
10382 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

Reliability-Enhanced Task Offloading in Mobile
Edge Computing Environments

Jialei Liu , Ao Zhou , Member, IEEE, Chunhong Liu , Member, IEEE,
Tongguang Zhang , Lianyong Qi , Member, IEEE, Shangguang Wang , Senior Member, IEEE,

and Rajkumar Buyya , Fellow, IEEE

Abstract—Internet of Things (IoT) devices have become an
integral part of our lives and are increasingly used in almost
every field. Subsequently, there are a large number of latency-
sensitive IoT applications (e.g., face recognition and autonomous
driving) targeted for mobile edge computing environments. These
IoT applications are often split into multiple collaborative tasks
and offloaded onto containers or virtual machines (VMs) with
certain failure rates and recovery rates. If these containers or
VMs are not deployed in the same edge servers, the bandwidth
resources of edge clouds must be consumed to transfer data.
These factors increase the completion time of IoT applications to
different degrees, and then affect their reliability level. Therefore,
there exists equilibrium between the reliability level and band-
width consumption. In this article, we investigate the equilibrium
of minimizing the bandwidth consumption of IoT applications
while maximizing the reliability level of these IoT applications
during task offloading. We propose a multiobjective optimization
problem, and transform it to a single-objective optimization
problem. Furthermore, we introduce two efficient approaches
to acquire two near-optimal solutions. The results of simula-
tion experiments demonstrate that our proposed approaches can
observably enhance the reliability level and reduce the bandwidth
consumption of IoTapplications compared with other related

Manuscript received May 3, 2021; revised July 24, 2021; accepted
September 14, 2021. Date of publication September 27, 2021; date of
current version June 23, 2022. This work was supported in part by
the National Key Research and Development Program of China under
Grant 2020YFB1805502; in part by the National Natural Science Foundation
of China under Grant 61922017, Grant 62032003, and Grant 61921003; in
part by the Key Science and Technology Research Project of Henan Province
under Grant 202102210146, Grant 202102210163, and Grant 202102210152;
in part by the Key Science and Technology Research Project of Anyang City
under Grant 2021C01GX017; and in part by the Research and Cultivation
Fund Project of Anyang Normal University under Grant AYNUKPY-2019-24.
(Corresponding author: Shangguang Wang.)

Jialei Liu is with the School of Software Engineering, Anyang Normal
University, Anyang 454000, Henan, China (e-mail: jialeiliu@aynu.edu.cn).

Ao Zhou and Shangguang Wang are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: aozhou@bupt.edu.cn;
sgwang@bupt.edu.cn).

Chunhong Liu is with the School of Computer and Information
Engineering, Henan Normal University, Xinxiang 453003, Henan, China
(e-mail: lch@htu.edu.cn).

Tongguang Zhang is with the School of 3-D Printing, Xinxiang University,
Xinxiang 453003, Henan, China (e-mail: jsjoscpu@163.com).

Lianyong Qi is with the School of Information Science and Engineering,
Qufu Normal University, Jining 273100, Shandong, China (e-mail:
lianyongqi@qfnu.edu.cn).

Rajkumar Buyya is with the Cloud Computing and Distributed
Systems Laboratory, School of Computing and Information Systems,
The University of Melbourne, Melbourne, VIC 3010, Australia (e-mail:
rbuyya@unimelb.edu.au).

Digital Object Identifier 10.1109/JIOT.2021.3115807

approaches. Meanwhile, we also make a comparative analysis
of our proposed approaches.

Index Terms—Bandwidth consumption, Internet of Things
(IoT) application, mobile edge computing, reliability level, task
offloading.

I. INTRODUCTION

W ITH the rapid progress in software and hardware
technologies, the number of Internet of Things (IoT)

devices, such as wearable devices, Raspberry Pi, and smart-
phones has increased dramatically and have become ubiquitous
in our modern digital society. It is predicted that approximately
29 billion IoT devices will be connected to the Internet by
2022 [1]. Subsequently, these IoT devices generate massive
latency-sensitive IoT applications, which have stringent delay
requirements (e.g., real-time responses on a timescale of 10 ms
or even 1 ms [2]) and require a large number of processing and
bandwidth resources [3], [4]. However, since these IoT devices
often have limited resources, such as processing capacity,
bandwidth, and storage space, some complex IoT applications
(e.g., face recognition, augmented reality, and autonomous
driving) cannot be handled locally and effectively [5]–[7].

To alleviate the resource capacity limitation of these IoT
devices, some latency-sensitive IoT applications are typi-
cally split into multiple collaborative tasks and offloaded
onto edge clouds for processing by containers or virtual
machines (VMs) with heterogeneous failure rates and recovery
rates [8], [9]. If these containers or VMs are not on the same
edge servers, the communication between these collaborative
tasks will consume certain bandwidth resources and communi-
cation time [10]–[12]. Moreover, since mobile edge computing
enhances other Quality of Service (QoS) properties (e.g., low
latency) at the expense of reliability [13], which represents the
likelihood of a network component operating normally without
failure within a specific time [14], a mobile edge computing
environment is susceptible to all kinds of failures [15]. These
failures can influence the delivery of data and the process-
ing of requests, and then result in an increase in data loss
and network delays. Presently, the major causes of reliabil-
ity decreases are failures or errors of containers or VMs in
cloud/mobile edge computing environments [16]. Therefore,
frequent interruptions of IoT applications are caused by low

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9537-9740
https://orcid.org/0000-0001-5743-9418
https://orcid.org/0000-0001-7364-0568
https://orcid.org/0000-0001-8402-1279
https://orcid.org/0000-0001-7746-4901
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-9754-6496


LIU et al.: RELIABILITY-ENHANCED TASK OFFLOADING IN MOBILE EDGE COMPUTING ENVIRONMENTS 10383

Fig. 1. Reliability-enhanced mobile edge computing system.

reliability, and then lead to a significant loss of business rev-
enue. For example, 54 of the top 100 online retailer services
are reportedly affected by a four-hour outage of AWS in 2017,
which caused U.S. $150 million in losses [17]. To make mat-
ters worse, the current services have less tolerance for outages:
the average outage cost of a data center has increased sig-
nificantly (i.e., U.S. $505,502 in 2010 to U.S. $740,357 in
2016) [18].

Compared with general distributed systems (e.g., cloud
computing), the mobile edge computing environment typi-
cally has limited processor resources (e.g., processing and
bandwidth), and each IoT application cooperatively pro-
cessed by multiple containers or VMs has a stringent delay
requirement. To enhance the reliability of a mobile edge
computing environment, failure recovery techniques, such as
rollforward/rollback or checkpointing widely applied to cloud
computing systems cannot be efficiently or quite effectively
used in the mobile edge computing environment. This out-
come is observed because these techniques usually consume
plenty of processor resources to maintain a degree of reli-
ability [17], [19], [20]. Meanwhile, the total time that the
container or VM processes each task of the IoT application
includes not only the processing time but also the recovery
time after failures, if these recovery techniques are applied
to mobile edge computing, they will prolong the comple-
tion time of the IoT application. Since latency-sensitive IoT
applications usually have a certain deadline, the application
completion time beyond this deadline degrades the QoS of
users. Furthermore, the reliability of the IoT application is
also reduced [14]. Therefore, to decrease the resource con-
sumption of the edge clouds and enhance the reliability of the
IoT application, obtaining a reliability-enhanced task offload-
ing scheme under the finite resource capacities of edge clouds
becomes the most significant challenge. Considering that the
tradeoff between bandwidth consumption and reliability has
not yet been studied, this article focuses on it.

Containers or VMs consume certain bandwidth resources
to transfer the data from the sending tasks while the collabo-
rative tasks are being processed [21]. Since each edge cloud
consists of multiple edge servers and base station, and these
edge servers often correspond to the base station, which con-
nects with other base stations via fiber optic cables (see Figs. 1
and 2) [22], the bandwidth between collaborative tasks is
mainly limited by the bandwidth capacity of the edge servers.
That is, as the bandwidth between one pair of collaborative

Fig. 2. Full mesh topology of edge clouds.

tasks increases, although their communication time decreases,
the bandwidth allocated by other tasks on the edge servers is
reduced under the condition that the bandwidth of each edge
server is fixed, and then the communication time of other col-
laborative tasks may be increased. Moreover, container or VM
failures may prolong the application completion time, includ-
ing the communication time, the task processing time, the task
processing delay, and the recovery time, and then reduce the
reliability of IoT applications [14]. Therefore, there is a contra-
diction between reliability and bandwidth consumption when
dealing with a batch of IoT applications, and how to deal with
this contradiction well is still unknown.

To simultaneously maximize the reliability and minimize
the bandwidth consumption of IoT applications, we pro-
pose two approaches [i.e., reliability-enhanced task offloading
approach (RETO) and differential evolution (DE) [23] based
task offloading approach (DETO)] to optimize task offloading
schemes in terms of reliability level and bandwidth con-
sumption. The main idea is to first establish a multiobjective
optimization problem based on the bandwidth consumption
model and reliability model, and then transform it into a
single-objective optimization problem, which is solved by our
proposed approaches.

