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Abstract—The rapid development and deployment of Internet
of Things (IoT) devices in modern networks and Industry 4.0 have
attracted substantial interest from cybersecurity researchers.
In this study, we propose a software-defined framework that
improves network intrusion detection systems by using manufac-
turer usage description (MUD) to enhance the behavioral moni-
toring in IoT networks. We aim to explore whether Industrial IoT
(IIoT) devices typically serve a common role in cyber–physical
systems, and their communications exhibit predictable patterns
that can be defined in MUD profile(s) formally and succinctly.
We design a framework that utilizes the concept of digital twins
and software-defined networking to improve the security of IIoT
environments. The MUD data are profiled, and the actions are
evaluated on the network digital twin before they are used in
the physical network. The behavioral profiling system is updated
in real time, thereby improving the overall system security and
compliance to policies in the IoT deployment. Evaluation results
show that our solution outperforms existing approaches substan-
tially in terms of attack detection accuracy, predicting security
incidents, response time, and resource usage.

Index Terms—Digital twin, manufacturer usage description
(MUD), network security, software-defined networking (SDN).

I. INTRODUCTION

W ITH the proliferation of embedded and ubiquitous
cyber–physical systems (CPSs) and applications, the
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case for fusing the physical and virtual worlds has become
increasingly compelling. The rapid growth and proliferation
of Internet of Things (IoT) in modern network environ-
ments, cloud-to-fog applications, smart cities, and Industry
4.0 have motivated substantial research interest in understand-
ing applications, security, protection, risks, vulnerabilities, and
ecosystems [1].

Recently, network device behavioral profiling, fingerprint-
ing, and pattern recognition methods have attracted much
attention from research communities in systems, networking,
and defense. Accordingly, 5G (and beyond) is predicted to
enhance the volume, real-time velocity, and diversity of data in
basic CPSs. Investigating the viability of combining software-
defined networking (SDN), intent-based network (IBN), and
network function virtualization (NFV) with CPS deployments
is necessary. Network programmability helps service and
application delivery with higher agility and cost-effectiveness
with better provisioning for network resources. The pro-
liferation of IoT-based intelligent devices is projected at
50 billion by this decade and poses many problems and dif-
ficult issues concerning the safety and privacy of devices,
users, and data consumed by applications [3]. SDN paradigm
is increasingly used in enterprise networks to orchestrate
and manage cyber-security [4]. Tampering with data in an
IoT network can have dire consequences. For example, the
largest Distributed Denial-of-Service (DDoS) assault in terms
of volume was conducted because of malicious traffic streams
generated by IoT devices infected with [5] the Mirai bot-
net virus. Behavioral fingerprinting [6] research and solutions
offer encouraging results for IoT vendors to develop finger-
print profiles for anomaly detection. This trend accelerates
the adoption of standard manufacturing practices in design-
ing the hardware and corresponding compliant software, such
as manufacturer usage description (MUD) standards and estab-
lishing concrete guidelines regarding device behavior and
operations in the field. Cisco’s MUD [7] is standardized in
the device bootstrapping protocols, such as dynamic host
configuration protocol (DHCP), link-layer discovery proto-
col (LLDP), and 802.x protocols. The researchers and man-
ufacturer’s community are developing guidelines detailing
practical steps in implementing MUD in various use cases
for IoT compliance and security. The open-source commu-
nity has contributed to an implementation called osMUD [8].
The Internet Engineering Task Force (IETF) has defined
an architecture and request for comment draft (RFC) for
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Fig. 1. MUD protocol workflow [7].

implementing MUD policies and for deploying the files [7].
The IETF consortium of IoT device manufacturers recom-
mends the “Yet Another Next Generation (YANG)” pol-
icy model and “JavaScript Object Notation (JSON)” format
for defining “Access Control Lists (ACLs)” and policies.
The MUD adoption is still in the nascent stage and no
consensus is reported among the manufacturers on profile
formats, the granularity of the policy definitions, behav-
ior specification, interoperability, compliance in heteroge-
neous vendor environments, and the enforcement scheme
at run time.

However, “things” everywhere has opened new doors of
vulnerabilities due to its ubiquitous connectivity and perva-
sive volume, and the attack surface has increased in mod-
ern networks. In Industrial IoT (IIoT) deployments, gateway
switches are the crucial entry points into the network and are
usually air-gapped through wireless connectivity. Considerable
research in academia and commercial solutions has been con-
ducted for securing the IIoT gateway. The MUD workflow is
illustrated in Fig. 1. MUD-File: A manufacturer-created file
that defines the system and its anticipated network behavior.
This file is hosted on the MUD file server. The location of
the file is embedded as a “uniform resource locator” (MUD-
URL). This URL is accessed when a device powers on and
joins an end-user network. The authentication server (AAA)
is responsible for enforcing the rules and implementing access
control policies. The MUD-Manager is the core of an MUD
instantiation. It extracts the secure URL, retrieves MUD
files corresponding to the device (based on serial number or
model), and sends the resulting configurations/profiles to the
AAA service. The network access device (NAD) or Gateway is
primarily responsible for routing. However, an internal firewall
is usually used by the MUD-Manager via the AAA server to
control the traffic and enforce rules. The communication pro-
tocols between the devices and MUD-manager may be one of
these protocols, such as DHCP, LLDP, or X.509. The MUD
manager verifies device signatures and configures the routers
with the device manufacturer’s security configuration. Traffic
and behavioral patterns are recorded and described clearly in
the MUD profiles through fine-grained monitoring at the gate-
way switches. SDN OpenFlow rules are then generated and
mapped to profiles, and the profiles then produce compliance
decisions, which can be performed by programs or applica-
tions. Recently, studies [30], [31] used the SDN architecture
to achieve MUD-based IoT bootstrapping, administration,

