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In Dynamic Service Composition (DSC), an application can be dynamically composed using web services to

achieve its functional and Quality of Services (QoS) goals. DSC is a relatively mature area of research that

crosscuts autonomous and services computing. Complex autonomous and self-adaptive computing paradigms

(e.g., multi-tenant cloud services, mobile/smart services, services discovery and composition in intelligent

environments such as smart cities) have been leveraging DSC to dynamically and adaptively maintain the

desired QoS, cost and to stabilize long-lived software systems. While DSC is fundamentally known to be an

NP-hard problem, systematic attempts to analyze its scalability have been limited, if not absent, though such

analysis is of a paramount importance for their effective, efficient, and stable operations.

This article reports on a new application of goal-modeling, providing a systematic technique that can sup-

port DSC designers and architects in identifying DSC-relevant characteristics and metrics that can potentially

affect the scalability goals of a system. The article then applies the technique to two different approaches for

QoS-aware dynamic services composition, where the article describes two detailed exemplars that exemplify

its application. The exemplars hope to provide researchers and practitioners with guidance and transferable

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation

programme under the Marie Skłodowska-Curie grant agreement No. 712949 (TECNIOspring PLUS) and from the Agency

for Business Competitiveness of the Government of Catalonia.

Authors’ addresses: L. Duboc, La Salle - University Ramon Lull, Spain; email: l.duboc@salle.url.edu; R. Bahsoon

(corresponding author), University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT,

United Kingdom; email: r.bahsoon@cs.bham.ac.uk; F. Alrebeish, King Abdulaziz City for Science and Technology, SA;

email: frebeish@kacst.edu.sa; C. Mera-Gómez, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral,

ESPOL, Facultad de Ingeniería en Electricidad y Computación, Campus Gustavo Galindo Km 30.5 Vía Perimetral,

P.O. Box 09-01-5863, Guayaquil, Ecuador; email: cjmera@espol.edu.ec; V. Nallur, University College Dublin, Ireland;

email: vivek.nallur@ucd.ie; R. Kazman, Software Engineering Institute - Carnegie Mellon University and University

of Hawaii; email: kazman@hawaii.edu; P. Bianco, Software Engineering Institute - Carnegie Mellon University; email:

pbianco@sei.cmu.edu; A. Babar, The University of Adelaide, Australia; email: ali.babar@adelaide.edu.au; R. Buyya, The

University of Melbourne, Australia; email: rbuyya@unimelb.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1556-4665/2022/10-ART10 $15.00

https://doi.org/10.1145/3529162

ACM Transactions on Autonomous and Adaptive Systems, Vol. 16, No. 3-4, Article 10. Publication date: October 2022.

https://orcid.org/0000-0002-7437-2101
https://orcid.org/0000-0002-1139-5795
https://orcid.org/0000-0002-6924-7939
https://orcid.org/0000-0002-7014-1138
https://orcid.org/0000-0003-0447-4150
https://orcid.org/0000-0003-0392-2783
https://orcid.org/0000-0001-7366-5992
https://orcid.org/0000-0001-9696-3626
https://orcid.org/0000-0001-9754-6496
mailto:permissions@acm.org
https://doi.org/10.1145/3529162


10:2 L. Duboc et al.

knowledge in situations where the scalability analysis may not be straightforward. The contributions provide

architects and designers for QoS-aware dynamic service composition with the fundamentals for assessing the

scalability of their own solutions, along with goal models and a list of application domain characteristics and

metrics that might be relevant to other solutions. Our experience has shown that the technique was able to

identify in both exemplars application domain characteristics and metrics that had been overlooked in previ-

ous scalability analyses of these DSC, some of which indeed limited their scalability. It has also shown that

the experiences and knowledge can be transferable: The first exemplar was used as an example to inform and

ease the work of applying the technique in the second one, reducing the time to create the model, even for a

non-expert.

CCS Concepts: • Software and its engineering→Extra-functional properties; • General and reference

→ Evaluation; • Computing methodologies→Modeling methodologies

Additional Key Words and Phrases: Scalability modelling, dynamic service composition, autonomous and

adaptive systems
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1 INTRODUCTION

In QoS-aware Dynamic Service Composition, instead of linking programs and libraries at compile
time, an application can be dynamically composed using web-services to achieve its functional
and non-functional targets. For such, application architects specify the functionality that the com-
ponent parts should have, their budgetary resources, and other Quality of Service (QoS) con-
straints. With this information, an application can search a Service Registry for the services that
it wants and can bind to them dynamically. This dynamic binding allows an application to change
the QoS that it exhibits at runtime. Several autonomous and adaptive systems, operating at scale,
such as cloud-based software systems, smart/mobile services, services discovery and composition
in adaptive environments such as smart cities, have been leveraging QoS-aware Dynamic Service
Composition as an underlying technique to maintain their dependability requirements, optimize
for value, and enforce their Service Level Agreements (SLA) at runtime.

Selecting services from the service registry faces a search problem: Matching the functionality is
constrained by the costs the application stakeholder is willing to pay while ensuring that the QoS
advertised are acceptable to application’s needs. Dynamic service selection, while optimizing QoS,
is known to be an NP-hard problem [Yu et al. 2007]. This immediately implies that any solution that
tries to find the optimal combination would find itself confronted with an exponentially increasing
search space. Hence, most solutions focus instead on obtaining a “good enough” combination of
services that meet the QoS constraints that an application specifies.

Given such a scenario, it is not surprising that scalability is an important concern in the domain
of QoS-aware dynamic service composition. A previous literature review by the authors [Duboc
et al. 2018, 2013b] revealed that most authors of such solutions present some kind of scalability
evaluation. Two types of characteristics are normally considered: application domain characteris-
tics, which belong to the domain of QoS-aware dynamic service composition, and system design
characteristics, which belong to the specific approach implemented by the solution. Evaluations
also take into consideration a variety of metrics.

Unsurprisingly, the literature review showed that system design characteristics were unique
to the scalability evaluation of each solution. However, it also revealed that only two application
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domain characteristics (workflow size and the number of concrete services) and one metric (execution

time) are considered across most of the works. The rest are more rarely found, appearing in one
to three papers. But, most importantly, the review reported that authors normally do not justify
their choice of characteristics and metrics by any systematic reasoning.

With such a variety in the literature, how should the designers of QoS-aware dynamic service
composition proceed to evaluate the scalability of their solutions? While the system design char-
acteristics are most likely unique to specific solutions, can application domain characteristics be
reused? The scalability of a solution is highly dependent on its goals [Duboc et al. 2013a]. There-
fore, a one-size-fits-all set of characteristics and metrics for scalability analysis is unlikely to be
effective. But how to know the ones that are likely to affect the scalability of a given approach and
that may have critical consequences?

Duboc et al. [2013a] offer a goal-modeling technique for identifying characteristics and metrics
that can potentially affect the scalability of software systems. By relating characteristics and met-
rics to the goals of these systems, the technique supports informed decision-making on scalability
analyses. However, the application of goal-modeling techniques for scalability analysis may not
be straightforward. This analysis can be further hampered when there are neither a compilation of
inputs that can inform the elaboration of models (e.g., common scalability dimensions and metrics)
nor exemplars that can guide a systematic analysis.

The above concerns are among the challenges that are faced by practitioners when evaluating
the scalability of QoS-aware Dynamic Services Composition (DSC), that we address in this
article. Our novel contributions are as follows:

(i) The article reports on new application of Duboc et al. in the domain of DSC—an application do-
main in which goal-modeling scalability technique has not been applied to, and choices of variables
and metrics are neither straightforward nor often justified. The new application leverages goal
modeling in requirements engineering, but tailored to the scalability analysis and unique require-
ments of DSC. The modeling is informed by DCS domain characteristics and metrics that were com-
piled by a systematic survey by the authors. The modeling can be also informed by additional char-
acteristics and requirements that are related to the DSC underlying theory, its formulation, and as-
sumptions. The modeling is extensible and open; transferable knowledge and the expertise gained
in modeling DSC, if available (e.g., existing exemplar and patterns) can further refine the modeling.

(ii) The contribution aims at assisting DSC designers and architects in identifying relevant char-
acteristics and metrics that can potentially affect the scalability goals of a system. To assist this
objective, the article compiles a set of application domain characteristics and metrics that relate to
the DSC domain. Additionally, the article contributes to two detailed exemplars, each of which
deals with a distinctive approach for QoS-aware service composition: The Cloud-based Multi-

Agent System (Clobmas) and the Portfolio-based Service Composition System. The exemplars
serve two intertwined objectives: to (a) exemplify and evaluate the usefulness of a systematic scal-
ability evaluation technique in the DSC domain; and (b) to provide practitioners with guidance
and transferable knowledge for evaluating the scalability of systems that fundamentally build on
dynamic service composition (e.g., autonomous services, multi-tenant cloud-based services com-
position, smart services, smart cities).

Our experience has shown that: (i) we were able to identify in both exemplars application do-
main characteristics and metrics that had been overlooked in previous scalability analyses of these
solutions—some of which indeed limited their scalability; (ii) it has also shown that the experiences
and knowledge can be transferable: the first exemplar was able to inform and ease the work of ap-
plying the technique in the second one, reducing the time to create the model, even for a non-expert.
The second exemplar has also confirmed some of the common scalability issues and identified oth-
ers; and (iii) the systematic goal-obstacles modeling for scalability of DSC offers the flexibility and
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openness to incorporate new scalability concerns and queries that were not commonly discussed
in the DSC literature. This can be attributed, for example, to the infancy of a given environment
(e.g., when extending the coverage of DSC beyond services registries to consider cloud market-
places) and/or emerging behaviors as a result of the new environment. It can also be attributed to
the fundamentals of the DSC solution itself—its formulation, underlying theory, assumptions, and
implementation—which may require customized analysis but can still benefit from the existing
dimensions, metrics, and exemplars.

The article is organized as follows: Section 2 describes the basics of scalability and its evaluation
in QoS-aware dynamic service composition and summarizes the goal-modeling technique that we
apply. Sections 3 and 4 present the exemplars demonstrating how to apply the goal-modeling tech-
nique for QoS-aware DSC solutions. Section 5 evaluates the technique, discusses the contributions
of these exemplars, and presents a list of application domain characteristics and metrics that may
be useful to other solutions in this domain. Section 6 explores the related work. Finally, Section 7
summarizes our main findings and lists the future work.

2 BACKGROUND

2.1 Relevance to Autonomous and Adaptive Systems

Dynamic Service Composition is an enabler environment and part of the underlying infrastructure
for supporting a variant of Adaptive and Autonomous Systems (AAS) [D’Angelo et al. 2020;
Weyns 2019], where the constituent components of the architecture are services. Additionally, Dy-
namic Service Composition as a problem is fundamentally linked to AAS; it embeds flavors for
enacting the self-adaptive processes, including monitoring, analysis, planning, execution through
composition, feedback loops, and knowledge management to enable the dynamic composition pro-
cess of services supporting an application at runtime [Caporuscio et al. 2015]. The dynamic and
adaptive composition process is often steered by changes in the monitored variables of the man-
aged system; these variables may relate to changes in Quality of Services (QoS), Service Level

Agreement (SLA) violations and the need to enforce compliance, continuous search for added
value in service provision with considerations for context, costs, risks of the service provision,
among the many constraints.

