
Future Generation Computer Systems 112 (2020) 193–208

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Dynamic redirection of real-time data streams for elastic stream
computing
Dawei Sun a,e,∗, Shang Gao b, Xunyun Liu c, Xindong You d, Rajkumar Buyya c

a School of Information Engineering, China University of Geosciences, Beijing, 100083, China
b School of Information Technology, Deakin University, Waurn Ponds, Victoria 3216, Australia
c Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
Melbourne, Australia
d Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing Information Science & Technology
University, Beijing, 100101, China
e Polytechnic Center for Territory Spatial Big-data, MNR of China, China

a r t i c l e i n f o

Article history:
Received 3 September 2019
Received in revised form 8 March 2020
Accepted 15 May 2020
Available online 22 May 2020

Keywords:
Data stream redirection
Stream computing
Elastic processing
Load balancing
Distributed system
Big data

a b s t r a c t

An elastic stream computing system needs elastic adjustment of computing resource allocation and
vertex parallelism to improve latency and throughput, which includes continuously or periodically
scaling in/out the workload of computing nodes at runtime. Dynamic redirection can help with this
elasticity issue by dynamically redirecting real-time data streams to computing resources. Due to the
time-varying and unpredictable nature of real-time data streams, implementing redirection of data
streams is challenging. Currently, the requirements of data streams redirection are not fully fulfilled,
which directly affects the latency and throughput of stream computing systems. To bridge this gap, we
proposed a dynamic redirection framework (called Dr-Stream) for elastic stream computing systems.
This paper discussed the following aspects: (1) Investigating the dynamic redirection of real-time
data streams, providing a general stream application model, a data stream model and a data stream
grouping model, as well as formalizing the problem of load balancing optimization and data stream
redirection. (2) Redirecting data streams among multiple instances of an operator at runtime by a
lightweight load balancing strategy to improve the load balancing of a data center at the vertex level.
Managing system states, especially the states of stateful operators by a logical ring-based strategy
to improve accuracy. (3) Determining the number of instances for each operator, and deploying the
instance(s) to computing nodes by a modified first-fit strategy at runtime. (4) Evaluating the fulfillment
of low latency, high throughput, and load balancing objectives in a real-world distributed stream
computing environment. Experimental results showed that Dr-Stream reduced the average system
latency and load balancing of the data center by more than 20% and 15%, respectively. It also improved
the average system stability by more than 15% and avoided over-utilization of computing nodes, as
compared to the existing strategies in Storm.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the big data era, stream computing is an on-the-fly com-
puting paradigm [1] that processes and reliably extracts valuable
insights from high-velocity continuous data streams in timely
manner. A stream computing system is an instance of the stream
computing paradigm, fulfilling the requirements of streaming ap-
plications and processing the dynamic and volatile data streams

∗ Corresponding author at: School of Information Engineering, China
University of Geosciences, Beijing, 100083, China.

E-mail addresses: sundaweicn@cugb.edu.cn (D. Sun),
shang.gao@deakin.edu.au (S. Gao), xunyunliu@gmail.com (X. Liu),
youxindong@bistu.edu.cn (X. You), rbuyya@unimelb.edu.au (R. Buyya).

in real-time. An elastic stream computing system achieves low
latency and high throughput by continuously or periodically scal-
ing in/out the workload of computing nodes at runtime in a
distributed computing environment.

One of the major challenges to implement elastic stream com-
puting is how to adaptively adjust streaming applications to the
available computing resources in real-time. As shown in Fig. 1,
the input rate of a data stream continuously changes over time,
which can be divided into 5 stages. At each stage, the deployment
status of the vertices and the allocated computing resources need
to be adjusted on-the-fly. This adjustment needs to be precise
and effective. It is preferable to make the system performance
less fluctuating, so the adjustment duration should be as short as
possible. As shown at stage 2, given a short time window, if the

https://doi.org/10.1016/j.future.2020.05.021
0167-739X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2020.05.021
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.05.021&domain=pdf
mailto:sundaweicn@cugb.edu.cn
mailto:shang.gao@deakin.edu.au
mailto:xunyunliu@gmail.com
mailto:youxindong@bistu.edu.cn
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.future.2020.05.021


194 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208

Fig. 1. Real-time data stream at different input rates.

adjustment duration is longer than the window, the adjustment
solution will not be deployed in time, and the computing envi-
ronment might undergo significant changes due to the delay. This
kind of adjustments may only increase the system load without
delivering any performance improvement. However, if there were
no adjustments being made, some of the data tuples at stage 2
would be discarded if the current resources could not meet the
requirements imposed by the increasing volume of data streams.
The consequence of load shedding is also unacceptable. How to
avoid the loss of status information or streaming data during
online processing is another major challenge to realize elastic
stream computing. While performing the online adjustment pro-
cess, it is also challenging to migrate some of the operators from
one computing node to another at the right time. There are a few
factors to be taken into account, e.g. whether the operator states
and/or data tuples would be lost during the migration process,
especially for the stateful operators.