security, and exhibited good results. Sivanathan et al. [14]
found that the IoT devices in industrial environments reveal
succinct traffic patterns and features, which might be utilized
for machine learning (ML)-based anomaly detection systems.
The main goal of our research was to study the feasibility of
MUD data to detect the behavioral patterns of network attacks
and rogue devices. On this basis, this solution learns the behav-
ioral patterns of the devices defined by their MUD profiles
and introduces a system for enforcement and validation at run
time. We track the operations of every device, controller, and
application in the entire deployment domain by using traffic
analysis on various time scales.

The key contributions of our research as follows.
1) Feasibility analysis of MUD for IoT networks.
2) A translation scheme from MUD to SDN rules that are

proactively/reactively installed in dataplane switches.
3) A system with the ability to learn the expected behav-

ioral patterns of the devices in the IoT network, fin-
gerprint, and enforce compliance to MUD during the
operations.

4) MUD-aware Edge Gateway and Controller that can
detect intrusions and security breaches to the gateway
or IoT devices, deriving insight into traffic behavior.

5) A network digital twinning (DT) ML-model that learns
the network behavior and validates the configurations,
operations, and potential countermeasures in the sim-
ulated network before they are deployed in the real
infrastructure.

The remainder of this article is organized as follows.
Section II gives a discussion on related publications.
Section III introduces the proposed solution architecture.
Sections IV and V present the design and performance eval-
uation, respectively. Section VI discusses the effectiveness of
our proposal, lists future research, and concludes this article.

II. RELATED WORK

We discuss some related proposals that addressed the secu-
rity and the integration of softwarized network paradigms (e.g.,
SDN and NFV) in IoT networks. Bhunia and Gurusamy [10]
proposed an SDN framework SoftThings that uses an ML-
based system (IDS) for the detection of intrusions and
anomalies in IoT network traffic. IoT Sentinel [19] describes
an ML-based system for IoT infrastructures and uses
a behavioral-based fingerprinting technique in their IDS.
IoTScanner [15] proposes a framework that monitors the traffic
pattern at datalink layers and performs deep packet inspec-
tion on traffic frame metadata headers, with a specific capture
time window. The downside of this solution is its exces-
sive false positives and unreliable binary classification meth-
ods. IoT-Keeper [18] is a framework for safeguarding Edge
networks by identifying and isolating harmful network traffic.
It implements network access control dynamically on a per-
device, per-destination basis via ad hoc overlay networks.
Hamza et al. [12] first suggested the use of MUD-profile-
based behavioral analysis and anomaly detection (IDS) in
an SDN-enabled IoT environment. The IDS can accept/reject,
whitelist/blacklist traffic from specified devices according to
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TABLE I
COMPARISON WITH RELATED WORK

TABLE II
DISCUSSION OF CLOSELY RELATED WORK

the vendor’s or system administrator’s specifications. The
National Institute of Standards and Technology (NIST) has
recommended the MUD to the industry as a cost-effective
technique [22] for standardizing and automating the threat
or risk detection process in highly dynamic IoT networks.
MUDgee is a tool developed by Hamza et al. [11] that
can construct MUD profiles from packet capture (PCAP)
trace files. A reference SDN/MUD proposal was imple-
mented by the NIST. Ranganathan [23] implemented the
SoftMUD MUD policy in the SDN OpenFlow pipeline. The
enforcement of MUD profiles is accomplished by flow-rule
translation. Meidan et al. [9] suggested the extraction of trans-
mission control protocol (TCP) connection information from
traffic flows. Their classifier can differentiate between traf-
fic from IoT and non-IoT devices. Deep learning and deep
belief network (DBN) approaches for MUD/ACL-based data
sets have been experimented in the reference work [20].
Research is ongoing to assess their reliability for behavioral
pattern detection. Detecting anomalies and outliers is a cru-
cial problem in a wide number of application disciplines.
The outliers that are detected using the hybrid technique, the
mean of the Euclidean and Manhattan Distances, are accu-
rate and highly efficient. Singh et al. [17] addressed some of
the crucial issues of the pervasive IoT paradigm in industrial
networks and recommended fog/edge technologies. A compar-
ison checklist between our proposal and closely related work
is given in Tables I and II.

