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Reliability-Aware Proactive Placement of
Microservices-Based IoT Applications

in Fog Computing Environments
Samodha Pallewatta , Vassilis Kostakos , and Rajkumar Buyya

Abstract—The fog computing paradigm is rapidly gaining pop-
ularity for latency-critical and bandwidth-hungry IoT application
deployment. Meanwhile, MicroService Architecture (MSA) is in-
creasingly adopted for developing IoT applications due to its high
scalability and extensibility. For mission-critical IoT services in
fog, reliability remains one of the most critical QoS requirements
due to less dependability of fog resources. Granular microservices
with independent deployment and scaling exhibit great potential
in utilising resource-constrained fog resources to improve relia-
bility through redundant placement. However, current research
on service placement lacks reliability-aware holistic approaches
that combine the MSA features and failure characteristics of fog
resources under independent and correlated failures. Hence, we
analyse MSA and formulate the reliability-aware placement prob-
lem by modelling composite services as k-out-of-n serial-parallel
systems in a throughput-aware manner for placement under fog re-
source failures. Our proposed Reliability-aware Placement Method
(RPM) is a hierarchical policy combining improved PSO and
NSGA-II algorithms. We integrate it with Monte Carlo reliability
calculations to produce redundant placements reaching a trade-off
between reliability and cost. The performance results reveal that
compared to the benchmarks, our algorithm shows significant
improvements in reliability satisfaction (up to 25%) and time to
first failure (up to 40%), thus providing a robust placement method.

Index Terms—Edge/Fog computing, fog service placement,
Internet of Things, microservice architecture, redundancy,
reliability.

I. INTRODUCTION

FOG computing paradigm provides cloud-like services at
the edge of the network by utilising distributed, heteroge-

neous and resource-constrained computing resources that reside
between the edge of the network and the cloud while maintaining
seamless connectivity between them [1]. Hence, Fog computing
has emerged as a feasible solution for deploying latency-critical
and bandwidth-hungry IoT applications. As IoT applications
include highly safety-critical and mission-critical services (i.e.,
smart healthcare, intelligent transportation, Industrial Internet of
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Things (IIoT) etc.), high reliability is a crucial requirement [2].
Moreover, the heterogeneity of fog resources and their resource-
constrained and geo-distributed nature results in lower depend-
ability compared to the powerful, robust and centralised cloud
servers [3], [4]. Thus, application deployment within fog com-
puting environments should incorporate reliability awareness to
minimise the application unavailability caused by fog device
failures (i.e., hardware, software, power, network, etc.) while
satisfying multiple other Quality of Service (QoS) requirements
such as deadline, budget and throughput.

Over the years, two main approaches have been introduced
to maintain application reliability: proactive failure avoidance
and reactive failure recovery techniques. For IoT services with
stringent latency requirements, reactive algorithms that focus on
healing after faulty events are insufficient to ensure the higher
level of availability required to meet low and ultra-low latency
expectations, which fall within millisecond deadline limits [5],
[6]. Hence, proactive methods driven by redundant placement
are identified as viable solutions. In cloud environments, redun-
dant placement is limited by the high costs incurred by deploying
multiple copies of the application. In fog environments, this
is further restrained by the limited availability of computing
resources.

Under such challenges, the shift in IoT application devel-
opment from monoliths to microservices has the potential to
improve the proactive redundant placement within fog environ-
ments due to their fine-grained design. According to MicroSer-
vice Architecture (MSA), complex applications are designed
and developed as a collection of small and modular components
known as ‘microservices’ that communicate with each other
using lightweight communication protocols to provide end-user
services [7]. Microservices are independently deployable and
scalable units that are packaged using lightweight container
technologies like Docker [8]. Such characteristics of microser-
vices have made them the most suitable application model
for deployment within distributed, heterogeneous and resource-
constrained fog devices [9], [10]. Their ability to support inde-
pendent scalability, including both vertical and horizontal scala-
bility, enhances the chances of throughput and reliability-aware
redundant placement within resource-limited fog devices (i.e.,
Raspberry Pis, small-cell base stations, nano data centres, edge
servers etc.) with heterogeneous failure characteristics.

While MSA presents potential improvements to the
reliability-aware proactive placement of IoT applications, they
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Fig. 1. A scenario of usecase in the context of smart heath monitoring.

also introduce critical challenges that must be addressed when
designing placement policies. The granularity of microservices
with well-defined business boundaries results in complex inter-
actions among microservices to create ‘services’. Here we use
the term ’services’ to denote business functionalities accessed
by the end-users, which consist of one or more interconnected
microservices giving rise to composite services. Furthermore,
this results in each microservice-based application being a com-
position of multiple services with heterogeneous QoS require-
ments (i.e., latency-critical, latency tolerant, high bandwidth
consuming etc.) where some microservices are shared among
various services. This enables per-service QoS definitions which
can be used with batch placement to utilise edge and cloud
resources in a balanced manner [11].

Microservices-based application placement falls under Fog
Service Placement Problem (FSPP) [12], [11], where each ap-
plication service is deployed to provide shared access to a large
number of users. Thus, concepts such as throughput-aware ser-
vice scalability and load sharing are important aspects of FSPP,
which sets it apart from DAG-based workflow scheduling and
task offloading problems studied in the existing literature [12].
Existing research on FSPP mainly focuses on QoS parameters
such as latency, cost and throughput. Thus, reliability-aware
placement has a lot of room for improvement, especially for IoT
applications developed using MSA. Existing works lack proper
analysis of the potential of microservices-based IoT application
architecture to introduce novel placement algorithms that enable
the proactive redundant placement to improve the reliability of
the services under both independent and correlated failures of the
fog resources. Thus, there’s scope for research to focus on these
characteristics and utilise them to get the best out of the federated
edge and cloud environments to improve reliability while satis-
fying other QoS parameters such as latency, cost and throughput.
To further highlight this idea, we present an IoT use case mod-
elled using MSA and examine its reliability-aware placement.

A. Motivational Scenario

We consider a use case of a smart health monitoring appli-
cation (see Fig. 1) to demonstrate how MSA features can be
utilised in achieving high reliability in fog applications.

Due to the granularity of microservices, QoS requirements
can be defined at the composite service level. Thus, A1 can
be represented as a composition of two composite services: a
latency-critical emergency event detection service (service S1

consisting of microservices, m1 and m2) and a latency tolerant,
computationally intensive analysis service (service S2 consisting
of microservices, m1 and m3) [11]. The loosely coupled nature of
the microservices enables dynamic deployment of microservices
across fog layer resources and cloud resources in a QoS-aware
manner. In our example scenario, m1 and m2 are deployed in
the fog layer to accommodate the low latency requirement of
S1, whereas m3, which only contributes to the latency tolerant
service S2, is placed within cloud data centres. It improves
fog resource utilisation, thus allowing more fog resources to
be allocated for services with stringent latency requirements.

Being a latency-critical service, S1 has high-reliability expec-
tations so that in case of an emergency, the application can react
within the stringent latency expectations of the service. As ser-
vices like S1 have latency requirements in the millisecond range,
in case of fog resource failures, the effect on the service would
be adverse if only reactive fault-tolerance methods were em-
ployed. Thus, such application services can benefit from proac-
tive reliability ensured by redundant placements [5]. However,
this is limited by the heterogeneity and resource-constrained
nature of the fog devices. The independently deployable and
scalable nature of the microservices can be utilised to overcome
this challenge. To this end, microservice instances packaged
as lightweight Docker containers can be scaled horizontally
or/and vertically in throughput and reliability-aware manner.
Example use case indicates that to support user requests, at
least one instance of m1 and two instances of m2 are required.
Failure characteristics of the fog devices can be used to improve
this placement further so that redundant microservice instances
are deployed to improve the service reliability. For example,
the number of redundant placements can be increased if their
deployed devices have low reliability (four instances of m2 and
two instances of m1 depending on the failure characteristics
of the fog devices they are deployed on). Hence, with MSA,
each composite service is represented as a serial-parallel hybrid
system, with each horizontally scaled microservice being a k out
of n load-balanced sub-system of the end-user service. Here,
k is the minimum number of microservice instances that can
cater for the incoming user request volume, determined in a
throughput-aware manner, whereasn is dynamically determined
by integrating knowledge of the failure characteristics (i.e.,
independent and correlated failures) of fog devices to ensure
availability of at least k instances during application run time.

