
STAR: SLA-aware Autonomic Management
of Cloud Resources

Sukhpal Singh , Inderveer Chana, and Rajkumar Buyya, Fellow, IEEE

Abstract—Cloud computing has recently emerged as an important service to manage applications efficiently over the Internet. Various

cloud providers offer pay per use cloud services that requires Quality of Service (QoS) management to efficiently monitor and measure

the delivered services through Internet of Things (IoT) and thus needs to follow Service Level Agreements (SLAs). However, providing

dedicated cloud services that ensure user’s dynamic QoS requirements by avoiding SLA violations is a big challenge in cloud

computing. As dynamism, heterogeneity and complexity of cloud environment is increasing rapidly, it makes cloud systems insecure

and unmanageable. To overcome these problems, cloud systems require self-management of services. Therefore, there is a need to

develop a resource management technique that automatically manages QoS requirements of cloud users thus helping the cloud

providers in achieving the SLAs and avoiding SLA violations. In this paper, we present SLA-aware autonomic resource management

technique called STAR which mainly focuses on reducing SLA violation rate for the efficient delivery of cloud services. The

performance of the proposed technique has been evaluated through cloud environment. The experimental results demonstrate that

STAR is efficient in reducing SLA violation rate and in optimizing other QoS parameters which effect efficient cloud service delivery.

Index Terms—Autonomic cloud, resource provisioning, cloud computing, resource scheduling, quality of service, service level agreement

Ç

1 INTRODUCTION

CLOUDS offer three types of services such as Infrastruc-
ture-as-a-Service (IaaS), Platform-as-a-Service (PaaS)

and Software-as-a-Service (SaaS) and therefore it requires
management of Quality of Service (QoS) to efficiently moni-
tor and measure the delivered services to meet Service Level
Agreements (SLAs). In Cloud environment, uncertainty and
dispersion of resources encounters problems in efficient
management of resources, which is caused due to many rea-
sons [1], [2] such as: i) heterogeneity (due to different type of
resources and scheduling techniques), ii) dynamism (detect
and fulfill the requirements of application at runtime) and
iii) failures (failure of system or resources which leads to
performance degradation). However, present cloud com-
puting systems and management techniques are unable to
handle above mentioned problems efficiently at runtime.
An autonomic system provides a solution to this problem
by offering the environment in which applications can be
managed efficiently by fulfilling QoS requirements of app-
lications without human involvement. Thus, autonomic
cloud system becomes self-managed to overcome the above
challenges and to provide reliable, secure and cost efficient
services to end users.

Currently, cloud services are provisioned and scheduled
according to resources’ availability without ensuring the
expected performances [3]. The cloud provider should evolve
its ecosystem in order tomeetQoS requirements of each cloud
component. To realize this, there is a need to consider two
important aspects which reflect the complexity introduced by
the cloudmanagement should be considered: first QoS-aware
and second autonomicmanagement of cloud services.

QoS-aware aspect involves the capacity of a service to be
aware of its behavior to ensure the elasticity, high availabil-
ity, reliability of service, cost, time etc. as mentioned in SLA
[4]. Autonomic implies the fact that the service is able
to self-manage itself as per its environment needs. Thus,
maximizing cost-effectiveness and resource utilization
for applications while ensuring performance and other QoS
guarantees, requires leveraging important and extremely
challenging tradeoffs [5].

Based on policy guidance, autonomic system keep the
system stable in unpredictable conditions and adapt quickly
in new environmental conditions like software, hardware
failures etc. Thus, there is a need of SLA-aware autonomic
resource management technique which considers all the
important QoS parameters like availability, cost, latency,
execution time etc. to reduce SLA violation rate for better
resource management. In our earlier work [1], [2], [8], [9],
we have identified various research issues related to QoS
and SLA for autonomic management of cloud resources [1]
and based on these issues, we have developed a QoS based
resource provisioning technique (Q-aware) to map the
resources to the workloads based on user requirements
described in the form of SLA [8]. Further, resource schedul-
ing framework (QRSF) has been proposed, in which provi-
sioned resources have been scheduled by using different

� S. Singh and I. Chana is with the Computer Science and Engineering
Department, Thapar University, Patiala, Punjab 147004, India.
E-mail: {ssgill, inderveer}@thapar.edu.

� R. Buyya is with the CLOUDS Lab, Department of Computing and Infor-
mation Systems, The University of Melbourne, Parkville, VIC 3010,
Australia. E-mail: rbuyya@unimelb.edu.au.

Manuscript received 30 Jan. 2016; revised 10 Oct. 2016; accepted 2 Jan. 2017.
Date of publication 5 Jan. 2017; date of current version 3 Dec. 2020.
Recommended for acceptance by M. Parashar, O. Rana, and R.C.H. Hsu.
Digital Object Identifier no. 10.1109/TCC.2017.2648788

1040 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020

2168-7161� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
mailto:
mailto:

resource scheduling policies (cost, time, cost-time and bar-
gaining based) [9]. In QRSF, manual resource scheduling is
considered which further needs lot of human work every
time to schedule resources to execute workloads by fulfill-
ing their QoS requirements. The concept of QRSF has been
further extended by proposing energy-aware autonomic
resource scheduling technique (SOCCER) [2], in which
IBM’s autonomic computing concept has been used to
schedule the resources automatically by optimizing energy
consumption and resource utilization where user can easily
interact with the system using available user interface. Our
existing research work considers only few QoS parameters
of self-optimizing without considering SLA violation rate.
This research work is an extension of our previous research
work [1]. In this research work, we have presented cloud
based SLA-aware autonomic resource management tech-
nique for both homogenous and heterogeneous cloud work-
loads and measured the impact of QoS parameters on SLA
violation rate.

The primary aim of this paper is to develop a SLA-aware
autonomic cloud resource management technique called
SLA-aware autonomic Technique for Allocation of Resources
(STAR) for effective scheduling of resources which considers
SLA violation rate along with other QoS parameters like exe-
cution time, cost, latency, reliability and availability. The
objectives of this research work are: i) to propose an auto-
nomic resource management technique for execution of het-
erogeneous workloads by considering generic property of
self-management, ii) to optimize the above mentioned QoS
parameters, iii) to reduce SLA violation rate and improve
user satisfaction by fulfilling their QoS requirements and iv)
to implement and perform evaluation in cloud environment.

The rest of the paper is organized as follows: Section 2
presents the related work. Proposed technique is presented
in Section 3. Sections 4 describe the experimental setup and
present the results of evaluation. Section 5 presents conclu-
sion and future directions.

2 RELATED WORK

Several researchers have investigated the area of SLA-aware
resource management in Cloud computing. Rajkumar et al.
[3] proposed SLA-oriented resource management mecha-
nism which provisions combination of virtualization tech-
nologies and market based resource management policies
for flexible resource allocation to applications. By following
dynamic allocation of resources, this mechanism is efficient
in fulfilling QoS requirements of applications. Further, sys-
tem efficiency can be improved by incorporating the con-
cept of autonomic resource management. Hossein and
Mohammad [4] proposed a Proactive Resource Allocation
(PRA) model to reduce the impact of SLA violations which
considered customer satisfaction level as a significant ele-
ment in profitability for cloud providers. [24] This model
aids provider to recognize particular actions that can
improve preservation and cost-effectiveness in the long run.
Jose and Luıs [5] proposed a Partial Utility-driven Resource
Scheduling (PURS) technique for elastic SLA and pricing
negotiation which permits providers exchanging resources
between VMs in expressive and economically effective
ways. Further, a comprehensive cost method is defined by
including partial utility given by customers to a definite

level of degradation, when VMs are assigned in overcom-
mitted situations. In this technique, revenue per resource
allocation and execution time is improved. Artur et al. [6]
proposed probabilistic method for the optimization of reli-
ability, performance and monetary costs, given application
and customer requirements and dynamic constraints. Fur-
ther, performance is evaluated using real instance price
traces and workload models to validate its effectiveness.
Vatche et al. [7] proposed a framework for workload coloca-
tion called CloudPack which offers consumers with the
capability to legally define Directed Acyclic Graphs based
workload flexibilities, improves the use of resources to
reduce total costs.