III. PROPOSED SDN-ENABLED NETWORK IDS (NIDS)
ARCHITECTURE

We propose a framework that comprises intelligent secu-
rity monitoring mechanisms and multiple IDS schemes

that collaboratively monitor/protect an MUD compatible
IoT/multiaccess Edge network. The framework can detect
network-centered attacks and unique streams of traffic that
contribute to this. The network topology that interconnects
equipment, devices, and control systems used in an indus-
trial facility shares useful data and intelligence. Access con-
trols and communication to the IoT network are protected
with IDS by tracking its operation through a combina-
tion of “coarse-grained (per-device) and fine-grained (per-
flow)” analytics schemes. The solution comprises a security
orchestrator (controller, IDS, security applications, and MUD
services), edge nodes (switches and gateways, equipped with
lightweight monitoring mechanisms and intelligent attack
detection services), and other services to enforce the MUD
rules/policies.

A. System Architecture

A conceptual SDN-based MUD-aware Edge infrastructure
is depicted in Fig. 2. This consists of two stages: 1) identify-
ing anomalies in local/Intranet or 2) external/Internet traffic.
In Stage-1, we use mechanisms in switches utilizing coarse-
grained (device level) telemetry to detect an abnormal burst
of any exceptional bindings. These mechanisms then trigger
the corresponding recovery process and alarm the Stage-2
system that utilizes fine-grained (flow level) telemetry. We
detect malicious activity by comparing the MUD profiles and
drop the packets in the gateway. These components commu-
nicate with each other to dynamically control the flow-table
rules within the switch when monitoring the device’s network
operations, actions, and traffic patterns. Traffic monitoring
and route manipulation modules are deployed in the gateway
switches for automatic provisioning and remote configuration
of services. The key components of the security gateway are 1)
monitoring module and 2) lightweight filter. The control plane
(Edge controller) hosts the heavyweight ML-based Classifier
and Anomaly based IDS. The gateway switch is where the
packets from all the devices are forwarded, and we leverage
the computing resources on this platform for security monitor-
ing and anomaly/intrusion detection. On this basis, lightweight
software modules are embedded in the gateway switches to
perform first-level traffic analysis. The edge gateway forwards
only suspicious flows that are marked for further inspection at
the controller.

Specification-Based MUD-IDS: In mapping the MUD pro-
files to the flow rules, the IDS detects the operations and
behavior of the devices that are not compliant with the edge
infrastructure. The framework is responsible for various tasks,
such as generating the SDN flow rule/configuration file based
on the MUD device profiles, discovering new devices joining
the network, and publishing a match-action rule set based on
DNS bindings. The gateway uses an MUD collector engine
that periodically scans the IoT network to check if a new
device has joined. The MUD database is continuously updated
by fetching the records from the MUD manager hosted in
the edge network. The system learns the (normal/abnormal)
behavioral profiles and establishes a clustering-based classifi-
cation model. The inspection of packets is done to validate the
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Fig. 2. SDN-based MUD-aware IoT network architecture.

flow rules inserted into the switch. The anomalous traffic is
flagged for further analysis. The flows that are caught by the
reactive flow rules are constructed to avoid subsequent packets
from inspection, resulting in minimal system load. Our solu-
tion utilizes an IDS with traffic profiles (MUD) that recognizes
the deviations from normal patterns and packet sequences,
thereby detecting an attack to the network or specific device.

Anomaly Based ML-IDS: This system uses an ML tech-
nique to detect a malware/rogue device or a malfunctioning
IoT operating in the network. The IDS is based on a neu-
ral network-based classifier, which captures and demodulates
the traffic in the IoT network over time. The system extracts
multiple fields from the packets based on the clustering
and learns normal models of all the nodes and devices in
the network. The learned models are compared with the
deviations from the MUD profiles. The mitigation of the
attacks is done through proactive ACLs/flow rules on the IDS,
thereby dropping the malicious traffic and this ensures strin-
gent security and access control are enforced over the simple
MUD-profile-based IDS.

B. Adversary Model

The main adversaries are the attackers that target or launch
attacks from compromised devices in the IoT infrastructure.
We consider the malware to track, infect, and manipulate
compromised devices in the network. Factory-default login
credentials, open, unfiltered ports, and terminal access through
Secure Shell or TELNET with blank passwords are all typical
vulnerabilities. We assume the following threat conditions.

1) Manufacturers of the devices are not adversaries.
2) Devices can be vulnerable on arrival but have no

back doors.
3) Gateway switches and controllers are not compromised.
4) Infrastructure facilitates secure/trusted execution plat-

forms and integrity verifiable by remote attestation [21].
5) Automated identification and labeling of IoT devices.