Thus, it is evident that MSA can provide the flexibility re-
quired to utilise resource-constrained fog resources to improve
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TABLE I
COMPARISON OF EXISTING RESEARCH

the reliability of the deployed applications by introducing robust
placement policies that combine MSA features with the failure
characteristics of fog resources.

B. Proposed Approach and Contributions

The above use case demonstrates that proper utilisation of
MSA characteristics can potentially improve the reliability of
mission-critical IoT services through proactive and dynamic
redundant placement of microservices in a ”reliability and
throughput aware” manner. Research that emphasises the said
characteristics is still in its early stages and has much room
for improvement. Existing research lacks in multiple areas,
such as utilising microservice features (i.e., granular design,
independent deployment and scalability, balanced deployment
between fog and cloud, per-service QoS-awareness), overcom-
ing challenges of the MSA (i.e., complex interaction patterns
among microservices), application batch placement to prioritise
mission-critical services, consideration of multiple failure types
(i.e., independent failures, correlated failures) and dynamic re-
dundant placement of microservice. In this work, we aim to
address these shortcomings by proposing a holistic placement
approach that improves the reliability of the services under
multiple reliability-related metrics, such as availability and time
to first failure. The key contributions of our work are:

1) In order to capture MSA characteristics, we model the
microservices-based application services as k out of n
serial-parallel systems and formulate the placement prob-
lem to capture reliability, throughput awareness, and cost
at the composite service level. The problem formulation
captures both independent and correlated failures within
repairable fog environments and, dynamically calculates
and places redundant microservice instances proactively.

2) Based on the problem formulation, we propose a hierar-
chical placement algorithm to place microservice replicas
within fog environments proactively. Our proposed algo-
rithm operates at two levels; Particle Swarm Optimisa-
tion based Throughput-aware Scalable Placement (TSP),
Genetic Algorithm based Reliability-aware Redundant
Placement (RRP), which together provide a robust place-
ment method under failures in fog resources. Furthermore,
a Monte Carlo-based approach is incorporated to calculate
reliability-related parameters.

3) We improve the performance of the algorithm by intro-
ducing multiple novel processes: an availability-aware

fitness function for TSP, an availability-aware heuristic
redundancy placement for the initialisation of RRP and a
reliability-aware dominant selection method for RRP.

4) We implement our policy using iFogSim2 [13] simulated
fog environment and evaluate against multiple bench-
marks based on reliability satisfaction, time to first failure
and deployment cost.

II. RELATED WORK

In this section, we summarise current works in cloud and fog
environments (see Table I) related to reliability-aware placement
and proactive redundant placement, considering multiple place-
ment problems such as FSPP, DAG workflow scheduling and
task offloading. We also make a qualitative comparison between
existing approaches and our work.

Multiple works consider reliability in cloud environments
for the deployment of workflows, where the majority focus
on scientific workflows. Rehani et al. [14] propose a DAG
workflow scheduling algorithm that considers the reliability of
repairable cloud resources for assigning tasks to VMs. They
model the cloud failures and repairs using Weibull distribution
and use Monte Carlo Failure Estimation to accurately calculate
the time to failure and time to repair for each cloud resource.
Tang et al. [15] consider a multi-cloud scenario to improve
the reliability of the DAG-based scientific workflows to reach
a trade-off between cost and reliability using the hazard rates
of VMs and their connected links. Zhu et al. [16] also present
a fault-tolerant DAG placement by proposing primary-backup
copy placement (PB) with one replica per task deployed as a
backup. Their work assumes no simultaneous failures among
devices and considers only one host fails at a time. [17] extends
this to consider network failures that can result in simultaneous
failures of the hosts and propose a placement algorithm to place
the primary and its backup copy in different subnets to overcome
such failures.

Works such as Yao et al. [18], Liu et al. [19] and Aral et al. [20]
focus on reliability-aware scheduling within edge computing
environments. [18], [19] consider task-offloading problem con-
sidering failures of the edge VMs. [18] considers independent
tasks whereas [19] models the application dataflows as DAGs.
Both of these works assume the VM failures to be repairable
and independent of each other. [18] tries to achieve a trade-off
between cost and reliability, whereas [19] aims to balance reli-
ability and network usage. Aral et al. [20] introduce a Bayesian
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Network-based approach to model and detect correlated failures
among edge nodes and combine it with link failure probabilities
to calculate the joint failure probability of edge devices. When
the minimum required replica count for each single-component
service is provided as input, [20] outputs a redundant placement
to minimise the joint failure probability of the replicas. [11],
[12], [21], [22], and [5] explore the effect of replica placement
to improve the performance of the fog application services. [21],
[22] consider monolith applications, whereas [5], [11], [12]
model the applications following MSA. [21], [22] and [11]
place the minimum number of required microservice replicas
to satisfy the throughput requirements of the services but do not
consider redundant placements to handle uncertainty. [5] tries to
overcome the throughput uncertainty of the services where some
of the microservices have multiple candidates, whereas [12]
proposes a method to evenly distribute microservices across the
fog resources to improve service availability.

Qualitative Comparison: DAG workflow scheduling in the
cloud [14], [15], [16], [17] and IoT application offloading in the
edge [18], [19], both consider workloads with ephemeral life cy-
cles where the problem is addressed from the user perspective
such that the DAGs/tasks are deployed to be used by a particular
user, and after the execution, each task is removed from the
environment giving way to the following tasks in the queue. In
contrast to this, our work considers the Fog Service Placement
Problem (FSPP) described in many previous works such as [5],
[11], [12], where the placement is addressed from the application
provider’s perspective where applications are used by a large
number of users and process continuous requests, making their
life cycle perpetual. This makes it infeasible to adapt former
approaches to reliability-aware FSSP. Furthermore, throughput-
awareness, horizontal/vertical scaling, and load balancing be-
come essential aspects of the FSPP, which are not considered
in [14], [18], [19], etc. Moreover, MSA creates composite ser-
vices with complex interaction patterns among microservices.
Existing works like [18], [20], [21], [22] consider independent
tasks or single component services, thus failing to capture the
effect of such dependencies in modelling system reliability. [5],
[12] consider complex interactions among microservices along
with redundant placement of microservices but do not consider
failure characteristics of the edge/fog nodes to improve the
reliability of the placement. Among the works that consider
failures within fog environments, some consider independent
failures [14], [16], whereas works like [20] consider correlated
failures. [17] considers both independent and correlated failures
but limits it to network failures that can be isolated at the subnet
level.

Based on the above analysis, existing works lack holistic
approaches that capture all the above characteristics. To this
end, in our work, we consider MSA characteristics (i.e., com-
posite services, microservice interaction patterns, independent
scalability, load balancing, etc.) and propose a reliability-aware
redundant placement approach for application batch placement
under fog resource failures (both independent and correlated
failures). We further improve the robustness of the algorithm by
dynamically calculating the number of microservice replicas in
a ”throughput and reliability-aware” manner while reaching a
trade-off between reliability and cost.

Fig. 2. Microservices-based Application Model.

TABLE II
NOTATIONS

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Microservices-Based Application Model

Microservices-based applications can be modelled using a
Directed Acyclic Graph (DAG) [11] where vertices denote
microservices and edges represent the interactions among mi-
croservices with direction from client microservice towards the
invoked microservice (Fig. 2). Each application, a ∈ A, is de-
picted as a collection of microservices, data flows among them,
and a set of composite services providing end-user requested
functionalities denoted as < Ma, df

a, Sa >. Each microservice
is defined based on its resource requirements; < Γm, rm >
where Γm can be a combination of multiple resources such as
CPU, RAM and storage requirements of microservice m ∈Ma

to support the request rate of rm. This acts as the basic deploy-
ment unit of each microservice, which can be independently
scaled (horizontally and vertically).

The granularity of MSA supports complex interactions, thus
creating various composite service patterns (i.e., Chained, Ag-
gregator and Hybrid) with diverse data flow representations
(i.e., chained pattern as a single chain, aggregator pattern where
multiple data paths are invoked and results are aggregated to
return a single response, etc.). These data flow characteristics
affect the end-to-end latency of the composite services. Thus,
we represent each service s ∈ Sa by a tuple containing the set
of all microservices of the service and all possible data paths
within the service: < Ms, P s >.
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Fig. 3. An overview of the fog architecture.