Andr�es et al. [10] proposed SLA-driven dynamic cloud
resource management called Cloudcompaas which allows
providers with a general SLA model to manage higher-level
metrics, nearer to user’s perception, and with flexible struc-
ture of the requirements of many users. Under highly hetero-
geneous utilization patterns, it attains least cost and extreme
efficiency. Detecting SLA Violation infrastructure (DeSVi)
[11] uses resource monitoring mechanism to prevent the vio-
lation of SLA. DeSVi allocates the resources to workloads in
virtual environment and resources are monitored by map-
ping user defined SLA with low-level resource metrics. Ser-
vice level objectives have been defined to detect the violation
in SLA and resource utilization. DeSVi executes transactional
web applications and image rendering applications which
contains heterogeneous workloads and monitors consump-
tion of resources. Dami�an et al. [12] proposed SLA aware Ser-
vice (SLAaaS) which considers SLA and QoS levels as first
preference of cloud users and proved that SLAaaS is success-
fully managing SLA with diverse QoS requirements of cloud
services such as financial energetic costs, dependability and
performance. Saurabh et al. [13] proposed a scheduling and
an admission control method which not only improves the
CPU utilization and revenue, but also guarantees that the
customer’s QoS requirements are fulfilled as stated in SLAs.
Further, it offers considerable enhancement over static server
consolidation and decreases SLA violations [25]. Emiliano
and Luca [14] analyzed the application service provider
viewpoint’s problem which uses cloud resources to attain
scalable provisioning of its services in terms of QoS require-
ments. Zhou et al. [15] proposed adaptive threshold energy-
aware algorithm in order to decrease the SLA violation and
energy consumption. Algorithm transfers virtual machines
on little or heavily loaded hosts to lightly loaded hosts, while
the virtual machines on lightly and reasonably loaded hosts
remain unaffected. Seokho and Sung [16] proposed a SLA
negotiation method for flexible and interactive SLA creation
and it provision innovative multi-issue negotiation which
contains price and time slot negotiations. This algorithm is
effective in terms of provider’s profits and SLA violations.
Linlin et al. [17] proposed automated negotiation technique
where a Software-as-a-Service (SaaS) broker is used as the
one-stop-shop for consumers to attain the necessary service
proficiently when compromising with many providers. Fur-
ther, counter offer generation strategies are designed to
improve user satisfaction levels and profit for the broker [26].
Linlin et al. [18] proposed consumer oriented SLA-based
resourcemanagement mechanism to reduce cost by reducing
penalty cost and increase customer satisfaction level by

SINGH ET AL.: STAR: SLA-AWARE AUTONOMIC MANAGEMENT OF CLOUD RESOURCES 1041

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

reducing SLA violations. This mechanism considers
providers’ quality parameters and customer profiles to man-
age dynamic user requests and infrastructure level heteroge-
neity. Hadi and Massoud [19] et al. hierarchical SLA based
resource scheduling technique which considers the energy
non-proportionality of current servers, cooling power con-
sumption and peak power checks. Proposed solution is effec-
tive in reducing the operational cost while fulfilling SLA
constraints and reduces execution time. Seokho et al. [20] pro-
posed SLA-based resource management mechanism that
takes into account the geographical location of distributed
data centers and workloads. Further, experimental results
show that it performs better than round robin approach,
greedy approach, andmanual allocation of resources in terms
of provider’s profits and SLA violations. Linlin at al. [21] pro-
posed SLA-based Resource Allocation (SRA) mechanism to
map the user workloads to available resource, fulfill QoS
requirements of user application at runtime and imple-
mented in virtual environment. Further, SRA considers QoS
parameters like response time and service time and cost and
SLA violations. But SRA failed to analyze the effect of QoS
parameters on SLA violation rate.

Although the above research works have presented SLA-
aware resource management techniques in cloud comput-
ing by focusing on different QoS parameters, they have not
investigated the impact of QoS parameters on SLA violation
rate. Due to this, the current resource management services
may not be able to deliver very efficient services and may
need to compromise SLA violation. Our proposed SLA-
aware autonomic resource management technique (STAR)
considers possible QoS parameters of SLA and measures
the impact of QoS parameters on SLA violation rate and
thus addresses the deficiency in the state-of-the-art.

3 STAR ARCHITECTURE

The architecture of SLA-aware autonomic Technique for Alloca-
tion of Resources system, which measures the impact of QoS
parameters on SLA violation rate, is shown in Fig. 1. STAR
is the key mechanism that ensures that resource manager
can serve large amount of requests without violating SLA
agreement and dynamically manages the resources based
on QoS requirements identified by QoS manager.

3.1 QoS Based Metrics

The following metrics ([Eq. (1), (2), (3), (4), (5), (6)]) are
selected from our previous work [2], [8], [9], to calculate the
SLA violation rate, execution time, SLA cost, deadline time,
workload deadline and average execution cost. The goal of
cloud provider is to minimize the SLA violation rate. The
cloud workload will be executed only when the SLA viola-
tion rate is less than the threshold value of SLA violation
rate (maximum SLA deviation agreed between cloud pro-
vider and user).

SLA Violation Rate is the product of Failure Rate andWeight
of SLA and can be calculated as [Eq. (1)]. List of
SLA ¼ hm1;m2 ::mni, where n is total num-
ber of SLAs

Failure mð Þ ¼ m is not violtated; Failure mð Þ ¼ 1
m is violated; Failure mð Þ ¼ 0

�

Failure Rate ¼
Xn
i¼1

Failure mið Þ
n

� �

SLA Violation Rate SVRð Þ ¼ Failure Rate �
Xn
i¼1

wið Þ
(1)

Where wi is weight for every SLA. [Eq. (2)] is used to calcu-
late Execution Time (Eti).

Execution Time ðEtiÞ ¼
Xn
i¼1

WCi �WSi

n

� �
þ Dti (2)

Where WCi is workload completion time and WSi is work-
load submission time, Dti is time to restart the node and n is
the number of workloads. Based on SLA Violation Rate
(SVR), SLA Cost ðSCiÞ is calculated using following for-
mula [Eq. (3)]:

SLA Cost ðSCiÞ ¼ SVR �
Xn
i¼1

Etið Þ (3)

Where i is number of workloads. The range of SVR is
decided based on the margin by which deadline of work-
load is missed (See Table 4). [Eq. (4)] is used to calculate
Deadline Time.

Deadline Time ðDtiÞ ¼
Xn
i¼1

Wdi � Ctið Þ (4)

Where Wdi is workload deadline and Cti is current time.
Workload deadline (Wdi Þ is used to calculate the final priority
of workload [Eq. (5)].

Workload deadline ðWdiÞ ¼
Xn
i¼1

Ddi
Eti

� 1

� �
(5)

WhereDdi is desired deadline and ETi is execution time cal-
culated using [Eq. (2)]. Execution Cost is an addition of
resource cost and penalty cost. STAR defined the different
levels of penalty rate based on QoS requirements. Delay
time is difference of deadline and time when workload is
actually completed. We have used following formula to cal-
culate Execution Cost (C) [Eq. (6)].

