

5. Web Notification Service (WNS) [6] – Service to
manage client sessions and notify the client about the
outcome of the requested service using various
communication protocols.
Although the core services work well in a Research and

Development environment their capabilities fall short of
expectations when the user load and complexity of
observational queries is increased. These services are based
on earlier development work on the NOSA core services [7].

Several groups are working on related work in the
Sensor Web field. Microsoft has recently released the MSR
SenseWeb Project [22] which allows users to publish their
sensor data on a portal web site. Microsoft has implemented
its own XML ontology along with a set of querying and
tasking mechanisms. Support is provided for sensors running
TinyOS and devices such as webcams. Microsoft is not
affiliated with the OGC Consortium and there is no support
for Linux based operating systems. The current application of
SenseWeb is limited to publishing data, with little support for
post processing, although it is likely that this will change as
the project matures. The GeoICT group at York University
[23] have built an OGC SWE compliant Sensor Web
infrastructure. They have developed a Sensor Web client
capable of visualising geospatial data, and a set of stateless
Web Services called GeoSWIFT [24]. The GeoSWIFT

Sensing Server implements all the interfaces of a typical SCS
and is capable of communicating with Webcams. There is no
implementation of a WNS or SPS, although some work has
been done on a Registry Service. The Sensorweb Research
Laboratory at Washington State University is focusing its
efforts on building a Volcano Monitoring Sensor Network
and is working on a NASA funded in-situ Space Sensor
Network. Their research is largely on low-level network
topology and routing running on top of TinyOS. It is unclear
as to the level of sophistication of their Services layer.

A key challenge of NOSA is how to support
ongoing sensor queries which persist over time to
heterogeneous sensor networks. This challenge is addressed
by the following improvements to the NOSA architecture; (i)
all services are implemented as stateful Web Services
(WSRF), (ii) the SCS works with many different types of
sensors, from TinyOS running on Mica2 and TinyDB to an
in-house sensor running Linux called NICTOR [21]
developed by NICTA, (iii) services are capable of handling
concurrent requests from multiple users, (iv) a repository
service has been added to store historic observation results.

In Section 2 we provide background information on core
services along with an analysis of their shortcomings. Section
3 introduces stateful Web Services and describes the
improved architecture and design of NOSA. Section 4
provides a performance evaluation of the SCS and presents
recommendations for future development work.

2. BACKGROUND: CORE SERVICES

The aim of NOSA is to provide a software infrastructure
that simplifies the task of application development for
heterogeneous wireless sensor networks. The overall structure
of NOSA is outlined in Fig. 1. Services interface with low-
level components and provide tools for creating applications,
along with management of the lifecycle of data captured
through sensor networks.

Provide a layer of software services to support application developers

802.15.4 / ZigBee Routing TCP / IP

Application

Clients
Gateways

Sensors Servers

Core
Services

Layer

SensorML
Modelling
Language

Observation
&

Measurement

Sensor
Collection

Service

Sensor
Repository

Service

Sensor
Planning
Service

Web
Notification

Service

Core
Services

Layer

SensorML
Modelling
Language

Observation
&

Measurement

Sensor
Collection

Service

Sensor
Repository

Service

Sensor
Planning
Service

Web
Notification

Service

TinyOS Linux Windows

Crossbow
Motes

NICTORs

Fig. 1: High-level view of NICTA Open Sensor Web
Architecture.

The primary focus of the design and implementation
of NOSA has been on the SWE core services including the
SCS, WNS, and SPS (which extend from the SWE) as well as
the Sensor Repository Service (SRS) which provides a

persistent data storage mechanism for sensor and observation
data. O&M XML specifications have been implemented and
are used to encode observational data recorded and retrieved
from a sensor network. Fig. 2 illustrates an example of a
typical collection request on a sensor network and the
resulting invocations on NOSA services.