To address these challenges, researchers have been working
on new generation of elastic stream computing systems, try-
ing to build low latency and high throughput environments for
real-time data stream applications. Most of these work [2,3]
tries to optimize system performance from the perspective of
resource adjustment (rescheduling operator among computing
nodes). However, the problem of operator scheduling in dis-
tributed big data stream computing systems is also one of the
most thought-provoking NP-hard problems in general cases [4].
A rescheduling scheme with performance optimization might
not work well due to the fact that the rescheduling duration is
usually long, and the stream applications may have undergone
substantial changes because of data stream fluctuation. In addi-
tion, the loss of state and data tuples during operator reschedul-
ing has not been fully studied, and continuous rate fluctuations
in real-time data streams are common. Therefore, in our study,
we try to optimize system performance from the perspective
of data stream redirection. We adjust the processing load of
computing resources, reducing the possibilities of data stream
and state loss, and effectively optimizing system performance.
Fine-grained resource optimization is also considered to further
improve performance metrics.

A dynamic redirection framework should be able to determine
when and how data streams should be redirected with regard to
specific elastic stream computing requirements. To achieve this
goal, we need to know the rates of real-time data streams, the dis-
tribution of data tuples among instances of the same vertex, the
current load of each computing node, and the proper strategies

that can improve system performance. Currently, the research on
dynamic redirection of fluctuating data stream for elastic stream
computing has not fully addressed the concern [5,6]. This creates
the need for investigating a dynamic redirection framework for
elastic stream computing, processing data stream in a scalable
and elastic manner with low latency and high throughput.

Our work is motivated by the observation that poor perfor-
mance is mainly caused by heavyweight rescheduling strategies
trying to optimize system performance from the perspective of
online resources adjustment. They are usually not the best option
for stream computing systems. Significant system performance
fluctuations may occur as the result of large-scale, frequent online
rescheduling. As such, our goal is to improve system performance
with a lightweight load balancing strategy from the perspective of
data stream redirection at the vertex level. It suits elastic stream
computing systems and provides a scalable way to deal with
fluctuating data streams.

1.1. Paper contributions

Contributions of our work include the following:
(1) Investigate the dynamic redirection of real-time data

streams over distributed stream computing systems, providing
a general stream application model, a data stream model and a
data stream grouping model, as well as formalizing the problem
of load balancing optimization and data stream redirection.

(2) Redirect data streams among multiple instances of an op-
erator at runtime with a lightweight load balancing strategy that
improves load balancing performance at the vertex level; manag-
ing the system state, especially the states of stateful operators by
a logical ring-based strategy to improve the accuracy.

(3) Determine the number of instances for each operator,
and deploying the instances on computing nodes by a modified
first-fit strategy throughout the runtime of a stream application.

(4) Evaluate the fulfillment of low latency, high throughput,
and load balancing objectives with two types of streaming appli-
cations Top_N and WordCount in a real-world distributed stream
computing environment.

(5) Implement a prototype software system, called Dr-Stream,
with performance evaluations. Experimental results conclusively
demonstrate that the proposed Dr-Stream provides significant
performance improvements on system latency, throughput and
load balancing metrics.

1.2. Paper organization

The rest of the paper is organized as follows: In Section 2,
we introduce 8 kinds of built-in data stream grouping modes
on Storm platform. Section 3 describes the Dr-Stream model,
including its stream application model, data stream model, and
data stream grouping model. Section 4 formalizes the problem of
load balancing within a data center, as well as the problem of data
stream redirection. Section 5 focuses on the system architecture,
the redirection among instances, the state management, and the
deployment optimization in Dr-Stream. Section 6 discusses the
experimental environment and parameter settings, and analyzes
performance evaluation results of Dr-Stream. Section 7 reviews
the related work on big data stream computing, optimization
of load balancing in elastic stream computing systems, as well
as stream application deployment on Storm platform. Finally,
conclusions and future work are given in Section 8.