B. Fog Computing Environment Model

The fog environment is represented by a hierarchical archi-
tecture consisting of three main layers: IoT/client devices, fog
layer and cloud layer (Fig. 3). The fog layer, which resides
between end devices and the cloud, contains heterogeneous,
resource-constrained, distributed devices that provide computa-
tional, networking and storage closer to the edge of the network.
We model the fog layer as clusters of such fog nodes managed by
multiple service providers. Client devices access fog resources
through gateway devices such as wireless access points and
base transmission systems using Wireless Local Area Network
(WLAN) technologies. These fog clusters maintain seamless
connectivity with the cloud with Wide Area Network (WAN)
links through fog-cloud gateways. Intra-cluster communication
is established using high bandwidth Local Area Network (LAN)
to achieve high throughput and low latency within the fog clus-
ters. As fog devices are heterogeneous in resource availability,
we characterise each device (d ∈ D) based on its resources (γd).
γd can be a combination of resources including, but not limited
to, CPU, RAM and storage. Moreover, in this work, we also
consider the failure characteristics of the fog devices, detailed
in the following sections.

C. System and Failure Characteristics

In this section, we analyse microservices-based application
architecture and fog environments to create a reliability model.

1) Reliability Analysis of Microservices Applications: A fail-
ure is an event that causes a system to become unable to perform
its intended task reliably [23]. A system can consist of one
or more components, where system reliability depends on the
failure and repair characteristics of these components. Thus,
for the microservices-based application placement, we identify
the system boundaries, decompose the system to identify its
components and their failure characteristics, and afterwards
model their effect on system performance. Fig. 4(a) depicts the
multi-level representation of the system.

For the reliability modelling of a microservices-based fog
applications, we consider each end-user service as a separate
system with reliability requirements realised at the service level.

Fig. 4. Multi-component system reliability model.

Each service consists of one or more independently deploy-
able and scalable microservices with data dependencies among
them. Accordingly, we formulate the block representation of the
system (Fig. 4(b)) to analyse the effect of component failures
on the system performance. For a service S with M

s
critical

microservices (M
s ⊂Ms), each microservice m ∈M

s
can

be horizontally and vertically scaled to meet the user demand
by utilising resource-constrained fog resources. Service failure
occurs when the service is unable to maintain the expected level
of QoS (i.e., deadline and throughput) due to the failure of one
or more microservice instances belonging to the service.

If microservice m requires a minimum of k instances to
support the expected throughput demand, m is considered to
be operating as expected if a minimum of k instances out of the
deployed n are running without failures. Furthermore, to main-
tain service availability, all critical microservices of the service
should be running without failures. For the chained, aggregator
and hybrid interaction patterns discussed in section III-A, this
results in a serial relationship among critical microservices of the
service, where the failure of one or more critical microservices
results in degrading the service performance or making the
service unavailable until the system is restored.

Hence, for a microservices-based IoT application, reliability
can be analysed per each composite service by modelling the
service as a serial-parallel hybrid system of its critical microser-
vices and their replicas. Following this model, we analyse the
effect of underlying fog resource reliability on the availability of
the service under two main resource failure types: independent
and correlated.

2) Independent Failures: Independent failures in distributed
computing environments include failures of servers/nodes due
to factors such as hardware failures (i.e., disk failures) and
software/OS failures (i.e., kernel failures, firmware failures etc.)
that occur individually and independently among nodes. In liter-
ature, such failures are analysed using failure probability density
functions (i.e., Weibull, Lognormal, Poisson etc.) of each node
defined independently [14], [19]. Using this information, the
reliability of multi-component systems can be analysed based
on metrics such as Time To Failure (TTF) and availability [20].

Within fog and cloud environments, computation nodes can be
repaired after failures or deployed containers can be redeployed
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or migrated to working nodes upon the failure of the current
nodes. As a result, in analysing the reliability of such systems,
TTF can be identified as an essential metric. By maximising
the TTF of services, we can minimise the number of times
the microservice instances have to be redeployed or migrated
to maintain service QoS, thus improving service reliability in
mission-critical scenarios. At the same time, Service Level
Agreements (SLAs) of the services include the reliability of
the service in terms of expected average uptime availability.
For microservices-based IoT applications, this can be defined
at the composite service level. Hence, in this work, we create
the reliability model considering both TTF and availability.

1) TTF Calculation: Based on the proposed serial-parallel
hybrid reliability model of a service, the TTF of service S can
be defined as,

TTF (S) = min[TTF (m);∀m ∈M
s
] (1a)

For each microservice, the TTF is determined by considering
the k-out-of-n load balancing system represented by its in-
stances. For microservicem ∈M

s
, if Im is the set of |Im| = nm

instances, the TTF of m is defined as,

TTF (m) = min[TTF (I ′m);∀I ′m ⊂ Im] (1b)

where |I ′m| ≥ (nm − km + 1).
As we consider failure of each microservice instance due

to the underlying host failures, failure of m occurs when the
fog devices that host nm − km + 1 instances or more of the
microservice fail.

If f [dmi
] indicates failure event of the device d ∈ D host-

ing instance mi of microservice m, T (
⋂

mi∈I ′m f [dmi
]) would

depict the time when joint failure of all microservice instances
(mi) of I ′m occurs. Accordingly, TTF (m) can be reduced to the
minimum time to joint failure of the devices as follows,

TTF (I ′m) = min[T (
⋂

mi∈I ′m
f [dmi

])] (1c)

2) Availability Calculation: Based on the proposed reliability
model, the availability of service S can be defined as,

AV(S)t1,t2 =
1

(t2− t1)

∫ t2

t1

AvS(t)dt (2a)

AvS(t) =

{
1 Up(Im,t) ≥ km; ∀m ∈M

s

0 otherwise
(2b)

(2a) defines mean availability of the service S within [t1,t2]
time period in terms of service uptime. FunctionAvS(t) denotes
if the service is in up or failed status at time t. In (2b), function
Up(Im, t) calculates the number of running instances of mi-
croservice m at time t. Above two equations together calculate
the average uptime availability of the service S following k out
of n load balancing model.

3) Correlated Failures: Correlated or dependent failures,
also known as Common Cause Failures (CCF), indicate one or
more components of the system failing simultaneously due to a
common cause. Within distributed computing environments, this
can be due to failures of shared power supplies, virtual networks,
network component failures, software updates, etc. [17], [20].

Such failures affect the redundant placement decisions as de-
ploying redundant instances within a group of servers that belong
to the same Common Cause Failure Group (CCFG) reduces
its effectiveness. Considering this, we propose a Discorrelation
Index (DI) for each microservice as follows:

DI(m) =

∑
∀g∈G min[ |Im\FG(g,Im)|

km
, 1]

|G| (3a)

(3a) considers each sub system (microservice) having a paral-
lel relationship among its components (microservice instances).
Here, FG(g, Im) returns the instances that belong to the same
CCFG (g ∈ G) and calculates the k out of n instance satisfaction
under CCF. Based on this, calculations for each service S can
be represented as follows:

DI(S) =

∑
∀m∈Ms DI(m)

|Ms| (3b)

D. Throughput-Aware Minimum Instance Calculation

In the k out of n parallel model derived for each microservice,
k can be determined in a throughput-aware manner where the
throughput requirement is defined per service (rs for service S).
We take the microservice definition proposed in our application
model (Section III-A), where the resource requirement for the
microservice is defined to support a certain request rate. We
consider this as the base microservice instance to be deployed
as a Docker container and calculate the number of instances
required to support the incoming request volume. For each
microservice in the DAG representation, its expected incoming
request rate (r′m) is calculated using the following equations:

r′m =
∑

∀m′∈CM(m)

Rm′m (4a)

Rm′m =

{
rs m′ is Client Module
α.r′m′ otherwise

(4b)

The access rate of the microservice m is calculated by iden-
tifying all incoming edges of m and adding their request rates
(4a). To achieve this, the function CM(m) outputs the client
microservices of m based on the DAG representation of the
application. α ∈ [0, 1] indicates the difference in rates between
incoming and outgoing requests of m′. Afterwards, the mini-
mum instance count for the microservice m is calculated as,

km =
r′m
rm

(4c)