C. Digital Twins in Industrial IoT

Digital twin is a new paradigm [2] for integrating
physical-based models and data-driven models with virtual

representation, performing predictive analytics and What-if
analysis by using AI/ML and continuously updating a real
system in the operation of the existing model. A network
digital twin is a software simulation of an entire physical
network, devices, and applications. The operating environ-
ment, deployed applications, and traffic pattern (including
benign/normal and malign/attack) are emulated. Network
dynamics are typically mimicked and generated through real-
time interactions with the physical environment. In our frame-
work, the digital twin network simulator can interoperate at
any protocol layers with network management and monitoring
tools, controllers, operator policy administrators, live applica-
tions, routers, firewalls, and other network devices. It includes
the capabilities to collect, report, and visualize the result of the
proposed flow rules and MUD profiles from the manufacturer
under various operating conditions, including when exposed
to cyberattacks.

IV. DESIGN AND IMPLEMENTATION

We describe the overall design and the core functionali-
ties of the framework, including behavioral profiling, device
fingerprinting, anomaly, and intrusion detection in a software-
defined IoT network infrastructure. Our primary objective is
to build a proactive and smart framework to construct typi-
cal IoT profiles by analyzing their communication patterns in
the network, recognizing the anomalies, detecting attacks and
abnormal devices, and taking remedial actions. The devices
can communicate with other devices (device-to-device) and
machines (machine-to-machine) within their local network
via the IoT gateway and to the cloud network via the edge
gateway through the firewalls. The major functions are as
follows.

1) Secure configuration and bootstrapping of IoT devices
by using MUD-profile-based compliance testing.

2) MUD specification-based security monitoring, behav-
ioral profiling, and attack detection in the IoT gateway
switches.

3) IDS using the ML deep-learning-based classification.
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Fig. 3. MUD policy to OpenFlow rule translation.

A. MUD Compliance-Based Bootstrapping

IoT systems must be responsible for setting up and adjusting
to the environment automatically without manual intervention
and supervision. This condition can be achieved by deploy-
ing smart objects/things in the network that announce their
behavioral requirements to the monitoring and control system.
Connecting an IoT system to an existing infrastructure opens
up many uncertainties without clear behavioral descriptions.
Some research questions arise about the devices, services,
behavior, features, limits, type of communication protocols,
and possible conflicts with other devices in the network.
A trusted private network service (e.g., MUD server), is
responsible to read the uniform resource identifier (URI), pull
up the MUD profile, and grant privileges. Although the MUD
paradigm has brought in traction for device definitions and set-
tings, it only offers an identification of a system and a list of
the used addresses/ports. The standards do not define profiles
to model dynamic behavior, and the functional intents of the
devices. The workflow of translation in the OpenFlow pipeline
is shown in Fig. 3.

B. Specification/Outlier-Based Anomaly Detection

The IoT Edge Gateway (Fig. 4) uses the resources of the
switches and runs custom logic in addition to packet forward-
ing. The packet stream is obtained by the Extractor module
from two sources, and the values/features are extracted from
the packet header fields. The features are stored for a learning
interval during the learning phase. The feature vectors (con-
sisting of values extracted from each packet) are ingested into
the Clustering engine to build the normal/benign behavioral
model for every device. After each learning interval, the clus-
tering engine continuously learns from the normal behavior at
different periods/phases of the industrial process. This process
ensures that the learned models are current and updated to be
always applicable, although the normal behavior changes over
time. Once the usual behavior models have been learned, the
Enforcer module enforces the policies during the implementa-
tion. The Enforcer receives the characteristics of all IoT system
traffic from the Extractor in real time. The Enforcer removes
the misbehaving/rogue/victim devices from the network and
installs new rules on the switches to block the malicious
packets in two directions to the infected devices.

1) Feature Extraction: The initial composition of the raw
statistics gathered from overall network traffic and individual
device’s activities must be preprocessed and is based on flow

Fig. 4. IoT gateway architecture and operations.

stats derived from all packet sequences carrying varying pro-
tocol data between devices. The flow features are derived from
the packet headers to construct profiles, analyze, and model
traffic behavior. These profiles define the behavior of flows,
such as data size, frame sizes, and packet-interarrival intervals
distribution. The Feature Extractor module (embedded in the
switch) collects and processes packets from devices connected
to its local IoT network and includes several subcomponents,
as shown in Fig. 4. The packets can be fed in pcap format
and translated to json format by the Extractor module. These
JSON objects are consumed by the Extractor function and
stored in a shared datastore. In a configuration file, the feature
list is defined and can be adapted to various requirements and
protocols. On the basis of some fields (e.g., MAC address)
in the packets, the Clusterer differentiates between different
devices. This process enables each device to hold its features
independently so that the system can learn a typical behav-
ior model for each device. The Clusterer uses this database
collected over time as the training information models for the
normal operation and behavioral profiles of all the devices in
the domain.

2) Compliance Testing and Behavioral Profiling: We define
the components of our IoT behavioral model into two
categories.

a) Static Model: Protocols used for communication.
b) Dynamic Model: Session interactions and communica-

tion patterns.
From every packet exchanged between the nodes in the

network, we capture a behavioral snapshot that consists of
protocol header fields. The compliance testing is done to
determine whether the device behaves as specified in the
MUD profile or not. Focusing on the vulnerable behav-
ior of a device and ensuring the communications from
a device are legitimate is required because the manufacturer
of a device generates an MUD profile for its device over the
cloud.