Contributions on DSC over the years have developed propriety analysis and planning techniques
and mechanisms to inform the dynamic and adaptive composition problem [Asghari et al. 2018;
Vakili and Navimipour 2017]. In the context of self-adaptive systems, these techniques essentially
sit in the heart of the managing system and act on the monitored variables to inform the next
cycle(s) of adaptation. The dependability of DSC is often linked to the ability to provide “seam-
less” computation addressing the various QoS tradeoffs and constraints, making the consideration
of scale essential. The extent to which the planning and analysis can scale requires systematic
modeling and analysis of the relevant scaling goals and their objectives, considering the various
unbounded variables that relate to scalability and risks hindering scale against metrics that are
sensible for a given domain. Systematic analysis of scalability can particularly help designers of
self-adaptive and managed service-oriented systems to design better self-adaptive policies and/or
tune the managing mechanisms so they can better cater of uncertainties surrounding the satisfia-
bility of the scaling goals. Our consideration of unbounded variables in the systematic modeling
and analysis is recognition of the dynamism that AAS exhibit at runtime due to changes in QoS
requirements, fluctuation of demands on the services, changes in the operating environments, and
so forth. Our considerations of obstacles analysis in the scalability goal modeling is an acknowl-
edgement that risks in AAS need to be modeled and analyzed. The analysis can help designers
and engineers of these systems to inform refinements and design preventative and mitigation
strategies.
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The article considers two exemplars, which are essentially AAS. The first application is Cloud-

based Multi-Agent System (Clobmas). Clobmas leverages Market Based Control (MBC)

[De Wolf and Holvoet 2006] to adaptively manage collaboration and market equilibrium in cloud
marketplace, constituting of cloud services providers and cloud services consumers, represented
as decentralized agents, and considers QoS requirements and price. For the the second exemplar,
the application adaptively reduces probable risks of QoS performance fluctuation, a common char-
acteristic in Cloud Service Composition (CSC) due to changes in supply and demand of shared
computational infrastructure and resources [Dejun et al. 2009]. For a given adaptation cycle, the
adaptation decisions are informed by the extent to which the diversification of services can reduce
risks and improve dependability, subject to QoS and cost constraints.

2.2 Scalability

Scalability is the “ability of a system to maintain the satisfaction of its quality goals to levels that
are acceptable to its stakeholders when characteristics of the application domain and the system
design vary over expected operational ranges” [Duboc et al. 2013a].

Some observations can be made regarding this definition: (1) Scalability is related with the sat-
isfaction of all QoS, even though performance and resource usage are more commonly considered.
(2) The system’s scalability might be affected by multiple characteristics of both the application
domain and the system design. Some of these may exhibit a wide variation in values during the
lifetime of the system. We refer to these as scaling dimensions. (3) Scalability is not an absolute con-
cept; a system is scalable with respect to a set of quality goals and scaling dimensions. Therefore,
claims of scalability should be based on thorough analysis that consider these elements.

2.3 Scalability in Dynamic Service Composition

In a long-lived service-oriented system, the desired QoS will change with time. For example, during
peak hours of usage, an application might want to exhibit high throughput, whereas during non-
peak hours, it may want to minimize cost while meeting minimum reliability standards. In this
scenario, a dynamic composition of services allows an application to search at runtime for the
appropriate set of constituent services that will enable it to meet its several QoS goals.

The overall QoS of a service-oriented application is dependent on its constituent services and
the structure of its workflow. e.g., while the cost of the application may be calculated by summing
the cost of each of the individual services, not all QoS attributes can be calculated by a simple
Stochastic Workflow Reduction [Cardoso et al. 2004].

Therefore, calculating the end-to-end QoS for each attribute is a computationally expensive pro-
cess [Nallur and Bahsoon 2013]. Given this scenario, it is not surprising that our previous literature
reviews [Duboc et al. 2018, 2013b] showed that scalability is indeed a concern for QoS-based ser-
vice dynamic composition. Most authors attempt to justify their (explicit or not) scalability claims
with evaluations of software qualities given some variation in the application domain and system
design characteristics (i.e., scaling dimensions). Nevertheless, these evaluations vary greatly.

With respect to the scaling dimensions belonging to the application domain, there is a general
agreement that the workflow size and the number of concrete services should be considered. Some
works also agree on the number of QoS as an important scaling dimension. However, for all other
application domain characteristics, each paper has its particular concern. As for the scaling di-
mensions belonging to the system design, there is no consensus on variables. Examples of such
characteristics are: the number of ants in an ant colony optimization (ACO) algorithm [Li and
Chen 2010] and the max non-improving generations, a termination condition for an optimization
algorithm [X. and H 2011].
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Regarding the metrics used to measure the scalability of solutions, it is most agreed that exe-

cution time is an important concern, followed by success/failure rates, utility, and costs. The study
also revealed many others, less popular, metrics. Furthermore, each work assessed their own com-
bination of metrics.

All these differences in the scalability analyses are by no means surprising, given the variety of
techniques used for dynamic service composition.

2.4 Scalability Goal Modeling

Duboc et al. [2013a] extended the KAOS framework [van Lamsweerde 2008] to devise a generic
technique for elaborating scalability goals. The main concepts of these approaches are briefly ex-
plained below but will be illustrated in detail in the exemplars.

2.4.1 A Brief Introduction to the KAOS Framework. KAOS is a goal-oriented framework for elic-
iting, evaluating, and analyzing software requirements [van Lamsweerde 2008]. Its goal model

depicts the system’s functional and non-functional goals and how they contribute to each other.
In KAOS, a goal is a prescriptive statement of intent that a system should satisfy through the coop-
eration of agents. Agents can be humans, hardware devices, or software components that satisfy
goals. Domain properties are descriptive statements that are always true in the application domain,
such as physical laws. Domain hypotheses are also descriptive statements about the application
domain, but they are considered to be subject to change. The term domain assumption is used to
refer to both domain properties and domain hypotheses.

A goal model organizes goals in a hierarchy. An AND-refinement link indicates that to satisfy a
goal, all of its offsprings must be satisfied. An OR-refinement represents that there are alternative
AND-refinements that can satisfy the parent goal. High-level goals require the cooperation of
multiple agents to be satisfied, whereas leaf goals are the responsibility of a single agent. During
the refinement process, goals are decomposed into subgoals until they can be assigned to a single
agent [Letier and van Lamsweerde 2002]. A goal under the responsibility of a software-to-be agent
is called a software requirement, while a goal assigned to an agent in the environment is referred
to as a domain expectation.

The first goal model produced is often too ideal. It fails to consider exceptional conditions in
the application domain that may violate goals, requirements, and assumptions. For this reason,
the KAOS framework includes a goal-obstacle analysis, which systematically checks the model
looking for exceptional conditions that prevents the goal from being satisfied, i.e., obstacles. The
likelihood and criticality of obstacles are assessed, and these are resolved by adding or modifying
the goals of the model and by applying resolution tactics in the KAOS catalog [van Lamsweerde
2008].

2.4.2 Elaborating Scalability Goals with KAOS. Duboc et al.’s technique [Duboc et al. 2013a]
extends the KAOS framework with the concepts of scaling assumption, scalability goal, and scal-

ability obstacle. It also refines the goal-obstacle analysis and the catalog of resolution tactics for
identifying and resolving scalability obstacles.

A scaling assumption is a domain assumption that specifies how certain characteristics in the
application domain are expected to vary over time and across deployment environments. Scal-
ing assumptions may be described with varying levels of precision, depending on the system.
For example, a scaling assumption could distinguish value ranges for different time periods (e.g,
year-by-year) and categories of applications (e.g., e-commerce, scientific, CRM). It could also be
represented by orders of magnitude or by a full probability distribution of the domain quantity
under consideration. There are a number of approaches that can be used for such, e.g., require-
ments elicitation techniques, extreme scaling scenarios, technology roadmaps, publicly available

ACM Transactions on Autonomous and Adaptive Systems, Vol. 16, No. 3-4, Article 10. Publication date: October 2022.



Systematic Scalability Modeling of QoS-aware DSC 10:7

performance-related benchmarks (e.g., spec.org), and estimation-by-analogy [Bahsoon and Em-
merich 2008; Shepperd et al. 1996; van Lamsweerde 2008].

Two points are worth emphasizing regarding scaling assumptions: (1) they denote measurable
quantities that can be used in the scalability analysis, and (2) the absence of a scaling assumption
for a domain quantity means that there is no assumed constraint on its possible values; that is,
its value at any point in time potentially could be infinite. The latter forces system designers to
explicitly define these assumptions so they can make better informed design choices.

A scalability goal is a goal whose definition and required levels of goal satisfaction make explicit
reference to one or more scaling assumptions [Duboc et al. 2013a]. That is, it states that a goal must
be achieved for a certain range of values defined in the scaling assumption. The level of satisfaction
may be fixed or vary in response to the variations specified in the scaling assumptions. Scalability
goals can be specified at different levels. Following the KAOS definitions, a scalability requirement

is a scalability goal assigned to an agent in the software-to-be (i.e., it is a leaf scalability goal).
A scalability obstacle is a condition that prevents a goal from being satisfied when the load

imposed by the goal on the agents involved in its satisfaction exceeds the capacity of the agents
This obstacle uses the concept of goal load and agent capacity to denote measures that characterize
the amount of work needed and the amount of resources available to the agent to satisfy the goal,
respectively [Duboc et al. 2013a]. Therefore, a scalability obstacle takes the form Goal Load Exceeds

Agent Capacity.
Scaling assumptions and scalability goals are elaborated through a scalability goal-obstacle anal-

ysis, as follows: (1) systematically identifies scalability obstacles that may obstruct the satisfaction
of the goals, requirements, and expectations; (2) assesses the likelihood and criticality of those
obstacles; and (3) resolves the obstacles by modifying existing goals, requirements, and expecta-
tions, or by generating new ones so as to prevent, reduce, or mitigate the obstacles. The latter is
supported by a catalog of scalability resolutions [Duboc et al. 2013a].

This article is mostly concerned with the identification and assessment of scalability obstacles
in the domain of QoS-aware dynamic service composition and therefore focuses on the steps one
and two of the scalability goal-obstacle analysis. Yet, some resolutions are briefly mentioned for
the sake of completeness.