The key contributions of our research are as follows.
1) We introduce two novel models: one is to formulate the

bandwidth consumption while processing a batch of IoT
applications; the other is to formulate the reliability level
of task offloading schemes based on the Poisson process.

2) Based on the above models, we first formulate a
multiobjective optimization problem to simultaneously
maximize the reliability and minimize the bandwidth
consumption of IoT applications. Then, we transform
it into a single-objective optimization problem. Finally,
we propose RETO and DETO to minimize the joint
optimization value.

3) We establish a mobile edge computing environment,
and conduct simulation experiments to comprehen-
sively evaluate the effectiveness and efficiency of our
proposed approaches. When compared with other related
approaches, our proposed approaches can obtain better
performance.

The remainder of the article is organized as follows. The
related work is introduced in Section II; our system model is
defined in Section III; the problem formulation is presented
based on the above models in Section IV; the technical details
of the problem solution are introduced in Section V; the

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



10384 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

TABLE I
COMPARISON OF DIFFERENT TASK OFFLOADING SCHEMES

evaluation experiments are conducted in Section VI. Finally,
the conclusions along with future work are presented in
Section VII.

II. RELATED WORK

Several works have focused on task offloading of
IoT applications—key ones are shown in Table I.
Aral and Brandic [24] proposed a Bayesian network
model based on QoS-related parameters to estimate the
availability level of VMs in edge infrastructure, and to avoid
the deterioration response time limit that is critical to edge
applications. Soualhia et al. [25] proposed a framework
for detecting and predicting all faults in the edge cloud
at the infrastructure level via statistical techniques and
supervised machine learning, which can detect and predict
some faults online in a timely manner. Maia et al. [26] jointly
studied the vertical and horizontal load distribution and
location of scalable IoT services to minimize potential QoS
violations on account of the limitation of edge computing
resources. Meanwhile, they investigated how to deploy
replicas of applications, and proposed a genetic algorithm
that minimizes not only deadlines for response time, but
also other potentially conflicting goals, such as operational
cost and unavailability [27]. Zhao et al. [28] proposed a
distributed redundant scheduling algorithm to solve the avail-
ability problem of microservice-based applications caused
by container failures. Although these studies improved the
availability level of the applications in different ways, they
did not solve the reliability problem by considering the
application completion time. For this purpose, Liu et al. [29]
introduced an efficient task scheduling algorithm to mini-
mize the average completion time of multiple applications.
This algorithm ensured the completion time constraint of
applications and processing dependency requirements of
tasks by prioritization of multiple applications and tasks.
Zhao and Liu [30] investigated in detail the optimal deploy-
ment of VM replicas supporting multiple applications to

minimize the average response time and total cost for service
provision. Goudarzi et al. [31] presented a new application
allocation approach based on the memetic algorithm to
minimize the completion time and power consumption of
IoT applications via a weighted cost model. Liu et al. [32]
introduced a new approximation algorithm to effectively solve
the problem of dependent task allocation and scheduling
with on-demand function configuration on edge servers, to
minimize the application completion time. However, they did
not consider the effect of VM failures on the application
completion time, or the contradictory relationship between
the bandwidth consumption and the application completion
time. Yao and Ansari [33] proposed an efficient algorithm to
achieve a balance between maximizing the service reliability
and minimizing the rental cost of VMs for fog resource
provisioning in IoT networks. Yousefi et al. [34] transformed
the task scheduling problem into a mixed-integer nonlinear
optimization problem and proposed a greedy algorithm to
minimize the number of SLA violations. However, the above
two studies only studied the task scheduling of applications,
and did not consider the communication relationship between
these tasks and the impact on the application completion
time.

Moreover, Hu et al. [35] proposed a near-optimal service
allocation strategy that meets the constraints of edge server
resources and bandwidth to find the tradeoff between aver-
age network delay and load balancing. Farhadi et al. [36]
introduced a two-time-scale framework to jointly optimize
service deployment and request scheduling within the con-
straints of storage, communication, computation, and budget,
and then adapt over time to serve time-varying demands
under the consideration of system stability and operation cost.
Wu et al. [37] formulated the hybrid task deployment problem
as a multiobjective optimization problem, and then introduced
an effective and efficient offloading framework with intelligent
decision-making capabilities to jointly minimize the system
utility and the bandwidth consumption for each IoT device.
However, the above three studies did not consider the effect

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: RELIABILITY-ENHANCED TASK OFFLOADING IN MOBILE EDGE COMPUTING ENVIRONMENTS 10385

of different task or service deployment schemes on the appli-
cation completion time and bandwidth consumption of edge
clouds.

Considering the joint optimization of the applica-
tion completion time and the bandwidth consumption,
Zhu and Huang [8] presented a cost model considering inter-
host network performance and CPU/memory overuse to track
the impact of changing the deployment strategy of mobile
edge applications on the availability and interhost network
bandwidth cost. Meng et al. [38] jointly considered the man-
agement of network bandwidth and computing resources to
satisfy the maximum number of deadlines, and then proposed
an online algorithm to greedily schedule newly arrived tasks
to meet the new deadlines. However, the above two studies
did not study the effects of communication between collabo-
rative tasks on the bandwidth consumption of the edge clouds
and the application completion time, and thus on the reliability
level.

In an analysis of the available literatures, we have found
that no recent studies have focused on the collaborative task
offloading of IoT applications under the consideration of con-
tainer or VM failures and the bandwidth consumption between
these collaborative tasks. In this article, we assume that the col-
laborative tasks of IoT applications are offloaded onto multiple
heterogeneous containers or VMs with heterogeneous failure
rates and recovery rates. The selection of different contain-
ers or VMs results in different processing times and failover
times, on the other hand, different edge servers accommodate
these containers or VMs, which consume different band-
width resources, thus resulting in different communication
times. Furthermore, the application completion time is greatly
affected, and then affect the reliability level of these IoT appli-
cations. Therefore, we propose two near-optimal approaches
to simultaneously maximize the reliability level and minimize
the bandwidth consumption of IoT applications.

III. SYSTEM MODEL

We propose a reliability-aware mobile edge computing
system model, as shown in Fig. 1. This system includes
multiple edge clouds (ECs) to provide IoT services by an
IoT system operator. These edge clouds are interconnected
through a fiber backhaul network using a full mesh topol-
ogy [22], [39], as shown in Fig. 2. Each edge cloud owns a
certain number of heterogeneous edge servers and is deployed
near IoT devices (e.g., smart cars, iPads, wearable devices,
Raspberry Pi, smartphones, etc.) [40], [41]. Each edge server
accommodates a certain number of heterogeneous containers
(Cs) or VMs. Each container or VM has a certain failure
rate and recovery rate. Each IoT device produces a latency-
sensitive IoT application at some point. Each IoT application
consists of multiple collaborative tasks (Ts) and is modeled as
a directed acyclic graph, as shown in Fig. 3. There are depen-
dencies between these tasks (e.g., T1,1, T1,2, and T1,3, or T2,1,
T2,2, T2,3, T2,4, T2,5, T2,6, T2,7) in each IoT application. For
instance, T1,3 can only be processed when T1,1 and T1,2 com-
plete and send their results to T1,3. The gray tasks (e.g., T1,1,
T1,2, T2,1, T2,2, and T2,3) represent the starting tasks of the

Fig. 3. Example of the directed acyclic graph of IoT applications.

IoT applications, and the arrows represent the dependencies
between the tasks. When a container or VM fails (e.g., VM1),
the task on it fails to execute, and then cause the corresponding
IoT application to fail. Since this article focuses on the task
offloading of latency-sensitive IoT applications, all IoT devices
can access and completely offload all tasks of these latency-
sensitive IoT applications to multiple edge clouds instead of
the remote cloud, and hand over to the edge servers for pro-
cessing. Please note that each container or VM deals with only
an indivisible task.

In Fig. 1, P heterogeneous edge servers are randomly pre-
deployed to H edge clouds of the reliability-aware mobile
edge computing system. Next, M denotes the number of het-
erogonous containers or VMs, which are indexed by the set
Z = {1, 2, . . . , M} and randomly assigned to these edge
servers. Since containers or VMs have similar configuration
information, and this article focuses on their tasks, how to dis-
tinguish between containers and VMs is our future research
content. Container or VM j has a certain processing capacity
cj in units of instructions per second, bandwidth bwj in units
of Mb per second, memory capacity Lj in units of the number
of instructions, failure rate λj, and recovery rate uj. The IoT
devices connect to this system and generate latency-sensitive
IoT applications in arbitrary order and time. N IoT applica-
tions indexed by the set I = {1, 2, . . . , N} are generated at
some point. The IoT application i has deadline requirement
Di in units of seconds and is split into |Qi| tasks, and task
q ∈ Qi has a certain instruction length liq. When these tasks
are offloaded to these edge clouds, the state of all containers
or VMs will be analyzed to determine which tasks should be
assigned to which containers or VMs. Meanwhile, the contain-
ers or VMs that are not assigned tasks can be shut down. As
containers or VMs with higher failure rates may fail during
task processing, and containers or VMs in the same cluster
may be deployed in different edge servers, these reasons both
affect the application completion time, bandwidth consump-
tion, and reliability level of IoT applications. Therefore, it is
critical to design a reliability-enhanced task offloading scheme
for these IoT applications. For ease of reference, we show the
key notations in this article, as shown in Table II.