The profiling engine has two separate modules.
a) Capture Intended Flows: This module collects session

details from TCP/IP traffic in the IoT network. It detects
the services and captures bi-directional flows in the
network.
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Fig. 5. (a) Traffic profile. (b) Dendrogram plot.

b) Flow Rule to MUD: MUD profiles for each device are
generated. The runtime network activities are mapped to
a known MUD profile. We verify its “likeness” to the
established static MUD profiles given by manufacturers.

3) Clustering and Outlier Detection: The IoT gateway fire-
wall (IoTGWF) collects network traffic and preprocesses it to
create a data set. Service-based patterns are constructed across
the data set by using a clustering method. We use a multi-
stage clustering-based outlier detection technique to detect the
anomalies and to differentiate between attacks and network
exceptions (spikes/jitter). A static threshold may not differen-
tiate busty attacks from benign traffic. Fig. 5 illustrates this
phenomenon, and we can observe that the attack spikes (red)
cannot be distinguished from the benign spikes (blue) using
simple thresholds. Thus, we enhance the system by using
a dynamic model to generate profiles in varying traffic sce-
narios to differentiate malicious flows from benign traffic. We
take an example of a parameter peak-request-rate used by this
clustering algorithm. The peak request rate can be defined by
the manufacturer in the MUD-File. For most of the low-end
IoT devices that need to communicate with the manufacturer’s
services, the request rate can be calculated based on the char-
acteristic of the device. For instance, getting 100 requests per
second from a smart security camera is indeed unusual because
100 moving objects are unlikely to pass the smart security
camera in 1 s.

Clustering refers to unsupervised learning methods that par-
tition a data set of n units, and the sets in these partitions
are called clusters. In hierarchical clustering [24] for each
data point in the cluster, this technique calculates a metric
called the silhouette score. The data points are standardized for
outliers, without the usual standard deviation method. For the
scope of this article, we consider that the data are represented
by the 4D vector X in which we can choose up to four fea-
tures from the traffic data. The administrator can configure the
clustering engine with any feature set. For example, <packet
size, packets interarrival time, packet count, protocol> can be
one data-point plotting the feature vector X. These features are
denoted as x1, x2, x3, and x4. Although we have a 4-D vec-
tor, we will only be looking at 3-D vectors where the x-axis is
always fixed as the interarrival time (the time gap between the
stream of packets within the sampling interval, as measured
at the receiver end). Hierarchical clustering begins by build-
ing separate clusters for each data point utilizing Euclidean
distances.

The formula is given as

d(i, j) =
√(

xj − xi
)2 + (

yj − yi
)2 + (

zj − zi
)2

.

Algorithm 1 Hierarchical Clustering Algorithm
Input

Data Points: X{x1, x2 · · · xn with n objects, where each xi can be
categorical attribute represented by a vector.

Output
Silhouette score

Definitions
pattern Similarity: Two data objects x1 and x1 are defined as
similar iff (a) d(x1, x1)� τ and (b) d (x1, x2)0, if x1 = x2.
Mean Dissimilarty: of the point i to some cluster Ck as the
mean of the distance from i to all points in Ck where Ck �= Ci
Cluster: A cluster Ci is a subset of a dataset X, where for any
pair of xi’s, say (xi, xj) ∈ C, d(xi, xj)� τ .
Profile: A profile of a cluster Ci is a mean value,
μ(xμ,1, xμ,2 · · ·Xμ,d) of dataset X, where each xµ,j is the
mean of the jth column of the cluster Ci d(i, j) : the distance
between i and j in that cluster Ci.

Method
For evrey i ∈ Ci, Mean distance,

a(i) = 1

|Ci − 1|
∑

j∈Cii �=j

d(i, j)

ai ← estimate of position in Ci.
For each data point, i ∈ Ci the smallest mean distance of i to all

points

b(i) = min
k �=i

1

|ck|
∑

j∈Ck

d(i, j)

We calculate the silhouette score of a data point i,

s(i) = b(i)− a(i)

max[a(i), b(i)]
if |Ci| > 1

s(i) = 0 if |Ci| = 1

return s(i)

After an iterative merging process, we choose either one of
the y-axis or z-axis or one of the features x1, x2, x3, x4 and
plot the dendrograms. As shown in Fig. 5(b), the tree structure
defines the hierarchical relationship between clusters (number
of clusters on the x-axis, distances on the y-axis). Once the
hierarchical clustering has been performed, an optimal axis is
calculated to cut the dendrogram with a horizontal line. We
use the popular silhouette analysis technique as the metric
to generate the most optimal clusters. A silhouette score s(i)
is computed for every data point (using Algorithm 1) which
denotes the best coordinate for that point within its cluster.
Suppose the data were clustered into k clusters, we can apply
the method to calculate s(i) for the metadata from the packets
and observe that −1 ≤ s(i) ≤ 1. The clusters are optimally
formed when the silhouette score is high, and lower values
imply that extremely many/few clusters are created.