E. Service Latency Model

Due to the granularity of the MSA, deadlines can be defined
at the composite service level, where the latency of each service
depends on the data flow pattern of the service. Considering
multiple service composition patterns, the deadline violation
of service S with a deadline of lS can be calculated based on
the latency of the longest data path of the service. Considering
each data path within the service (p ∈ PS), function L(dfS

p )
calculates the total latency of the datapath p of service S for
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the proposed placement. Due to distributed nature of the fog re-
sources, the total latency consists of network latency (Lnw(df

S
p ))

and processing latency (Lproc(df
S
p )), where network latency is

a combination of transmission latency and propagation latency
among different fog/cloud nodes where the microservices are
deployed.

vlS = max{L(dfS
p );∀p ∈ PS} − lS (5a)

L(dfS
p ) = Lnw(df

S
p ) + Lproc(df

S
p ) (5b)

F. Pricing Model

Cloud service providers support container deployment
through serverless compute engines (i.e., AWS Fargate, Azure
Container Instances etc.) where pricing is calculated based on
the requested virtual CPU (vCPUs), memory and storage and
flexibility is provided to configure each separately. In our work,
we use the above on-demand pricing model to determine the
price of deploying microservices within fog and cloud servers
using container technology. For a service S having a set of Ms

microservices,

C(S) =
∑
∀m∈Ms

∀d∈D

nm∑
i=1

xd
mi

Cd
m (6)

where, Cd
m indicates the total cost of deploying microservice m

on device d. xd
mi
∈ {0, 1} is a binary variable which is set to 1,

if the ith instance of the microservice m is deployed on device
d. According to the above equation total cost for service S is
calculated as the total cost for deployment of all microservices
instances.

G. Problem Formulation

Based on the system model, we formulate the reliability-
aware placement problem as a multi-objective optimisation. As
proactive redundant placement of microservices is limited by
the cost of resource allocation and resource availability in fog
environments, the placement problem aims to reach a trade-off
between maximising reliability (7) and minimising the cost (8).
Based on the proposed reliability model, the reliability of the
services is represented as a composite of three metrics: TTF,
availability and DI. Furthermore, the placement aims to satisfy
three constraints: resource constraints (9a), service deadline (9b)
and throughput requirements of the services (9c).

max P(As) =
∑
∀S∈As

[TTF (S), AV (S), DI(S)] (7)

min C =
∑
∀S∈As

C(S) (8)

Subject to, ∑
∀a∈A∀m∈Ma

∑
∀mi∈Im

xd
mi

Γm ≤ γd; ∀d ∈ D (9a)

V l
S = 0;∀S ∈ As (9b)

nm ≥ km; ∀m ∈Ma; ∀a ∈ A (9c)

Fig. 5. Reliability-aware placement process.

As application placement within fog environments has to
utilise the limited fog resources and achieve a proper balance
between fog layer resource usage and cloud usage, the batch
placement of applications contributes to prioritising services
based on heterogeneous QoS requirements. Thus, we formulate
our placement problem to support the placement of a set of
applications A, where all the available services are depicted
by As.

IV. RELIABILITY-AWARE PLACEMENT METHOD

A. Overview

Based on the problem formulation, we propose a Reliability-
aware Placement Method (RPM) for the proactive redun-
dant placement of microservices-based IoT applications. Fig. 5
presents a high-level representation of the method. Our approach
consists of four main processes:
� Monte Carlo Simulation-based Service Reliability calcula-

tion process: It uses empirical data derived from past fail-
ures of the devices to calculate time to failure (TTF (S))
and availability (AV (S)) metrics based on independent
failures.

� DI calculation process: It calculates DI using data on
CCFGs derived from common course failure data.

� Throughput-aware Scalable Placement (TSP) - It generates
initial microservice placement with the minimum number
of microservice instances to satisfy the throughput demand.

� Reliability-aware Redundant Placement (RRP) - It extends
TSP to accommodate the redundant deployment of mi-
croservices to improve reliability in a cost-aware manner

Monte Carlo reliability calculation and DI calculation provide
service reliability-related metrics considering independent and
correlated failures of the fog devices (i.e. TTF, Availability,
DI). These metrics are used by TSP and RRP, which create a
hierarchical approach for throughput, reliability and cost-aware
redundant placement of a batch of IoT applications.

Our proposed approach assumes the availability of previous
failure data of the fog resources and meta-data derived from
them. This includes data related to both independent failures
and correlated failures. Previous works such as [24], [25] use
publicly available failure and repair data of cloud data centres to
derive statistical parameters for failure and repair distributions
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using empirical analysis. In our approach, such parameters
derived for each fog node are provided as metadata to Monte
Carlo-based reliability calculation process to derive reliability
metrics based on independent failures of fog devices. To identify
the possibility of correlated failures among devices, the CCF
analysis also can be conducted using past failure data to iden-
tify spatial and temporal dependencies among fog nodes. [20]
proposes a method based on a Dynamic Bayesian Network to
identify fog nodes that can fail together. Using such approaches,
fog devices that belong to the same CCFG can be determined to
be used as input for calculating DI by the DI calculator process.

Our placement method (RPM denoted in Fig. 5) uses these
data to propose a redundant placement method following the
reliability model proposed specifically for microservices-based
IoT applications. Thus, the process of deriving statistical param-
eters and dependency information from past failure data is out
of the scope of this work. We base our policy on the derived
metadata with the flexibility of updating the methods used to
extract the metadata.

B. Monte Carlo Simulation-Based Service Reliability

Due to non-constant failure/repair rates of the components,
the use of Markov chains and Bayesian Networks for relia-
bility analysis becomes impractical [26]. For such repairable
systems, Monte Carlo Simulation is better suited. Monte Carlo
Simulation performs a virtual experiment that simulates random
walks within the stochastic environment using random number
generation from known probability distributions [26]. When the
parameters for the failure and repair distributions of each fog
node are estimated from past failure data, the Monte Carlo
method uses values drawn from a uniform random variable
U(0, 1) together with the Inverse Cumulative Distribution Func-
tion (ICDF) of the distribution to generate failure and repair
times repeatedly to create histories of the system that are used to
derive failure and repair times within a considered time duration.

Data centre failure and repair data analysis presented in [24],
[25] shows that server failures best fit the Weibull distribution
while repair times can be best modelled using Lognormal dis-
tributions. Thus, in our work, we consider these distributions to
model failure and repair times of the fog nodes. However, the
use of Monte Carlo Simulations to determine reliability metrics
makes the approach easily adaptable to any distribution due to
its use of the inverse transform method.

As most of the failures in fog resources are repairable, the
effect of the repair/maintenance actions on the status of the fog
nodes needs to be considered. Kijima [27] analyses such systems
and proposes a model based on the system repair condition
known as general renewal process which models general or
imperfect repair of the components where the failed system is
returned to a state between new and prior to the most recent
failure by introducing a virtual age to the component. For
a component having virtual age Vi−1 = v after the (i− 1)th

repair, the CDF for the time to ith failure T becomes,

F (T |Vi−1 = v) =
F (T + v)− F (v)

1− F (v)
(10)

Fig. 6. Monte Carlo based TTF calculation.

For failures following the weibull distribution this results in the
ICDF,

t1 = η β
√
−ln(1− U)− t′ (11)

where t′ is the time elapsed since last failure of the component
from the historical data. For i ≥ 2, ICDF is calculated as,

ti =

⎡
⎣η β

√(
vi−1
η

)β

− ln(1− U)

⎤
⎦− vi−1; i ≥ 2 (12)

where virtual age is calculated using repair degree q [28], [29]
as follows:

vi−1 = q(t1 + t′ + t2 + · · ·+ ti−1); 0 ≤ q ≤ 1 (13)

Parameter q enables the system reliability measurements to be
adjusted based on repair characteristics. q indicates the remain-
ing damage after the repair, where q = 0 and q = 1 represent
the two extreme cases of perfect repair and minimal repair,
respectively [30].