A client sends an XML observation request to a SPS
instance. The request includes the sensors the client is
interested in obtaining data from, the type of data, the
duration of the query and any other relevant metadata. The
SPS assesses the feasibility of the client’s requirements and
registers the user details with the WNS. If the SPS can fulfil
the requirements it forwards the observation onto the SCS
which retrieves the observation data from the appropriate
sensor network. Upon completion the SPS will notify the
WNS and the WNS will forward this onto the client.
Observational data may be stored in a repository which can
then be retrieved at the user’s convenience.

The following subsections describe in detail the core
set of NOSA services (SCS, SPS and WNS), and their
limitations.

Sensor Planning
Service

3 Planning Request

WSDL

Sensor
Registry
Service

W
S

D
L

1 Search available service

2 SPS WSDL Address Web Notification
Service

WSDL

W
S

D
L

4 R
egister U

ser

Sensor Collection
Service

WSDL

W
S

D
L

5 U
ser ID

6 Get Observation

8 Return O&M

9 C
olle

ctio
n D

ata R
eady

10 Notify User

Sensor Repository
Service

WSDL

W
S

D
L

7 S
to

re
 O

&M

Fig. 2: A typical invocation for Sensor Web client.

A. Sensor Collection Service
The SCS is responsible for communicating directly with

the sensor networks. The SCS provides a proxy interface to
both streaming data and query based sensor applications that
are built on top of TinyOS [8] and TinyDB [9]. It collects
observational data produced by the sensor networks and
encodes it into XML using the O&M specification. The SCS
is deployed on an Apache Tomcat [10] servlet container.

The design of the SCS is currently limited to executing
one query request at a time from a single connecting client. A
major shortcoming of using Web Services is that they are
nominally stateless, i.e. they retain no data between
invocations, and this limits their usefulness. For a typical
Web Service an incoming query, such as retrieving the
observations from a sensor network for any extended period
of time and containing a regular periodic update frequency, is
difficult to implement. Cookies can be used to manage
session state but this essentially ties down the connecting
client to being a web browser and limits the connectivity of
the Web Service to console applications and services. A Web
Service is incapable of sending automatic updates to a

connecting client. It is the responsibility of the client to
follow a request-response communication pattern. As the
duration of an observational query increases and the sampling
period at which results are produced decreases, the resulting
communication traffic grows in proportion to the ratio of the
query duration and the sampling period, making this solution
unacceptable. A second major shortcoming of the SCS is that
it is limited to working with sensors which are running
TinyOS. This restricts the range of hardware vendors and
limits the usefulness of NOSA.

B. Sensor Planning Service
The SPS is a scheduling service which interfaces

between a client or service and the SCS. It accepts XML
based plans which contain a listing of observational
requirements along with a duration value and update period.
The SPS will check the feasibility of the plan utilizing a rule
engine. Predefined rules are used to check the boundary
conditions of observation query values, whether a SCS
service exists, and if it is capable of fulfilling the request. A
scheduler composes the user’s plan into a collection request
and invokes an observation call on the SCS. The resulting
observation data is archived in a database and a notification is
sent to the WNS indicating the outcome of the collection
request. The client is free to retrieve the observational data
once it is notified by the WNS. A shortcoming of the SPS is
its inability to manage the scheduling of more than one user
plan at a time. The level of user plan sophistication is limited
to very simple requests, which further restricts the usefulness
of the service.

C. Web Notification Service
The WNS service performs the basic functionality of

acting as a communication relay between services and clients.
Clients register with the WNS through the SPS. When a SCS
returns an observation result to the SPS, the WNS is notified
of the operation. The WNS, in turn, notifies the registered
user of the operation. The architecture is flexible enough to
include a variety of communication plug-ins, however only
the email protocol has been implemented. Similarly to the
SPS and the SCS the WNS can only process one user request
at any one time.

As a Web Services platform, the NOSA core services
work well in a single user, single sensor network
environment, where all sensors run the same Operating
System and resource limits are low and can be easily
anticipated. Such an environment is very little use outside a
research laboratory. To overcome these limitations, we have
extended our Sensor Web implementation to include stateful
Sensor Web services.