A. Transmission Delay Model

The IoT devices and edge clouds exploit orthogonal
frequency division multiple access to realize the wireless com-
munication between them [42]. The transmission delay of

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



10386 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

TABLE II
KEY NOTATIONS

input data di of IoT application i is denoted by tsend
i . The trans-

mission power of IoT device i is denoted by pi. The channel
gain between IoT device i and edge cloud h is denoted by gh

i .
The data transmission rate of the link between IoT device i
and edge cloud h is denoted by sh

i which can be computed in
the following:

sh
i = W log

(
1 + pigh

i

N0

)
(1)

where W and N0 represent the bandwidth of the link between
IoT device i and edge cloud h and the noise power, respec-
tively. Thus, the transmission delay (i.e., tsend

i ) of IoT device
i for offloading its IoT application i with data size di can be
computed in the following:

tsend
i = di

sh
i

. (2)

B. Bandwidth Consumption Model

When IoT applications are generated by IoT devices, each
IoT application will be split into multiple collaborative tasks.
All or part of these tasks will be offloaded to the edge
clouds, and delivered multiple containers or VMs for process-
ing. Considering the communication between the containers
or VMs in the same cluster, the bandwidth resources and
time required by the cluster to process an IoT application are
directly related to the location of the containers or VMs in the
edge clouds. This outcome is true because if the containers or

VMs in the same cluster are on the same edge server, the com-
munication between the containers or VMs does not consume
bandwidth resources and time; conversely, it consumes a cer-
tain amount of bandwidth resources and time. Therefore, the
total bandwidth resources consumed by the edge servers after
processing IoT application i can be expressed in the following:

Ci =
|Qi|∑
q=1

H∑
h=1

|Ph|∑
p=1

|Mp|∑
m=1

⎛
⎝xiqm ·

∑
r∈Z,r/∈Mp

biqmr · bwm

⎞
⎠ (3)

where Ph denotes the set of the edge servers owned by the hth
edge cloud; Mp denotes the set of the containers or VMs on
the pth edge server; the binary variable xiqm denotes whether
the qth task is deployed to the mth container or VM, xiqm = 1
if affirmative, otherwise xiqm = 0; the binary variable biqmr

denotes whether the task q being processed by the mth con-
tainer or VM is a sender and the same cluster with the other
task being processed by the rth container or VM, biqmr = 1 if
affirmative, otherwise biqmr = 0. Note that, the rth container or
VM is not on the same edge server as the mth container or VM.
bwm denotes the bandwidth from the mth container or VM to
the rth container or VM, which is specified as a random value
in a certain range.

C. Reliability Model

Not only are there multiple failures in wireless channels,
edge servers, mobile devices, and the links connecting edge
servers of mobile edge computing systems, but also there are
also containers or VMs that may fail when a container or VM
is processing a task. Therefore, we mainly introduce the impact
of container or VM failures on the reliability of such systems
in this article. To better study the impact of container or VM
failures on the reliability level of IoT applications, these fail-
ures are treated as recoverable [9]. That is, the failed container
or VM resumes the task processing after a period of time (i.e.,
recovery time). Considering that the virtualization technology
has an isolation nature, all container or VM failures are con-
sidered to be independent of each other [43]. Moreover, the
processing time taken by container or VM j to complete task
q of IoT application i without failure is tiqj = liq/cj. During
the time interval (0, tiqj], failures occur and are assumed to be
a Poisson process with failure rate parameter λj [9], and the
total number of failures in the container or VM j is denoted
by Nj(tiqj).Therefore, the probability of Nj(tiqj) = k can be
computed by formulation (4) during the time interval (0, tiqj]

Pr
{
Nj
(
tiqj
) = k

} =
(
λjtiqj

)k
k!

e−λjtiqj , k ≥ 0. (4)

The mean of Nj(tiqj) can be computed in the following:

E
[
Nj
(
tiqj
)] = λjtiqj. (5)

The recovery time Rjk(tiqj) of the kth failure at container
or VM j is assumed to be an exponentially distributed ran-
dom variable with recovery rate parameter uj during the time
interval (0, tiqj] [9], as shown in formulation (6). Thus, the
total recovery time Rj(tiqj) at the jth container or VM can be
computed by formulation (7) during the time interval (0, tiqj].

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: RELIABILITY-ENHANCED TASK OFFLOADING IN MOBILE EDGE COMPUTING ENVIRONMENTS 10387

As the total recovery time Rj(tiqj) is a compound Poisson pro-
cess, its mean can be computed by formulation (8) during the
time interval (0, tiqj]

Rjk
(
tiqj
) = uj · e−uj·tiqj (6)

Rj
(
tiqj
) =

Nj(tiqj)∑
k=1

Rjk
(
tiqj
)

(7)

E
[
Rj
(
tiqj
)] = E

[
Nj
(
tiqj
)] · E

[
Rjk
(
tiqj
)] = λjtiqj

uj
. (8)

The average total processing time Tiqj of the qth task of IoT
application i on the jth container or VM consists of the task
processing time tiqj, the task processing delay diqj, and failure
recovery time E[Rj(tiqj)], and its value can be computed in the
following:

Tiqj = tiqj + diqj + λjtiqj

uj
∀i ∈ I, j ∈ Z, q ∈ Qi. (9)

Moreover, if part or all of the containers or VMs in the
same cluster are not on the same edge server, these containers
or VMs with communication relationships need to take time
to transfer data. Therefore, the completion time (i.e., Ti) of
IoT application i consists of the task processing time, the task
processing delay, the failure recovery time, and the task com-
munication time. Meanwhile, the directed acyclic graph of IoT
application i consists of multiple execution routes (i.e., W).
These routes not only have different execution times, but also
the execution route with the longest execution time determines
the completion time of the application, as shown in formula-
tion (10). In view of the small data size of the IoT application
result, the time it takes to transmit the data from the edge
cloud back to the IoT device is negligible

Ti = tsend
i + max

v∈W

⎛
⎝ |v|∑

q=1

⎛
⎝Tiqj +

|v|∑
z=1

(
βiqz · ρiqz · dataiq

bwj

)⎞⎠
⎞
⎠

j ∈ Z (10)

where W denotes the set of execution routes, such as {T2,1,
T2,4, T2,7}, {T2,1, T2,5, T2,7}, {T2,2, T2,5, T2,7}, {T2,2, T2,6,
T2,7}, and {T2,3, T2,6, T2,7} from the top-level tasks (e.g., T2,1,
T2,2, T2,3) to the bottom-level tasks (e.g., T2,7); v denotes the
set of tasks for an execution route (e.g., {T2,1, T2,4, and T2,7})
of the set W; the binary variable βiqz denotes whether the task
q and the task z of IoT application i are on the same edge
server, βiqz = 0 if affirmative, otherwise βiqz = 1; the binary
variable ρiqz denotes whether the task q sends data to the task
z, ρiqz = 1 if affirmative, otherwise ρiqz = 0; dataiq denotes the
amount of data sent by the task q; bwj denotes the bandwidth
of the container or VM j where task q resides.

In the process of the IoT system operator providing services
to mobile users, the reliability level reflects how the system
operates and hence how successfully a requested service can
be provided. This article mainly studies how the failures and
recoveries of the containers or VMs affect the total processing
time of IoT applications (i.e., QoS). If the total processing time
of IoT application i exceeds its deadline requirement Di, QoS
is considered to have been violated. Therefore, the probability

of QoS violations can be characterized by the ratio of the
number of unsatisfied IoT applications to the total number
of IoT applications during a given time [14]. Furthermore, the
reliability level of the IoT applications can be computed by the
probability of QoS violations, as shown in formulation (11).
U represents the total number of IoT applications with QoS
violations and can be computed by the following:

Reliability = 1 − U

N
(11)

U =
N∑

i=1

F(Ti − Di) (12)

F(Ti − Di) =
{

1, Ti − Di > 0
0, Ti − Di ≤ 0

(13)

where the difference value (Ti − Di) represents whether the
QoS requirement of IoT application i is violated, F(Ti −
Di) = 1 if (Ti − Di) > 0, otherwise F(Ti − Di) = 0.