C ¼ Resource Costþ Penalty Cost (6)

Resource Cost ¼ Eti � Price

Penalty Cost ¼
XC
i¼1

PCið Þ

Delay Time ¼Expected Completion Time

�Actual Completion Time

PC ¼
Penaltyminimum;
if Expected Completion Time � Actual Completion Time
Penaltyminimum þ Penalty Rate � Delay Timej j½ �;
if Expected Completion Time < Actual Completion Time

8>><
>>:

Where c 2 C, C is set of penalty cost with different levels
specified in STAR. The assumptions of proposed SLA-aware
autonomic resource management technique are: a) Multi
user accessing the cloud based system simultaneously,

1042 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

b) Workloads have different execution time and different
deadlines and c) Cloud users have different QoS parameters
and can be changed dynamically. The units of proposed
SLA-aware autonomic resource management technique are
described below: First of all cloud consumer tries to execute
theworkloads through theCloudWorkloadManagement Portal
(CWMP) i.e., web based application. After authentication,
STAR asks to submit the cloud consumer requirements
(SLA) and authenticated cloud consumer fills it and submits
the request for the availability of particular resource with
proper specification for the execution of their workload.
STAR takes the information from the appropriate workload

after analyzing the various workload details which cloud
consumer demanded. For multi-tenancy, we have consid-
ered different cloud providers which are interacting to each
other using CWMP and update their new rules and polices
of resources on cloud in the STAR as shown in Fig. 1. The
aim ofWorkload Manager is to look at different characteristics
of a cloud workload to determine the feasibility of porting
the application in the cloud. It comprises of three sub units:
bulk of workloads, workload description and workload
queue. All the workloads submitted by cloud consumer for
execution is considered as bulk of workloads. In workload
description, all the workloads should have their key QoS

Fig. 1. STAR architecture.

SINGH ET AL.: STAR: SLA-AWARE AUTONOMIC MANAGEMENT OF CLOUD RESOURCES 1043

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

requirements, based on that, the workload is executed with
some user defined constraints.

The types of workload that have been considered for this
research work are: websites, technological computing,
endeavor software, performance testing, online transaction
processing, e-com, central financial services, storage and
backup services, production applications, software/project
development and testing, graphics oriented, critical internet
applications and mobile computing services [8], [9]. After
analysis of workloads, they are classified on the basis of spe-
cific features in terms of security needs, network needs, var-
iability of load, back-up services, network bandwidth
needs, computing capacity and other QoS metrics. In work-
load queue, all the feasible cloud workloads are put into a
workload queue for provisioning of resources before actual
execution. Finally, workload generates output in the form of
workload information.

Resource management in STAR is done at two levels:
Global andLocal as shown in Fig. 1. InGlobal level, cloud con-
sumer interacts with system to submit their workload or
application for execution along with SLA pertaining QoS
requirements. Task of execution of workload or application is
divided into sub tasks or small levels called local levels. The
actual execution of workload or application is performed at
local level after verification of availability of resources. The
knowledge pool stores the predefined rules defined by system
administrator and ruleswill be updated time to time based on
newpolices of resource allocation. Aim ofResource allocation is
to allocate appropriate resources to the suitable workloads on
time, so that applications can utilize the resources effectively.
SLA-aware autonomic resource management is done based
on IBM’s autonomic model [23] that considers four steps of
autonomic system: 1) Monitor, 2) Analyze, 3) Plan and 4) Exe-
cute, in which Autonomic Element (AE) is an agent which
accepts the input and produces final results based on QoS
parameters defined in SLA. AE interacts with environment
through manageability interfaces (sensors and effectors) and
takes action according to the input received from sensors and
rules defined in knowledge base in low level language. Sen-
sors perform two functions: resource discovery and resource
monitoring.

Resource discovery is able to find the adequate (with mini-
mum cost and execution time) resource forworkload or appli-
cation based on QoS requirements through Composition.
Composition is able to determine the best resource workload
pair for execution. Resource monitormonitors whether the con-
ditions are being fulfilled as specified in policy and ensures
that all the resources are provided. All the inputs received
from monitors are analyzed and action is taken according to
the alert generated byQoS monitor.QoS monitor is used to ver-
ify whether all the QoS attributes defined in SLA are fulfilled
or not by using Adaptation. If not, then QoS monitor generates
an alert to provide more resources to fulfill the current
demand of application.Adaptation function is able tomaintain
the effective execution in case of sudden change inQoS condi-
tions. Based on QoS requirements and policy of system,
resources are provisioned to workload or application and
resource provisioning information is sent to user for verifica-
tion. After successful verification by user, the AE allocates
resources to workload(s) for resource scheduling. Resource
executor performs the final step of resource execution and

completes the executionwithin specified deadline and system
continues for otherworkloads or applications.

QoS manager comprises of two sub units: QoS require-
ments and QoS assessment. Based on the key QoS require-
ments of a particular workload (workload information
generated by workload manager), the QoS manager puts the
workload into critical queue (workload with urgent deadline
in submission state and deadline is calculated using [Eq. (4)])
and non-critical queue (workload without urgent deadline in
submission state) through QoS assessment. For QoS assess-
ment,QoS manager calculates the execution time of workload
and finds the approximate workload completion time.
Resource manager maintains resource details which includes
the number of CPU using, size of memory, cost of resources,
type of resources and number of resources. All the common
resources are stored in resource pool and reserve pool con-
tains reserve resources. It contains the information about the
available resources and reserved resource along with
resource description (resource name, resource type, configu-
ration, availability information, usage information and price
of resource) as provided by cloud provider. Based on SLA
information (Agreed Service Level Agreement), SLA manager
prepares SLA document which contains information about
SLA Violation Rate (maximum and minimum violation and
penalty rate in case of SLA violation) and accordingly urgent
cloud workloads would be placed in priority queue (work-
load with urgent deadline in execution state) for earlier exe-
cution. SLA Violation Rate is used to measure the deviation
of QoS from predictable with their possible resolution. In
case of urgent workloads, if the SLA Violation Rate is more
than the threshold value then allocate the reserve resources
to the particular workload. We have selected the “Web Serv-
ices Agreement Specification (WS-Agreement)” standard
[23] for management of SLA in this research work. WS-
Agreement protocol is used for establishing agreement
between two parties, such as between a cloud provider and
consumer, using an extensible XML language for specifying
the nature of the agreement, and agreement templates to
facilitate discovery of compatible agreement parties.

Service manager manages the whole service of system in a
controlled manner. Based on SLA information, QoS informa-
tion, workload information and resource information, the
resource workloadmappermaps the workloads to the appro-
priate resource by taking care of both SLA and QoS. Resource
scheduler is further used to schedule the workloads after
mapping of the workloads with available resources based on
the policy defined by user and generates the workload sched-
ule [Figs. 1 and 2 in the online supplementary material] based
on the workload details specified by the user and billing for
that execution. Resource scheduler uses minimum number of
resources to execute the workloads within specified budget
and deadline.