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208 195

Fig. 2. Shuffle grouping.

Fig. 3. Fields grouping.

2. Background

A data stream grouping strategy determines how to partition
the output data tuples of an upstream vertex to the relevant
downstream vertices. In the process of defining an application
topology, the data stream grouping strategy between upstream
and downstream vertices needs to be clarified one by one, which
is an important part of the application topology. Storm [7], as
one of the most popular distributed stream computing systems,
provides eight types of built-in data stream grouping modes,
namely shuffle grouping, fields grouping, partial key grouping, all
grouping, global grouping, none grouping, direct grouping, and
local grouping [8].

(1) Shuffle grouping
Shuffle grouping partitions the data tuples from an upstream

vertex to the relevant downstream vertices in a round-robin way.
All relevant downstream vertices will get output data tuples one
by one, with each receiving the same number of data tuples. As
shown in Fig. 2, all those output data tuples of vi are stored in
an output queue, and will be partitioned to vertices vj1, vj2 and
vj3 consecutively. Shuffle grouping is one of the most common
grouping strategies for real-time data streams partition. It par-
titions data streams in a lightweight manner, which suits most
application scenarios. However, the heterogeneity of downstream
vertices is not considered.

(2) Fields grouping
Fields grouping partitions the data tuples from an upstream

vertex to the relevant downstream vertices by one or many fields’
value of the output data tuples. The data tuples with the same
fields’ value will be partitioned to the same downstream vertex.
As shown in Fig. 3, all those output data tuples of vi are stored
in an output queue, and will be partitioned to vertices vj1, vj2 or
vj3 according to its fields’ value. vj1, vj2 or vj3 will process data
tuples with different fields’ values, respectively. Fields grouping
is also one of the most common grouping strategies. It partitions
data streams by fields’ value, and data tuples with the same fields’
value are always partitioned to the same downstream node. It
also suits many application scenarios, but the heterogeneous
downstream vertices are not considered.

(3) Partial key grouping

Fig. 4. Partial key grouping.

Fig. 5. All grouping.

Partial key grouping partitions the data tuples from an up-
stream vertex to the relevant downstream vertices by one or
many key values of the output data tuples. The data tuples with
the same key value will be partitioned to the specific downstream
vertex or vertices, similar to the Fields grouping. In addition, the
load balancing mechanism is also primitively considered between
the downstream vertices to improve the system adaptability to
fluctuating data streams.

As shown in Fig. 4, all those output data tuples of vi are stored
in an output queue, and will be partitioned to vertices vj1, vj2 or
vj3 according to its key values. vj1 and vj2 will process white data
tuples, vj1 and vj3 will process black data tuples, and vj2 and vj3
will process gray data tuple. The number of data tuples to be
processed by each pair of vertices is not necessarily the same,
which can be adjusted according to the load of each vertex to
achieve load balancing between the two vertices of the pair.

Based on the Fields grouping, partial key grouping adds a
primitive load balancing mechanism between the two paired ver-
tices, improving the elastic adaptation to dynamic data streams to
a certain extent.

(4) All grouping
All grouping replicates each data tuple from an upstream

vertex to each of the downstream vertex. As shown in Fig. 5, all
those output data tuples of vi are stored in an output queue, and
will be replicated to vertices vj1, vj2 and vj3. vj1, vj2 and vj3 will
receive the same replicas of output data tuples for further pro-
cessing. All grouping can be used for full-scale multidimensional
data processing, and downstream nodes perform simultaneous
processing from different dimensions on the same set of data
tuples, which is useful in high-dimensional data processing.

(5) Global grouping
Global grouping partitions the data tuples from one or many

upstream vertices to a specific downstream vertex. The specific
downstream vertex can be specified according to computational
semantics. As shown in Fig. 6, all the output data tuples of vi and
vk are stored in their output queue, respectively, and will only be
sent to vertex vj1 for further processing. No output data tuples
will be partitioned to vertex vj2, though it is also a downstream
vertex of vi and vk. Global grouping can be used to aggregate data
from multiple upstream vertices to a single downstream node to



196 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208

Fig. 6. Global grouping.

process global data. It is particularly useful in reducing topology
size.

(6) Direct grouping, None grouping, and Local grouping
Direct grouping partitions each data tuple from an upstream

vertex to a specific downstream vertex, determined by the up-
stream vertex. None grouping, and Local grouping are similar
to Shuffle grouping to some extent. Due to the length limit of
the paper, their details are not discussed. For more information,
please refer to [8].