IV. PROBLEM FORMULATION

In our mobile edge computing system, the edge clouds are
interconnected via fiber optic cables, and the communication
between the edge clouds is considered to be load independent.
Therefore, if the containers or VMs handling the collabora-
tive tasks of IoT application i are not deployed in the same
edge servers, the communication time between these contain-
ers or VMs depends mostly on the bandwidth and data size
of the containers or VMs in the sending state. Meanwhile,
as containers or VMs have certain failure rates and recov-
ery rates, the processing time of IoT applications is further
increased, and then the reliability level of IoT applications
is also greatly affected. Although the communication latency
can be reduced by increasing the communication bandwidth
between tasks, the edge servers have fixed bandwidth. That
is, if the bandwidth between the collaborative tasks of an IoT
application is increased, the bandwidth of other sending tasks
on the same edge server is reduced, and then the reliability
level of the IoT applications in which other tasks reside is also
reduced. Therefore, we need to find a tradeoff to minimize the
bandwidth consumption of N IoT applications while maximiz-
ing the reliability level of these IoT applications during task
offloading under the finite resource capacities of edge clouds,
which can be denoted as follows:

F0 :

{
min,

∑N
i=1 Ci

max, 1 − 1
N

∑N
i=1 F(Ti − Di)

(14)

s.t. ∑
r∈Z

xiqr = 1, q ∈ Qi, i ∈ I (15)

N∑
i=1

|Qi|∑
q=1

liqxiqr ≤ Lr, r ∈ Z (16)

where formulation (15) denotes that each task can only be
deployed to one container or VM; since the memory capac-
ity of the container or VM is in units of the number of
instructions, formulation (16) is exploited to represent that the
memory capacity of each container or VM is greater than or

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



10388 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

equal to the sum of the memory required for the deployed
tasks.

Since F(·) is the unit-step function, the optimization
problem F0 is not only nonlinear, but also a variant of the typ-
ical bin-packing problem with NP-hardness [44]. Therefore,
a Boolean variable Bi is defined and assigned a value of
F(Ti − Di) ∀i ∈ I.Bi = F(Ti − Di) can also be denoted as
formulation (17) [33]. � denotes a very large positive num-
ber. Furthermore, formulation (17) can be transformed into
formulation (18) by adding a small positive number ε, which
is regarded as the tolerance of the QoS violation in units of sec-
onds. That is, the determination of QoS violation is a transition
process and not a momentary process

− � · (1 − Bi) < Ti − Di ≤ � · Bi ∀i ∈ I (17)

− � · (1 − Bi) + ε ≤ Ti − Di ≤ � · Bi ∀i ∈ I. (18)

Then, the optimization problem F0 can be transformed
into another form of multiobjective optimization problem, as
shown in the formulation (19). Please note that the formula-
tion (14) is nonlinear because it includes the unit-step function
F(Ti − Di) ∀i ∈ I and then must be converted into the linear
formulation (19) by the Boolean variable Bi

F1 :

{
min,

∑N
i=1 Ci

max, 1 − 1
N

∑N
i=1 Bi

(19)

s.t. (15), (16), (18)

Bi ∈ {0, 1} ∀i ∈ I. (20)

However, as the optimization problem F1 is still the
multiobjective optimization problem, a widely used weighted
sum is exploited to convert it into a single-objective
optimization problem by adding weights into the objectives,
which denote the relative importance of the single objec-
tive [45]. The single-objective optimization problem F2 can
be denoted as follow:

F2 : min θ1 ·
N∑

i=1

Ci + θ2

N

N∑
i=1

Bi − θ2

s.t. (15), (16), (18), (20) (21)

where θ1 and θ2 are both positive tunable factors (θ1+θ2 = 1).
Considering that the single-objective optimization problem

F2 is still an NP-hard problem, it is an urgent need to adopt
an approach (e.g., RETO or DETO) to obtain a near-optimal
solution of the problem.

V. PROBLEM SOLUTION

In this section, we propose two near-optimal approaches
(i.e., RETO and DETO) to solve the above single-objective
optimization problem F2 and build a mobile edge computing
system (Fig. 1) to verify the effectiveness and efficiency of
these two approaches. In this system, all containers or VMs
are randomly assigned to the edge servers, and each IoT appli-
cation is split into multiple collaborative tasks (see Fig. 3)
and offloaded to these containers or VMs via our proposed
approaches. Since the single-objective optimization problem
F2 is an NP-hard problem, we exploit RETO and DETO to

obtain near-optimal solutions. When considering lower com-
plexity, we consider using RETO to obtain the acceptable
solutions; when further approximating the optimal solution,
we can consider using DETO to obtain the acceptable solu-
tions. In the next section, we introduce the implementation
schemes of these two approaches.

A. RETO Approach

When these collaborative tasks of IoT applications are
offloaded and assigned to containers or VMs, there can
be two kinds of task offloading schemes according to the
multiobjective optimization problem F0 and the directed
acyclic graph structure of the IoT application (see Fig. 3).
One way is that these tasks of the directed acyclic graph are
offloaded from the bottom to the top in turn. Another way is
that these tasks of the directed acyclic graph are offloaded
from the top to the bottom in turn. Through experimental
comparison, the effects of the two offloading schemes are not
significantly different, so the second offloading approach (i.e.,
RETO) will be introduced next.

The RETO approach will need to exploit five phases to
obtain the near-optimal offloading scheme. First, we initialize
all parameters and conduct an IoT application priority queue
such as {T1, T2} according to the ascending order of the IoT
application deadline. Second, we determine the task hierar-
chy for offloading in a top-down order of the directed acyclic
graph, i.e., in addition to the top-level tasks (e.g., T1,1, T1,2,
T2,1, T2,2, and T2,3) being the sending tasks and the bottom-
level tasks (e.g., T1,3 and T2,7) being the receiving tasks, the
tasks in the middle level (e.g., T2,4, T2,5, and T2,6) can both
send and receive results at some point. Third, the top-level
tasks are sorted in descending order of instruction length and
select the containers or VMs to be deployed according to the
formulation minj∈ � (Tiqj + α · bwj), i ∈ I.

After the above steps are completed, both the top-level
tasks of the directed acyclic graph are offloaded onto the edge
servers. Next, other tasks of the directed acyclic graph are
offloaded to the edge servers. Once the tasks of the previous
level are completed, these tasks are then seen as sending tasks
and sending their results to the lower-level tasks. Fourth, the
tasks of the second level are offloaded as receiving tasks in
descending order of their instruction length. For the second-
level task q of IoT application i, its serving container or VM
first selects a container or VM on the same edge server as the
containers or VMs where the sending tasks (e.g., T2,1, T2,2,
and T2,3) reside. If no such containers or VMs exist, Riqj is
first obtained by formulation (23), which represents the exe-
cution routes with the longest execution time for container or
VM j that can accommodate task q; the most appropriate con-
tainer or VM for task q is second selected via formulation
(22), which can obtain the minimum value ωq

ωq = min
j∈ �

(
Riqj

)
(22)

s.t.

Riqj = max

(
Tiqj + dataq′

bwj′
+ α · bwj

)
, i ∈ I, q ∈ Qi, j ∈ �

(23)

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: RELIABILITY-ENHANCED TASK OFFLOADING IN MOBILE EDGE COMPUTING ENVIRONMENTS 10389

Algorithm 1 Reliability-Enhanced Task Offloading Approach
Input: N, H, M, P, α, θ1, θ2,directed acyclic graphs of IoT

applications.
Output: The near-optimal solution.

1: Initialize all parameters
2: Sort N IoT applications in ascending order via their

deadline
3: for i =1 to N do
4: Obtain the number of structure levels of the IoT

application i Ai

5: Divide Qi into Ai groups, Gl, l ∈ {1, 2, ..., Ai}
6: for l=1 to Ai do
7: Sort Gl in descending order via instruction length
8: for q=1 to |Gl| do
9: if the q-th task of Gl is the sending task then

10: Find the C or VM via

min
j∈ �

(Tiqj + α · bwj), i ∈ I

11: end if
12: if the q-th task of Gl is the receiving task then
13: Find the C or VM via formulation (22)
14: end if
15: end for
16: end for
17: end for
18: for i =1 to N do
19: Obtain the set of execution routes W
20: for γ =1 to |W| do
21: Obtain the Ti via formulation (10)
22: end for
23: Compute

∑N
i=1 Ti

24: Compute the reliability level via formulation (11)
25: Compute Ci via formulation (3)
26: end for
27: return the near-optimal solution

where α is a small positive tunable factor; � represents a set
of containers or VMs accommodating the offloading task q;
bwj′ represents the bandwidth of the container or VM j′, which
accommodates the sending task q′ of task q; dataq′ represents
the amount of data sent by task q′ to task q. That is, the total
processing time Tiqj is computed according to the receiving
tasks of each task of the previous level, the transmission delay
is computed according to the task of the previous level.

Finally, we sort the receiving tasks of each task of the sub-
sequent level in descending order of instruction length and
offload these receiving tasks to the edge servers according to
the processing method in the fourth step.

Based on the above, these collaborative tasks of N IoT
applications are offloaded onto the edge servers while simul-
taneously enhancing the reliability level of these IoT appli-
cations and reducing the bandwidth consumption of these
IoT applications. The implementation scheme of the RETO
is presented in Algorithm 1. Line 2 sorts N IoT applica-
tions in ascending order via their deadlines to first offload
the time-critical IoT applications. The loop in lines 3–17

obtains the near-optimal offloading scheme of all tasks of N
IoT applications. Lines 4 and 5 obtain the number of struc-
ture levels Ai of each IoT application, and divide the task set
Qi into Ai groups Gl, l ∈ {1, 2, . . . , Ai}. The loop in lines
6–16 selects the container or VM j for the qth task of the
set Gl. Line 7 sorts tasks of the set Gl in descending order
via the instruction length. Lines 9–11 select the containers
or VMs for the sending tasks of the set Gl according to the
formulation, i.e., minj∈ � (Tiqj + α · bwj), i ∈ I. Lines 12–14
select the containers or VMs for the receiving tasks of the
set Gl, l ∈ {1, 2, . . . , Ai} according to formulation (22). The
loop in lines 18–26 obtains the reliability level, bandwidth
consumption, and total completion time of N IoT applications.