Accordingly, we propose Algorithm 1 to calculate the ex-
pected TTF (S) and AV (S) of each service using Monte Carlo
simulations. Fig. 6 shows a visual representation of how the
algorithm calculates TTF for a service. For clarity, Algorithm 1
is presented as a combination of conducting Monte Carlo simula-
tions (lines 3–20) and calculating relevant metrics using resultant
events (lines 21–26). However, it’s important to note that Monte
Carlo simulation is a less frequently process that needs to be
done as new empirical data become available or periodically.
Calculated events are stored and used by placement policy which
is a more frequent process. Due to this approach, Monte Carlo
simulations can be carried out in cloud servers, thus overcoming
the computation complexity of the process and mitigating its
effect on the placement algorithm.

Results of the Monte Carlo simulation is used by TSP and
RRP algorithms to generate reliability-aware placement of mi-
croservices.

C. Stage 1 - Throughput-Aware Scalable Placement

Throughput-aware Scalable Placement (TSP) is the first stage
of our hierarchical placement policy (see Algorithm 2). TSP
outputs a reliability-aware, scalable placement based on the
throughput requirements of the services, but does not focus on
the deployment of redundant microservice instances. TSP aims
to achieve following objectives :
� O1: Place the minimum number of microservices required

to satisfy the throughput requirement of each service.
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Algorithm 1: Monte Carlo Based Service Reliability.
Input: Placement P for service S, Estimated failure and
Repair distributions for each fog device

Output: TTF (S), AV (S), Events
1: M

s ← S.getMicroservices();
D ← P.getAllMappedDevices() ;

2: Events← {}
3: for d in D do
4: i← 0;
5: for i ≤ simTimes do
6: set t← 0.0; status← UP ; currentEvent← first

event ;
7: while t ≤ Tmax do
8: u← sample(U(0, 1)) ;
9: if status = UP then

10: Δt←timeToNextFailure(d, u,Events.get(d))
� This is calculated using (11), (12) ;

11: else
12: Δt←timeToRepair(d, u); � This is calculated

using the ICDF of Lognormal distribution
13: end if
14: Events.updateAverage(d, currentEvent,Δt) ;
15: t← t+Δt; currentEvent← next event ;
16: status← (status = UP )?DOWN : UP
17: end while
18: i← i+ 1 ;
19: end for
20: end for
21: for m in M

s
do

22: Dm ← P.getMappedDevices(m); nm ← no of min
instances ;

23: ttfm ← calculate time to (nm − km + 1) or more
simultaneous failures based on Events related to Dm ;

24: end for
25: TTF (S)← minimum(ttfm; ∀m ∈M

s
) ;

26: AV (S)0,t ← calculateAvailability(Events) ; � AV(S) is
calulated applying (2) to the calculated Events

27: return TTF (S), AV (S), Events

� O2: Dynamically identify microservices to be placed
within fog layer based on the latency requirements of their
services.

� O3: Generate a reliability-aware placement. The generated
placement has two characteristics : high reliability consid-
ering possible fog environment failures, and higher poten-
tial to further improve the reliability through redundant
placements in Stage 2.

At this stage, since the number of exact instances per each mi-
croservice is calculated using (4a)–(4c), we use a Particle Swarm
Optimisation (PSO) based meta-heuristic to achieve throughput-
reliability aware placement under resource and deadline con-
straints. In our previous work [11], we examined the adapt-
ability of Set-based Comprehensive Learning Particle Swarm
Optimisation (S-CLPSO) for microservices-based application
placement to satisfy throughput, latency and cost requirements
and introduced multiple approaches to improve its ability to

Algorithm 2: TSP Algorithm.
Input: Placement Requests and Meta-data
Output: Microservices to devices mapping
1: Calculate the number of instances per microservice (4);
2: Set iteration count i← 1;

� Prioritize microservices based on deadline of the
composite services they belong to

3: Place all in cloud and calculate deadline violation (5a)
4: ToFogM ← deadline violated; ToCloudM ←

deadline satisfied
� Construct a random swarm of N particles under

deadline and resource constraints
5: Particles← initialise(N,ToFogM, ToCloudM )
6: whilei ≤ Iterations do
7: Calculate fitness of each particle using AFF ;
8: Update pBest and gBest;
9: Select exemplar dimensions for each particle;

10: Update velocity of each particle;
� Update position using deadline-resource
constrained prioritised construction

11: for p ∈ Particles do
12: for m ∈ ToFogM do
13: D′ ← eligibleFogDevices(m,p.velocityMatrix);
14: Try to place m in a d ∈ D′ s.t resource constraints

satisfied
15: if not placed then notP laced.add(m)
16: end for
17: for m ∈ notP laced do
18: Try to place m in a f ∈ fogDevices s.t resource

constraints satisfied
19: if not still placed then Place in cloud
20: end for
21: Place ToCloudM in cloud
22: end for
23: Set i← i+ 1;
24: end while
25: return gBest of the swarm

achieve quicker convergence and reach the global optimum.
Thus, in this stage, we adapt the improved S-CLSPO algorithm
but extend and further improve it to solve the reliability-aware
placement problem as follows:

1) Availability-aware fitness function (AFF): This function is
introduced to satisfy O3 described above. Being the first stage
of the policy, the aim of TSP is to provide an output that has
the potential to be further improved with redundant placements
in the next stage. To this end, we introduce a novel fitness
function (14a) with 3 metrics: 1) TTF of each service, 2) a novel
Availability Score for each microservice (14b), (14c) which is
introduced by modifying (2) to calculate the mean number of
active instances during service failure, thus aiming to minimise
the simultaneous failures among its instances and improve the
possibility of finding redundant placements during Stage 2 of
the algorithm, and 3) DI of the placement which is also used
to minimise simultaneous failures. For each particle, fitness is
calculated as the summation of reliability,ρ(S) of all the services
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considered for placement.

max ρ(S)t1,t2 =

⎡
⎣TTF (S)

t2− t1
+

∑
∀m∈Ms

AS(m).DI(m)

⎤
⎦

(14a)

AS(m)t1,t2 =
1

(tfail)

∫ t2

t1

Asm(t)dt (14b)

Asm(t) =

{
Up(Im,t)

km
Up(Im,t) < km

0 otherwise
(14c)

2) Multiple constraint handling: Each particle has to satisfy
three main constraints to be considered a valid placement:
throughput requirement of the service (O1), resource constraints
of fog devices and deadline of the services (O2). The throughput
requirement is handled at the start of the algorithm (line 1) by
calculating the minimum number of instances (km) required.
Other constraints are handled at the particle construction dur-
ing the initial swarm creation (line 5) and the position up-
dates conducted in each iteration (lines 11–22). To achieve
deadline satisfaction, first, the deadline stringent microservices
are identified (lines 3–4) and prioritised for placement within
fog under resource constraints. For initialisation (line 5), the
algorithm constructs particles through random assignment of
microservice to devices such that the constraints are satisfied.
To further improve the convergence, we seed the initial swarm
with a reliability-aware heuristic placement that sorts fog devices
based on their time to first failure and map the ToFogM to
devices with the highest time to failures. For the particle position
update process, a velocity-aware position update method is
implemented with deadline-resource constrained construction
of particles to ensure the satisfaction of the constraints. Posi-
tion update is conducted in a prioritised manner, starting with
latency-sensitive microservices (lines 12–20). eligibileFogDe-
vices() (line 13) method finds eligible devices in a velocity-aware
manner where devices with equal or higher velocity compared
to the current placed device are selected as eligible devices
for the subsequent placement. This prioritises latency-critical
microservices for placement within the fog, thus maximising
the deadline satisfaction of the placement.

3) Updating pBest and gBest: Due to resource constraints,
fog may not be able to accommodate all latency-critical services
in some particles. Hence, constructed particles, while satisfying
resource constraints, may not be able to satisfy the deadline re-
quirements after position updates. To mitigate the effect of such
scenarios, pBest and gBest selection consider deadline satis-
faction of the placement before comparing the fitness values.

The final placement generated from TSP is fed as the input to
the Stage 2 of the proposed method discussed in the next section.