3. STATEFUL SENSORWEB SERVICES DESIGN

The introduction of stateful Web Services into the NOSA
architecture aims to provide a cohesive solution to the
shortcomings experienced in development of the core

services. Stateful Web Services provide access to data values
that persist across and evolve as a result of Web Service
interactions. The Web Service Resource Framework (WSRF)
[12] defines conventions for managing state so that
applications discover, inspect and interact with stateful
resources in standard and interoperable ways as defined by
the OASIS standards body. Stateful Web Services provide all
the benefits of Web Services including standardization and
interoperability. At the time of development there exist two
major implementations of the WSRF protocol, these
implementations were the most mature in their completeness
of the specifications.

Apache WSRF [13] is an Apache Axis-based web
application. It uses an XML schema to compile Java
interfaces and classes that can then be used to access and
modify XML instance data [14].

Java WS Core is a component of the Globus Toolkit
[15]. The Globus Toolkit is a set of software components for
building distributed systems and it is a popular Grid
middleware platform. The Java WS Core comes as a set of
JAR API files, which are deployed in conjunction with the
service in a Tomcat container. The Globus Java WS Core was
chosen over the Apache implementation because it required
the least amount of rework to be done to existing services.
Under Globus, minor modifications were made to existing
WSDL and Java files, whereas, the Apache method of
generating Java from WSDL was error prone when OpenGIS
schemas were introduced into the WSDL. The Globus toolkit
also provides additional components which in future
development works may prove useful.

In the following sections we detail the advantages of
WSRF to the NOSA core services and discuss the
architectural modifications necessary to implement these.

A. Sensor Collection Service
The SCS is the largest and most important service in the

NOSA architecture. Its core classes are illustrated in Fig 3.
When implemented as a Web Service, the network traffic
involved in executing observational queries becomes
unacceptable on a sensor network that requires the SCS to
provide regular, near real-time updates to a connecting client
or service. WSRF offers a solution to this problem with the
introduction of the WS-BaseNotification [16] specification,
which defines a notification-subscription interaction pattern.
Using the Globus WS-Notification and WS-Resource APIs
the SCS defines a resource. A resource is an entity that
encapsulates the state of a stateful Web Service [17].
 When the SCS receives an incoming SOAP request it creates
a resource object and generates a unique resource key. This
resource key is returned to the client and all further
communication exchanges between the client and service
include the resource key. When the client subscribes to the
service resource, the subscription ensures that any changes of
state which occur on the resource (e.g. new observational
results received from a sensor network) will automatically be
forwarded to the client. This process is illustrated in Fig 4.

interface
Connector

interface
DBConnector

interface
SensorConnector

interface
SensorCollectionService

interface
DataFormatter

interface
SensorProxy

uses

uses

SensorCollectionServiceImpl

abstraction

AbstractSensorProxy

RealTimeSensorProxy

DBProxyabstraction

uses

getObservation(..)

Fig 3: Core classes which make up the SCS and their
relationships.

1. createResource()

SCSFactory

2. createResource()

Historic
Observation

W
S
D
L

W
S
D
L

W
S
D
L

Consumer

4. Subscribe

SCS_Instance
5. getObservation()

3.Create
notification
Consumer

6. setHistoric-
Observation()

7.Notification

Sensor Collection ServiceClient

Fig 4: Subscription to WSRF service

The benefits of notification subscription become
apparent when the number of simultaneous connecting clients
is increased, because the network traffic overhead is reduced
by close to half. Fig 5 compares the network traffic between
the response-request of a typical Web Service and notification
subscription pattern of the newly implemented WSRF.

Notification subscription permits connections to
exist for a predefined duration or until the client terminates
the connection. The responsibility of the SCS in managing the
duration of its own connections facilitates the offload of some
responsibilities handled by the SPS to the SCS. Clients can
now choose to directly subscribe to the SCS for a given
duration and update period. Previously this level of
scheduling would have been handled by a scheduling service,
such as the SPS.