The complexity of Algorithm 1 is mainly determined by two
parts, i.e., lines 3–17 and lines 18–26. As previously known,
the number of IoT applications is set to N. Therefore, the
first part has the time complexity O(N ∗ Ai ∗ |Gl|) to obtain
the near-optimal task allocation in lines 3–17. That is, the
time complexity of this part increases with the number of IoT
applications, levels, and tasks per level. The second part has
the time complexity O(N ∗ |W|) to compute the processing
results in lines 18–26. That is, the time complexity of this part
increases with the number of IoT applications and execution
routes. Finally, the total time complexity of Algorithm 1 can
be expressed as O(N ∗ Ai ∗ |Gl|).

B. DETO Approach

To solve Chebyshev polynomials, a heuristic random search
algorithm based on population differences was proposed by
Storn and Price in 1997 [23]. Different from other evolutionary
algorithms, the DE algorithm modifies the internal represen-
tation of an individual by an arithmetic operator, and then
obtains a difference. Next, if the fitness of the newly gener-
ated difference vector is better than the current vector by the
evaluation, it will be exploited to replace the current vector.

Presently, the DE algorithm has produced a variety of
optimization strategies based on the number of disturbed indi-
viduals and the weighted different vectors [46]. To maintain
the diversity of the population, we exploit the DE/rand/1/bin
strategy to select the disturbed vectors. Therefore, three oper-
ators of variation, crossover, and selection can be defined
as described below [23]. For G iterations, a population con-
sists of an NP D-dimensional parameter vector xn,G =
(v1n,G, v2n,G, . . . , vDn,G), n = 1, 2, . . . , NP in which each
D-dimensional parameter vector denotes an individual with
D optimization parameters.

1) Variation Operator: This operator will generate a varia-
tion vector vn,G+1 = (v1n,G+1, v2n,G+1, . . . , vDn,G+1) for each
target vector xn,G

vn,G+1 = xr1,G + F · (xr2,G − xr3,G
)

(24)

where four randomly selected individuals are different from
each other, i.e., r1 
= r2 
= r3 
= n, and the number of param-
eter vectors in the cluster must be more than or equal to four;
a predefined scaling factor F ∈ [0, 1) is exploited to adjust
the scaling of the difference vector and control the search step
size.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



10390 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

2) Crossover Operator: This operator will generate a trial
vector un,G+1 = (u1n,G+1, u2n,G+1, . . . , uDn,G+1) by discrete
crossover between the target vector and the variation vector,
as shown in the following:

ugn,G+1 =
{

vdn,G+1, if (r ≤ CR) or d = drand
xdn,G, if (r > CR) or d 
= drand

(25)

where r represents the random value in the range [0, 1]; CR ∈
[0, 1] represents the predefined crossover probability; CR = 0
represents that the corresponding vector has no crossover; d
can be a natural number between 1 and D; drand is a given
random index from the range [1, D] to ensure that un,G+1 can
inherit at least a 1-D element from the variation vector vn,G+1.

3) Selection Operator: This operator greedily compares the
fitness f (∗) of the children and the corresponding parent, and
the better one is kept for the G + 1 generation, as shown in
the following:

xn,G+1 =
{

un,G+1, if
(
f
(
un,G+1

) ≤ f
(
xn,G

))
xn,G, otherwise.

(26)

To better solve the above joint optimization problem, the DE
algorithm with the above three operators needs to be improved
by adjusting the population size NP, the crossover probabil-
ity CR, and the scaling factor F. Since three strategies (i.e.,
constant, random, and adaptive) can be exploited to adjust the
controlling parameters F and CR, these strategies can have a
large impact on the diversity, convergence, and search space
of the algorithm [47]. Therefore, to prevent failure to achieve
local optima and a low convergence rate, adaptive strategies
for controlling parameters CR and F are exploited to improve
the convergence rate and diversity of the DE algorithm and
better solve the joint optimization problem.

The value of F is positively correlated with the variation
search range of the DE algorithm. The value of F decreases
with the execution of the algorithm to ensure the popula-
tion diversity and the protection of the optimal solution. In
the iterative process of the algorithm, the value of Fn of the
individual xn will be adjusted adaptively according to formu-
lation (27). Meanwhile, since the higher crossover probability
increases the probability that individuals with lower fitness
enter the next generation, the small crossover probability CR
can enhance the global search ability and population diversity.
In the iterative process of the algorithm, the value of CRn

of the individual xn will be adjusted adaptively according to
formulation (28)

Fn = F0 · 5λ and λ = e
1− fmax−fmin

fn−fmin (27)

CRn =
{

CRmin + (CRmax − CRmin) · fn−fmin
fmax−fmin

, if fn < f

CRmin, if fn ≥ f

(28)

where fmin denotes the fitness of the optimal individual in
the current iteration population; fmax denotes the fitness of
the worst individual in the current iteration population; f and
fn represent the average fitness of the current population and
the individual xn, respectively; CRmax and CRmin denote the
maximum and minimum crossover probability, respectively;
and F0 denotes the initial scaling factor.

During the algorithm iteration, the crossover opera-
tor can also generate another trial vector wn,G+1 =
(w1n,G+1, w2n,G+1, . . . , wDn,G+1) to retain genetic information
according to formulation (29). Finally, the selection opera-
tor can select the optimal individual from the variation vector
vn,G+1, the trial vector wn,G+1, and the trial vector un,G+1
to further retain the genetic information of each iteration
according to formulation (30)

wgn,G+1 =
{

xdn,G+1, if (r ≤ CR) or d = drand
vdn,G, if (r > CR) or d 
= drand

(29)

xn,G+1 =

⎧⎪⎪⎨
⎪⎪⎩

un,G+1, if
(
f
(
un,G+1

) ≤ f
(
xn,G

))
vn,G+1, else if

(
f
(
vn,G+1

) ≤ f
(
xn,G

))
wn,G+1, else if

(
f
(
wn,G+1

) ≤ f
(
xn,G

))
xn,G, otherwise.

(30)

In the improved scheme of the DE algorithm, the total
number of all tasks in N IoT applications is taken as the chro-
mosome length. Each task is taken as a gene fragment, and the
genetic information of each gene fragment is the VM index
number. Furthermore, the DETO approach can be introduced
by applying the above-improved measures to the standard
DE algorithm, and solving the joint optimization problem via
formulation (21). The implementation details of the DETO
approach are shown in Algorithm 2.

As shown in Algorithm 2, the system parameters (e.g., the
number of edge clouds H, the number of edge servers P, the
number of containers or VMs M, the initial scaling factor
F0, the minimum crossover probability CRmin, the maximum
crossover probability CRmax, the population size NP, the max-
imum iteration times max G, the chromosome length D, etc.)
are first initialized in line 1. The initial population is randomly
produced in line 2. The variation operation is implemented
in lines 4–15, in which three different individuals are first
selected from the population and sorted from small to large
by their fitness. Then, the scaling factor of the current individ-
ual is calculated by formulation (27), and finally the variation
vector vn,G+1 is obtained by formulation (24). The crossover
operation is executed in lines 16–23, in which the crossover
probability CRn is computed by formulation (28) and the two
trial vectors un,G+1 and wn,G+1 are generated by formulations
(25) and (29). The selection operation is executed in lines
24–28, in which the optimal individual is selected from the
variation vector vn,G+1, the current individual vector xn,G, the
trial vector un,G+1 and wn,G+1, and then preserved for the next
iteration.

The complexity of Algorithm 2 is mainly determined by
three operations, i.e., variation operation, crossover operation,
and selection operation. As previously known, the population
size and the parameter dimension of the individual vector are
set to NP and D, respectively. Therefore, the variation oper-
ation in lines 4–15 has the time complexity O(NP ∗ D) to
traverse all individuals and parameter vectors of the popu-
lation; the crossover operation in lines 16–23 has the time
complexity O(NP ∗ D) to realize the crossover between indi-
viduals of the population; and the selection operation in lines
24–28 has the time complexity O(NP) to select the best indi-
vidual. Finally, the total time complexity of the algorithm can
be expressed as O(max G ∗ NP ∗ D) after max G iterations.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: RELIABILITY-ENHANCED TASK OFFLOADING IN MOBILE EDGE COMPUTING ENVIRONMENTS 10391

Algorithm 2 DE Based Task Offloading Approach
Input: The system parameters.
Output: The near-optimal solution.