D. Stage 2 - Reliability-Aware Redundant Placement

During this stage, the placement generated from TSP is
used as the input to the Reliability-aware Redundant Placement
(RRP) algorithm (see Algorithm 3) to create redundant microser-
vice deployments to improve the reliability further. RRP aims
to achieve following objectives:

Algorithm 3: RRP Algorithm.
Input: TSP , ToFog, ToCloud and Meta-data
Output: Microservices to devices mapping
1: Initialise population of N chromosomes using AHI
2: Calculate fitness using (16)
3: calculateDominants(population) using RDS
4: fronts← calculateFronts(population)
5: crowdingDist←

calculateCrowdingDistance(population, fronts)
6: while i ≤ Iterations do
7: childChromosomes← {} � 2 N chromosomes
8: while childChromosomes ≤ N do
9: orderedParents←

order(populations, fronts, crowdingDist)
10: parents← tournamentSelect(orderedParents)
11: children←crossover(parents)
12: childChromosomes.add(children)
13: end while
14: mutate(childChromosomes)
15: Calculate fitness using (16)
16: population← population ∪ childChromosomes
17: calculateDominants(population) using RDS
18: fronts← calculateFronts(population)
19: crowdingDist←

calculateCrowdingDistance(population, fronts)
20: ordered←

order(populations, fronts, crowdingDist)
21: population← get 1st N chromosomes
22: calculateDominants(population) using RDS
23: fronts← calculateFronts(population)
24: crowdingDist←

calculateCrowdingDistance(population, fronts)
25: end while
26: return population.best + TSP

� O1: Dynamically place redundant microservice instance to
satisfy the reliability requirements of the services.

� O2: Achieve lower deployment costs while ensuring the
reliability demands.

As the number of redundant instances is not known prior
to algorithm execution but decided based on the optimisation
objectives, we propose an algorithm by improving NSGA-II pro-
posed in [31]. NSGA-II is a genetic algorithm for multi-objective
optimisation where each placement can be depicted as a 2D
chromosome. This representation enables the count of instances
to be adjusted flexibly to reach a trade-off between reliability
and cost, thus satisfying O1. We make multiple improvements to
adapt the NSGA-II algorithm to our specific placement problem
as follows:

1) Availability-aware Heuristic Initialisation (AHI): This
heuristic is used to populate the initial population in a reliability-
aware manner (Algorithm 4) to achieve faster convergence by
having a strong population as the starting point of the algorithm.
To achieve this, AHI first calculates alternative fog devices for
each device based on how they complement each other from
a reliability perspective (lines 3–9). We introduce a alterna-
tive device score (Alt_Scored1,d2

) based on TTF improvement
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(ttfd1,d2
ext ) and availability improvement (avd1,d2

ext ) as follows:

Alt_Scored1,d2
= ttfd1,d2

ext + avd1,d2
ext (15a)

ttfd1,d2
ext =

{ ttfd1∪d2−ttfd1
t2−t1 {d1, d2} 
⊂ g; ∀g ∈ G

0 otherwise
(15b)

avd1,d2
ext

=

{
[
∫ t2
t1 Avd1∪d2 (t)dt−

∫ t2
t1 Avd1

(t)dt]
tf,d1

{d1, d2} 
⊂ g; ∀g ∈ G

0 otherwise
(15c)

(15) calculate the reliability improvement of deploying mi-
croservice instances on both d1 and d2 compared to deploying
only on d1, where tf,d1

indicates the total failure duration of d1
alone. To maintain the diversity among the generated chromo-
somes, results of the heuristic are made random by changing the
order of considered mappings from TSP (line 13) and changing
the order of the alternative devices (lines 19–20) to select the
best alternative device out of a portion of the devices selected
from D′.

2) Chromosome fitness and Reliability-aware Dominant Se-
lection (RDS): We define the fitness of the chromosomes using
3 parameters including availability (16a), TTF (16b) and cost
(8) of the placement. Based on the problem formulation in
section III-G, the final fitness values are created as follows:

f1 =

⎡
⎣1−

∑
∀S∈As

(Max[ρs −AV (S), 0])/ρs

Sv
num

⎤
⎦DI(As)

(16a)

f2 =

∑
∀S∈As

TTF (S)

Snum.T
DI(As) (16b)

where ρs indicates the reliability expectation of the service
in terms of average uptime availability and Sv

num denotes the
number of reliability expectation violated services. To maximise
the reliability satisfaction while reducing the cost, we propose
RDS (Algorithm 5) for dominant selection where higher priority
is given to satisfying ρs using f1 (lines 1–4) and non-dominated
sorting is used for f2 and cost (lines 5–10). O2 is satisfied
through this process.

3) Generation of new population: RRP uses tournament se-
lection, single-point crossover with random point selection and a
custom mutation process to evolve the current population into the
next. The mutation operator randomly selects between replica
growth and replica removal. The device for replica growth is
chosen by selecting a microservice placement and making a
tournament selection on Alt_Score values of its alternative
fog devices. Resource constraints are validated afterwards, and
chromosomes undergo a mending process in case of violation
by moving microservice instances from resource-violated fog
devices.

Finally, RRP acquires the best chromosome of the final popu-
lation by selecting the one with the highest weighted sum of
the three objectives. To adjust the weighted sum as a max-
imisation objective, the cost is normalised using (MaxCost−

Algorithm 4: AHI Algorithm.
Input:Number of chromosomes (N ) and Meta-data
Output:Initial population
1: initPopulation← {} ;

� Calculate Per Device Alternatives
2: altDevices← {} � Alternative devices and scores per

device
3: for d ∈ fogDevices do
4: for d′ ∈ [fogDevices− {d}] do
5: altScore← calculateAtlScore(d, d′) � Use (15)
6: if altScore 
= 0 then

altDevices.add(d, d′, altScore)
7: end for
8: Order altDevices.get(d) in descending fitness score
9: end for

10: for n ∈ N do
11: ordered← (n ≤ N/2)?TRUE:FALSE ;
12: P ← fog layer placement from TSP (list of {m, d})
13: shuffle(P )
14: for (m, d) ∈ P do
15: D′ ← altDevices.get(d)
16: if ordered is TRUE then
17: d′ ← choose device with highest altScore from

first device of D′ s.t resource constraints are met
18: else
19: shuffle(D′)
20: d′ ← choose device with highest altScore from

first x devices of D′ s.t resource constraints are met
21: end if
22: if d′ is null then
23: d′ ← select random device from fogDevices s.t

resource constraints are met ;
24: end if
25: initPopulation.getChromosome (n). place (m, d′)
26: end for
27: end for
28: return initPopulation

Cost)/(MaxCost−MinCost) for each chromosome. RRP
combines the selected chromosome with TSP output and returns
the final placement.

Thus, TSP and RRP collectively produce a reliability,
throughput and cost aware placement of microservices by in-
corporating knowledge on failure characteristics of the fog
environment through Monte Carlo based reliability calculation
and DI calculation.

V. PERFORMANCE EVALUATION

A. Experimental Configurations

For the evaluations, we use iFogSim2 [13] simulated fog envi-
ronment. iFogSim2 provides support for modelling hierarchical
fog-cloud architecture and microservice application architecture
along with microservices-related functions such as horizontal
scalability, load balancing and dynamic service discovery, which
are essential in modelling and simulating our reliability-aware
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Algorithm 5: RDS Algorithm.
Input: Chromosomes Ci and Cj

Output: TRUE if Ci dominates Cj , FALSE otherwise
1: if Ci.f1 > Cj .f1 then
2: dominates← TRUE
3: else if Ci.f1 < Cj .f1 then
4: dominates← FALSE
5: else
6: if (Ci.f2 ≥ Cj .f2 AND Ci.cost ≤ Cj .cost) AND

(Ci.f2 > Cj .f2 OR Ci.cost < Cj .cost) then
7: dominates← TRUE
8: else
9: dominates← FALSE

10: end if
11: end if
12: return dominates

deployment scenario. Furthermore, the simulator is easily ex-
tendable to simulate failure scenarios of the fog nodes.

We model the fog environment according to the architec-
ture presented in section III-B. Network parameters of the fog
environment include bandwidth and latency among different
devices of the fog architecture. We extract these values from
previous studies on network performance of edge networks fol-
lowing novel communication technologies as follows: WLAN
communication (150 Mbps, 2 ms) based on WiFi-6 [32] and
5G [33], LAN connections (1 Gbps, 0.5 ms) based on gigabit
Ethernet technology [34], and fog-cloud connections with WAN
(30 ms, 100 Mbps) [11]. Fog device resources are defined using
three parameters: CPU (1500-3000 MIPS), RAM (2-8 GB) and
storage (32-256 GB) [35], [36]. These values represent resource
availability of heterogeneous fog devices such as RaspberryPi,
Dell PowerEdge, Jetson Nano, etc. The cost of the resources
is modelled following the price model of AWS Fargate and
extended to the fog layer with an increase factor of 1.2–1.5 as
proposed in [37].