3.2 Autonomic Manager

Based on SLA information, resource information, workload
information and QoS information resources are provisioned
by Q-aware resource provisioning technique for workload
execution [8]. After provisioning of resources, actual resource
scheduling is done based on QRSF resource scheduling tech-
nique [9]. After scheduling of resources, actual execution of
workloads is started. During execution of workloads, perfor-
mance ismonitored continuously using a sub unit performance

1044 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

monitor to maintain the efficiency of STAR that generates alert
in case of performance degradation. Alerts can be generated
by Alert Generator in two conditions generally: i) if there are
insufficient resources available to execute workload (Action:
Reallocates resources) and ii) if the SLA deviation is more
than allowed (Action: Negotiate SLA by providing compensa-
tion). The interaction of cloud user and cloud provider to
negotiate SLA [1] is shown in Fig. 2. Working of sub units is
described in Fig. 3 as: Monitor [M], Analyze and Plan [AP]
and Executor [E]. The same action is performed twice, if AE
fails to correct it then system is treated as down. STAR consid-
ers four steps of autonomic system: i) monitor, ii) analyze, iii)
plan and iv) execute.

3.2.1 Sensors

Sensors get information about the performance of current
state of nodes using in the STAR. Zig Bee Protocol is used to
tap the data sensed and gathered by various sensors. Firstly,
the updated information from processing nodes is trans-
ferred to manager node then manager node transfers this
information to sensors. Updated information includes infor-
mation about QoS parameters (execution time, execution
cost, availability, reliability, latency and SLA violation rate)
of all the systems working under cloud environment and
update the information time to time.

3.2.2 Monitor [M]

Initially, Monitors are used to collect the information from
sensors for monitoring continuously the value of QoS param-
eters and transfer this information to next module for further
analysis. [ALGORITHM 1: Monitoring Unit (MU)] is used to
monitor the performance ofmanagement of resources by con-
sidering SLAViolation Rate is shown in Fig. 4. Formonitoring
SLA Status, QoS agent is installed on all processing nodes to
monitor the performance. We have considered set of work-
loads ðWQ ¼ fW1;W2; . ::WmgÞ
placed in workload queue and have considered some or all
the workloads for execution based on the availability of
resources andQoS requirements ofworkloads.

After this, resources are allocated to the workloads then
SLA Violation Rate (SVR) for every workload will be calcu-
lated using [Eq. (1)]. If SVR is more than Threshold Value
(SVRTH) then alert will be generated otherwise will be con-
tinued execution of resources.

3.2.3 Analyze and Plan [AP]

Analyze and plan module starts analyzing the information
received from monitoring module and makes a plan for
adequate actions for corresponding alert. [ALGORITHM 2:
Analyzing Unit (AU)] is used to analyze the performance of

Fig. 2. Process of SLA negotiation in STAR.

Fig. 3. Flow chart of SLA-aware autonomic resource management in cloud.

SINGH ET AL.: STAR: SLA-AWARE AUTONOMIC MANAGEMENT OF CLOUD RESOURCES 1045

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

management of resources by considering SVR shown in
Fig. 5. For analyzing SLA Status, the analyzing unit starts
analyzing the behavior of QoS parameters of a particular
node after alert is generated by QoS agent. That particular
node is declared as ‘DOWN’ and restarts the failed node
and starts it again and measures the status of that node. If
the node status changes to ‘ACTIVE’, then continue its exe-
cution, otherwise add new resources in these consecutive
steps: [i) current node is declared as dead node, ii) remove
dead node, iii) add new resource(s) and iv) reallocate
resources and start execution].

3.2.4 Executor [E]

Executor implements the plan after analyzing completely.
[ALGORITHM 3: Executing Unit (EU)] is used to execute
the resource and analyze the execution performance by con-
sidering self-management property as shown in Fig. 6.

For executing the plan, main goal of executor is to opti-
mize the performance of QoS parameters and execute the
workloads without violation of SLA. Based on the informa-
tion provided by analyzer, executor will add new node
from resource pool with minimum SVR. If the resources are
not available in resource pool then add new node from
reserve resource pool with minimum SVR. During execu-
tion of workloads, performance is monitored continuously
using a sub unit performance monitor to maintain the effi-
ciency of system and generates alert in case of performance
degradation as shown in Fig. 1. Alerts can be generated if
the SVR is more than Threshold Value of SVR.

3.2.5 Effector

Effector is acting as an interface among AEs to exchange
updated information and it is used to transfer the new
policies, rules and alerts to other nodes with updated
information.

4 PERFORMANCE EVALUATION

Tools used for setting up cloud environment are Microsoft
Visual Studio 2010 [SaaS], Aneka [PaaS] and SQL Server 2008,
JADE Platform (for agents) and Citrix Xen Server [IaaS]. The
integration of multiple environments used to conduct experi-
ment is shown in Fig. 7. STAR is installed on main server and
tested on virtual cloud environment that has been established
at High Performance Computing Lab at Thapar University, India.
We have installed different number of virtual machines on
different servers, and deployed the SLA-aware autonomic
resourcemanagement technique to measure the variations. In
this experimental setup, three different cloud platforms are
used: Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS). At SaaS level,
Microsoft Visual Studio is used to develop Cloud Workload
Management Portal (CWMP) to provide user interface in
which user can access service from any geographical location.
At PaaS level, Aneka cloud application platform [22] is
used as a scalable cloud middleware to make interaction
between IaaS and SaaS, and continually monitor the per-
formance of the system. Aneka task model has been
used in this research work. A task is a single unit of
work processed (workload) in a node. It is independent
from other tasks that may be executed on the same or
any other node at the same time.

In STAR, Aneka task model involves the following com-
ponents: Workload Manager, QoS Manager, Resource Man-
ager, SLA Manager, Service Manager and Performance
Monitor. At IaaS level, three different servers (consist of vir-
tual nodes) have been created through Citrix Xen Server
and SQL Server has been used for data storage. Computing
nodes used in this experiment work are further categorized
into three categories as shown in Table 1.

The execution cost is calculated based on user workload
and deadline (if deadline is too early (urgent) then it will be
more costly because we need a greater processing speed and
free resources to process particular workload with urgency).
Their individual price is fixed (artificially) for different resour-
ces because all the resources are working in coordination
manner to fulfill the demand of user (demand of user is
changing dynamically). Experiment setup using 3 servers (R1,
R2 and R3) inwhich further virtual nodes (12 ¼ 6 ðServer 1Þþ
4 ðServer 2Þ þ 2 ðServer 3Þ) are created. Every virtual node
has different number for Execution Components (ECs) to pro-
cess user workload and every EC has their own cost (C$/EC
time unit (Sec)). Table 1 shows the characteristics of the
resources used and their Execution Component (EC) access
cost per time unit in Cloud dollars (C$) and access cost in C$

Fig. 4. ALGORITHM 1: Monitoring unit (MU).

Fig. 5. ALGORITHM 2: Analyzing unit (AU).

Fig. 6. ALGORITHM 3: Executing unit (AU).

1046 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

is manually assigned for experimental purposes. The access
cost of an EC in C$/time unit does not necessarily reflect the
cost of execution when ECs have different capabilities. The
execution agent needs to translate the access cost into the C$
for each resource. Such translation helps in identifying the rel-
ative cost of resources for executing user workloads on them.
Due to limited number of resources, cost increases with
increase in user workloads. Cost is varying in two different
cases: i) relaxed deadline and ii) tight deadline. In both cases,
when the deadline is low (e.g., 200 secs), the number of user
workloads processed increases as the budget value increases.
When a higher budget is available, the execution agent uses
expensive resources to process more user workloads within
the deadline. Alternatively, when scheduling with a low bud-
get, the number of user workloads processed increases as the

deadline is relaxed. Execution agent allocates as many user
workloads as the first cheapest resource can complete by the
deadline, and then allocates the remaining user workloads to
the next cheapest resources. When the deadline is tight (e.g.,
100), there is high demand for all the resources in a short time.
All the resources are used up so long as budget is available to
process all user workloads within the deadline. However,
when the deadline is relaxed (e.g., 700 secs), it is likely that all
user workloads can be completed using the first few cheapest
resources. As the deadline increases, execution agent sched-
ules userworkloads on the available resources to finish earlier
as possible. After studying and confirming the various QoS
constraints which the workload has required, Resource
Provisioning Unit (RPU) checks the availability of resources.
The different cloud workloads have different set of QoS

Fig. 7. Deployment of components at runtime and their interaction .