1: Initialize the system parameters
2: Randomly generate NP D-dimensional parameter vectors
3: for G=1 to max G do
4: for n=1 to NP do
5: Compute the fitness of the worst individual and the
6: optimal individual,the average fitness and the fit-

ness
7: of individual xn

8: Select three different individuals xr1,G, xr2,G,
9: xr3,G from xn,G

10: Compute the scaling factor of current individual
11: by formulation (27)
12: for d=1 to D do
13: Generate variation vector via formulation (24)
14: end for
15: end for
16: for n=1 to NP do
17: Compute crossover probability of current individ-

ual
18: via formulation (28)
19: for d=1 to D do
20: Generate trial vectors un,G+1,wn,G+1
21: via formulations (25) and (29)
22: end for
23: end for
24: for n=1 to NP do
25: Select the optimal individual from the variation
26: vector vn,G+1, trial vectorwn,G+1, trial vector
27: un,G+1 by formulation (30)
28: end for
29: end for
30: return the near-optimal solution

VI. PERFORMANCE EVALUATION

Using the extended CloudSim simulator [48] and iFogSim
simulator [49], we created a reliability-aware mobile edge com-
puting simulation environment consisting of 50 edge clouds,
252 edge servers, and 400 VMs in a machine with Intel Core
i7-7500U@2.70 GHz and 8-GB memory. These edge clouds
are uniformly distributed in a 5G smart city network scenario
and interconnected with a full mesh topology [22]. In each edge
cloud, a base station is connected to other base stations via fiber
backhaul network; the number of edge servers interconnected
via a switch is a randomly selected value from the set [4,
6]; multiple IoT devices exploit wireless access networks to
communicate with the base station; these IoT devices generate
some IoT applications with different deadlines. The configura-
tion information for each edge server can be a randomly selected
value from the set {HP ProLiant G4, HP ProLiant G5}, i.e.,
HP ProLiant G4 owns 3720 MIPS, 10 GB of memory, 10 GB/s
of bandwidth, and 1 TB of external storage; HP ProLiant G5
owns 5320 MIPS, 10 GB of memory, 10 GB/s of bandwidth,
and 1 TB of external storage [50]. The processing capacity

TABLE III
EXPERIMENTAL PARAMETERS

and memory capacity for each VM can be a randomly selected
value from the set {500 MIPS and 0.6 GB, 1000 MIPS and 1.7
GB, 2000 MIPS and 3.75 GB, 2500 MIPS and 0.85 GB} [50].
The disk capacity and bandwidth requirement for each VM
are 1 GB and a randomly selected value from the set [10,
50] Mb/s, respectively. The initial population size NP and the
chromosome length D were set to 20 and 350, respectively.
The values of max G, CRmax, CRmin, and F0 are set to 100, 0.9,
0.1, and 0.2, respectively. The positive tunable factors α, θ1,
and θ2 are set to 0.0008, 0.00005, and 0.99995, respectively.
For ease of reference, we show the experimental parameters
in this article, as shown in Table III.

The foregoing parameter information is primarily used to
configure the environment in which tasks can be offloaded.
Next, we will set some parameters of the VMs for task
offloading according to the size of the VMs. The processing
capacity of each VM is a randomly selected value from the
set [0.5 × 106, 106] instructions per second [51]; the memory
capacity of each VM is a randomly selected value from the
set [2 × 107, 4 × 107] instructions; the failure rate of each
VM is a randomly selected value from the set [3.5%, 5%];
the recovery rate of each VM is a randomly selected value
from the set [1%, 3.5%]. When the IoT devices connect to the
edge cloud and generate 50 latency-sensitive IoT applications
in arbitrary order and time, each IoT application is modeled
as the three-level directed acyclic graph with seven tasks and
completely offloaded to the edge clouds.

The input data size of each IoT application is a ran-
domly selected value from the interval [100, 300] kB. The
deadline requirement of each IoT application is a randomly
selected value from the interval [60, 90] ms. The transmission
power of each IoT device is set to 100 mW. The channel
bandwidth between IoT devices and edge clouds is set to
5 MHz. The channel gain between IoT devices and edge
clouds is set to 20−4. The noise power of the system is set
to 10−10 mW. The length of each task is a randomly selected
value from the set [500, 5000] instructions [33]. If one task is
a sender, the amount of data it sends is a randomly selected
value from the set [1, 2] MB. The task processing delay of
each task in the IoT application is a randomly selected value
from the interval [2, 6] ms.

According to the above configuration information, the
performance of RETO and DETO is evaluated by comparing
it with the following baseline approaches.

1) Random Offloading (RO): Randomly select one VM to
accommodate each task of the IoT application from top

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



10392 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

Fig. 4. Impact of the number of base stations. (a) Impact on reliability level. (b) Impact on bandwidth consumption. (c) Impact on application completion
time.

Fig. 5. Impact of the number of VMs. (a) Impact on reliability level. (b) Impact on bandwidth consumption. (c) Impact on application completion time.

Fig. 6. Impact of the number of IoT applications. (a) Impact on reliability level. (b) Impact on bandwidth consumption. (c) Impact on application completion
time.

to bottom along its directed acyclic graph when multiple
VMs satisfy the constraints.

2) Bench: Select the VM with the satisfaction of the QoS
requirements and the minimum value of the formula-
tion minj∈ � (Tiqj + α · bwj), i ∈ I to accommodate
each task of the IoT application in descending order of
task instruction length when multiple VMs satisfy the
constraints [33].

Next, the performance of RETO and DETO is analyzed by
comparing them with RO and Bench in terms of the relia-
bility level, bandwidth consumption, application completion
time, and approach execution time while offloading and pro-
cessing 50 IoT applications. We also analyze the impact of
experimental parameters, including the number of base sta-
tions (as shown in Fig. 4), the number of VMs (as shown in
Fig. 5), the number of IoT applications (as shown in Fig. 6),
and the deadlines of IoT applications (as shown in Fig. 7)
on these performance indicators. Please note that we set the
positive tunable factors θ1 and θ2 as three different sets of

TABLE IV
IMPACT OF THE NUMBER OF BASE STATIONS ON APPROACH

EXECUTION TIME

values to study the influence of the DETO approach on the
optimization objectives under different values of θ1 and θ2
[i.e., DETO1 (0.00005 and 0.99995), DETO2 (0.99995 and
0.00005), DETO3 (0.5 and 0.5)].

A. Impact of the Number of Base Stations

As shown in Fig. 4 and Table IV, as the number of base
stations increased by step size 5 from 45 to 60, the reliabil-
ity level, bandwidth consumption, and application completion

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: RELIABILITY-ENHANCED TASK OFFLOADING IN MOBILE EDGE COMPUTING ENVIRONMENTS 10393

Fig. 7. Impact of the deadlines of IoT applications. (a) Impact on reliability level. (b) Impact on bandwidth consumption. (c) Impact on application completion
time.

TABLE V
IMPACT OF THE NUMBER OF VMS ON APPROACH EXECUTION TIME

time of each approach did not vary considerably. This out-
come is likely observed because although the increase in the
number of base stations increases the number of edge servers,
the number of VMs and IoT applications does not change,
and these VMs are still randomly assigned to these edge
servers. The reason why we list the execution time of each
approach is to show the time complexity of these approaches.
Meanwhile, since different machines have different approach
execution times, we do not have to go into their specific val-
ues. Because DETO is an intelligent optimization algorithm
and takes massive time to iterate, its approach execution time
has the maximum value of all approaches. Since the reliability
level and bandwidth consumption are not the same order of
magnitude and the positive tunable factors θ1 and θ2 deter-
mine the optimization emphasis, the optimization emphases
of DETO1, DETO2, and DETO3 are the reliability level,
bandwidth consumption, and bandwidth consumption, respec-
tively. Furthermore, DETO1 has the maximum reliability level
and the minimum application completion time; DETO2 and
DETO3 have similar and minimum bandwidth consumption.
Since DETO2 further optimizes bandwidth consumption than
DETO3, DETO2 has such a low reliability level, even lower
than the Bench approach. In addition to the DETO approach,
RETO has the maximum reliability level, the minimum band-
width consumption, the minimum application completion time,
and the moderate approach execution time.

B. Impact of the Number of Virtual Machines

As shown in Fig. 5 and Table V, as the number of
VMs increased by step size 25 from 400 to 475, the appli-
cation completion time decreased, and the reliability level
increased; moreover, the bandwidth consumption decreased.
This is because the collaborative tasks of IoT applications are
offloaded to VMs on the premise that these VMs are randomly
assigned to edge servers. That is, an increase in the number

TABLE VI
IMPACT OF THE NUMBER OF IOT APPLICATIONS ON APPROACH

EXECUTION TIME

of VMs can increase the probability of choosing a VM with
a lower failure rate, a higher processing capacity, or a higher
recovery rate, and then decrease the sum of the process time or
recovery time for each task. Meanwhile, since the number of
VMs increases, the probability of choosing a VM with lower
bandwidth by formulation (23) or on the same edge server
with other VMs is increased, and then the bandwidth con-
sumption and the application completion time both decrease.
Please note that since DETO2 and DETO3 both determine
the optimization emphasis on the bandwidth consumption and
the reliability level is too small relative to the bandwidth con-
sumption, it is very difficult to take the value of the reliability
level into account in the optimization process of DETO2 and
DETO3. That is, the value of the reliability level is too random.
Regardless of how the number of VMs changes, DETO1 has
the maximum reliability level and minimum application com-
pletion time; DETO2 and DETO3 have similar and minimum
bandwidth consumption. In addition to the DETO approach,
RETO has the maximum reliability level, the minimum band-
width consumption, the minimum application completion time,
and the moderate approach execution time.