Due to the novelty of the fog computing paradigm, there’s
a lack of availability in fog computing reliability data. Hence,
following previous reliability studies in the area [20], we create
synthetic failure traces based on real-world failure data available
for distributed systems. In our work, we use the failure charac-
teristics presented in [25], which analyses Google cloud trace
logs consisting of around 12,5000 servers monitored over 29
days. Failure characteristics of the fog devices in our simulated
environment are modelled based on the results of the empirical
analysis done on the said data set and fed to our placement
algorithms. Failure and repair events during the simulation time
are also synthesized accordingly.

Workloads used in the performance evaluation are
synthetically generated following the microservices-based
applications used in the literature [12], [38]. Workloads model
multiple IoT applications such as smart health monitoring [39],
smart parking [40], etc. and also follow general microservice
composition patterns such as chained, aggregator, and hybrid
patterns. Diversity among applications is ensured by varying
microservice resource requirements in terms of CPU (300-900
MIPS), bandwidth (200-1500 bytes/packet), base request

rate (100-200 requests/s) following previous IoT simulation
benchmarks [11], [13].

B. Evaluation Overview

We conduct the evaluation of the proposed placement policy
under two main criteria as follows:

1) RPM Algorithm Performance Evaluation: (results pre-
sented in Section V-C) - As explained in Sections IV-C and
IV-D, we improved the convergence of the two meta-heuristic
algorithms used in our placement policy through multiple novel
approaches, namely AFF, AHI, RDS. To validate the effect of
proposed improvements, we analyse the capability of the RPM
algorithm to converge towards better placements by comparing
it with multiple variants of the algorithm designed to capture
the effects of the proposed improvements. To this end, we use
multiple metrics that determine the fitness of the placement
including Reliability (R.S: Reliability satisfaction, FTTF: First
Time To Failure), Cost, and we also introduce a parameter repre-
senting Trade-off between reliability and cost (Trade Ratio). We
use the results obtained in this stage to validate various improve-
ments we introduced to S-CLPSO and NSGA-II algorithms.

2) RPM Algorithm Placement Evaluation: (results presented
in Section V-D) - Here, we evaluate our proposed approach
with baseline placement approaches (including previous repre-
sentation works) to demonstrate the performance improvements
due to different aspects considered in our proposed placement
approach. To this end, we consider 3 main aspects: the use
of proactive redundant placements to improve reliability, the
effect of incorporating throughput-aware dynamic scalability
of microservices and finally the impact of considering both
independent and correlated failures.

Evaluation metrics used in this work are described below.
1) Reliability Satisfaction (R.S): Reliability Satisfaction cal-

culates the uptime availability (AV (S)) of each deployed service
S for the observed duration of time under Fog failures and
compares it with the reliability expectation (ρs) of each service
as follows:

R.S =

∑
∀S∈As

100− (Max[ρs −AV (S), 0]) ∗ 100

Sv
num

(17)

2) First Time To Failure (FTTF): Indicates the average time
to first failure of deployed services as a percentage of the total
considered time duration. This follows the definition presented
in (1a).

3) Cost of Deployment: Normalised total cost of deployment
for all deployed microservices during the observed time period.
This follows the definition presented in (6).

4) Trade Ratio: Reliability degradation per unit cost reduction.
This metric is used to evaluate the algorithm based on its ability
to converge to a result which can improve reliability in a cost-
aware manner.

The above parameters are selected to cover the main objec-
tives (reliability as the primary objective and cost of deployment
as the secondary objective) of the proposed placement policy.
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TABLE III
SIMULATION PARAMETERS

TABLE IV
PARAMETERS FOR PLACEMENT ALGORITHMS

C. RPM Algorithm Performance Evaluation

1) Experiment Overview: In this section, we evaluate RPM’s
ability to converge to a solution that can reach a trade-off
between cost and reliability. To this end, we consider multiple
design decisions made in our proposed algorithm (RPM) and
evaluate their effect on the performance of the placement. For
the comparison, the following variants of the algorithm are used,

i) No_AFF: In this approach, the fitness function of the
TSP uses (2a), (2b) to calculate the availability, instead of the
Availability Score proposed in AFF.

ii) No_AHI: Creates random chromosomes for the initial
population of RRP algorithm, without using Algorithm 4.

iii) No_RDS: In this approach, reliability and cost have equal
priority during dominant chromosome selection. Hence, generic
non-dominated sorting is used instead of our proposed RDS
approach.

iv) No Cost-awareness (No_CA): Maximises reliability with-
out having cost as a limiting factor for the redundant placement.

We carry out the experiments for 6 workloads covering both
independent and correlated failures. The algorithm’s search
space depends on three main parameters: the number of compos-
ite services in the batch placement, the number of fog devices
eligible for placement and the time duration considered. We
create the workloads to capture performance with variations in
all three parameters. All variants use the same parameters for
the algorithms: TSP with 100 particles, 300 iterations and RRP
with 100 chromosomes, 300 iterations. Based on the results, we
compare each approach with RPM to evaluate its ability to reach
a better trade-off between reliability and cost.

2) Results Analysis: We calculate the Trade-off Ratio of each
approach with respect to the No_CA. The results are depicted
in Tables V and VI where average R.S, FTTF and Cost are
calculated with 95% confidence interval. The following analysis
is conducted comparing different variants of the algorithm.

The aim of AFF is for the TSP (Stage 1) to produce a
placement such that it is easier for the RRP (Stage 2) to find
redundant placements that can improve the overall reliability of
the final output. We can validate this by comparing No_AFF
and RPM. Based on the results, it is evident that R.S and FTTF

TABLE V
EVALUATION OF DIFFERENT VARIENTS (UNDER INDEPENDENT FAILURES)

TABLE VI
EVALUATION OF DIFFERENT VARIENTS (INDEPENDENT AND

CORRELATED FAILURES)

of No_AFF are lower than RPM for all considered workloads.
Moreover, No_AFF does not provide sufficient cost advantage
compared to RPM, which is further proven by the high trade-off
ratio of the resultant placement. This shows that having AFF im-
proves RRP’s ability to find redundant placements that can easily
enhance the reliability of the final placement while reducing the
cost.

In RPM, we have introduced a heuristic to populate the
initial population of RRP such that nodes selected for redundant
placement try to complement the output from the TSP. The aim
of introducing this method is to improve the convergence of the
RRP by creating an initial population of better solutions. We
verify this by comparing RPM with No_AHI, which randomly
initialises the population. Results show that RPM can achieve
higher reliability satisfaction and FTTF. The costs incurred
by No_AHI vary depending on the scenarios showing slightly
higher or lower cost values than RPM. However, No_AHI
records a lower trade-off ratio demonstrating RPM’s ability to
reach a better trade-off between objectives.

In No_RDS, traditional non-dominated sorting gives equal
priority to cost and reliability, which results in a lower cost at
the expense of lower reliability (over 9% reliability violation
for considered scenarios). Thus, for mission-critical services
that usually expect higher availability (around 99.99%), this
approach fails to achieve a proper balance. With our proposed
RDS approach, the placement algorithm handles multi-objective
optimisation while giving the reliability aspect higher priority
than cost. Considering these factors, RPM can reach a better
trade-off between reliability and cost for services with high-
reliability requirements.

Based on the above analysis, the introduced improvements
(AFF, AHI and RDS) ensure RPM’s ability to converge towards
a placement with higher reliability while minimizing the deploy-
ment cost as a secondary objective. Thus, we use RPM in the
following section to provide reliability-aware placements under
different scenarios for further evaluation. However, the algo-
rithms are designed flexibly to switch between these variations
easily depending on the kind of trade-off required.
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Fig. 7. Evaluation of proactive redundant placement.