TABLE 1
Configuration Details of Thapar Cloud

Resource_Id Configuration Specifications Operating
System

Number
of Virtual Node

Number
of ECs

Price (C$/EC
time unit)

R1 Intel Core 2 Duo - 2.4 GHz 1 GB RAM and 160 GB HDD Windows 6 18 2
R2 Intel Core i5-2310- 2.9 GHz 1 GB RAM and 160 GB HDD Linux 4 12 3
R3 Intel XEON E 52407-2.2 GHz 2 GB RAM and 320 GB HDD Linux 2 6 4

SINGH ET AL.: STAR: SLA-AWARE AUTONOMIC MANAGEMENT OF CLOUD RESOURCES 1047

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

requirements and characteristics. All the workloads are sub-
mitted to RPU are analyzed based on their QoS requirements.
For QoS, the required workload patterns are identified for
clustering of workloads then identifies the QoS metrics
required to assign the weights based on level of measurement
described inQoS requirements specified in SLA.

Further, K-means based clustering algorithm is used for
re-clustering the workloads for execution on different set of
resources [8]. RPU provisions the required resources to the
clustered workload for their execution in cloud environ-
ment. After resource provisioning, the role of resource
scheduler starts. Scheduler as shown in Fig. 7, runs at IaaS
level on Citrix Xen Server. For efficient scheduling and opti-
mum resource usage, the scheduler works on the basis of
two different resource scheduling policies (time based
scheduling policy and cost based scheduling policy)] sched-
ules the resources for execution of workloads [9]. In time
based scheduling policy, QoS manager calculates the deadline
time of the cloud workload using [Eq. (4)] and [Eq. (5)] in
the given budget. Allocate resources based on time, the
workload which has shortest deadline time will execute
first. If the two workloads have same deadline time then
that workload will execute first that has lesser execution
time [Eq. (2)]. Resource scheduler schedules all the cloud
workloads with smallest execution time workload to the
resources that provide required QoS. If any deadline is
found missed then compensation will be given. In cost based
scheduling policy, QoS manager calculates the cost of each
cloud workload using [Eq. (6)] then sort, as the priority is
given to the cloud workload which has maximum budget. If
two workloads have same budget then that workload will
execute first that has lesser execution time. Resource sched-
uler schedules all the workloads with high budget workload
to the resources that provide required QoS. Suppose, cloud
consumer selects “cost based scheduling policy”. JADE is
used to establish the communication among the IaaS com-
ponents and exchanging information for updates and all the
updated information is stored in centralized database for
future usage and backup of corresponding updates is also
maintained in case of failure of database. However, follow-
ing details enable the understanding of the cloud based
environment in which the proposed SLA-aware autonomic
resource management technique is implemented:

1) Cloud consumer submits their request to user inter-
face (CWMP) that contains the workload description
[workload name, workload type, budget, deadline
and policy (cost based or time based)] as shown in
Fig. 2 in the online supplementary material.

2) CWMP is deployed on Aneka Platform (used as a
scalable cloud middleware to make interaction
between SaaS and IaaS).

3) Resource configuration is identified to schedule the
number of workloads based on QoS requirements as
described by cloud consumer in the form of SLA.

4) Resource scheduler schedules the resources to the
workloads based on the resource allocation mecha-
nism as discussed in Section 3.2.1.

5) Autonomic resource manager uses Sensors to mea-
sure the performance of system in terms of QoS to
avoid violation of SLA and updated information is
exchanged between all the autonomic units through
Effector.

6) After successful execution of workloads, this further
returns the resources to resource pool.

7) At the end, the autonomic unit returns updated
experiment data along with processed workload
back to the cloud consumer.

We have identified the QoS requirements for every work-
load, cloud workload type and their QoS requirements have
been designed [8], [9] as described in Table 2. Based on QoS
requirements, SLA is designed for every workload.

4.1 STAR Execution

STAR has been implemented as a real application and its per-
formance evaluation is presented through a web service i.e.,
cloud workload management portal by considering QoS parame-
ters at service level. Use Case and Sequence diagram is used
to describe the execution of STAR as shown in Figs. 1 and 2 in
the online supplementary material respectively. After select-
ing the “workload type” and “workload name”, user selects
“desired deadline” and “preferred policy” and enters “estimated
budget” as shown in Fig. 2 in the online supplementary mate-
rial. Suppose Performance Testingworkload is selected by user
then STAR identifies QoS requirements (SLACost and Execu-
tion Time) for this workload using Table 2 and selects work-
load type to find the appropriate resource(s). In time based

TABLE 2
Cloud Workloads, Workload Type and their QOS Requirements

Workload Name QoS Requirements Workload Type

Web sites Reliable storage, High network bandwidth, High availability Communication
Technological Computing Computing capacity Compute
Endeavour Software Security, High availability, Customer confidence Level, Correctness Administration
Performance Testing SLA Cost and Execution Time Compute
Online Transaction Processing Security, High availability, Internet accessibility, Usability Administration
E-Com Variable computing load, Customizability Storage
Central Financial Services Security, High availability, Changeability, Integrity Administration
Storage and Backup Services Reliability, Persistence Storage
Productivity Applications Network bandwidth, Latency, Data backup, Security Administration
Software/Project Develop-
ment and Testing

User self-service rate, Flexibility, Creative group of infrastructure
services, Testing time

Administration

Graphics Oriented Network bandwidth , Latency, Data backup, Visibility Administration
Critical Internet Applications High availability, Serviceability, Usability Communication
Mobile Computing Services High availability, Reliability, Portability Communication

1048 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

scheduling policy, STAR executes the workloads with mini-
mum execution time and before deadline while in cost based
scheduling policy, STAR executes the workloads with mini-
mum execution cost. Resource scheduler schedules all the
workloadswith high budget request to the resources that pro-
vide required QoS. Further for SLA, STAR provides four dif-
ferent types of price plans (Forum Plan, Premium Plan,
Advance Premium Plan andCustomize Configuration) under
“price plan management”. First three types of price plans
(ForumPlan, PremiumPlan, andAdvance PremiumPlan) are
fixed price plans based on the current requirements of cloud
consumers and in fourth price plan (Customize Configura-
tion), cloud consumer can customize their requirements to
execute their workloads by selecting configuration details
(Operating System, Memory Usage Duration (Hours/Day
and Hourly Rate) and Data Rate). Based on the SLA informa-
tion, price plan described by cloud consumer and availability
of resources, STAR generates a final schedule of execution of
workloads automatically and sends scheduling details (start
date, end date and estimated budget) back to a particular
cloud consumer in the form of “Reply”. Finally, all otherwork-
loads are scheduled on the available resources set based on
their policy.

4.2 Experimental Results

We have performed different number of experiments by
comparing an SLA-aware autonomic resource management
technique called STAR with Proactive Resource Allocation
(PRA) technique [4] and Partial Utility-driven Resource
Scheduling (PURS) technique [5] as described in Section 2.
Table 3 describes the range of SVR that is decided to calcu-
late SLA cost by using [Eq. (3)] based on the margin (%) by
which deadline of workload is missed.