All of those data stream grouping modes are designed with the
idea of partitioning data tuples from upstream to downstream. All
those modes are static, which means once it is selected, it will
be applied throughout the lifespan of the application. It cannot
dynamically adapt to the fluctuation of data streams, or take
into account the current load of each node. On Storm platform,
a custom stream grouping mode can be implemented via the
CustomStreamGrouping interface [8], which introduces a certain
level of flexibility into the partition process. In this paper, we
focus on dynamically redirecting real-time data streams on Strom
platform. A lightweight load balancing strategy is employed to
redirect real-time data streams among multiple instances of an
operator. A sub-optimal deployment scheme can be obtained by
a modified first-fit strategy at runtime, further improving the
scalability and the performance of the system.

3. System model

Before introducing the proposed system and the relevant algo-
rithms, we first explain the formalization of fundamental models
in an elastic stream computing system, including the stream
application model, the data stream model, and the data stream
grouping model.

3.1. Stream application model

A stream application is defined by user and submitted to
a stream computing system. The function of a stream appli-
cation [9] can be formalized as a directed acyclic graph G =

(V (G) , E (G)), where V (G) = {vi|i ∈ 1, . . . , n} is a finite set of n
vertices, vertex vi ∈ V (G) is an operator with a specific function,
E (G) =

{
evi,vj |vi, vj ∈ V (G)

}
is a finite set of directed edges, and

edge evi,vj ∈ E (G) represents a data stream path from vertex vi
to vertex vj.

The complexity of vertex vi is determined by the functions it
implements, and can be measured by the time complexity and
space complexity of the corresponding computing algorithm vi
implements. The complexity of vertex vi is an important factor
during the process of allocating instance and resource to vi. Ver-
tex vi can be further categorized into stateful or stateless vertex
according to whether there is a dependency relationship between
the current and precedent data tuples of vi [10]. For a stateful
vertex, there is a state dependency between two adjacent data
tuples. For stateless vertex, there is no state dependency.

Fig. 7. Downstream vertices set of vi .

Fig. 8. Upstream vertices set of vi .

Vertex vi emits its output data stream to its downstream
vertices set D (vi). nD(vi) = |D (vi)| is the number of downstream
vertices of vi, and nD(vi) ≥ 0. If nD(vi) = 0, then vi is a sink vertex
of stream application G, which means it has no downstream
vertex in G. The output data tuples of vi will be partitioned or
replicated into nD(vi) sub-streams, and become the input data
streams to downstream vertex set D (vi). As shown in Fig. 7,
D (vi) = {vl, vm, vn} is the downstream vertex set of vi, and
nD(vi) = 3.

Vertex vi receives its input data stream from its upstream
vertices set U (vi). nU(vi) = |U (vi)| is the number of upstream
vertices of vi, and nU(vi) ≥ 0. If nU(vi) = 0, then vi is source vertex
of stream application G, which means it has no upstream vertex
in G. Each vertex of U (vi) outputs a data stream to vi. All data
steams aggregate as one single input data stream to vi. As shown
in Fig. 8, U (vi) = {vl, vm, vn} is the upstream vertex set of vi, and
nU(vi) = 3.

When a stream application G is submitted and running in a
stream computing system, one or many instances of vertex vi in
G are created according to the complexity of vertex vi, rate of
input data stream, and available computing resources [11]. All
instance vertices of G and their data dependency relationships
form a runtime graph of G.

3.2. Data stream model

A data stream ds is composed of a sequence of data tu-
ples in the form of a continuous stream, denoted as ds =

{dt1, dt2, . . . , dti, . . .}. The ith data tuple dti can be characterized
by a three-tuple dti = (keyi, valuei, tsi), where keyi, valuei and
tsi are key, value and timestamp of the ith data tuple dti, re-
spectively. Each vertex has at least one input data stream and/or
one output data stream. As shown in Fig. 9, dsi(I) and dsi(O)

are the input data stream and output data stream of vertex vi,
respectively.

In a data stream ds, the order of all data tuples can be obtained
by the timestamp of each data tuple. However, when a vertex
has multiple input data streams, one or more data streams may



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208 197

Fig. 9. Data stream.

come from a heterogeneous computing environment. In this sit-
uation, it is extremely difficult to sort out the order of all data
tuples globally as if they originated from the same homogeneous
environment. In this paper, we do not consider the potential dif-
ference brought by heterogeneousness [12] as it involves specific
semantics that are beyond the scope of this paper. Instead, it
is assumed that the same data stream would produce the same
result in the computing process.