The outlier score for each data point is calculated and com-
pared to a user-defined cutoff value. The data points are sorted
in accordance with their scores, and outliers Oij (including the
minor outliers) are identified in terms of threshold τ and the
average of the (95th, 96th, and 99th) percentiles. Thus, we
can determine the anomalous flows, and only the data/packets
related to the suspicious flows are forwarded to the control
plane ML-application for deep investigation.
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Fig. 6. Security controller architecture.

C. Hybrid ML-Based Anomaly Detection

The controller and security orchestrator node provides many
computing resources, a global view, and integrated knowl-
edge of the entire network. The main functions (monitoring,
analysis, and classification) are built in the control plane
(Fig. 6).

We adopted a hybrid pipeline (deep and shallow Learning,
Fig. 7), nonsymmetric deep autoencoder (NDAE) model [29],
and random forest (RF) as the output classifier. This uncon-
ventional design makes the NDAE system utilize less CPU
and training time with higher accuracy. After careful analysis
and experimentation with this new hybrid model, we impro-
vised with the composition of the hidden layers, neurons, and
feature set from the more recent data sets for training. The
input feature sets (traffic samples) are reduced by the NDAE
stack, and the resulting encoded representations (features) are
fed to the output RF module, which learns and classifies the
traffic into multiple attack types.

1) Data Sets: We generated MUD profiles from
MUDgee [11] software, which takes a pcap input file
from real traffic in the testbed. To ensure that no data sets
were faulty, we validated MUD profiles and checked for
policy consistencies and semantics. We used MUDgee data,
which included 28 000 entries and approximately 32 PCAP
traces. The CICIDS2017 [25], Bot-IoT [26], Hogzilla [27],
and malicious IoT traffic [28] were replayed to simulate
the representative traffic of real-world network [12]. We
performed normalization and reorganized the samples from
the data set. Network intrusion data set are imbalanced,
especially in smart CPS infrastructures [28]. High imbal-
anced data sets have a predominant bias for most class data,
leading to high false positives in detection. The data set
goes through a preprocessing stage for: a) resampling and
b) normalizing labels to tackle these shortcomings. Thus, the
accuracy improves in detecting the class of intrusions and
sustains the speed.

2) Feature Selection: At regular intervals, we collect val-
ues from flow counters, calculate the statistical features over
a sliding 1 to 4-min window, and this process generates
approximately 20 features per flow (see Table III), including
the bidirectional data. To avoid the overhead of deep packet
inspection, we perform flow-level analytics in the first stage.

TABLE III
DEFINITIONS OF FEATURE VECTORS

Only upon the detection of suspicious flow(s) from Stage-1,
packet-level attributes (Destination IP addresses, ports or
interarrival times) and flow-rule history are considered. The
behavioral profile can be constructed by collecting the data of
its operations and how it functions. Its communication patterns
are all consolidated as fingerprints. We generate a single fea-
ture vector by using the metadata from consecutive packets,
pi → pi+1 → pi+2 · · · → pn, and the packet sequences serve
as valid semantic data for the sessions. The set of all these
characteristic vectors fits the system’s observed behavioral
profile and can be inputted into ML-based classifiers.

3) Deep Learning Neural Network (ML)-Based Classifier:
Neural networks define the nonlinear relationships that can be
fitted to data. A neuron takes one or more inputs and calculates
a single output given by the equation

hw,b(x) = f (x) = (
wTx + b

)

where x denotes the input vectors for the unit, w is a vec-
tor of weights, b is an intercept term called the bias, and
f : R→ R is a so-called activation function, where each chunk
represents all the observations from one object. In the current
problem, the unlabeled data are the chunks x1, x2, x3, . . . , xn,
where each chunk is a K-dimensional vector of network pack-
ets. Effectively, the autoencoder is represented by the function
hw,b(x) ≈ x for any data point, x ∈ R

K where h is the output
of the hypothesis from a network with weights w and bias b on
an input x. Based on the principle of multiple-class classifica-
tion, the system was trained with the data from its IoT network
devices by using benign features. It can detect whether a traffic
observation belongs to a specific trained class.

D. Digital Twin With MUD and Behavioral Monitoring

We present a design for integrating the network twin with
the NIDS, as shown in Fig. 8. The deployment domain
contains two zones: 1) physical IoT edge network and secu-
rity gateway (Physical Twin) and 2) digital twin Manager
replicates the entire infrastructure in a virtual network, runs
simulations of IoT network, tests the policies, and resolves
any behavioral conflicts with the vendor-MUD profiles or
with operator’s policies associated with the domain. The Twin
Manager runs a battery of compliance test suites, simulates
attack traffic, and by applying the MUD-rule/SDN action in the
virtual network. This trial run is conducted to validate all the
planned run-time actions before propagating to the real physi-
cal network (via SDN controller and switches). The decisions
derived from the MUD profile and SDN flow rules during the
TEST phase can result in a state inconsistent with the security
posture or network QoS policies of the deployment domain.
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Fig. 7. Hybrid deep learning pipeline composition.