3 FIRST EXEMPLAR: THE CLOUD-BASED MULTI-AGENT SYSTEM (CLOBMAS)

The Market Based Control (MBC) [De Wolf and Holvoet 2006] is a pattern for communica-
tion/collaboration in decentralized systems, in which agents act as buyers or sellers of goods col-
laborating to achieve market equilibrium. In a software context, this protocol is typically used for
efficient resource allocation in shared infrastructures, such as CPU cycles, bandwidth, and disk-
usage [Bichler et al. 1999; Borissov et al. 2010; Chen and Yeh 2010].

The Cloud-based Multi-Agent System (Clobmas) uses MBC to define a marketplace that
allows individual applications to select web-services in a decentralized manner. An application
is viewed as a composition of multiple web-services, each with an specific functionality and QoS
levels. Thus, each web-service contributes to the total QoS of the application.

Application stakeholders desiring to compose applications should specify them as a workflow

of abstract services. An abstract service describes the functional specification of a certain task. Ser-
vice providers offer concrete services that implement abstract services, each with an associated QoS
advertised through service level agreements (SLAs). Concrete services, in a particular market,
that meet the QoS requirements for a application are viewed as candidate services. When receiv-
ing an application request, Clobmas decomposes the global QoS and budget constraints creating
alternative bids for abstract services to find the best combination of concrete services out of can-
didate services. Clobmas also ensures that concrete services respect their SLAs, replacing them if
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Fig. 1. Refinement of the goal Achieve [Dynamic composition of services based on QoS] of Clobmas.

necessary. Upon the expire of an SLA, Clobmas negotiates its renewal or finds a new set of concrete
services that meets the application’s global QoS and budget.

3.1 Initial Goal Model of Clobmas

In this section, we explain the original goal model of Clobmas. Since our aim is to provide an
exemplar for the QoS-aware dynamic service composition community, the model is explained in
detail. It is worth noting that the initial goal model of Clobmas, shown in Figures 1 to 7, use the
standard goal-modeling notation and its reserved language constructs. In KAOS, details of the goals
such as the QoS metrics are collected, how often these are verified, as well as application domain
characteristics that define the “scalability level” of goals, do not appear in the diagram. Instead
they are detailed in the textual description of the goals and assumptions, as we will demonstrate
in detail in Section 3.2.

The main high-level goal of Clobmas is Achieve[Dynamic composition of services based on QoS]. Its
refinement is represented by the goal G1 in Figure 1. The diagram represents goals as parallelo-
grams, AND-refinements as arrows connected by a circle, and agents as hexagons.

To achieve this goal, the Clobmas framework must (a) keep information about open application
requests for concrete services, (b) compose applications by selecting candidate services for the
abstract services in the application workflow, and (c) maintain the agreed price and QoS for the
concrete services composing the application. This is represented in the model by AND-refining
(R1) the top goal into three goals Achieve[All open and matched application requests tracked] (G2),
Achieve[Application composed quickly] (G3) and Maintain[Application price and QoS] (G4), respectively.
The first goal is a leaf goal, assigned to the agent Matching Infrastructure (Ag1). The second goal
will be refined in Figure 2. Finally, the third goal is further decomposed into Maintain[Application

price and QoS within SLA period] (G5), stating that the QoS and price of concrete services composing
the application should be maintained within the SLA period, and Maintain[Application price and QoS

within constraints when SLA period expires] (G6), representing that when the SLA expires, it should
be automatically renewed if both application stakeholder and service provider agree. When an
agreement is not reached, the application stakeholder may compose the application out of a dif-
ferent combination of candidate services. In addition, the workflow of the application composed
is assumed to never change within the SLA period; any change in the desired abstract services is
treated as a new request. This is represented in the model by the domain assumption Application

workflow never changes during SLA period (A1).
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Fig. 2. Refinement of the goal Achieve [Application composed quickly].

The goal Achieve[Application composed quickly] (G4, Figure 1) is refined in Figure 2. To com-
pose an application, the application stakeholder (Ag2) must inform the desired price and QoS
for the entire application—the global constraints (G8). This information is used to search the
separate concrete services that will compose the application. Clobmas must also keep track of
all services in the market (G6). This goal requires the cooperation of agents and will be further
refined in Figure 4. Composing the application (G9) requires breaking the global constraints into
alternative combinations of price and QoS for abstract services (G11). This is accomplished by
consulting the average price of concrete services available in the market (G14) and by decompos-
ing the global constraints and budgets for the different services (G15). The latter goal is satisfied
by the application agent (Ag3). Concrete services that meet the QoS and budget are then selected
from the market (G12) and the application composed (G13). The latter can only be achieved if
the following domain hypothesis are indeed true: that the design of the desired abstract services
workflow was correctly defined (H1), that the functionality of concrete services are as advertised
(H2), that the budget to pay for the desired services exists (H3), and that service provider is willing
to provide the service for the advertised cost (H4). The selection of concrete services (G12) requires
the cooperation of agents and will be further refined in Figure 3. Finally, the application agent (Ag3)
is also responsible for informing the stakeholder if no concrete service could be found for the
desired QoS and budget (G10) and for actually composing the concrete services (G16).

The goal Achieve[Service selected if concrete service that meet QoS and budget exist] (G11, in Figure 2)
is refined in Figure 3. Satisfying this goal (G11) requires identifying a set of candidate services
(G16), assuming that two hypotheses are true: that any combination of services that attends to the
constraints is satisfactory (H5) and that concrete services do indeed implement the interface they
advertise (H6). The service buying agent (Ag4) finds candidate services by requesting alternative
combinations of cost and QoS (G17). Concrete services are then selected by choosing the best
matches out of all possible matches (G19, G24, and G25). When all services are found, both their
local and global costs and QoS are verified (G20 and G21), respectively, by the service buying agent

(Ag4) and the application agent (Ag3). When a viable combination of services is not found (G18), the
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Fig. 3. Refinement of goal Achieve [Service selected if concrete service that meet QoS and budget exist].

Fig. 4. Refinement of goal Achieve [Services in the market recorded].

matching infrastructure (Ag1) informs the service buying agent (Ag4) (G22), who in turn reports this
fact to the application agent (Ag3) (G23).

The refinement of the goal Achieve[Services in the market recorded]) (G6, in Figure 2) is shown in
Figure 4. It is important that Clobmas keeps accurate track of all services registered in the marked
and their associate QoS and price. For such, the matching infrastructure (Ag1) stores the information
of all new services announced (G27) by the services providers(Ag5).

Clobmas attempts to maintain the price and QoS between application stakeholders and services
providers for as long as possible. That includes making sure that QoS and price are maintained
within the SLA period (G5, Figure 1). The refinement of this goal is shown in Figure 5. Clobmas
assumes that the cost of a concrete service does not change within the SLA period (H7), therefore,
it only has to deal with two cases: when the concrete services violates the SLA for QoS (G28) and
when the application stakeholder changes its price and QoS requirements (G29). The former goal
needs to be further refined, while the latter triggers another composition of the application (G31)
based on the new QoS and budget desired (G30) by the application stakeholder (Ag6).
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Fig. 5. Refinement of goal Maintain [Application price and QoS within SLA period].

Fig. 6. Refinement of goal Maintain [Application price when SLA violated].

The refinement of goal Maintain[Application price when SLA violated](G28, Figure 5) is illustrated
in Figure 6. Clobmas knows that an SLA is violated because the execution of concrete services are
monitored by a third party metric computation engine (Ag7). When a violation is informed (G32), the
application agent (Ag3) verifies the violation (G34) and if necessary recomposes the application out
of a new set of concrete services (G35).

Figure 7 depicts the refinement of goal Maintain[Application price when SLA period expires] (G5,
Figure 1). To maintain the price and QoS between application stakeholders and services providers
for as long as possible, Clobmas attempts to maintain the agreements between application stake-
holders and services provides even after the SLA expires (G5). For such, when the SLA expires,
the service buying agent (Ag4) enquirers about any changes in the conditions of the previous SLA
(G36). If the new conditions informed (G37) by the service provider (Ag5) are adequate, then the SLA
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Fig. 7. Refinement of goal Maintain [Application price when SLA period expires].

is automatically renewed (G38) by the application agent (Ag3). Otherwise, Clobmas verifies that the
new conditions are indeed inadequate (G40) and recomposes the application out of a new set of
concrete services (G3).

Therefore, the initial goal model of Clobmas has six agents and 40 goals.

3.2 Scalability Goal-obstacle Analysis

Due to the size of the model, the goal-obstacle assessment of each goal cannot be fully explained
in this article. Instead, we will exemplify the goal-obstacle analysis of two selected goals, fol-
lowed by a summary of the metrics and scaling dimensions uncovered, and the assessment
of likelihood and criticality of selected scalability obstacles. Some resolution to the scalabil-
ity obstacles will be briefly mentioned but not discussed, since the focus of this exemplar in on

the identification and assessment of scalability obstacles.

3.2.1 Sample Scalability Obstacles and Goals. This section exemplifies the scalability goal-
obstacle analysis of the following goals: Maintain [Information about application requests], Achieve

[Application composed from selected concrete services], and Maintain[Application price and QoS within

SLA period]. For the sake of illustration, the first example will be described in greater detail.

Example 1: Achieve [All open and matched application request tracked]. This initial goal states
that Clobmas must keep the relevant information of all application requests, the services available,
their price, and QoS so it can compose them. As explained in Section 2.4.2, if domain quantities
are not bound, then they are considered potentially infinite. Therefore, the agent Matching infras-

tructure cannot satisfy this goal for a potentially infinite number of application requests. Figure 8
shows how this situation is represented in the model as the scalability obstacle Load greater than

Matching Infrastructure capacity, which is OR-refined into the sub-obstacles Unbounded number of

matched requests, Unbounded number of open applications requests, and Unbounded number of concrete

services.
We resolve these sub-obstacles by (1) introducing the scaling assumptions Expected open and

matched application requests and Expected concrete services that bounds the number of concurrent
application requests and concrete services expected by Clobmas, respectively; and (2) modify-
ing the original goal to state that it only needs to be satisfied for the range defined in the scal-
ing assumptions.1 This modification, shown in Figure 9, corresponds to the application of the

1The range of scaling dimensions and acceptance criteria for goals can be elicited by a number of requirements engineering

techniques (see Section 2.4.2).
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Fig. 8. Scalability obstacle to Maintain [Information about application requests].

Fig. 9. Resolution of scalability obstacle to goal “Achieve [All open and matched application request
Tracked].”

resolution tactics Introduce scaling assumption and Weaken the goal with scaling assump-

tion [Duboc et al. 2013a]. The assumptions and the new goal are specified as follows:

Assumption Expected open and matched application requests

Category Scaling assumption

Definition The number of concurrent open and matched application requests is expected to vary between 1 and 300.

Formal Definition � 1 ≤ # {r: ApplicationRequest | r.status = “Open” ∨ r.status = “Matched”} ≤ 300

Assumption Expected concrete services

Category Scaling assumption

Definition The number of concrete services is expected to vary between 1 and 6.000. The number of concrete

services per abstract service is 50.