Test Case 1: Effect of SVR on SLA Cost and Execution Time
We have calculated value of SLA cost for STAR, PRA and

PURS with different value of SVR as shown in Fig. 8. SLA

cost is calculated using [Eq. (3)] based on different value of
execution time and their deadline margin. STAR performs
7-12 percent better than PURS and 8–17 percent better than
PRA in terms of SLA cost. At cost ¼ 120 C$, SVR in STAR is
11.9 percent lesser than PURS and 15.6 percent lesser than
PRA. Execution time is calculated using [Eq. (2)]. As shown
in Fig. 9, the execution time decreases with decrease in the
value of SVR. Value of SVR for STAR, PRA and PURS is cal-
culated. STAR performs 9.6 -14.31 percent better than PURS
and 16.2– 21.3 percent better than PRA.

All experiments were started with: Workload name:
Performance Testing [Processing Larger Image File of Size
713 MB] with two different deadlines and budget (Case 1:
Deadline ¼ 700 Seconds, Budget ¼ 55 C$ and Case 2: Dead-
line ¼ 1,800 Seconds, Budget ¼ 250 C$). Table 4 describes
the comparison of execution time and execution cost used
to process workload on cloud environment for STAR, PRA
and PURS. In this experiment, we have considered cloud
infrastructures with 8 cores processors to measure the varia-
tion of execution time and cost. Table 4 clearly describes
that STAR performs better than PRA and PURS with differ-
ent value of deadline and cost in both the cases.

Test Case 2: Effect of SLA Violation Rate on Number of Work-
loads and Number of Resources

An experimental result shows that the SLA-aware auto-
nomic resource management technique performs better in
terms of SLA Violation rate in two different contexts: i)
Number of Workloads (500-3,000) and ii) Number of
Resources (50-250) in Figs. 10 and 11 respectively.

Fig. 8. SLA violation rate versus SLA cost.

Fig. 9. SLA Violation rate versus execution time.

TABLE 3
Variation of SVR with Deadline Margin

SLA Violation Rate (SVR) Deadline Margin (percent)

0.2 1-10.0
0.4 10.1-30.0
0.6 30.1-50.0
0.8 50.1-75.0
1.0 75.1-100.0

TABLE 4
Summary of Experiment Statistics

Scheduling
Technique

Budget
(C$)

Deadline
(Secs)

Execution
Time (Secs)

Cost
(C$)

SLA
Fulfilled

Case 1: Deadline ¼ 700 Seconds, Budget ¼ 55 C$

PRA
55 700

561 63.36 No

PURS 539 59.11 No
STAR (Cost Based) 509 45.67 Yes
STAR (Time Based) 488 54.91 Yes

Case 2: Deadline ¼ 1800 Seconds, Budget ¼ 250 C$

PRA
250 1800

1442 227 Yes

PURS 1691 243 Yes
STAR (Cost Based) 1278 203 Yes
STAR (Time Based) 1233 216 Yes

SINGH ET AL.: STAR: SLA-AWARE AUTONOMIC MANAGEMENT OF CLOUD RESOURCES 1049

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 10 shows STAR performs better than PRA and PURS
with increase in number of workloads but performs extraor-
dinary from 1000 workloads to 2500 workloads. It has been
depicted from experimental results that SLA violation rate
is deceased with increase in number of resources as shown
in Fig. 11. SLA violation rate is decreasing with increasing
number of resources as shown in Fig. 11. STAR achieved
minimum SLA violation rate at maximum number of
resources (250 resources), i.e., SVR ¼ 0:223. STAR per-
forms 4 percent -9 percent better than PURS and 7– 13
percent better than PRA.

Test Case 3: Effect of SLA Violation Rate on Performance
Parameters (QoS)

We have considered six levels of SLA violation rate
(0-60 percent) to test the performance of proposed tech-
nique (STAR) by considering five different QoS parame-
ters [2], [8], [9] such as execution time, cost, latency,
reliability and availability and compared with PRA and
PURS.

Test Case 3.1: Reliability. It is an addition of Mean Time
Between Failure (MTBF) and Mean Time To Repair
(MTTR). We have used following formula [Eq. (7)] to calcu-
late reliability.

Reliability ¼ MTBF þ MTTR (7)

Where Mean Time To Repair (MTTR) is ratio of total
downtime to number of breakdowns as shown in [Eq. (8)].

MTTR ¼ Total Downtime

Number of Breakdowns
(8)

Where Mean Time Between Failure (MTBF) is ratio of
total uptime to number of breakdowns as shown in [Eq. (9)].

MTBF ¼ Total Uptime

Number of Breakdowns
(9)

Test Case 3.2: Availability. It is a ratio ofMean Time Between
Failure (MTBF) to Reliability (MTBF þ MTTR). We have
used following formula [Eq. (10)] to calculate availability.

Availability ¼ MTBF

MTBF þ MTTR
(10)

We have calculated percentage of availability for STAR,
PRA and PURS. With increasing the SLA Violation Rate, the
percentage of availability is decreasing. The percentage of
availability in STAR is more as compared to PRA and PURS
at different levels of SLA Violation Rate as shown in Fig. 12.

The maximum value of availability is 94.62 percent
at minimum SLA Violation Rate. With increasing the SLA
Violation Rate, the percentage of reliability is decreasing as
shown in Fig. 13. The percentage of reliability in STAR
is more as compared to PRA and PURS at different levels
of SLA Violation Rate. The maximum value of reliability is
27.66 percent at 0-10 percent SLA Violation Rate.

Test Case 3.3: Latency. It is calculated for STAR, PRA
and PURS with different levels of SLA Violation Rate.
Latency is a defined as difference of time of input cloud

Fig. 10. SLA Violation rate versus number of workloads.

Fig. 11. SLA violation rate versus number of resources.

Fig. 12. SLA violation rate versus availability.

Fig. 13. SLA violation rate versus reliability.

1050 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

workload and time of output produced with respect to
that workload. We have used following formula [Eq. (11)]
to calculate Latency:

Latencyi ¼
Xn
i¼1

ðtime of output produced after execution

� time of input of cloud workloadÞ
(11)

With increasing the value of SLA Violation Rate, the
value of latency is increasing. The value of latency in STAR
is lesser as compared to PRA and PURS at different levels of
SLA Violation Rate as shown in Fig. 14. The minimum value
of latency is 6.14 seconds at 0-10 percent SLA Violation Rate.

Some authors considered latency within the execution
time in existing resource management techniques but it is
necessary to consider latency separately to test the capabil-
ity of individual resources using in real time applications.

Test Case 3.4: Execution Time. It is a ratio of difference of
workload finish time and workload start time to number of
workloads as described in [Eq. (2)]. As shown in Fig. 15, the
execution time is increasing with increase in SLA Violation
Rate. At 20-30 percent SLA Violation Rate, execution time in
STAR is 3.72 percent lesser than PURS and 14.33 percent
lesser than PRA. After 20-30 percent SLA Violation Rate,
execution time increases abruptly but STAR performs better
than PRA and PURS.

Test Case 3.5: Execution Cost. It is an addition of resource
cost and penalty cost (In case of SLA Violation, different
penalty cost for different levels of SLA Violation Rate).