The rate rds of data stream ds is one of the most impor-
tant factors [13], affecting the performance of an elastic stream
computing system. It is always in a dynamic state as a data
stream continuously fluctuates over time. When multi-source
data streams aggregate at vertex level, the input rate irvi of vertex
vi is the sum of all input data stream rates of vertex vi. It can be
described as (1).

irvi =

n∑
k=1

rvi,k(I), (1)

where rvi,k(I) is the kth input data stream rates, n is the number
of input data streams of vertex vi.

3.3. Data stream grouping model

Each vertex needs to clarify the grouping strategy for its out-
put data tuples, and then decides how to partition them to the
relevant downstream vertices. According to whether a data tuple
is replicated, a grouping strategy can be roughly categorized
as replication grouping strategy or a non-replication grouping
strategy.

For a replication grouping strategy, each data tuple in the
output data stream dsi(O) of vertex vi is replicated at the repli-
cation point, which can be set to any time point after the data
tuple leaves vi and before its transmission downwards. After
replication at the replication point, data tuples forms n output
data streams dsi(O) (1) , dsi(O) (2) , . . . , dsi(O) (n), where n is deter-
mined by the downstream vertices of vi, and n = nD(vi). The
data tuples are replica of the output data stream dsi(O), that is
∀dti ∈ dsi(O) (k) , k ∈ {1, 2, . . . , n}, then ∃dti ∈ dsi(O) (j) , j ∈

{1, 2, . . . , n}, and ∃dsi(O) (k) = dsi(O) (j),. As shown in Fig. 10, each
data tuple of vertex vi is replicated 3 times by partition function
f
(
dsi(O)

)
= r (dt (n = 3)), and forms 3 output data streams for

each downstream vertex of vi. On Storm platform, all grouping
strategy is a replication grouping strategy.

For a non-replication grouping strategy, each data tuple in
the output data stream dsi(O) of vertex vi is emitted to one of
downstream vertices of vi by partition function f

(
dsi(O)

)
, which

is implemented according to specific grouping semantics. The
output data stream dsi(O) of vertex vi is partitioned into n input
data streams, given n downstream vertices of vi. That is ∀dti ∈

dsi(O) (k) , k ∈ {1, 2, . . . , n}, then ∃dti ∈ dsi(O), and dsi(O) =

dsi(O) (1) ∪ dsi(O) (2) ∪ · · · ∪ dsi(O) (n), described as (2). Each data
tuple only exists in one of input data streams of n downstream
vertices of vi. All those n sub-streams are non-overlapping. That
is if ∀dti ∈ dsi(O) (k), then ◁∃dti ∈ dsi(O) (j) , k ̸= j, and dsi(O) (k) ∩

dsi(O) (j) = ∅, k ̸= j. It can be described as (3).

dsi(O) =
n
∪
k=1

dsi(O) (k) .k ∈ {1, 2, . . . , n} (2)

Fig. 10. Replication based grouping model.

Fig. 11. Non-replication based grouping model.

n
∩
k=1

dsi(O) (k) = ∅, k ∈ {1, 2, . . . , n} . (3)

As shown in Fig. 11, the output data stream dsi(O) of vertex
vi is partitioned into three sub-streams by the partition func-
tion f

(
dsi(O)

)
. One data tuple of output data stream dsi(O) only

belongs to one of the three sub-streams. On Storm platform,
shuffle grouping, fields grouping, partial key grouping, global
grouping, none grouping, direct grouping, and local grouping
are non-replication grouping strategies, with different partition
functions though.

4. Problem formalization

In this section, we formalize the problems of load balancing of
a data center, its optimization and data stream redirection before
applying them in the proposed Dr-Stream in Section 5.

4.1. Load balancing problem of a data center

The load lcn,[ts,te] of a computing node cn for running vertex
set Vcn,[ts,te] over a period of time [ts, te] can be evaluated by
the computing node’s CPU queue state during [ts, te]. It directly
reflects the amount of load on computing node cn, described as
(4).

lcn,[ts,te] =

∑
vi∈Vcn,[ts,te]

nvi,cn,[ts,te], (4)

where nvi,cn,[ts,te] is the number of data tuples of vertex vi during
[ts, te], and vi ∈ Vcn,[ts,te].