The introduction of WSRF has additional advantages
in that it facilitates the transition of the SCS from a single-
user towards a multi-user system. A resource factory handles
the assignment of unique identifiers for each connection.
Multithreading is handled automatically by the Tomcat
container. For each new connection Tomcat creates a new
instance of the SCS and manages its memory. Concurrency is
implemented within the SCS to ensure that shared data does
not interfere between SCS instances. The unique identifiers
assigned to each connection by the WSRF libraries facilitate
multithreading and help ensure concurrency. The move
towards operating in a heterogeneous sensor network
environment is another key development of the SCS. The
SCS has been expanded from being capable of only
connecting to sensors running TinyDB and TinyOS on

Crossbow Mica2 motes, to include a Linux based operating
system running on NICTA developed sensors called
NICTORs.

getObservation()

getObservationResult

Subscription()

createResource()

CreateResourceResponse

SubscriptionResponse

getObservation()

observationNotification

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

1
.
.
n

1
.
.
n

SCSWeb Service

WSRFClient SCS

Fig 5: Network communication traffic, of a typical Web Service
vs. a Web Service implemented with WSRF, between a client
(typically SPS) and the SCS.

NICTORs interface with the SCS through a MySQL
database. In addition, development work has been done to
completely implement all interfaces as defined by the SCS
specification [18], making the SCS an OpenGIS standards
compliant implementation. This includes an implementation
of the SensorML specification which has been developed to
satisfy our minimum requirements.

interface
SensorPlanningService

submitRequest(..)

SensorPlanningServiceImpl abstraction

SPSSchedulerinterface
Scheduler abstraction

interface
RuleEngine

Rules

abstraction

uses

BasicLogic

uses

Fig 6: Core classes of the SPS and their relationships

B. Sensor Planning Service
The introduction of WSRF to the SPS expands the

service’s capabilities to include the processing of multiple
user plans simultaneously. The core classes which comprise
the SPS are illustrated in Fig 6. Synchronization constructs
have been added to ensure concurrency and prevent shared
memory corruption. Multi threading is handled by Tomcat in
much the same way as for the SCS. Architectural
improvements to the SPS are very similar to those made to
the SCS. The SPS implements a notification subscription
interaction pattern. Once clients subscribe to the SPS they are
notified periodically when data is ready to collect. With the
offload of some responsibilities from the SPS to the SCS, the
SPS now has the potential to execute plans which were
previously not possible. Such plans include a finer level of

scheduling, e.g. Query the SCS every 100ms for 5 minutes,
every hour for a period of 3 months. An operator may be
deployed on the SPS capable of performing transformations
on observational data, which may include operations such as
distributed anomaly detection [19]. Users may be interested in
the retrieval of observational data from historic queries,
which can be facilitated by the SPS with calls to the SRS.
Plans can also use historic observational data to reduce
duplicate observation results. The implementations of some of
these higher-level scheduling options still remain for future
work.

C. Sensor Repository Service
In previous versions of the SPS a DataCollector interface

was implemented whose task was to store observational data
collected from the SCS. This interface has since been
decoupled from the SPS and implemented as the SRS. The
SRS is as a WSRF service which implements one routine
saveObservation() that accepts O&M XML encoded data.

The SRS maintains a store of historical data which
can be used by the SPS to further improve the quality of
service provided to connecting services. Historical data stored
in the SRS could be used by advanced SPS execution plans
which require aggregate or statistical information on historic
observation results. No OpenGIS specification exists to this
date for a SRS service. It is our intention to feedback our
experiences to the OGC consortium in the near future.
Additional work in defining the query interface and
parameters necessary to facilitate these requests remains to be
done.

interface
WebNotificationService

registerUser(..)