STAR defined the different levels of penalty rate based on
QoS requirements. Delay time is difference of actual and
expected completion time. We have used [Eq. (6)] to calcu-
late execution cost. Execution cost is increasing with
increase in SLA Violation Rate as shown in Fig. 16. At 0-10
percent SLA Violation Rate, average cost in STAR is slightly
lesser than PURS but STAR performs excellent at other lev-
els of SLA Violation Rate as compared to PRA and PURS.
An average cost in STAR is 6.69 percent lesser than PURS
and 11.6 percent lesser than PRA.

4.3 Statistical Analysis

Statistical significance of the results has been analyzed by
Coefficient of Variation (Coff: of Var:), a statistical method.
Coff: of Var: is statistical measure of the distribution of data
about the mean value. Coff: of Var: is used to compare two
different means and furthermore offer an overall analysis of
performance of the framework used for creating the statistics.
It states the deviation of the data as a proportion of its average
value, and is calculated as follows [Eq. (12)]:

Coff: of Var: ¼ SD

M
� 100 (12)

Where SD is a Standard Deviation and M is Mean.
Coff: of Var: of SLA violation rate has been studied with
respect to number of workloads and number of resources
for STAR, PRA and PURS as shown in Figs. 17 and 18
respectively.

Range of Coff: of Var: (0.39 - 1.18 percent) for SLA viola-
tion rate with respect to number of workloads and (1.36-3.91

Fig. 14. SLA violation rate versus latency.

Fig. 15. SLA violation rate versus execution time.

Fig. 16. SLA Violation rate versus execution cost.

Fig. 17. CoV for SLA Violation rate with respect to number of workloads.

SINGH ET AL.: STAR: SLA-AWARE AUTONOMIC MANAGEMENT OF CLOUD RESOURCES 1051

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

percent) for SLA violation rate with respect to number of
resources approves the stability of STAR as shown in Figs. 17
and 18 respectively. Small value of Coefficient of Variation
(Coff: of Var:) signifies STAR is more efficient and stable in
resource management in the situations where the number of
cloud workloads and resources are changing dynamically.
Value ofCoff: of Var: increases as the number of workloads
is increasing. STAR attained the best results in the cloud for
SLA violation rate has been studied with respect to number
of workloads and number of resources.

4.4 Discussion

The performance of STAR has been compared with existing
resource management techniques (PRA and PURS). Firstly,
to test the performance of proposed technique against exist-
ing technique, we considered two different cases with differ-
ent deadlines and budgets to execute same workload. STAR
performs 7 -12 percent better than PURS and 8 – 17 percent
better than PRA in terms of SLA cost. At cost ¼ 120 C$, SVR
in STAR is 11.9 percent lesser than PURS and 15.6 percent
lesser than PRA. Execution time is calculated using [Eq. (2)].
As shown in Fig. 10, the execution time decreases with
decrease in the value of SVR. Value of SVR for STAR, PRA
and PURS is calculated. STAR performs 9.6-14.31 percent
better than PURS and 16.2–21.3 percent better than PRA. Sec-
ondly, the performance of STAR has been analyzed with dif-
ferent number of cloud workloads and number of resources,
and QoS parameters such as execution time, cost, latency,
reliability and availability to analyze the effect of QoS param-
eters on SLA violation rate. The performance of STAR, PRA
and PURS has been evaluated on same cloud environment.
We have considered different levels of SLA violation rate (0-
60 percent) to test the performance of STAR. STAR achieved
minimum SLA violation rate for maximum number of
resources (250 resources), i.e., SVR ¼ 0.223. The maximum
value of availability is 94.62 percent at minimum SLA Viola-
tion Rate. The maximum value of reliability is 27.66 at 0-10
percent SLA Violation Rate. The minimum value of latency
is 6.14 seconds at 0-10 percent SLA Violation Rate. At 20-30
percent SLA Violation Rate, execution time in STAR is 3.72
percent lesser than PURS and 14.33 percent lesser than PRA.
After 0-10 percent SLA Violation Rate, execution time
increases abruptly but STAR performs better than SRA. At
20-30 percent SLA Violation Rate, average cost in STAR is
slightly lesser than PURS but STAR performs excellent at

other levels of SLA Violation Rate as compared to PRA and
PURS. An average cost in STAR is 6.69 percent lesser than
PURS and 11.6 percent lesser than PRA. Statistical signifi-
cance of the results has been analyzed by coefficient of
variation, a statistical method for statistical measurement
of the distribution of data about the mean value to find
the stability of STAR with small value of coefficient of
variation. Considering all these QoS parameters and out-
comes, it is shown that the STAR delivers a superior
autonomic solution for heterogeneous cloud workloads
and approximate optimum solution for challenges of
autonomic resource management.

5 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, cloud based SLA-aware autonomic resource
management technique (STAR) has been proposed for exe-
cution of heterogeneous workloads by considering generic
property of self-management. The main aim of STAR is to
reduce SLA violation rate and improve user satisfaction by
fulfilling their QoS requirements. Further, STAR considered
different QoS parameters such as execution time, cost,
latency, reliability and availability to analyze the impact of
QoS parameters on SLA violation rate. The performance of
STAR has been evaluated in real cloud environment and the
experimental results show that the proposed technique per-
forms better in terms of SLA violation rate as compared to
existing resource management techniques.

This paper focused one of the key aspects of self-
management, i.e., self-optimization. Future research direc-
tions for extending the work to support other characteristics
of autonomic systems are:

� STAR can be extended to exhibit properties such as
self-healing (find and react to sudden faults), self-con-
figuration (capability to readjust resources) and self-
protecting (detection and protection of cyber-attacks).

� STAR can be extended further to add sensitivity of
assumptions in weight calculations of both homoge-
nous and heterogeneous cloud workloads. Cloud
providers can use these results to quickly assess pos-
sible reductions in execution time and cost, hence
having the potential to save energy.

� STAR can also be extended by identifying relation-
ship between workload (patterns) and the resource
demands (demands for compute, storage, and net-
work resources) in the cloud which will further
improve the performance.

� STAR currently considers cost, execution time, SLA
violation, availability, reliability and latency QoS
parameters. Further, STAR can be enhanced to work
with some other parameters also energy efficiency,
attack detection rate, resource utilization and
resource contention, scalability etc.

ACKNOWLEDGEMENTS

One of the authors, Sukhpal Singh (SRF-P), gratefully
acknowledges the Department of Science and Technology
(DST), Government of India, for awarding him the INSPIRE
(Innovation in Science Pursuit for Inspired Research) Fel-
lowship (Registration/IVR Number: 201400000761 [DST/
INSPIRE/03/2014/000359]) to carry out this research work.

Fig. 18. CoV for SLA violation rate with respect to number of resources.

1052 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Singh and I. Chana, “QoS-aware autonomic resource manage-
ment in cloud computing: A systematic review,” ACM Comput.
Surveys, vol. 48, no. 3, pp. 1–46, 2015.

[2] S. Singh, I. Chana, M. Singh, and R. Buyya, “SOCCER: Self-
optimization of energy-efficient cloud resources,” in Cluster Com-
puting. Berlin, Germany: Springer, 2016, pp. 1–15.

[3] R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-oriented resource
provisioning for cloud computing: Challenges, architecture, and
solutions,” in Proc. Int. Conf. Cloud Service Comput., 2011, pp. 1–10.

[4] H. Morshedlou, and M. R. Meybodi, “Decreasing impact of SLA
violations: A proactive resource allocation approach for cloud
computing environments,” IEEE Trans. Cloud Comput., vol. 2,
no. 2, pp. 156–167, 2014.