Formal Definition � 1 ≤ # {s:Service | s.isRunning} ≤ 6000 ∧ ∀ as:AbstractService | # {s: Service | s.isRunning

∧Implementing(s, as)} = 50.
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Goal Achieve [All open and matched application request tracked under “Expected open and matched application

requests” and “Expected concrete services”]

Category Functional, scalability goal

Quality Variable storage space: application request→ disk space

Definition Clobmas shall keep track of all open and matched application requests and their related information as long

as the number of application requests and concrete services do not exceed the bounds stated in the scaling assumptions

“Expected application requests” and “Expected concrete services.”

Formal Definition ExpectedConcreteServices ∧ ExpectedApplicationRequests ⇒ ∀ r: ApplicationRequest | r.status =

“Open” ∨ r.status = “Matched”⇒ r.isTracked.2

A few points are worth emphasizing regarding the goal-obstacle analysis:

• In what concerns the scalability of the software system, the goal-obstacle analysis is only
performed on the goals under the responsibility of agents belonging to the system; in this
case: application agent, matching infrastructure and service buying agent. Goals under the respon-
sibility of agents in the application domain are not analyzed as they cannot be controlled by
the software system designer.
• The goal resulting from a goal-obstacle analysis is both a functional and a scalability

goal. It is a functional goal because it determines a functionality of the system and it is also
a scalability goal because its satisfaction criteria considers a range of values for the number
of application requests.
• The quality variables (e.g., storage space) indicate the metric to evaluate the goal satisfac-

tion, while the application domain characteristics that define the expected “scalability levels”
of the goals (e.g., number of application requests, number of concrete services, number of
matched requests) are defined in the scaling dimensions. These details are found in the tex-
tual descriptions of the scalability goals and assumptions.
• Ideally, the range of values for application domain characteristics for given scaling dimen-

sions should reflect the values that the system designer realistically expects. However, if
at the time of modeling the designer is uncertain about these values, then s/he can define
broader ranges to explore the scalability limits of the system. This can be a good strategy
for better informing the designers on realistic expectations that relate to these values. For
example, in Clobmas, the initial range of values for the variables number of QoS and number

of markets were set to 1–100, considering a hypothetical scenario. When simulations showed
that the system could not scale well for this range, experts were consulted for revising these
values, prioritizing markets and/or considering the tradeoffs involved when reducing the
number of the markets to be searched.
• Resolving the scalability sub-obstacles as described above may not be sufficient to ensure

that the agent—the Matching Infrastructure—is capable of handling the load imposed—the
number of application requests and concrete services. Theoretically, that means that the scal-
ability obstacle Load greater than Matching Infrastructure capacity may still exist, but would be
now obstructing the scalability goal Achieve [All open and matched application request tracked un-

der “Expected open and matched application requests” and “Expected concrete services”]. Resolving
this obstacle will require the assessment of its criticality and likelihood, as well as possibly
further resolutions. This assessment will be described in Section 3.2.2.

The next two examples are shown without the graphical representation of the goals, obstacles,
and assumptions, but follow an equivalent rationale.

2In KAOS, the⇒ symbol means entailment: “A⇒ B” is a shorthand for “Always(A implies B).”
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Example 2: Achieve[Application composed from selected concrete services]. This goal states
that once the best matches for the concrete services are returned by the service buying agent, then
the application agent is responsible for composing the application by combining these services as
determined by the application workflow. This goal is satisfied when the application agent correctly
combines the concrete service within a fraction of the total time Clobmas is expected to respond to
an application request (i.e., timeToAchieveQoS). The load this goal imposes on the application agent

is determined by the number of concurrent application requests and the size of the workflows (i.e., the
number of concrete services the agent must combine). The application agent has finite capacity and
cannot handle an unlimited number of concurrent application requests, neither compose an un-
limited number of concrete services, causing the scalability obstacle Goal load exceeds application

agent capacity. This obstacle can be further refined into Unlimited number of concurrent application

requests and Unlimited workflow size. Their resolution is achieved by introducing the scaling assump-
tions Expected number of concurrent application requests and Expected workflow sizes, which bounds
the range of values for both characteristics, and by replacing the original goal by the scalability
goal Achieve[Application composed from selected concrete services under “Expected number of concurrent

application requests and workflow sizes”]. Both the scaling assumptions and the scalability goals are
presented below:

Assumption Expected number of concurrent application requests

Category Scaling assumption

Definition The number of concurrent application requests opened is expected to vary between 1 and 300.

Formal Definition � 1 ≤ # {r: ApplicationRequest | r.status = “Open”} ≤ 300

Assumption Expected workflow sizes

Category Scaling assumption

Definition The size of the workflow in any application is expected to vary between 1 and 20.

Formal Definition ∀ a: Application | 1 ≤WorkflowSize(a) ≤ 20

Goal Achieve [Application composed from selected concrete services under ‘Expected number of concurrent application

requests and workflow sizes’]

Category Functional, scalability goal

Quality Variable execution time: application request, workflow size→ time

Definition Clobmas shall compose the application using the concrete services selected in the market within

t imeT oAchieveQoS/100 as long as value range of the number of concurrent application requests and workflow size

do not exceed the bounds stated in the scaling assumptions “Expected number of concurrent application requests” and

“Expected workflow sizes.”

Formal Definition Expected number of concurrent application requests ∧ Expected workflow sizes ⇒ ∀
m:Market, a: Application, c: ConcreteService | c ∈ m.SelectedServices(a) ⇒ � ≤ t imeT oAchieveQoS/100 Com-

pose(a, m.SelectedServices(a))

Example 3: Maintain[Application price and QoS within SLA period]. This goal states that Clob-
mas should ensure that the composed application maintains the overall agreed price and QoS dur-
ing the time established by the SLA. Unlike the two previous examples, this is not a leaf-goal,
meaning that its satisfaction is determined by the satisfaction of its descendants. To make sure
that we are not overlooking any scalability obstacle or dimension, scalability goal-obstacle analy-
ses are normally carried out in leaf-goals. However, we choose to show the analysis of this goal to
illustrate how it would look like for a non-leaf goal and because we believe that it better illustrates
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aspects of AAS. More attentive readers will notice that the result that this analysis is equivalent
to applying the goal-obstacle analyses to all its leaf-goals descendants.

The goal Maintain[Application price and QoS within SLA period] is satisfied when several agents
work together to monitor the QoS and price of the application, recomposing its workflow when
the SLA is violated or when the stakeholder changes its desired QoS or budget. The refinement of
this goal is shown in Figure 5. As a combination of several leaf-goals, its satisfaction is measured
by a number of metrics: execution time, storage space, communication bandwidth and utility, with the
latter determining the selection of the best combination of concrete services based on their QoS.
The load this goal imposes on the agents that have to collaborate to sense its satisfaction is deter-
mined by the scaling of many application domain characteristics: number of concurrent application

requests, size of the workflows, number of changes in QoS or price in existing concrete service, number of

not matched abstract services, number of SLA violations at a given time, number of concrete services per

abstract service in market, number of markets per abstract services, number of QoS per abstract service,
number of constraints for qoS per abstract service, and types of QoS constraints in application workflow.
These agents have finite capacity and cannot handle an unlimited number of these characteristics,
causing the scalability obstacle Goal load exceeds application agent capacity. Its resolution is achieved
by introducing the scaling assumptions that bound the range of values for each of these char-
acteristics and by replacing the original goal by the scalability goal Achieve[Application price and

QoS within SLA period under “Expected number of concurrent application requests, workflow sizes, etc.”].
The textual descriptions of this scalability goal and scaling dimensions are similar to the ones in
Examples 1 and 2.

We define the remaining scalability obstacles and scaling assumptions of Clobmas following a
similar rationale. As a result, we uncovered four metrics and 17 application domain characteristics
that may be relevant to the scalability analysis of Clobmas. These are:

Scaling dimensions: number of concurrent application requests in the market, number of running applications,

workflow size, number of QoS per abstract service, number of constraints for QoS in application workflow, type of QoS

constraints, number of markets per abstract service, number of concrete services per abstract service in market, number

of alternative QoS and cost requests, number of unmatched abstract services, number of expired SLAs at a given time,

number of renewed SLAs at a given time, number of SLA violations at a given time, number of changes in QoS or budget

of existing concrete services, number of concrete services per abstract services in the market, number of new concrete

services added to the market, number of matched abstract services.

Metrics: execution time, disk storage space, satisfaction rate, and application utility. The latter determines the selection

of the best combination of concrete services based on their QoS.

Table 1 shows the metrics and the scaling dimensions for all goals under the responsibility of the
system-to-be agents. These have been identified following an analogous rationale to the examples
above.

3.2.2 Obstacle Assessment and Resolution. Once the previous step is completed—i.e., the scala-
bility assumptions and scalability goals have been identified—the system designer should assess
the likelihood and the criticality of the remaining scalability obstacles. This evaluation helps him
or her to define which obstacles should be further examined and resolved.

As with scalability goals, scalability obstacles can also occur at any level of the goal model. Low-
level goals can be very useful for identify application domain characteristics that vary during the
system lifetime. However, in the assessment of scalability obstacles, one may choose to consider
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Table 1. Metrics and Unbounded Variables in Clobmas Goals under the Responsibility
of the System-to-be-agents

higher-level obstacles, which can help to quickly identify which scaling variables affect the scal-
ability of the system. Then, the system designer can explore the sub-goals to find the root of the
problem.

When analyzing the likelihood and criticality of obstacles, it is advisable to keep the following in
mind: While the likelihood of scalability obstacles is highly influenced by the scaling dimensions
affecting the obstructed goal, its criticality is directly related to the goals that these dimensions
affect. Therefore, although the analyst may choose to assess higher-level scalability obstacles, he
or she should note which are the goals in its hierarchy that are being affected by the scaling
dimensions. Furthermore, it is important to ensure that the scalability obstacles chosen cover all
leaf-goals and application domain characteristics in the model.

Table 2 exemplifies the assessment of selected scalability obstacles of Clobmas. For the sake
of illustration, we show obstacles at different levels. We use these examples to highlight some
issues to consider when performing the analysis of the likelihood and criticality:

• Obstacle to leaf goals, such as Maintain[Information about application requests and concrete ser-

vices] (G2), are written at the level of the system-to-be agent; that is, using the format Load

greater than agent capacity. Additionally, a leaf-goal may refer to several scaling dimensions.

The analyst may choose to consider as a single obstacle affected by several application do-
main characteristics (as row 1 from Table 2) or as separate sub-goals (as discussed in the next
point).
• Obstacles to higher-level goals, such as Achieve [Services selected if concrete services that meet

QoS and budget exists] (G9), are written at the level of the system; that is, using the format Load

greater than system capacity. Additionally, a higher-level goal theoretically can be affected by

the scaling dimensions of all its leaf-goals. In this example, G9 has in its hierarchy 10 leaf
goals (G14, G15, G16, G17, G20, G21, G22, G23, G24, G25, Figure 2) and, consequently, 10
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Table 2. Assessment of Likelihood (Li) and Criticality (Cr) of Scalability Obstacles, Classified as
High (H), Moderate (M), and low (L) for Clobmas

scaling dimensions that may affect its satisfaction (see goals above in Table 1). To ease the
assessment of the likelihood and criticality, the analyst may choose to consider separate
sub-obstacles to individual or subsets of scaling dimensions (as in rows 2–5 of Table 2).