WebNotificationServiceImpl abstraction
interface

AccountManager

AccountManagerImpl
interface

CommunicationProtocol

interface
Email

Notification

uses abstraction

usesuses

Fig 7: Core classes of the WNS and their relationships

D. Web Notification Service
The WNS has been implemented as a WSRF service in a

similar fashion to the SCS and SPS. The core classes are
illustrated in Fig 7. Besides this, however, no major
modifications have been made to the baseline WNS code.

4. PERFORMANCE EVALUATION

The evaluation of service capabilities has been limited to
the SCS. This service has had the most improvements made
to it and its performance is the cornerstone of good
performance for all the other services. Two experiments were
carried out: in the first the focus was on the Crossbow

sensors, in the second on the NICTOR sensors. Both
experiments test the robustness of the SCS in a multi-user,
multi-threaded heterogeneous sensor network environment.
Fig 8 illustrates the experimental setup.

The experimental platform was developed using
Crossbow’s MOTE-KIT4x0 MICA2 Basic Kit [20] which
consists of 3 Mica2 Radio boards, 2 MTS300 SensorBoards,
and a MIB510 programming and serial interface board.

Fig 8: NICTOR sensors with their case removed and Crossbow
mica2 motes connected to a workstation with client simulation
software running in the background.

Two Mica2 motes were setup for sensing observational data.
Light values were recorded at a sampling period of 100ms for
a duration of 10 seconds. Once values where recorded the
getObservation query would terminate. The numbers of
simultaneous connections tested were {1, 2, 4, 8, 16, 32}. The
relative response time is illustrated in Fig 9. The results
illustrate that as the number of simultaneous clients steadily
increases so does the response time. The minimum and
maximum response time values for each group of
simultaneous connections tend to vary greatly from the
average. As the number of clients is increased this difference
grows larger, in the case of Crossbow sensors the SCS does
not scale well. Degradation in the performance is an outcome
of the limited concurrency available at the sensor network
level. Only one query can be processed by the sensor network
at a time and so consecutive queries must be placed in a
queue until the current query returns its results. A possible
solution to this problem could be the introduction of a query
cache. In this approach, if a new query is received that is
similar to one which has recently been executed, then the
result can be anticipated as being the same and resulting
observational data could then be pulled from the cache. This
would reduce the number of duplicate queries sent to the
sensor network and improve the scalability.

The second experiment was performed using 2
NICTOR sensors. One was programmed to act as the base
station; the other was responsible for recording observations.
A soil moisture sensor was connected to the sensing node.
Observations where recorded for a duration of 2 seconds at a
sampling period of 20ms. Once observations were retrieved
the connection was terminated. Fig 10 illustrates the results.

As the number of simultaneous clients increases so does the
overall average response time of each connection. The
minimum and maximum response times fall closer to the
average when compared to results produced by the Crossbow
sensors. The primary reason behind this is that the NICTOR
sensors are interfaced through a MySQL database, which
does not require the results of the previous query to be
returned before a new query is sent. Hence we see an
improvement in the scalability of the SCS. This is in contrast
with the Crossbow sensors which wait till results are returned
from the current query before a new query is sent.
Implementing a caching mechanism could further improve
the scalability of the SCS when dealing with NICTOR
sensors.

Crossbow Concurrency results

0
50

100
150
200
250
300
350
400
450
500

1 2 4 8 16 32

Number of Simultaneous Clients

R
es

p
o

n
se

 t
im

e
(s

)

Average

Min

Max

 Fig 9: Duration of time recorded for simultaneous clients
sending a getObservation() request to the SCS Mica2 motes.

NICTOR Concurrency Results

0

10

20

30

40

50

60

1 2 4 8 16 32

Number of Simultaneous Clients

R
es

po
ns

e
Ti

m
e

(s
)

Average

Minimum

Maximum

Fig 10: Duration of time recorded for simultaneous client
connections performing a getObservation() request on the
NICTOR sensors.