Fig. 8. Integrating MUD-enhanced NIDS with digital twins.

The Conflict Resolution component suggests any alternative
remediation plan. The MUD rules from manufacturers can
be enforced to suit the deployment domain because they are
suggestive (not directive).

V. PERFORMANCE EVALUATION

We deployed a variety of multiaccess devices that constitute
the larger connectivity to the public Internet/Cloud at the Edge.

A. Bootstrapping Performance

1) Bootstrapping/Authenticating Latency [Fig. 9(a)]: The
overhead increases with an attack ratio of 0.1–0.9.
Our solution bootstraps nine times faster than a legacy
SDN stack.

2) Packet Loss Ratio: During network congestion, our IDS
shows a gradual loss due to faster processing in the
data plane. The legacy IDS drops more packets over
time.

3) Packet Transmission Rate [Fig. 9(b)]: Our IDS sustains
a wire speed throughput of 1000 pkts/timeslot (20 Mb/s),
an average rate of 720 pkts/timeslot during attacks. With
the legacy IDS, it drops down to 200 pkts/timeslot.

Thus, in terms of the key performance metrics for IoT
networks, the applications can achieve the guaranteed quality-
of-service, ultralow latencies with security by using our IDS.

Fig. 9. (a) Smart authentication. (b) Throughput performance.

Fig. 10. Clustering model.

B. Clustering and Outlier Detection

To evaluate the specification-based IDS, we set up
a network of IoT devices to emulate a typical smart CPS
infrastructure. The value range of the parameters (interarrival
time, size) is defined: normal (10 and 11 s, 90 and 91 bytes)
and abnormal (11 s, 98 bytes). The experiment begins with
normal operation, and the NIDS (Gateway and the Controller)
learns and establishes normal models for two devices. The 2D
vector—interarrival time, frame length is configured in the
IDS, and the training data set is created by running traffic for
some hours. Some anomalies are injected at various devices.
The devices are configured for the transmission of packets
with shorter inter-arrival and longer inter-arrival intervals to
establish mixed behaviors. The data points are plotted as they
arrive at the IDS, as shown in Fig. 10.

The IDS learns the normal models that resulted in two
“normal clusters.” The packets (data points) from the network
pass through the IDS classifier (in real time) and are plotted. The
IDS model marks the normal clusters (in circles) and abnormal
packets that are outliers as “+.” The Enforcer in the IoT gateway
installs the flow rules in the forwarding table corresponding to
ACL entries in the MUD profiles (generated from the Clusterer
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Fig. 11. Confusion matrix.

Fig. 12. (a) Accuracy variation. (b) Scaling with cluster diversity.

output). The FLOW RULE constitutes the Forward Action for
normal packets and the Drop Action for these “+” matching
abnormal packets. Fig. 11 shows the confusion matrix plotted
for the devices from the test data and proves the performance
of the classifier model with high confidence. Based on the
functionality gathered in the dataplane, we verified the efficiency
of our statistical detection. We aimed to collect the least data for
optimal resource usage because these features are captured from
the switch counters/table at wire speed.

Fig. 12(a) confirms the results that the top 10–12 top fea-
tures exhibit the maximum accuracy, and the features beyond
16 tapers down due to an increase in bias. Fig. 12(b) shows
the clustering and classification performance of the gate-
way platform compared with Raspberry-Pi/ARM-based single-
board system. The performance (detection time on the y-axis)
improves linearly with the increase in data points and the for-
mation of more clusters (includes normal and benign). From
the graph, for clustering count = 18, all the data points from
1 to 5-min sliding windows are processed by the Clustering-
IDS under 160 s at the gateway node with single-board
ARM processor. The same IDS processed the data points and
detected the attack type under 60 s on a CPU/Intel-Core-i5
based node. Thus, we infer that our scheme is portable and can
perform close to the wire speed even on low-cost single-board
IoT gateway and on any switching platforms with moderate
CPU power.

C. Mirai IoT Botnet Experiment

We simulated the operations of the Mirai botnet [5]—
scanning, infiltration, victim finding, infection, and controlling
the infected devices and hosts. In each phase of the botnet
life cycle (Fig. 13), the botnet behavior and communication

Fig. 13. Mirai Botnet operation life cycle [5].

Fig. 14. Botnet detection speed.

TABLE IV
MIRAI DETECTION IN PHASES

patterns leave fingerprints that deviate from the MUD pro-
files, which can be detected (seen as outliers) by using the
Clusterer model. The Mirai botnet manifests in approximately
ten different variants. We randomly picked a device from one
of the devices to infect it with Mirai malware and activate the
botnet in the network (e.g., Scanning of ports 23 and 2323 for
new devices to infect). The timer starts when the infection
begins and stops when one of the gateway switches (NIDS)
detects it. The time taken to detect the botnet is measured.
For every iteration, a victim IoT device for Mirai infection
is chosen randomly. Fig. 14 plots the time taken to detect in
each iteration. The framework takes on average approximately
4.5 s to detect Mirai patterns and identify the victim node in
the network. The bar chart shows the shortest detection time
of 2.5 s by switch#5 and longest time of 8.1 s by switch#4
under different iterations.