In Clobmas, once the likelihood and criticality of scalability obstacles were estimated, the ones
with high to medium likelihood or criticality were further evaluated through simulation. In se-
quence, we briefly discuss the simulation for two obstacles (rows three and five of Table 2) that
refer to the goal Achieve[Application composed based on desired workflow and constraints]. This goal
defines that the growth in execution time should be at most low-order polynomial.

Obstacle 1: The number of QoS attributes exceeds the system ability to compose the applica-

tion based on desired workflow and constraints: Simulations of the system using a hypothetical
scenario have considered up to 100 QoS attributes. This is clearly an idealistic goal that can rarely
materialize in practice, unless the QoS conceptualizes and expresses various concerns linked to the
SLA. The application of such a scenarios has showed that the increase of QoS attributes caused two
phases of growth in the time to select the services. Up to an extent, the growth was bi-quadratic
and then it became exponential. The system designer can be faced with a tradeoff: exhaustive
consideration of QoS vs. selective strategy and performance. To resolve this tradeoff, the designer
may, for example, avoid exponential growth by applying the resolution “Weaken goal definition by

strengthening scaling assumption” [Duboc et al. 2013a]. In the Clobmas case, the designer consulted
capacity planning experts and weakened the goal to verify that the range suggested by the experts
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Fig. 10. Time-to-adapt (or time-to-achieve-QoS) against the number of QoS and markets.

could be handled by the system. The analyst observed that considering 10 critical QoS to be a sen-
sible input for resolving this tradeoff (i.e., providing meaningful QoS consideration while avoiding
exponential growth in the search).

Obstacle 2: The number of markets exceeds the system’s ability to compose the application

based on desired workflow and constraints: Simulations of the system using a hypothetical sce-
nario have considered up to 100 markets of comparable size of constituent service offerings.
The results again showed a two-phases growth: bi-quadratic followed by exponential. In this case,
the system architect had initially hoped to support up to 50 markets but tested 100 to explore
the bounds of the system. However simulations showed that the search using 50 markets experi-
enced exponential growth challenging the scalability of the system. This has consequently made
the search time-demanding and unrealistic in online scenarios. As with the QoS, arriving on a sen-
sible number of markets to support is another tradeoff decision. In this case, the same resolution
“Weaken goal definition by strengthening scaling assumption” [Duboc et al. 2013a] was applied, and
10 markets revealed to be a sensible input for this tradeoff decision, reconciling expert’s input and
observations from the goal analysis/simulation.

Figure 10 shows how within the redefined bounds, the scaling of the system is acceptable; that
is, it satisfies the high-level goal Achieve[Dynamic composition of services based on QoS] of being at
most a low-order polynomial.

4 SECOND EXEMPLAR: PORTFOLIO-BASED SERVICES COMPOSITION SYSTEM

The portfolio-based service composition [Alrebeish and Bahsoon 2015] aims to reduce proba-
ble risks of QoS performance fluctuation, a common characteristic in Cloud Service Compo-

sition (CSC) due to changes in supply and demand of shared computational infrastructure and
resources [Dejun et al. 2009]. The mechanism adaptively modifies the selection of concrete services
in response to changes in the market. For a given adaptation cycle, the adaptation decisions are
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Fig. 11. Layered architecture diagram to compare exemplars.

informed by the extent to which the diversification of services can reduce risks and improve de-
pendability, subject to QoS and cost constraints.

This system differs from Clobmas in the sense that it uses Portfolio theory [Markowitz 1952] to
inform the composition. Moreover, the adaptation in the Clobmas is event-driven, where recom-
position reacts to changes in the cloud service provision. That is to say, the adaptation is based
on trust assumptions and solely driven by the published provision and promises of the SLA. This
second system challenges these assumptions, taking a proactive approach to adaptation through
continuous monitoring for fluctuation of QoS: If the fluctuation rate drops below the promised
threshold, then adaptation is triggered. Figure 11 depicts a layered architecture diagram to illus-
trate the connection between the two exemplars at a high level of abstraction.

4.1 Initial Goal Model of the Portfolio-based System

This exemplar applies the same goal-modeling technique exemplified above. Most importantly, it
uses the Clobmas model as a starting point to model this system.

The refinement of the goal Achieve[Dynamic composition of services with minimum QoS performance

fluctuation] is shown in Figure 12 (G1). This is the main goal of portfolio-based allocation. To
achieve this goal, the framework must (a) keep information about open requests for cloud services
compositions and buyer preferences (G2); (b) compose applications by selecting a set of diversified
concrete services for the abstract services in the application workflow (G3); and (c) maintain up-
dated information about concrete services in the market (G4). The first goal has been assigned to
the buyer agent (Ag1), while the other two need to be further refined.

Figure 13 illustrates the refinement of goal Maintain[An updated information about concrete services

price and QoS in the market] (G4, Figure 12). As the cloud is a dynamic environment, the framework
must track changes in all services registered in the market. This includes recording the updated
price and QoS of each service (G5 and G6), storing the historical record of QoS (G7), and maintaining
an updated risk evaluation of the fluctuation and the correlation between QoS for the services (G8).
A recomposition will be triggered whenever there is a change in one of the services composing the
application or when an SLA contract expires (G9). This recomposition must be effective (G10), that
is, it assumes that the benefit of the recomposition outweighs the cost of relocating the services
(H1).

The goal Achieve[Effective diversification of services composition] (G3, Figure 12) is refined in
Figure 14. To diversify the selection of services composition, the buyer agent (Ag1) needs to com-
plement this process with information regarding the buyer preferences and QoS constraints (G12).
Then, buyer preferences and constraints are used to search the market registry and to compose
the system based on the desired workflow and constraints (G10). For that, the market regulator (Ag3)

must keep updated information about the concrete services available (G13), so concrete services
that meet the criteria can be selected (G16). When compatible candidate services cannot be found,
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Fig. 12. Refinement of the goal Achieve [Dynamic composition of services with minimum QoS performance
fluctuation].

Fig. 13. Refinement of goal Maintain [An updated information about concrete services price and QoS in the
market].

the buyer agent (Ag1) issues a warning to the buyer (G11). However, if a group of compatible candi-
date services exist in the market, then the buyer agent (Ag1) will use portfolio theory to effectively
select a set of diversified set of services (G14). This means that the services will be composed from
selected candidate services that share minimum correlation between their performance (G15). The
composition can only happen if the following assumptions are indeed true: the design of the work-
load is correct (G12), the functionality corresponds to what has been advertised (H3), the budget
exists (H4), the provider is willing to provide the service for the advertisement costs.

The refinement of goal Achieve[Services selected if concrete services that meet QoS and budget exist]

(G16, Figure 14) is shown in Figure 15. Satisfying this goal requires identifying a group of com-
patible candidate services, assuming that any services that satisfy the constraints are selected as
candidates (H6) and that these services indeed implement the interface they advertise (H6). The
MarketRegulator (Ag3) reports all services found (G18) to the buyer agent before they are consid-
ered in the diversification process. The Buyer agent (Ag1) then explores all the possible services
composition to ensure the optimality of the selected Cloud Service Compositions (CSC) (G17).
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Fig. 14. Refinement of goal Achieve [Effective diversification of services composition].

Fig. 15. Refinement of goal Achieve [Services selected if concrete services that meet QoS and budget exist].

Therefore, the initial goal model of the portfolio system has 18 goals and three agents.

4.2 Scalability Goal-obstacle Analysis

Like in the previous exemplar, this section exemplifies the scalability goal-obstacle analysis of two
goals: Maintain[Updated evaluation of concrete services risk of fluctuation and QoS correlation between

services] and Achieve[Effective diversification of services composition ]. The analysis of the remaining
goals follow an analog rationale.

Example 1: Maintain[Updated evaluation of concrete services risk of fluctuation and QoS correla-

tion between services]. This goal states that the risk of QoS fluctuation for each service registered
in the market and correlation between QoS are evaluated by the Market Regulator. This goal is sat-
isfied if all the required information is evaluated and stored within a reasonable time and without
exhausting the Market Regulator processing capacity or the storage space available. The load of
this goal is determined by the number of services in the market, the number of QoS, the number of
changes in QoS, and the length of the historical record of each QoS. The Market Regulator agent
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has a finite capacity and cannot handle an unlimited scaling of these characteristics. Therefore,
the scalability obstacle Goal load exceeds Market Regulator agent capacity can be further refined
into the sub-obstacles Unlimited number of services, Unlimited number of QoS, Unlimited changes in

QoS, and Unlimited length of the historical record. These sub-obstacles are resolved by introducing
the scaling assumptions Expected number of services, Expected number of QoS, Expected number of

QoS changes, and Limited length of the historical record, and by replacing the original goal by the scal-

ability goal Maintain[ Updated evaluation of concrete services risk of fluctuation and QoS correlation for

expected number of services requests, QoS, Qos changes and limited length of the historical record]. These
scaling assumptions and scalability goal below are shown below:

Assumption Expected number of services

Category Scaling assumption

Definition Over the next year, the number of services registered in the market is expected to be 1.000 and 10.000.

Formal Definition ∀m:Market, s:Service⇒ �≤ 1 year { 1.000 ≤ # {s | Registered(s,m) } ≤ 10.000 }

Assumption Expected number of QoS in concrete service

Category Scaling assumption

Definition The number of QoS in concrete services is expected to be between 2 and 10.

Formal Definition ∀ s:Service⇒ 2 ≤ # {s.QoS} ≤ 10

Assumption Expected number of changes in QoS in concrete services

Category Scaling assumption

Definition The number of changes in QoS in concrete services is expected to be updated daily.

Formal Definition ∀ s:Service | LastUpdate(s.QoS) ≤ 24h

Assumption Expected length of the historical record of each QoS

Category Scaling assumption

Definition The length of the historical record of each QoS is expected to cover the last 30 days.

Formal Definition ∀ s:Service | HistoryLength(s.QoS) = 30 days

Goal Maintain[Updated evaluation of concrete services risk of fluctuation and QoS correlation between services for

expected number of services requests, QoS, Qos changes, and limited length of the historical record]

Category Functional, scalability goal

Quality Variables storage space: application requests, QoS, QoS changes, length of historical record → disk space;

execution time: application requests, QoS, QoS changes, length of historical record→ time

Definition The system shall keep an up-to-date evaluation of the risk of fluctuations and QoS correlation between

the services, as long as the value range of the relevant characteristics do not exceed the bounds stated in the scaling

assumptions “Expected number of services requests,” “Expected number of QoS in concrete services,” “Expected number

of changes in QoS in concrete services,” and “Expected length of the historical record of each QoS.”