5. CONCLUSION

The move from Web Services to WSRF addresses the
limitations of the NOSA core services. WSRF facilitates the
ability of the SCS to handle simultaneous observational
queries to heterogeneous sensor networks. The functionality
of the SCS is extended to include tasks previously assigned to
the SPS. This allows the SPS to concentrate on executing
plans of increased detail and complexity. WSRF improves the
performance of services by reducing the amount of network
traffic, using the notification subscription communication
model. Additional services have been added in the form of the
SRS, which separates data storage tasks from the SPS. The
adoption of Globus Middleware for the WSRF

implementation is a significant step forward towards
achieving a Sensor Grid. Potential for future work exists in
the implementation of operators for the SPS and improvement
of scheduling capabilities, and the implementation of a
caching mechanism to improve performance of the SCS.

REFERENCES
[1] OGC Consortium: http://www.opengeospatial.org/
[2] Botts M, Percivall G, Reed C, Davidson J, OGC® Sensor Web
Enablement: Overview And High Level Architecture, OpenGIS
Consortium Inc, 2006.
[3]SensorML: http://vast.nsstc.uah.edu/SensorML/
[4] Cox S, Observations and Measurements OGC 05-087r3, Open
Geospatial Consortium Inc, 2006.
[5] Simonis I, Sensor Planning Service OGC 05-089r1, Open GIS
Consortium Inc, 2005.
[6] Simonis I, Wytzisk A, Web Notification Service OGC 03-008r2,
Open GIS Consortium Inc, 2003.
[7] Chu X, Kobialka T, Durnota B, and Buyya R. Open Sensor Web
Architecture: Core Services. In Proceedings of the 4th International
Conference on Intelligent Sensing and Information Processing,
Bangalore, India, 2006.
[8] Hill J, Szewczyk R, Woo A, Hollar S, Culler D, Pister K, System
architecture directions for network sensors, ASPLOS 2000,
Cambridge, 2000.
[9] Madden S, Franklin M, Hellerstein J, Hong W, TinyDB: An
Acqusitional Query Processing System for Sensor Networks, ACM
TODS, 2005.
[10]Apache Tomcat: http://tomcat.apache.org/
[12] Banks T, Web Services Resource Framework (WSRF) – Primer
v1.2, OASIS, 2006.
[13]Apache WSRF: http://ws.apache.org/wsrf/
[14]XML Beans: http://xmlbeans.apache.org/overview.html
[15] Foster I, Globus Toolkit Version 4: Software for Service-
Oriented Systems, IFIP International Conference on Network and
Parallel Computing, Springer-Verlag LMCS 3779, 2005.
[16] Graham S, Murry B, Web Services Base Notification 1.2 (WS-
BaseNotification), OASIS, 2004.
[17] Gawor, J and Meder S, GT4 WS Java Core Design, Globus
Alliance, 2004.
[18] McCarty T, Sensor Collection Service OGC 03-023r1, Open
GIS Consortium Inc, 2003.
[19] Rajasegarar S, Leckie C, Palaniswami M and Bezdek J.
Distributed Anomaly Detection in Wireless Sensor Networks. To
appear in Proceedings of Tenth IEEE International Conference on
Communications Systems, October, 2006, Singapore.
[20] http://www.xbow.com/Products/productsdetails.aspx
[21] NICTA Water Information project:
http://www.nicta.com.au/research/projects/water_information_netwo
rks
[22] Suman N, Jie L, Feng Z, Challenges in Building a Portal for
Sensors World-Wide, First Workshop on World-Sensor-Web:
Mobile Device Centric Sensory Networks and Applications
(WSW'2006), Boulder CO, 2006.
[23] Sensor Web: http://sensorweb.geomatics.ucalgary.ca/
[24] Liang S, Coritoru, A., Tao, C. A Distributed Geo-Spatial
Infrastructure for Smart Sensor Webs, Journal of Computers and
Geosciences Vol.31, 2005.