C. Impact of the Number of IoT Applications

As shown in Fig. 6 and Table VI, as the number of IoT
applications increased by step 5 from 35 to 50, the reliability
level decreased, and the bandwidth consumption and the appli-
cation completion time both increased. Except for the increase
in the approach execution time of DETO, other approaches are
not almost varied. This is because that the increase in the num-
ber of IoT applications increases the number of collaborative
tasks, which need to be offloaded onto VMs with differ-
ent processing capacities, failure rates, and recovery rates.
Therefore, the application completion time and the bandwidth
consumption both increase to varying degrees. Furthermore,

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



10394 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

TABLE VII
IMPACT OF THE DEADLINES OF IOT APPLICATIONS ON APPROACH

EXECUTION TIME

the reliability level of all approaches is reduced accordingly.
Since the number of tasks determines the chromosome length
of DE, its approach execution time increases with its number.
Furthermore, DETO1 demonstrates the maximum reliability
level and the minimum application completion time; DETO2
and DETO3 have similar and minimum bandwidth consump-
tion. Since the optimization emphases of DETO2 and DETO3
are both bandwidth consumption, both of these approaches
emphasize the optimization of bandwidth consumption, with
little consideration of the reliability level. Therefore, in the
optimization process of these two approaches, their band-
width consumption is optimized very little, but the value of
the reliability level will fluctuate greatly. In addition to the
DETO approach, RETO has the maximum reliability level,
the minimum bandwidth consumption, the minimum applica-
tion completion time, and the moderate approach execution
time.

D. Impact of the Deadlines of IoT Applications

As shown in Fig. 7 and Table VII, as the deadlines of
IoT applications increased from R1 to R4, the reliability
level increased, but the bandwidth consumption, application
completion time, and approach execution time did not vary
considerably. Note that R1, R2, R3, and R4 represent four
ranges of deadlines of IoT applications, i.e., [60, 90], [62.5,
92.5], [65, 95], and [67.5, 97.5] ms, respectively. This is
because the deadline of IoT applications is exploited only to
compute the reliability level of 50 IoT applications via formu-
lation (11). The increase in the deadline of IoT applications
can prevent QoS violations and has no effect on bandwidth
consumption, application completion time, or approach execu-
tion time. Therefore, when the range of deadlines of the IoT
applications varied from R1 to R4, the probability of choos-
ing a larger deadline was increased. That is, the reliability
level of 50 IoT applications also increases with the increased
range of deadlines of the IoT applications, i.e., from R1 to R4.
Furthermore, DETO1 has a maximum reliability level and min-
imum application completion time; DETO2 and DETO3 have
similar and minimum bandwidth consumption. In addition to
the DETO approach, RETO has the maximum reliability level,
the minimum bandwidth consumption, the minimum applica-
tion completion time, and the moderate approach execution
time.

VII. CONCLUSION AND FUTURE WORK

In this article, we investigated the collaborative task offload-
ing problem by considering the failure rates and recovery
rates of the containers or VMs. We also studied the tradeoff

of minimizing the bandwidth consumption of IoT applica-
tions while maximizing the reliability level of these IoT
applications during task offloading. Then, we proposed a
multiobjective optimization problem, and transformed it into a
single objective optimization problem. Finally, we introduced
two approaches to acquire two near-optimal solutions with
different time complexities. The results of simulation exper-
iments demonstrated that our proposed approaches provide
near-optimal solutions and have better performance than other
approaches.

In our future work, we will further reduce the time com-
plexity of the DETO approach. Meanwhile, we will also take
remote clouds into account for our experimental environment
and then study the above optimization problem based on a real
data set.

REFERENCES

[1] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Gener. Comput. Syst., vol. 79,
pp. 849–861, Feb. 2018.

[2] P. Schulz et al., “Latency critical IoT applications in 5G: Perspective on
the design of radio interface and network architecture,” IEEE Commun.
Mag., vol. 55, no. 2, pp. 70–78, Feb. 2017.

[3] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:
Architecture, key technologies, applications and open issues,” J. Netw.
Comput. Appl., vol. 98, pp. 27–42, Nov. 2017.

[4] K. Peng, H. Huang, S. Wan, and V. C. M. Leung, “End-edge-cloud
collaborative computation offloading for multiple mobile users in het-
erogeneous edge-server environment,” Wireless Netw., to be published,
doi: 10.1007/s11276-020-02385-1.

[5] C.-H. Hong and B. Varghese, “Resource management in fog/edge com-
puting: A survey on architectures, infrastructure, and algorithms,” ACM
Comput. Surveys, vol. 52, no. 5, pp. 1–37, 2019.

[6] H. Guo, J. Liu, J. Ren, and Y. Zhang, “Intelligent task offloading in
vehicular edge computing networks,” IEEE Wireless Commun., vol. 27,
no. 4, pp. 126–132, Aug. 2020.

[7] T. Wang, Y. Lu, J. Wang, H.-N. Dai, X. Zheng, and W. Jia, “EIHDP:
Edge-intelligent hierarchical dynamic pricing based on cloud-edge-client
collaboration for IoT systems,” IEEE Trans. Comput., vol. 70, no. 8,
pp. 1285–1298, Aug. 2021.

[8] H. Zhu and C. Huang, “Availability-aware mobile edge application
placement in 5G networks,” in Proc. IEEE Global Commun. Conf.
(GLOBCOM), Singapore, 2017, pp. 1–6.

[9] B. Yang, F. Tan, Y.-S. Dai, and S. Guo, “Performance evaluation of
cloud service considering fault recovery,” in Proc. IEEE Int. Conf. Cloud
Comput. (CLOUD), 2009, pp. 571–576.

[10] Q. Wei, Y. Liu, H. Zhang, and Y. Shui, “Enhancing crowd collaborations
for software defined vehicular networks,” IEEE Commun. Mag., vol. 55,
no. 8, pp. 80–86, Aug. 2017.

[11] X. Liu, S. X. Sun, and G. Huang, “Decentralized services computing
paradigm for blockchain-based data governance: Programmability, inter-
operability, and intelligence,” IEEE Trans. Services Comput., vol. 13,
no. 2, pp. 343–355, Mar./Apr. 2020.

[12] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep
reinforcement learning for user association and resource allocation
in heterogeneous cellular networks,” IEEE Trans. Wireless Commun.,
vol. 18, no. 11, pp. 5141–5152, Nov. 2019.

[13] M. S. Elbamby et al., “Wireless edge computing with latency and
reliability guarantees,” Proc. IEEE, vol. 107, no. 8, pp. 1717–1737,
Aug. 2019.

[14] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of
cloud computing services,” Future Gener. Comput. Syst., vol. 29, no. 4,
pp. 1012–1023, 2019.

[15] A. Aral and I. Brandic, “Dependency mining for service resilience at
the edge,” in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Seattle, WA,
USA, 2018, pp. 228–242, doi: 10.1109/SEC.2018.00024.

[16] P. Kumari and P. Kaur, “A survey of fault tolerance in cloud com-
puting,” J. King Saud Univ. Comput. Inf. Sci., to be published,
doi: 10.1016/j.jksuci.2018.09.021.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1007/s11276-020-02385-1
http://dx.doi.org/10.1109/SEC.2018.00024
http://dx.doi.org/10.1016/j.jksuci.2018.09.021


LIU et al.: RELIABILITY-ENHANCED TASK OFFLOADING IN MOBILE EDGE COMPUTING ENVIRONMENTS 10395

[17] A. Aral and I. Brandić, “Learning spatiotemporal failure dependencies
for resilient edge computing services,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 7, pp. 1578–1590, Jul. 2021.

[18] L. Ponemon, “Cost of data center outages–data center performance
benchmark series,” Ponemon Inst., Traverse City, MI, USA, Rep.,
Jan. 2016, pp. 1–20.

[19] T. Wang, Y. Mei, X. Liu, J. Wang, H.-N. Dai, and Z. Wang, “Edge-
based auditing method for data security in resource-constrained Internet
of Things,” J. Syst. Archit., vol. 114, no. 5, 2021, Art. no. 101971.

[20] T. Wang et al., “Mobile edge-enabled trust evaluation for the Internet
of Things,” Inf. Fusion, vol. 75, no. 3, pp. 90–100, 2021.

[21] Q. Wei, K. Wang, Y. Liu, N. Cheng, H. Zhang, and X. Shen,
“Software-defined collaborative offloading for heterogeneous vehicular
networks,” Wireless Commun. Mobile Comput., vol. 2018, Apr. 2018,
Art. no. 3810350, doi: 10.1155/2018/3810350.