Formal Definition Expected number of services requests ∧ Expected number of QoS in concrete services ∧ Expected

number of changes in QoS in concrete services ∧ Expected length of the historical record of each QoS⇒ � ∀ s: Services |

Status(s.fluctuation_risk) = “up to date” ∧ Status(s.QoS_correlation) = “up to date”

Example 2: Achieve[Effective diversification of services composition ]. This goal states that once
a group of compatible services exist in the market, the buyer agent is responsible for effectively
diversify the selection of services so its composition has a low risk of QoS fluctuation . This goal
is satisfied when the buyer finds an optimal set of candidate services within an acceptable time.
The load this goal imposes on the buyer is determined by the number of concurrent application
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requests and number of QoS constraints. As the buyer agent has a limited capacity, it cannot handle
an unlimited scaling of these application domain characteristics. This is represented in the model
by the scalability obstacle Goal load exceeds Buyer agent capacity. As in the previous example,
we introduced the scaling assumptions and replaced the original goal by a scalability goal as
follows:

Assumption Expected number of concurrent application requests

Category Scaling assumption

Definition The number of concurrent application requests is expected to be between 1 and 50.

Formal Definition � 1 ≤ # {r: ApplicationRequest | r.status = “Open”} ≤ 50

Assumption Expected number of QoS constraints

Category Scaling assumption

Definition The number of QOS attribute that the Application cares about is expected to be between 1 and 10.

Formal Definition ∀ a:Application⇒ 1 ≤ # {a.QoS_constraint} ≤ 10

Goal Achieve[Effective diversification of services composition under expected number of concurrent application requests

and number of constraints for QoS]

Category Functional, scalability goal

Quality Variables execution time: application requests, QoS constraints→ time

Definition The system diversifies the service composition in 5 minutes , as long as the value range of the relevant

characteristics do not exceed the bounds stated in the scaling assumptions “Expected number of application requests”

and “Expected number of QoS constraints”

Formal Definition Expected number of concurrent application requests ∧ Expected number of QoS constraints ⇒
∀ m:Market, a: Application, s: Service | NeedRecomposition(a) ∧ s ∈ m.SelectedServices(a) ⇒ � ≤ 5min Compose(a,

m.SelectedServices(a))

The same rationale can be applied to the analysis of the rest of the goals. As a result, three
metrics and 12 application domain characteristics that may be relevant to the scalability analysis
of this system have been uncovered. These are:

Application domain characteristics: number of concurrent application requests, workflow size, length of the historical

record for QoS, number of QoS per abstract service in application workflow, number of QoS constraints in application

workflow, number of changes in QoS or price of services, number of concrete services per abstract service in market,

number of concrete services in the market, number of new services in the market, number of running applications, number

of expired SLA at a given time, number of virtual machines.

Metrics: QoS fluctuation, execution time, disk storage space, optimality, cost, satisfaction rate

Table 3 depicts how this metrics and scaling dimensions relate to the responsibility of the
system-to-be agents.

4.2.1 Obstacle Assessment and Resolution. As in the Clobmas exemplar, an obstacle assessment
considered the likelihood and the criticality of obstacles to decide which obstacles should be further
examined and resolved. Here again, we chose to do a first assessment on high-level scalability goals.
Some of the obstacles are exemplified in Table 4. To ease the analysis of the likelihood and criticality
of scalability obstacles, when a goal concerned more than one scaling dimensions, we created one
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Table 3. Metrics and Unbounded Variables in Portfolio-based System Goals

obstacle to each dimension. See, for example, how the system architect created separate obstacles
to the goal Achieve[Dynamic Composition of Services with Minimum QoS Fluctuation in 5 minutes] (in
rows 3–6).

Then, we further evaluated through simulation the obstacles with medium to high likelihood
or criticality. In Table 4, these are the obstacles that refer to the Achieve[Dynamic Composition of

Services with Minimum QoS Fluctuation in 5 minutes] (obstacles three to six):

• Obstacle 3: The number of concurrent application requests exceeds the buyer agent capacity

to achieve a dynamic service composition of services with minimum QoS fluctuation in less than

5 minutes

• Obstacle 4: The number of QoS in application workflow exceeds the buyer agent capacity

to achieve a dynamic service composition of services with minimum QoS fluctuation in less than

5 minutes

• Obstacle 5: The workflow size exceeds the buyer agent capacity to achieve a dynamic service

composition of services with minimum QoS fluctuation in less than 5 minutes

• Obstacle 6: The number of candidate services per abstract services exceeds the buyer agent

capacity to achieve a dynamic service composition of services with minimum QoS fluctuation in less

than 5 minutes

As shown in Figure 16, simulations revealed that while the system could cope with the number
of candidate services per abstract services (obstacle 6), QoS attributes (obstacle 4), and concur-
rent application requests (obstacle 3), it could not handle scaling of the abstract services in the
workflow (obstacle 5). More precisely, the scalability obstacle happened when both the number of
candidate services and the workflow size scale concomitantly. This issue had not been identified
in the previous analysis of the portfolio-based system.

It is worth noting that, for the scalability obstacle 4, the problem was caused by the sub-goal
Achieve[Optimality of the composition by exploring all the possible solutions], which ensured the mini-
mum QoS fluctuation. The scalability obstacle was resolved by applying the resolution weaken the

goal objective function [Duboc et al. 2013a], replacing that goal by Achieve[Near-Optimal Composition

by Exploring Part of the Possible Solutions].
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Table 4. Assessment of Likelihood (Li) and Criticality (Cr) of Scalability Obstacles, Classified
as High (H), Moderate (M), and Low (L) for Clobmas

5 EVALUATION

As explained in Section 1, our Research Objectives (RO) were (i) to evaluate the usefulness of a
systematic scalability evaluation technique in the domains of QoS-aware dynamic service composi-
tion; and (ii) to provide practitioners with guidance and transferable knowledge for evaluating the
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Fig. 16. The execution time of the portfolio-based composition as both of the number of candidate services
and (a) number of requests, (b) number of QoS, and (c) workflow size increases.

scalability of systems that fundamentally build on dynamic service composition (e.g., multi-tenant
cloud-based services composition, smart cities).

We now discuss how we have achieved these objectives. Then, we comment on other issues
related to the use of goal modeling for scalability analysis.

5.1 RO1: Usefulness of the Systematic Technique

We evaluate the usefulness of the systematic scalability goal-modeling technique in the domain of
dynamic service composition from two perspectives. First, we contrast the scalability analysis car-
ried out as a result of the goal-modeling technique with the previous analysis that had been made
for both systems. Second, we compare the list of the application domain characteristics and metrics
normally considered in the literature with the ones uncovered by the goal-modeling technique.

5.1.1 Comparison with Previous Scalability Analysis. Prior to this research, the chosen appli-
cation domain characteristics and metrics used for scalability analysis were heavily informed by
seminal work in the area and to provide common grounds for comparison with these seminal tech-
niques. Following this work, a number of additional characteristics and metrics were uncovered
for both systems. Based on them, we have conducted a number of simulations for the most likely
and critical obstacles in both systems. The simulation has revealed scalability problems that have
been missed when analysts relied on ad hoc judgment and/or mimicked previous approaches.

The goal-oriented scalability analysis therefore rendered previous observations about scalabil-
ity of these systems obsolete and challenged the conclusions that relied on previous metrics. Addi-
tionally, as the new set of application domain characteristics and metrics were uncovered through
systematic modeling, they also provided a more comprehensive and less biased set of concerns
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Table 5. Scaling Dimensions and Ranges Uncovered in Previous Literature Review

Scaling Dimensions (number of occurrences) Metrics (number of occurrences)

Workflow size (44), number of candidate services per abstract
service (53), number of QoS dimensions (4), number of QoS con-
straints (6), number of global QoS constraint (1), number of
quality levels (1), number of state nodes (4), number of supple-
mentary services per abstract services (1), number of breaches
of services (1), number of user QoS requirements (2), number of
business process tasks(1), number of requests per day (1), arrival
rate (1), number of users (3), number of requests per time inter-
val (1), size of historical record (1), number of QoS registries (1),
correlation percentage (2), amount of data transmission between
services (1).

Execution Time (38), satisfaction/failure rates (7), util-
ity (8), optimality (13), cost (2), fitness value of the
algorithm (2), availability (1), speedup (1), average of
violated quality of service (1), time complexity (1), in-
terruption time caused by reselection process (1), overall
aggregated QoS (1), memory usage (1), impact on QoS
weight (1), effectiveness of the performance prediction (1)
interrupting time caused by reselection process (1), op-
erating costs of operationalization (1), learning rate (1),
service providers (1).

that the evaluation shall consider and can be sensitive to. Below, we discuss our observations for
each system.

Simulations of Clobmas. Informed by the literature, the original scalability analysis of Clobmas
considered execution time against the workflow size and the number of candidate services per abstract

service. That analysis showed that the system performed very well with respect to these dimensions,
with only a very low polynomial growth in adaptation time.

Following this work, 15 other application domain characteristics and three other metrics

that are potentially relevant to the scalability of Clobmas have been revealed. As explained in
Section 3.2.2, two of application domain characteristics were enough to challenge the scalability
of the system: number of markets and number of QoS attributes, both of which were unbounded in
the first goal model, leading to a exponential growth in adaptation time.

Simulations of Portfolio-based system. Scalability analysis of portfolio-based composition consid-
ered execution time and QoS fluctuation against the number of candidate service for each abstract service.
Results had shown that the portfolio-based techniques tend to scale and perform well on these
dimensions. In contrary, goal-oriented scalability analysis has revealed 11 other application do-

main characteristics and three new metrics that were overlooked. Based on the new input, the
system architect revisited the experiments. While the system scaled well for dimensions such as
the number of QoS attributes and the number of concrete application requests, it exhibits an exponen-
tial growth in execution time when we increased the workflow size of the application. These results
challenged the preliminary conclusions, rendering the system far from being scalable.

Based on these observations, we conclude that the systematic goal-oriented scalability analysis
technique was effective in uncovering characteristics and metrics that were relevant to the system
at hand and in guiding the scalability experiments through the consideration of the likelihood and
criticality of scalability obstacles.

5.1.2 Comparison with Scalability Analysis in the Literature. We now discuss the usefulness of
the goal-modeling technique in the domain of QoS-aware dynamic service composition by looking
at the characteristics and metrics considered in existing work and their occurrences and discussing
how the systematic procedure can provide a useful alternative.