Table IV shows the detection performance (speed and accu-
racy) of the IDS in different phases of an active botnet session.
The average delay is approximately 279 ms after approxi-
mately 200 packets (out of 900 packets during pre-infection).
Behavioral profiling is so sensitive that attacks are detected
during the stealth scanning phase itself (ahead of the Infection
phase).

D. Performance of Attack Detection and Classifier

In pattern recognition and traffic classification, binary class
and multiclass are two major methods. Table V shows that
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TABLE V
IDS PERFORMANCE FOR DIFFERENT ATTACKS

Fig. 15. (a) ML key metrics. (b) Receiver operating characteristic.

the proposed hybrid NIDS can detect most network-centric
attacks, achieving the highest sensitivity (0.998), and lowest
false positive rate (0.02). The scan attack (e.g., Mirai recon-
naissance) detection achieves 0.998 accuracy and 0.986 F1-
score. The proposed solution is faster in detecting scanning
attacks and their variants, proving the efficacy of our mon-
itoring and detection mechanisms at multiple stages of the
attack cycle. We evaluated our NIDS with standard methods
and compared the key metrics with another closely rele-
vant deep learning algorithm from a DBN model [20], as
shown in Fig. 15(a). The ROC curves in Fig. 15(b) show
that our NIDS is superior in terms of area under the curve
(AUC, 0.998) compared with the other DBN model (0.935).
The data set is composed of heuristics, which are approxi-
mately 100 000 samples: with 60% benign/40% malign ratio
samples. In BotIoT [26] (5 attack classes, 8000 malign,
and 60 000 benign) and CICIDS [25] (8 types of attacks,
5000 malign samples, and 60 000 benign).

E. Result Discussion

The results of the performance evaluation are promising.
All attacks (from internal and external vectors) on any com-
promised IoT device or gateway in the Edge infrastructure
were identified by our monitoring and detection mechanisms
(achieving approximately 100% true positive rate). The attack
detection scheme showed an extremely low false alarm rate,
with a mean false positive rate of 0.007 ± 0.01. In var-
ious evaluated scenarios from the launch of attacks, we
observed an average detection time of approximately 279 ms
± 99 ms to detect botnet attacks and approximately 4 to
8 s for sophisticated malware attacks. The systems and the
framework were created with security by design, utilizing

proven and agile/reliable monitoring components. We focused
on the primary vulnerabilities affecting IoT-based infrastruc-
tures, such as insufficient security configurations, insecure
network connections, behavioral anomalies, malicious devices,
and noncompliance with the manufacturer’s operational stan-
dards. The key performance indicators in these critical axes
are given in the following.

Authentication: The lightweight cryptographic verification
and MUD-based bootstrapping ensure resistance to spoofing,
forging, and adversary-in-the-middle snooping attacks.

Access Control: The combined trust in access and credentials
is achieved by using the MUD manifest and OpenFlow rules.

Network Security: Combining device-level (ACL+MUD),
network-level IDS, and cryptographic mechanisms we can
resist most modern attacks, such as cloning, DDoS, Botnet,
and malwares that are known in most recent data sets.

Behavior Evolution: The behavior of devices in the IoT
ecosystem evolves because new features/functionalities are
added and with software/firmware upgrades. The IETF stan-
dard is increasing the scope of MUD to explicitly describe the
predicted actions and intents of IoT devices in the network.

VI. CONCLUSION AND FUTURE WORK

We proposed an SDN-based framework that comprises
intelligent security monitoring mechanisms and multiple IDS
that collaboratively monitor/protect an MUD compatible
IoT/multi-access edge network. This framework aims to deal
with common attacks in the edge network by monitoring the
MUD-compliant IoT devices. We posit that the MUD standard
expands the possibility for explicitly describing the expected
activities and intents of IoT devices connected to the network.
We designed mechanisms for detecting behavioral anoma-
lies from the network traffic from/to the IoT ecosystem and
enhanced the network digital twin with MUD profiles for sim-
ulation/conflict resolution in operator policies/solutions. We
tracked the operations of every device, gateway, switch, con-
troller, and application in the entire deployment domain by
conducting traffic analysis (flow level/device level) on vari-
ous time scales. In future work, we plan to design a hybrid
IoT security gateway for integrating IIoT, a smart behavioral
filter, and data sets for diverse applications of IoT, including
wireless sensory networks and traditional Industrial control
systems (e.g., MUD profiles for SCADA-based PLC policies).
Diving more into the realm of deep learning with graphs is
an emerging field, and we plan to perform network topology
graph validations on more robust feature vectors encoded on
the graph. The network digital twin model in collaboration
with behavioral analytics and software-defined IDS improves
the cyber resiliency, security, and compliance in Industry
4.0 environments. Our study of merging a variety of cutting-
edge technologies into a novel framework lays the groundwork
for future research in this exciting new field.
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