[22] J. Oueis, E. Calvanese-Strinati, A. De Domenico, and S. Barbarossa,
“On the impact of backhaul network on distributed cloud computing,”
in Proc. IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW),
Istanbul, Turkey, 2014, pp. 12–17.

[23] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optim., vol. 11, pp. 341–359, Dec. 1997.

[24] A. Aral and I. Brandic, “Quality of service channelling for latency sensi-
tive edge applications,” in Proc. IEEE Int. Conf. Edge Comput. (EDGE),
Honolulu, HI, USA, 2017, pp. 166–173.

[25] M. Soualhia, C. Fu, and F. Khomh, “Infrastructure fault detection and
prediction in edge cloud environments,” in Proc. 4th ACM/IEEE Symp.
Edge Comput. (SEC), 2019, pp. 222–235.

[26] A. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro,
“Optimized placement of scalable IoT services in edge computing,” in
Proc. IFIP/IEEE Symp. Integr. Netw. Serv. Manage. (IM), Arlington, VA,
USA, 2019, pp. 189–197.

[27] A. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, “A multi-
objective service placement and load distribution in edge computing,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI,
USA, 2019, pp. 1–7, doi: 10.1109/GLOBECOM38437.2019.9014303.

[28] H. Zhao, S. Deng, Z. Liu, J. Yin, and S. Dustdar, “Distributed
redundancy scheduling for microservice-based applications at the
edge,” IEEE Trans. Services Comput., early access, Aug. 3, 2020,
doi: 10.1109/TSC.2020.3013600.

[29] Y. Liu et al., “Dependency-aware task scheduling in vehicular edge
computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 4961–4971,
Jun. 2020.

[30] L. Zhao and J. Liu, “Optimal placement of virtual machines for support-
ing multiple applications in mobile edge networks,” IEEE Trans. Veh.
Technol., vol. 67, no. 7, pp. 6533–6545, Jul. 2018.

[31] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent IoT applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[32] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configuration
in edge computing,” in Proc. IEEE Int. Workshop Qual. Serv. (IWQoS),
2019, pp. 1–10.

[33] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware
IoT networks,” IEEE Internet Things J., vol. 6, no. 5, pp. 8262–8269,
Oct. 2019.

[34] M. H. N. Yousefi, A. Ghiassi, B. S. Hashemi, and M. Goudarzi,
“Workload scheduling on heterogeneous mobile edge cloud in 5G
networks to minimize SLA violation,” 2020. [Online]. Available:
arXiv:2003.02820.

[35] B. Hu, J. Chen, and F. Li, “A dynamic service allocation algorithm in
mobile edge computing,” in Proc. IEEE Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), Jeju, South Korea, 2017, pp. 104–109.

[36] V. Farhadi et al., “Service placement and request scheduling for data-
intensive applications in edge clouds,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Paris, France, 2019, pp. 1279–1287.

[37] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city Internet
of Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110,
Sep. 2020.

[38] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online task
dispatching and scheduling with bandwidth constraint in edge comput-
ing,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Paris, France,
2019, pp. 2287–2295.

[39] G. Huang, C. Luo, K. Wu, Y. Ma, Y. Zhang, and X. Liu,
“Software-defined infrastructure for decentralized data lifecycle gov-
ernance: Principled design and open challenges,” in Proc. IEEE 39th
Int. Conf. Distrib. Comput. Syst. (ICDCS), 2019, pp. 1674–1683,
doi: 10.1109/ICDCS.2019.00166.

[40] J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang, and Y. Zhang, “Smart
and resilient EV charging in SDN-enhanced vehicular edge computing
networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 1, pp. 217–228,
Jan. 2020.

[41] H. Guo and J. Liu, “UAV-enhanced intelligent offloading for Internet
of Things at the edge,” IEEE Trans. Ind. Informat., vol. 16, no. 4,
pp. 2737–2746, Apr. 2020.

[42] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and comput-
ing optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797,
Mar. 2018.

[43] M. Bari et al., “Data center network virtualization: A survey,” IEEE
Commun. Surveys Tuts., vol. 15, no. 2, pp. 909–928, 2nd Quart., 2013.

[44] J. Békési, G. Galambos, and H. Kellerer, “A 5/4 linear time bin packing
algorithm,” J. Comput. Syst. Sci., vol. 60, no. 1, pp. 145–160, 2000.

[45] K. Deb, “Multi-objective optimization,” in Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques,
E. K. Burke and G. Kendall, Eds. Boston, MA, USA: Springer, 2005,
pp. 273–316.

[46] R. Storn, “On the usage of differential evolution for function
optimization,” in Proc. North Amer. Fuzzy Inf. Process. Soc. (NAFIPS),
Berkeley, CA, USA, 1996, pp. 519–523.

[47] L. Tang, Y. Dong, and J. Liu, “Differential evolution with an individual-
dependent mechanism,” IEEE Trans. Evol. Comput., vol. 19, no. 4,
pp. 560–574, Aug. 2015.

[48] J. Liu, S. Wang, A. Zhou, S. A. P. Kumar, F. Yang, and R. Buyya,
“Using proactive fault-tolerance approach to enhance cloud service reli-
ability,” IEEE Trans. Cloud Comput., vol. 6, no. 4, pp. 1191–1202,
Oct./Dec. 2018.

[49] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,” Softw.
Pract. Exp., vol. 47, no. 9, pp. 1275–1296, 2017.

[50] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
Comput. Pract. Exp., vol. 24, no. 13, pp. 1397–1420, 2012.

[51] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. 2nd USENIX Conf. Hot Topics Cloud
Comput. (HotCloud), 2010, p. 4.

Jialei Liu received the Ph.D. degree in computer
science and technology from Beijing University of
Posts and Telecommunications, Beijing, China, in
2018.

He is currently an Assistant Professor with the
School of Software Engineering, Anyang Normal
University, Anyang, China. He has published more
than 20 research papers. His major research
interests include cloud computing and mobile edge
computing.

Ao Zhou (Member, IEEE) received the Ph.D.
degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2015.

She is currently an Associate Professor with the
State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and
Telecommunications. She has published more than
20 research papers. She played a key role at many
international conferences. Her research interests
include cloud computing and edge computing.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1155/2018/3810350
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9014303
http://dx.doi.org/10.1109/TSC.2020.3013600
http://dx.doi.org/10.1109/ICDCS.2019.00166


10396 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

Chunhong Liu (Member, IEEE) received the
M.E. degree in computer science and technology
from Xidian University, Xi’an, China, in 2005,
and the Ph.D. degree in computer science and
technology from Beijing University of Posts and
Telecommunications, Beijing, China, in 2018.

She is an Associate Professor with the Department
of Computer and Information Engineering, Henan
Normal University, Xinxiang, China. Her major
research interests include cloud computing, edge
computing, machine learning, and oriented-service
computing.

Tongguang Zhang received the Ph.D. degree in
computer science and technology from Beijing
University of Posts and Telecommunications,
Beijing, China, in June 2018.

He is an Associate Professor of Computer
Science with Xinxiang University, Xinxiang, China.
His current research interests include mobile
Internet technology, Internet of Things technology,
communication software and distribute computing,
embedded system, and service computing.

Lianyong Qi (Member, IEEE) received the Ph.D.
degree from the Department of Computer Science
and Technology, Nanjing University, Nanjing,
China, in 2011.

In 2010, he visited the Department of
Information and Communication Technology,
Swinburne University of Technology, Melbourne,
VIC, Australia. He is currently a Full Professor with
the School of Information Science and Engineering,
Qufu Normal University, Jining, China. He has
published over 90 research papers (first author or

corresponding author) in international journals and conferences. His research
interests include big data and recommender systems.

Shangguang Wang (Senior Member, IEEE)
received the Ph.D. degree from Beijing University
of Posts and Telecommunications (BUPT), Beijing,
China, in 2011.

He is currently a Professor and Deputy Director
with the State Key Laboratory of Networking and
Switching Technology, BUPT. He has published
more than 100 papers. His research interests include
edge computing, service computing, and cloud
computing.

Prof. Wang played key roles, such as the
general chair or the PC chair for many international conferences. He is the
Editor-in-Chief of the International Journal of Web Science.

Rajkumar Buyya (Fellow, IEEE) received the
Ph.D. degree in computer science and software engi-
neering from Monash University, Melbourne, VIC,
Australia, in 2002.

He is a Redmond Barry Distinguished Professor
and the Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory with
The University of Melbourne, Melbourne. He has
authored over 750 publications and seven text books,
including Mastering Cloud Computing (McGraw
Hill, New York, NY, USA; China Machine Press,

Beijing, China; and Morgan Kaufmann for Indian, and Chinese and interna-
tional markets).

Prof. Buyya is one of the Highly Cited Authors in computer science and
software engineering worldwide (H-index=134, G-index = 304, and more
than 100 800 citations). He served as the founding Editor-in-Chief of the
IEEE TRANSACTIONS ON CLOUD COMPUTING. He is currently serving as
a Co-Editor-in-Chief of Journal of Software: Practice and Experience, which
was established 50 years ago. For further information on Dr. Buyya, please
visit his cyberhome: www.buyya.com.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 19,2022 at 06:01:47 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