Table 5 evidences the application domain characteristics (i.e., scaling dimensions) and metrics
considered in the literature of QoS-aware dynamic service composition, along with their occur-
rences. We base our findings in our previous reviews [Duboc et al. 2018, 2013b] and an updated
scalability analysis of newer works, which is summarized in Table 6.
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When looking at this table, the first thing to note is the lack of conscience about the dimensions
and metrics for scalability per say, as most dimensions and metrics are considered in at most
one paper. It is also evident that there is representation for some of the dimensions and metrics
under different naming and therefore a lack of “unified” terminology to describe the issues. Finally,
although there is common agreement between the most obvious scaling dimensions and metrics
(i.e., see the ones with the most occurrences), a closer analysis of the papers reveals that in most
cases no justification is given for the choice of variables.

Conversely, in the scalability goal-obstacle analysis, the justification of variables is grounded on
sound modeling for the system’s goals and their obstacles. We argue that the modeling is worth
the effort, as it helps to identify: (i) the application domain characteristics and metrics that are
relevant to the system and (ii) the goals such characteristics are affecting, and consequently to
visualize and mitigate the risks associated with the scaling of these characteristics. Such judgment
could be hard in the absence of systematic modeling. Moreover, the goal-modeling technique can
overcome the chaos and ad hoc attempts, and it may provide a useful tool to unify/aggregate the

scaling dimensions and metrics in the domain of QoS-aware dynamic service composition.
To give a first step towards this aim, we summarize in Table 7 the variables uncovered in the

scalability goal-obstacle analysis of Clobmas and the portfolio-based system. Some observations
must be made regarding this table:

(1) Some of the dimensions and metrics were distinct to Clobmas and the Portfolio-based tech-
nique. This can be attributed to (i) the fundamental differences in the solution formulation,
each when informed by the chosen theory that underlies the architecture (e.g., one leverages
market-based while the other uses Modern Portfolio); (ii) assumptions, design decisions, and
architecture styles that induced the implementation of the solutions. Henceforth, it is imper-
ative that the architect and analyst should account for the above factors when analyzing for
scalability.

(2) Yet, it is interesting to note that many characteristics and metrics are common between the
two exemplars. For this reason, we are inclined to think that this compilation of application
domain characteristics and metrics can be useful as a starting point to inform the scala-
bility analysis of other systems in QoS-aware dynamic services composition. This can be
particularly useful when the analysis can be linked to the goals of the system and conse-
quently to the likelihood and criticality of scalability obstacles; the architect can then priori-
tize and justify the exercise. However, this is a hypothesis that requires further research to be
validated.

(3) When compared to Table 5 and accounting for the difference in terminology, one can see
that many of the application domain characteristics in the literature—or proxies of these
variables—have also been considered relevant in the modeling technique (see emphasized
characteristics on Table 5). Others are not considered relevant for the systems at hand, such
as the number of QoS registries (assumed to be one per market), the cost of concrete ser-
vices (which is a constraint on the application requests), and the amount of data transmis-
sion between systems (which will only affect the scalability of the composed applications
themselves). Admittedly, the correlation percentage (which refers to the fact that the QoS
attributes of a service are not only dependent on the service itself but also correlate to other
services) has been overlooked in the modeling.

(4) Most scalability analyses of QoS-aware dynamic service composition systems in literature
are measured against a single metric, normally execution time. The systematic goal modeling
allows a more careful exploration of the system metrics by looking at the criteria for the
satisfaction of goals. For example, if there is a goal to store historical data, then storage
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Table 7. Application Domain Characteristics and Metrics in the QoS-aware
Dynamic Service Composition Domain

Application domain characteristic Description Exemplar

Num. of concurrent application requests
Number of requests to compose applications dynamically
that are issued at the same time

Both

Num. of running applications Number of applications running at the same time Both

Num. of alternative QoS and cost requests
Number of requests broken down into different combina-
tions of QoS and costs for the services composing the ap-
plication

Clobmas

Workflow size
The size of the workflow that defines how the concrete ser-
vices should be combined to compose the application

Both

Num. of QoS per abstract service
Number of quality-of-service attributes required for each
abstract service in the workflow

Both

Num. of concrete services in the market Number of concrete services that co-exist in a given market Portfolio

Num. of concurrent concrete services per
abstract service in the market

Number of concrete services in the market that offers the
functionality of a given abstract service in the workflow

Both

Num. of new concrete services added to
the market

Number of concrete services that are added to a particular
market at some point in time

Both

Num. of markets per abstract service
Number of markets in which an abstract service may be
found

Clobmas

Num. of constraints for QoS in the applica-
tion workflow

Each QoS attribute that the Application cares about and re-
quires a minimum value

Both

Type of QoS constraints Either summative (e.g., cost) or projective (e.g., reliability) Clobmas

Num. of changes in the QoS or price of ex-
isting concrete services

Number of changes that a given concrete service may have
in its announced QoS properties and costs in a given time
interval

Both

Num. of matched abstract services
Number of abstract services in an application request that
have been matched to a concrete service in a market

Clobmas

Num. of unmatched abstract services
Number of abstract services in an application request that
have not been matched to a concrete service in a market

Clobmas

Num. of expired SLAs at a given time
Number of SLAs of concrete services composing an appli-
cation that expire in a given time period

Both

Num. of renewed SLAs at a given time
Number of SLAs of concrete services composing an appli-
cation that are renewed in a given time period

Clobmas

Num. of SLAs violations at a given time
Number of SLAs of concrete services composing an appli-
cation that violated in a given time period

Clobmas

Length of historical QoS record
Number of day before old QoS data are deleted from the
system.

Portfolio

Length of changes in QoS and price of ex-
isting services

Number of changes in QoS and price of services composing
an application.

Portfolio

Num. of virtual machines Number of virtual machines available in the data center Portfolio

Metric Description Exemplar

Execution time Time to complete an operation of interest Both

Storage capacity How much disc space is used to store data Both

(Continued)
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Table 7. Continued

Application domain characteristic Description Exemplar

Utility
QoS values normalized and summed across all QoS that an
application is interested in (both, required, and achieved)

Clobmas

QoS fluctuation The standard deviation of QoS dimensions Portfolio

Cost The overall cost of the composed application Both

Satisfaction rate Number of applications requests that were satisfied Both

space will be a concern. Conversely, if there is no goal stating the desired availability of
the system, then this quality will not be measured in a scalability analysis. As a result, one
will notice that the metrics of interest in the exemplars are limited when compared with the
variety listed in Table 5. This happens because they reflect the goals, and consequently, the
metrics with which the system architect was concerned with.

(5) The modeling can help the analyst to consider emerging concerns/dimensions for scalability
that were not previously discussed in the literature. As an example, consider the case of the
number of markets: The majority of works on QoS-aware service composition assume the
existence of one market or a single services registry. As the concept of cloud markets started
to materialize, this dimension emerged to be among the dimensions that the analysis should
consider in assessing the scalability of their solutions. The modeling provided sound grounds
for conducting systematic analysis for the goals and obstacles that relate to this dimension.
As we have seen from the exemplar, the analysis provided means to discuss tradeoff decisions
that relate to scalability vs. the number of markets and to reconcile inputs from experts and
systematic modeling/simulation.

(6) The modeling is generic enough and can be further refined to consider scalability related
properties of the underlying environment. For example, end-to-end performance guarantee
for cloud service composition [Huang et al. 2015] can entail environment-specific properties
for scalability that relate to the underlying network and cloud configuration, computation
overheads, transmission and delivery mode, performance targets, and so on.

5.2 RO2: Guidance and Transferable Knowledge

One of the objectives of the study has been to provide guidance and transferable knowledge by
means of (i) a detailed explanation of the goal-modeling technique in the two exemplars and (ii) a
list of application domain characteristics and metrics that might be relevant to their solutions. To
evaluate this research objective, we discuss how the modeling and exemplars can potentially help
the architects of QoS-aware dynamic service composition by reflecting on our own experience.

As with any modeling activity, the elaboration of the goal model was not trivial. For the Clobmas,
the model was mostly built by the first author of the article, who has extensive experience with
KAOS. Constructing the model and performing the scalability goal-obstacle analysis required a
number of iterations with the Clobmas architect. This task took the primary modeler around two
weeks, spread over a couple of months. Considering also the time spent in discussions and joint
modeling, we estimate the total effort in 90 man-hours. In the first “week,” the exercise involved
several meetings between the modeler and Clobmas architect to understand the purpose of the
system, its working procedure, implementation, assumptions, and so on. As a result, a preliminary
model was developed. The subsequent “week” involved another round of meetings between the
modeler and Clobmas architect, resulting in asynchronous iterations and subsequent refinement
of the models for performing the scalability analysis.
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The portfolio-based system, however, used the Clobmas model as starting point. The model was
built by the third author of this article, who was the architect of the system with no previous expe-
rience with KAOS. It took him four days to create the first model and two days for performing the
scalability-obstacle analysis and refining the model (i.e., 48 man-hours). We believe this happened
because these solutions have many goals and assumptions in common within the problem domain
(e.g., creating several combinations of QoS for the abstract services on the workflow, finding can-
didate services to an abstract service, informing the buyer if matches were found, dealing with
broken SLAs). This commonalities have eased the partial reproduction of goals in Clobmas on the
portfolio-based system. However, one should also note that each system is unique, and although
they belong to the same problem domain and share a number of concerns, they will also have their
own specific goals. The portfolio-based system, for example, was concerned with the QOS fluctu-
ation, which was not relevant to the Clobmas. As a result, nine application domain characteristics
and three metrics were common between both systems.

In interpreting these results, one should also note that KAOS has a steep learning curve. Usually,
first-time modelers make modeling mistakes and need to correct their models until they grasp the
KAOS concepts. This happened in Clobmas: The first attempt to build the model was done by
a Clobmas architect himself, with no experience with KAOS. The model contained the typical
modeling mistakes and had to be rebuilt nearly from scratch by the first author. The story was
different with the portfolio-based system. The first-time modeler, who is also the portfolio-based
architect, built the model with almost no input from the KAOS expert.

Although reduced in the second study, the initial modeling effort should be taken into consid-
eration. We do, however, believe that we have demonstrated the advantages of using a systematic
technique to a scalability analysis, as well as shown that the resulting model can be used as a
starting point to other solutions in the realm of dynamic QoS-aware services composition.

5.3 Observations on Goal Modeling for Scalability Analysis

We now discuss other issues related to the use of goal modeling for scalability analysis.

5.3.1 Completeness of the Model. It is worth emphasizing that using goal modeling will not
guarantee that application domain characteristics or metrics will not be overlooked; these can only
be as good as the model itself. Nevertheless, a systematic approach offers a sensible alternative to
ad hoc practices and random guesses and is more likely to reveal the variables that may be relevant
to the scalability analysis.