The load ratio lrcn,[ts,te] of computing node cn during [ts, te] can
be calculated by (5).

lrcn,[ts,te] =
lcn,[ts,te]
lengthcn

=

∑
vi∈Vcn,[ts,te]

nvi,cn,[ts,te]

lengthcn
, (5)

where lengthcn is the length of CPU queue of computing node cn.



198 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208

The value of load ratio lrcn,[ts,te] of computing node cn during
[ts, te] should be greater than 0. If lrcn,[ts,te] > 1, then computing
node cn during [ts, te] is overloaded, which means the CPU queue
is full, and the new incoming data tuples will be discarded. If
lrcn,[ts,te] ∈ [0, 1], the load of cn during [ts, te] is acceptable, and
the larger the load ratio lrcn,[ts,te], the more the node cn is utilized.

Let DC = {cn1, cn2, . . . , cnnum} be a data center with num
computing nodes. Its load balancing lbDC,[ts,te] metric during [ts, te]
can be evaluated by (6).

lbDC,[ts,te] =
1

num
·

num∑
k=1

⏐⏐lrcnk,[ts,te] − lr[ts,te]
⏐⏐ , (6)

where num is the number of computing nodes in data center DC,
cnk ∈ DC , k ∈ [1, num], lr[ts,te] is average load ratio of all num
computing nodes in DC.

The load balancing metric lbDC,[ts,te] of a data center DC during
[ts, te] is one of the key measures [14] to evaluate and improve the
performance of an elastic stream computing system. lbDC,[ts,te] ∈

[0, 1]. If lbDC,[ts,te] = 0, then DC is absolutely load balanced
during [ts, te], which is hard to achieve; If lbDC,[ts,te] = 1, then DC
is absolutely load unbalanced during [ts, te], which significantly
leads to unbalanced use of computing nodes in DC and seriously
affects the system performance. The less the load balancing met-
ric lbDC,[ts,te], the better the load status of the DC. lbmin,DC and
lbmax,DC are the minimum and maximum load balancing metrics
of DC, respectively, which are specified according to the needs
of the system. Usually, lbDC,[ts,te] should satisfy the constraint
lbDC,[ts,te] ∈

[
lbmin,DC , lbmax,DC

]
to keep the load balancing of DC

acceptable.

4.2. Load balancing optimization

Load balancing optimization for stream computing is an online
optimization problem [15,16]. It aims at finding a schedule s:
V (G) → DC and a data stream partition p: ds → V (G), which
help maximize system throughput and minimize response time,
optimizing resource use and load balancing metric lbDC,[ts,te] of
DC during [ts, te] without overloading any single computing node,
and satisfying user’s specified SLA constraints on system latency
and throughput.

For a data center DC = {cn1, cn2, . . . , cnnum}, let Gsa =

{G1,G2, . . . ,Gm} be a set of m stream applications. {rds (G1) ,

rds (G2) , . . . , rds (Gm)} are the rate of input data stream of {G1,

G2, . . . ,Gm}, respectively. The load balancing optimization prob-
lem of all m stream applications Gsa in the DC is then formalized
as follows:

min
(
max
Gi∈Gsa

l (Gi)

)
, (7)

subject to

0 ≤ l (Gi) ≤ lmax (Gi) , ∀Gi ∈ Gsa, (8)

and,

min lbDC,[ts,te], (9)

subject to

0 < lrmin,cni ≤ lrcni,[ts,te] ≤ lrmax,cni < 1, ∀cni ∈ DC, (10)

in which l (Gi) is the latency of the ith stream application in the
set of Gsa. lmax (Gi) is the maximum latency of the ith application.
lrmin,cni and lrmax,cni are the minimum and maximum load ratio of
the ith computing node cni, respectively. Both are user-specified
SLAs constraints.

Fig. 12. Data stream redirection.

4.3. Data stream redirection

Multiple data tuples {dt1, dt2, . . .} of data stream dsi(O) can be
redirected from vertex vi to n instances

{
vj1, vj2, . . . , vjn

}
of vj

by redirection function fr(), where vj is the direct downstream
vertex of vi, such that a data tuple can be redirected among
multiple instances of vj. Redirection function is a mapping fr:
dsi(O) = {dt1, dt2, . . .} →

{
vj1, vj2, . . . , vjn

}
. Usually, redirection

function fr
(
ds(io), lbDC,[ts,te]

)
can be described as (11).

fr
(
ds(io), lbDC,[ts,te]

)
=

⎧⎨⎩f
(
ds(io)

)
,

if lbDC,[ts,te] ∈
[
lbmin,DC , lbmax,DC

]
,

f
(
lbDC,[ts,te]

)
, otherwise.