[5] J. Sim~ao and L. Veiga, “Partial utility-driven scheduling for flexi-
ble SLA and pricing arbitration in clouds,” IEEE Trans. Cloud Com-
put., vol. 4, no. 4, pp. 467–480, Oct.-Dec. 1, 2016.

[6] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud
computing under sla constraints,” in Proc. IEEE Int. Symp. Model.
Anal. Simul. Comput. Telecommun. Syst., 2010, pp. 257–266.

[7] V. Ishakian, R. Sweha, A. Bestavros, and J. Appavoo. “Cloudpack�

exploiting workload flexibility through rational pricing." in Proc.
13th Int. Middleware Conf., 2012, pp. 374–393.

[8] S. Singh, and I. Chana, “Q-aware: Quality of service based cloud
resource provisioning,” Comput. Electr. Eng., vol. 47, pp. 138–160,
2015

[9] S. Singh, and I. Chana, “QRSF: QoS-aware resource scheduling
framework in cloud computing,” J. Supercomputing, vol. 71, no. 1,
pp. 241–292, 2015.

[10] A. G. Garc�ıa, I. B. Espert, and V. H. Garc�ıa, “SLA-driven dynamic
cloud resource management,” Future Generation Comput. Syst.,
vol. 31, pp. 1–11, 2014.

[11] V. C. Emeakaroha, M. A. S. Netto, R. N. Calheiros, I. Brandic,
R. Buyya, and C. A. F. De Rose, “Towards autonomic detection of
SLA violations in cloud infrastructures,” Future Generation Com-
put. Syst., vol. 28, no. 7, pp. 1017–1029, 2012.

[12] D. Serrano, et al.., “SLA guarantees for cloud services,” Future
Generation Comput. Syst., vol. 54, pp. 233–246, 2016.

[13] S. K. Garg, A. N. Toosi, S. K. Gopalaiyengar, and R. Buyya, “SLA-
based virtual machine management for heterogeneous workloads
in a cloud datacenter,” J. Netw. Comput. Appl., vol. 45, pp. 108–120,
2014.

[14] E. Casalicchio, and L. Silvestri, “Mechanisms for SLA provision-
ing in cloud-based service providers,” Comput. Netw., vol. 57,
no. 3, pp. 795–810, 2013.

[15] Z. Zhou, Z. Hu, and K. Li, “Virtual machine placement algorithm
for both energy-awareness and SLA violation reduction in cloud
data centers,” Scientific Program., vol. 2016, 2016 Art. no. 5612039.

[16] S. Son, and S. C. Jun, “Negotiation-based flexible SLA establish-
ment with SLA-driven resource allocation in cloud computing,”
in Proc. 13th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput.,
2013, pp. 168–171.

[17] L. Wu, S. K. Garg, R. Buyya, C. Chen, and S. Versteeg,
“Automated SLA negotiation framework for cloud computing." in
Proc. IEEE/ACM 13th Int. Symp. Cluster Cloud Grid Comput., 2013,
pp. 235–244.

[18] L. Wu, S. K. Garg, S. Versteeg, and R. Buyya, “SLA-based resource
provisioning for hosted software-as-a-service applications in
cloud computing environments,” IEEE Trans. Services Comput.,
vol. 7, no. 3 pp. 465–485, Jul.-Sep. 2014.

[19] H. Goudarzi, and M. Pedram, “Hierarchical SLA-driven resource
management for peak power-aware and energy-efficient opera-
tion of a cloud datacenter,” IEEE Trans. Cloud Comput., vol. 4,
no. 2, pp. 222–236, Apr.-Jun. 2016.

[20] S. Son, G. Jung, and S. C. Jun, “An SLA-based cloud computing
that facilitates resource allocation in the distributed data centers
of a cloud provider,” J. Supercomputing, vol. 64, no. 2, pp. 606–637,
2013.

[21] L. Wu, S. K. Garg, and R. Buyya, “SLA-based resource allocation
for software as a service provider (SaaS) in cloud computing envi-
ronments,” in Proc. 11th IEEE/ACM Int. Symp. Cluster Cloud Grid
Comput., 2011, pp. 195–204, 2011.

[22] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,
“The Aneka platform and QoS-driven resource provisioning for
elastic applications on hybrid Clouds,” Future Generation Comput.
Syst., vol. 28, no. 6 pp. 861–870, 2012.

[23] A. Andrieux, et al., “Web services agreement specification (WS-
Agreement),” Open Grid Forum, vol. 128. 2007, Art. no. 216.

[24] Y.-C. Ouyang, Y.-J. Chiang, C.-H. Hsu, and G. Yi, “An optimal
control policy to realize green cloud systems with SLA-
awareness,” J. Supercomputing, vol. 69, no. 3, pp. 1284–1310, 2014.

[25] T. Veni, and S. Mary Saira Bhanu, “Auto-scale: Automatic scaling
of virtualised resources using neuro-fuzzy reinforcement learning
approach,” Int. J. Big Data Intell., vol. 3, no. 3, pp. 145–153, 2016.

[26] V. Muppavarapu and M. C. Soon, “Semantic-based access control
for data resources in open grid services architecture: Data access
and integration (OGSA-DAI),” Int. J. Grid High Performance Com-
put., vol. 6, no. 2, pp. 1–23, 2014.

Sukhpal Singh received the master of engineer-
ing degree in software engineering from Thapar
University, aswell as a doctoral degree specializa-
tion in “Autonomic Cloud Computing” from Thapar
University, He joinedComputer Science and Engi-
neering Department of Thapar University, Patiala,
India, in 2016 as lecturer. He received the Gold
Medal in Master of Engineering in Software Engi-
neering. He is a DST Inspire fellow [2013-2016]
and worked as a SRF-Professional on DST Proj-
ect, Government of India. He has done certifica-

tions in Cloud Computing Fundamentals, including Introduction to Cloud
Computing and Aneka Platform (US Patented) by ManjraSoft Pty Ltd,
Australia and Certification of Rational Software Architect (RSA) by IBM
India. His research interests include software engineering, cloud comput-
ing, internet of things and fog computing. He has more than 30 research
publications in reputed journals and conferences.

Inderveer Chana received the BE degree in
computer science and engineering, the ME
degree in software engineering from Thapar Uni-
versity, and the PhD degree in computer science
with specialization in grid computing. and . She
joined Computer Science and Engineering
Department of Thapar University, Patiala, India,
in 1997 as lecturer and is presently serving as
professor in the department. Her research inter-
ests include grid and cloud computing and other
areas of interest are software engineering and

software project management. She has more than 100 research publica-
tions in reputed Journals and Conferences. Under her supervision, more
than 40 ME thesis and seven Ph.D thesis have been awarded and five
Ph.D. thesis are on-going. She is also working on various research proj-
ects funded by Government of India.

Rajkumar Buyya is a fellow of IEEE, professor of
computer science and software engineering,
Future fellow of the Australian Research Council,
and Director of the Cloud Computing and Distrib-
uted Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving
as the founding CEO of Manjrasoft, a spin-off
company of the University, commercialising its
innovations in cloud computing. He has authored
more than 500 publications and four text books.
He is one of the highly cited authors in computer

science and software engineering worldwide (h-index 105þ, 53800þ
citations). He has served as the founding editor-in-chief (EiC) of the
IEEE Transactions on Cloud Computing and now serving as co-EiC of
the Journal of Software: Practice and Experience.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SINGH ET AL.: STAR: SLA-AWARE AUTONOMIC MANAGEMENT OF CLOUD RESOURCES 1053

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2020 at 06:44:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