5.3.2 Unbounded Scaling Dimensions and Metrics. Not all application domain characteristics
will lead to scalability problems. In practice, many of them will vary within small ranges, imposing
very little load on the agent. When going through the assessment stage of the scalability goal-
obstacle analysis, potential scalability obstacles associated with these variables may be considered
unlikely and may be left unresolved. Take, for example, the goal Achieve [Historical record of QoS

stored] in the Portfolio-based system. The system is only required to store the data regarding the
past 30 days. Therefore, the obstacle Length of the historical record for QoS exceeds market regulator

capacity can be left unresolved.
The same can be said about the metrics associated with each goal. For the Clobmas, for example,

one may observe in Table 1 that “execution time” is considered relevant to many goals. This hap-
pens because these goals contribute to the high-level goal Achieve [Application composed quickly],
whose satisfaction criteria is determined with respect to execution time. In practice, a number of
goals will have very little impact on the metric and may be left out of the scalability analysis.

This, however, must be a conscious decision, which requires these variables to be at least iden-
tified and an assumption about their possible range of values documented.
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5.3.3 Decomposition of Software-to-be Agents. KAOS was not conceived for modeling the so-
lution space. For this reason, in a goal model exercise, normally one stops refining when a goal
is assigned to the software-to-be, not further decomposing it into separate agents. Nevertheless,
as observed by Duboc et al. [2013a], sometimes it is worth decomposing the software-to-be into
finer-grained agents. In the case of a decentralized solution, as the ones modeled in this arti-
cle, further decomposition can be very useful for identifying scaling dimensions that otherwise
could be overlooked. Take, for example, the extract of the goal model in Figure 14. In reality,
the goal Achieve[Effective diversification of service composition] is achieved by a combination of two
finer-grained software-to-be agents (MarketRegular and BuyerAgent). By decomposing this goal, one
makes the sub-goal Achieve[Buyer informed if a concrete service for a given QoS and budget constraints

does not exist] explicit, which leads to the identification of the scaling dimension number of un-

matched concrete service, which did not affect any other goal on the model.

5.3.4 System Design Characteristics. Decomposing the software-to-be agents can also lead to
the identification of scaling dimensions belonging to the system design. In the exemplars, while we
have decomposed the software-to-be to a degree, we avoided entering too much into the solution
space to create goal models that could be used as a starting point to model other applications in
the realm of QoS-aware dynamic service composition.

5.3.5 Unstated Hypotheses Affecting Scalability. The systematic goal modeling can also reveal
unstated hypothesis that can have an effect on the scalability of the system. Take, for example,
the goal Achieve[Service selected if concrete service that meet QoS and budget exists]. When analyzing
this goal, one may wonder what happens with the scheduling and allocations of services tasks in
a shared and multi-tenant environment. The order/priority services scheduled and executed can
be a critical input for scalability analysis in multi-tenant and shared environment. Not all services
should be given the same priority, as resource-hungry services can affect the scalability of the
system. The above analysis made the architect of the portfolio-based system aware of an unstated
assumption that All services have equal priorities, prompting him to rethink the priorities of services
on future applications that leverage his solution.

6 RELATED WORK

6.1 Goal-modeling Technique

Goals and requirements for dynamic adaptive systems can be considered at one of the following
levels [Berry et al. 2005; Krupitzer et al. 2015]: (1) at the overall definition of the system; (2) at
runtime when the system changes to adapt itself to its environment; (3) at design time for the
assessment of the adaptation aspects that will enable the system to perform adaptations as needed
at level 2; and (4) at research to explore adaptation mechanisms. To our knowledge, our work is
the first effort to apply a systematic scalability analysis at level 3.

The goal modeling of self-adaptive systems has available several frameworks [Weyns 2019] such
as KAOS [Dardenne et al. 1993], i* [Yu 1997], Tropos [Castro et al. 2002], or LoREM [Goldsby
et al. 2008]. However, KAOS is the most commonly used by the community [Yang et al. 2014].
Moreover, it is the most extended to produce new frameworks such as FLAGS [Baresi et al. 2010];
or be combined with requirements languages such as RELAX [Whittle et al. 2010] or AutoRELAX
[Fredericks et al. 2014], whose constructs are oriented towards explicit support for specifying and
dealing with runtime uncertainty in goals due to environmental changes.

In this context, we decided to adopt KAOS for this research. Our decision was also guided by two
major considerations. First, the flexibility of KAOS as a generic modeling for goals of the system,
obstacle on goals, subsequent refinements, and tradeoffs analysis [Bennaceur et al. 2019; Whittle
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et al. 2010]. When KAOS is used to support the design of AAS, the modeling can inform the design
of adaptation decisions and mechanisms, considering constraints and likely obstacles [Krupitzer
et al. 2015]. Second, we have already extended KAOS in a previous work [Duboc et al. 2013a] to
elaborate scalability goals through obstacle analysis. To the best of our knowledge, we are the
first to tailor our goal-obstacle analysis for scalability modeling in the domain of dynamic service
composition.

Vakili and Navimipour [2017] classified service composition approaches as framework-based,
agent-based, and heuristic-based. Framework-based approaches refer to mechanisms that imple-
ment a completely original approach based on specific assumptions, concepts, practices, and val-
ues; agent-based methods are built on computational models that simulate autonomous agents
interacting among them to assess the adaptations of the composition; and heuristic-based ap-
proaches are built on either heuristic or meta-heuristic algorithms. Although our technique de-
composes goals until each is assigned to a single agent, it is not only for the scalability analysis of
agent-based service composition approaches [Wang et al. 2017, 2016] but also for any other work
whose underlying design depends on agents such as the heuristic-based approach of Moustafa and
Zhang [2013] that combined multi-objective optimization with reinforcement learning.

6.2 Scalability Analysis in Dynamic Service Composition

Scalability analysis has been considered in the evaluation of dynamic service composition solu-
tions from perspectives attached to specific deployment environments such as cloud [Jula et al.
2014; Vakili and Navimipour 2017], IoT [Arellanes and Lau 2020; Asghari et al. 2018], or other
distributed environments [Caporuscio et al. 2015; Su et al. 2008]. However, a system that has not
been built with scalability in mind cannot become scalable simply by being deployed in a scal-
able platform [Duboc et al. 2013a]. Therefore, different from previous approaches, we propose a
methodology that supports the reflection on the scalability of the dynamic service composition
solution at design time independently from the deployment environment. Moreover, we make em-
phasis on the dimensions and metrics for scalability, which are loosely coupled to the dynamic
service provision of the underlying environment.

The research on QoS-aware dynamic service composition has mainly focused on availability,
reliability, response time, cost, among others [Hayyolalam and Kazem 2018; Jatoth et al. 2015;
Kumar 2021]. Then, although there exists previous works related to the analysis of scalability
[Duboc et al. 2018; Moghaddam and Davis 2014; Sykes et al. 2011], there is little consensus in terms
of the scaling dimensions, which rarely go beyond the workflow size [Calinescu et al. 2010] and
number of candidate services [Caporuscio et al. 2015]. Most notably, existing works fail to derive
their dimensions or metrics systematically [Hassan 2019]. Conversely, this article presents two
exemplars that use goal modeling to systematically unveil dimensions and metrics that can be used
in the scalability analysis. Not all dimensions will be necessarily used in an analysis; nevertheless,
this technique helps the stakeholder to make informed decisions based on the goals of the system
and to document the rationale.

In addition to the scalability analysis of individual solutions, there are works that compare differ-
ent strategies for services composition. For example, Ghezzi et al. [2015] compare different service
selection strategies based on a framework that supports performance estimation. Their work is
based on only one metric (response time) and two application domain characteristics (number of
clients and number of service providers on a concrete target set). Therefore, if a scalability prob-
lem were not caused by the scaling of these characteristics, then it could be overlooked. Our work
differs from theirs in the sense that it allows to identify application domain characteristics and
metrics that are potentially relevant to a specific system.
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7 CONCLUSIONS AND FUTURE WORK

In this work, we have discussed the problem of scalability evaluation of QoS-aware dynamic ser-
vice composition. Complex autonomous services computing systems (e.g., multi-tenant cloud ser-
vices, mobile services, services discovery, and composition in smart environments) have been
leveraging DSC to dynamically and adaptively maintain the desired QoS, cost, and to stabilize
long-lived software system. Combining services while optimizing for QoS is known to be an NP-
hard problem. Therefore, scalability is a major concern in the field. A previous systematic review
of the literature by the authors [Duboc et al. 2018, 2013b] revealed that the analysis carried out in
the field considers the scaling of a variety of characteristics that belong to the application domain
and/or to the system design. While the latter are specific to each approach, the former may be
common across solutions. Yet, only a couple of characteristics (workflow size and number of con-
crete services) are generally considered. Attempts to analyze scalability carry little justification for
the chosen dimensions and metrics; effort seems to heavily mimic seminal work and/or rely on
existing literature to arrive on the dimensions and metrics and/or to provide the groundwork for
comparison with existing solutions.

We advocate for a systematic evaluation of scalability in the domain of QoS-aware Dynamic

Service Composition (DSC). A systematic evaluation can help to uncover the characteristics that
might affect the scalability of the solution; to make informed decisions about which characteristics
to consider in the analysis; and/or to test for more specific scenarios that are particularly likely
and critical for the problem of DSC.

In this article, we have reported on a new application of the goal-oriented scalability analysis
technique [Duboc et al. 2013a] in the DSC domain and created transferable exemplars. Moreover,
the systematic goal/obstacles modeling for scalability of DSC offers the flexibility and openness to
incorporate new scalability concerns and queries that were not commonly discussed in the DSC
literature. This, for example, can be attributed to the infancy of the environment (e.g., when extend-
ing the coverage of DSC beyond services registries to consider cloud marketplaces) and/or emerg-
ing behaviors as a result of the new environment. It can also be attributed to the fundamentals
of the DSC solution itself—its formulation, underlying theory, assumptions, and implementation—
which may require customized analysis but can still benefit from the existing dimensions, metrics,
and exemplars.

The two detailed exemplars aim to assist architects and designers in the systematic evaluation of
systems that underlie DSC. The resulting models of the two exemplars can be re-used by architects
and designers of QoS-aware dynamic composition solutions as preliminary input to guide the mod-
eling of other systems. Our experience in creating these exemplars shows that: (1) the technique
helped to identify characteristics and metrics that had been overlooked in previous scalability anal-
ysis of these applications and, (2) by having a existing model as a starting point, the modeling effort
was reduced and could be performed by a non-expert. However, by no means should the exemplars
be considered as a complete and definite compilation of the concerns into modeling. Subsequent
refinements and elaboration of these models are expected before they qualify to act as reference
models. Variants models can be also expected to reflect on domain characteristics.

In addition to the models, we compiled a list of application domain characteristics and metrics
that may be relevant to other solutions in the field; either as a quick reference or as an input
for creating other models. The usefulness and completeness of this list will be assessed in future
research.

Future research directions would be to gather and synthesize independent modeling attempts
for the problem of DSC from practitioners and researchers in the field. These attempts can benefit
from our contribution as a preliminary guide. The objective is to arrive on a holistic reference
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goal model, metrics and resolution tactics developed for dynamic QoS-aware service composition,
with adaptation guidelines covering wider range of environments, applications, and underlying
techniques for DSC.
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