(11)

where f
(
dsi(O)

)
is a partition function and employed for data

stream grouping, and f
(
lbDC,[ts,te]

)
is a load based redirection

function among multiple instances of a vertex for load balancing
improvement.

As shown in Fig. 12, in the redirection process, the mapping
between data tuples with the same key and the instances of
downstream vertices vj is readjusted for load balancing optimiza-
tion.

5. Dr-Stream: Architecture and algorithms

Based on the above theoretical analysis, we have proposed
and developed Dr-Stream, a dynamic redirection framework for
elastic stream computing systems. To provide an overview of the
framework, this section discusses its overall structure, including
the system architecture, the redirection among instances, the
state management, and the deployment optimization.

5.1. System architecture

The system architecture of Dr-Stream includes four stages:
topological construction, instantiation, scheduling, and redirec-
tion and rescheduling, as shown in Fig. 13.

In the topological construction stage, the logical topology of a
stream application is designed by user. The application function
determines the structure of the topology. The semantics [17] be-
tween any pair of upstream and downstream vertices determines
the choice of data stream grouping strategy. Once the topology
of the stream application is constructed, the user can submit it
to a stream computing environment, e.g. Storm platform. The
topology will keep running until being terminated manually or
interrupted due to environmental failure.

In the instantiation stage, to improve the topological structure
and the load balancing of each vertex, the number of instances
for each vertex is determined by first analyzing its computa-
tional complexity, then consequently one or more instances are
created for each vertex. The functionality and semantics are the
same for all instances of the same vertex. Therefore, the ex-
istence of multiple instances is also an important prerequisite



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208 199

Fig. 13. Dr-Stream architecture.

for dynamic redirection of real-time data stream [18]. On Storm
platform, the specific stream grouping modes can be customized
by implementing the CustomStreamGrouping interface [8].

In the scheduling stage, the instantiated topology is deployed
onto available computing nodes of DC, which is determined by
a specified scheduling strategy. The strategy aims at maximiz-
ing throughput and minimizing response time, while optimizing
resource use and load balancing without overloading any sin-
gle computing node. In order to improve the throughput and
fault tolerance of a streaming application, multiple instances of
a vertex are often deployed to different computing nodes. On
Storm platform, the scheduling strategy can be customized by
implementing the IScheduler interface and specified through the
configuration file Storm.yaml where the deployment strategy is
employed.

With the fluctuating rate of data stream and the dynamic
change of available resources in DC, in the redirection and
rescheduling stage, real-time data stream is redirected among
multiple instances of a vertex and instances are redeployed
among available computing nodes for load balancing and per-
formance purposes. During this process, it is unwise to make
the system to fluctuate too much [19,20], so all decisions need
to factor in the current status of data stream partition among
multiple instances of a vertex and the instance deployments on
the computing nodes. In addition, the number of instances for
each vertex can be further adjusted as needed.

As shown in Fig. 14, the topology of Dr-Stream system consists
of one Nimbus, a few Zookeepers, and a bunch of Supervisors.
Nimbus first receives stream application and instantiates each
vertex in the topology, then it deploys instances to workers on ap-
propriate Supervisors as determined by the specified scheduling
strategy. Each supervisor executes and monitors vertices con-
tinuously. Zookeeper coordinates Nimbus and Supervisors, and

Fig. 14. Dr-Stream topology.

stores the status of Nimbus and Supervisors. All monitor data of
Supervisors and Worker nodes is also stored in Zookeeper, which
can be used in the later redirection and rescheduling stage.

5.2. Lightweight load balancing based redirection among instances

To improve the load balancing of data center DC, redirection of
data stream dsi(O) among n instances

{
vj1, vj2, . . . , vjn

}
of down-

stream vj is an effective way at the vertex level. For the instances
of vj, the influencing factors on the load state are only restricted
by all the n instances of vj, and there is no need to consider
the state information of other vertices, which greatly reduces the
complexity of decision making process and achieves lightweight
real-time adjustments.

For upstream vi, each data tuple dt in dsi(O) is emitted to
one of the n instances of vj during [ts, te] by load based redirec-
tion function f

(
lbvi,vj,[ts,te]

)
. For the kth instance, the load-based

redirection function f
(
lbvi,v

k
j ,[ts,te]

)
is defined by (12).

f
(
lbvi,v

k
j ,[ts,te]

)
=

lengthk
q_f∑n

l=1 length
l
q_f

, (12)

where lengthk
q_f is the available queue length of the kth instance. It

suggests that for a downstream instance, the longer its idle queue,
the higher the probability that it receives a data tuple.