D. RPM Algorithm Placement Evaluation

1) Experiment Overview: In this section, we evaluate the
efficiency of the placement generated by RPM under multiple as-
pects addressed by the algorithm: the effect of reliability-aware
redundant placement, the impact of throughput-awareness, and
finally, CCF consideration. To indicate the behaviour of the
algorithms under different failure types, we start with inde-
pendent failures in the first two experiments and add CCF to
the final experiment to analyse the overall effect. We compare
our approach with multiple alternative placement approaches as
follows:

i) No_Red: Does not consider the redundant placement of the
microservices but tries to place the minimum required microser-
vice instances to maximise the reliability of the placement using
TSP.

ii) Even_Dist: The placement method proposed in [12], where
microservice instances are evenly replicated across the fog re-
sources while maximising fog resource usage.

iii) Reliability-aware Heuristic (R_Heu): Uses the two heuris-
tic approaches used in our placement policy to populate the
initial populations of TSP and RRP algorithms. R_Heu repre-
sents an improved adaptation of primary-backup copy placement
concept in [17] to our FSPP problem with load sharing.

2) Results Analysis: Effect of Redundant Placement: This
section evaluates ”proactive redundant placement” handled in
stage 2 (RRP) of the hierarchical placement process. For this
evaluation, we use two workloads (WL1 with six composite
services and 30 devices, WL2 with 12 composite services and
60 devices) and consider two time periods (20 days, 30 days).
Such a selection of workloads covers all three parameters that
affect the solution space. Fig. 7 depicts the results of the different
approaches.

Out of the approaches used in this comparison, all the ap-
proaches except No_Red utilise independent scalability of the
microservices to replicate them across fog environments. Thus,
in this scenario No_Red records the lowest reliability at a lower
cost (see Fig. 7). Due to redundant placements, R_Heu records
improved reliability compared to No_Red. However, being a
heuristic approach, R_Heu lacks control over the number of
redundant placements, which hinders it from achieving higher
satisfaction compared to RPM. The reliability satisfactions of
both of these approaches unacceptable for mission-critical ser-
vices with stringent reliability expectations. Even_Dist approach
shows reliability metrics closer to RPM, especially in WL2
where the number of fog devices is higher, allowing Even_Dist
to deploy more replicas to ensure even distribution of instances.

Fig. 8. Evaluation of throughput-aware scalability.

However, this approach incurs higher costs due to reliability-
unaware replication and shows a higher reduction in reliability
metrics as the considered time period increases.

Overall the results presented in Fig. 7 show that our policy
is able to outperform other approaches in terms of reliability
satisfaction while improving FTTF (up to 25% and 40% im-
provement in reliability satisfaction and FTTF, respectively).
Although RPM incurs higher costs compared to No_Red and
R_Heu due to higher flexibility in its replica placements, re-
liability and cost awareness of the algorithms allow it to reach
higher reliability satisfaction (over 98%) while reducing the cost
by more than 8% compared to Even_Dist which also use inde-
pendent scalability of microservices for redundant placements.
Thus, RMP limits the deployment cost of redundant placements
as secondary objective. Above results demonstrates that RMP
is able to utilise independently deployable and scalable nature
of microservices to utilise limited Fog resources to improve
reliability of mission-critical IoT services through proactive
redundant placement of microservices.

Throughput-aware Scalability of the Placement: In this sec-
tion, we evaluate how throughput awareness, together with
MSA, contributes to higher performance (see Fig. 8). To this end,
we use two workloads: a Uniform workload where all services
have similar throughput requirements and a Varied workload
having heterogeneous throughput requirements among services.

All considered approaches except Even_Dist incorporate
throughput awareness into the placement. No_Red places the
minimum required instances (k) to satisfy throughput require-
ments, whereas R_Heu deploys redundant microservice in-
stances on top of that using the AHI algorithm. RPM formulates
the problem as a k out n load balancing problem where n is
determined robustly based on the failure characteristics of the
environment. As a result, RPM reaches the highest reliability
satisfaction in both scenarios (around 98.5% in both as shown
in Fig. 8), adapting well to the heterogeneous throughput needs.
Although No_Redundancy and R_Heu have lower performance
due to limitations in proactive redundant placement, they show
an increase in reliability metrics in the Varied scenario compared
to Uniform. This is also a result of combining throughput and
reliability awareness, where it’s easier for these two approaches
to ensure high reliability for low throughput services with less
number of instances, which ultimately improves the average re-
liability compared to a uniform throughput scenario. Compared
to the above three approaches, Even_Dist shows a considerable
decline (98.4% in Uniform to 95.1% in Varied) in reliability
metrics in the Varied scenario as this approach tries to replicate
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Fig. 9. Evaluation of CCF effect.

instances for all services evenly without prioritising the ones
with higher throughput requirements.

Above results demonstrate that our proposed RPM approach
achieves higher reliability due to incorporation of throughput
aware dynamic calculation of redundant microservice instances.
It improves the robustness of the algorithm to adjust to het-
erogeneous throughput requirements of the IoT services, thus
allowing proper utilisation of limited fog resources to generate
a scalable microservice placement using both horizontal and
vertical scalability.

Effect of CCF: In this section, we evaluate the effect of
considering common cause failures along with independent
device failures. To assess the robustness of the proposed fitness
functions, two main categories of CCFGs are considered: a
non-overlapping scenario where device groups can be isolated
and overlapping scenarios where devices can belong to multiple
CCFGs in an overlapping manner (see Fig. 9).

For these two scenarios, RPM is compared with
CCF_Unaware variation of the RPM algorithm and Even_dist
approach. In both scenarios, RPM is able to take the effect
of CCFGs into consideration for the placement decisions and
hence, records the highest reliability satisfaction (up to 2.5%
improvement). Because of CCFGs, RPM spreads redundant
microservice instances across CCFGs such that failures of such
groups would be isolated. This results in a slight increase in
cost compared to CCF_Unaware (up to 3.5%), but still able
to achieve around 20% cost reduction compared to Even_dist.
This behavior demonstrates that by considering CCFs, RPM is
able to place redundant microservice instances more efficiently
by mitigating the effect of simultaneous failures of redundant
instance.

Based on the experiments, it is evident that RPM provides a
robust approach capable of delivering throughput-aware redun-
dant placements under both independent and correlated failures
of fog environments, while achieving a balance between reli-
ability and cost. Moreover, the proposed algorithm is capable
of navigating solution spaces of different sizes successfully and
achieves higher reliability satisfaction compared to other base-
line approaches. RPM also improves the cost of deployment as
a secondary objective, thus providing an intelligent mechanism
for utilising limited Fog resources.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a reliability model for microservices-
based IoT applications, considering their placement within

resource-constrained and heterogeneous fog devices where in-
dependent and correlated failures exist within the fog environ-
ments. Accordingly, we proposed a proactive redundant place-
ment policy that utilises the independently deployable and scal-
able nature of the microservices to support the high-reliability
requirements of the mission-critical IoT services in a throughput
and cost aware manner. We implemented a hierarchical algo-
rithm consisting of PSO and NSGA2-II algorithms and improved
them with multiple approaches to improve the algorithm’s per-
formance. Moreover, we evaluated our approach through ex-
tensive experiments under two main aspects: performance im-
provements of the algorithm compared with multiple alternative
approaches and efficiency of the resultant placement compared
to multiple benchmark placement policies. The obtained results
show that our policy can successfully navigate different solution
spaces and provide robust placements that can achieve high
reliability (up to 25% improvement in reliability) considering
independent/correlated failures, throughput requirements of the
services and cost of deployment.

Being novel distributed computing paradigm, fog computing
lacks real-world commercial implementations or large scale test
beds to extract large failure datasets to implement and evaluate
the performance of the fog application scheduling algorithms at
scale. Thus, in this work, following the evaluation approaches
used by state-of-the-art fog computing research, we imple-
mented our approach in a prominent simulator for simulating
the application placement in fog environments. In order to
reduce the implementation complexities when translating this
work in to an real world fog computing control planes, we’ve
proposed a modular framework which make failure data related
calculations separate from the placement algorithms, so that they
can be further optimised and run separately, to provide the output
periodically to the placement algorithm. Moreover, this makes
Monte Carlo simulation of failure data, a less frequent process
that can be carried out in the Cloud to resolve the computation
complexities of processing large data volumes.

Thus, in future work, we plan to implement our approach
within a real-world Fog computing test-bed. Moreover, we plan
to extend our approach to incorporate machine learning-based
approaches to process past failure data of the fog environment
to derive parameters related to the independent and correlated
failures. We also plan to explore methods to obtain a trade-off
between proactive and reactive placement methods to further
reduce the deployment cost without compromising reliability.
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