The following two rules are employed to improve the load
balancing of DC at the vertex level.

Rule 1: An instance with an empty queue is always prioritized
in data tuple assignment.

If there is an instance with an empty queue, a data tuple is
preferentially assigned to it to balance computing load among
instances of a vertex.

Rule 2: An instance with a full queue no longer receives new
data tuples until there is new space available.

If the queue of an instance is full, it is unable to store new
data tuples, therefore there should be no more new data tuples
received. This rule minimizes the probability of discarding data
tuples.

The algorithm for lightweight load balancing based data
stream redirection among instances is described in Algorithm 1.



200 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208

The input of this algorithm includes the output data stream
dsi(O) of upstream vi, instances of downstream vj. The output is
the input data tuple for each instance of vj. Step 7 to step 9 set
the minimum load ratio lrmin,cni and maximum load ratio lrmax,cni
for each computing node. Step 11 to step 14 get the queue state
and calculate the load ratio for each computing node. Step 15
to step 22 decide the output data tuple for instances with an
empty or full queue. Step 23 to step 25 output the new data tuple
by the load-based redirection function. The time complexity of
Algorithm 1 is O (n), where n is the number of instances of vertex
vj.

5.3. Logical ring-based state management

Besides of data stream redirection, vertex state management
also affects computing performance. For example, if a stateful
vertex vs fails, its state will be lost, undermining the accuracy of
data tuple processing [21,22]. To maintain the states of stateful
vertices, checkpoint mechanism is employed in Storm for state
management [8]. However, checkpoint data is stored in external

Fig. 15. State backup for a stateful vertex.

Fig. 16. State recovery for a failed stateful vertex.

storage, requiring longer fault tolerance time to restore the sys-
tem state. It is also possible that part of state data is lost during a
failure, which may further affect the accuracy of system recovery.
We implement an online state backup and recovery mechanism
to address this problem. It can conduct real-time fault recovery
without losing state data, thus improving the accuracy of data
recovery.

For a stateful vertex vs, if the number of instances is n, then
n ≥ 2. All the n instances form a logical ring as they share state
backup and synchronization information, where each instance
manages its own state and periodically synchronizes its state with
adjacent instance nodes. The synchronization period T parameter
can be set as needed. As shown in Fig. 15, the kth instance vsk of
vs manages its own state, simultaneously synchronizing its own
state with the (k+ 1)th instance vsk+1, and the (k− 1)th instance
vsk−1.

If an instance node fails, its state still exists and does not stop
the system from further processing. As shown in Fig. 16, when
the kth instance vsk failed, at this point, there are two options to
resolve its failure: the first option is to let the (k + 1)th instance
vs(k+1) take over the work of vsk, and receive synchronization
state information from the (k − 1)th instance vs(k−1). If vs1 fails,
synchronization state information is received from instance vsn.
Another option is to create a new instance vsk′ , recover the state
of vsk from vs(k+1), and take over the work of the failed instance
vsk. If vsn fails, recovering the state from vs1.

The logical ring-based state management algorithm at the
instance level is described in Algorithm 2.



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208 201

The input of this algorithm includes instances of stateful ver-
tex vs, input data tuple of vs, and state of computing node for
each instance. The output is state dependency of all instances of
vs. Step 3 to step 5 check and create instance as needed to make
the number of instances of vs meet the condition n ≥ 2. Step
9 to step 11 synchronize state of vsk to the (k + 1)th instance
vsk+1 according to the condition that synchronization interval of
the kth instance vsk is greater than the minimum synchronization
period T and the state of vsk has been updated. Step 12 to step 19
recover failed instance by creating new instance or by selecting
an existing instance to take over its work. The time complexity of
Algorithm 2 is O (1), as only one instance of vs needs to update
the state information in each cycle.

5.4. Deployment optimization

Deployment optimization is the key to accomplish comput-
ing node-level data stream redirection, as well as to optimize
resource use, minimize the load balancing of data center DC,
and improve throughput and response time of elastic stream
computing systems [23].

In the initial deployment stage, we employ a modified first
fit strategy with full-scale vertices deployment to minimize re-
sponse time. In the online optimization stage, we employ the
modified first-fit strategy again but with differential-scale vertex
re-deployment, taking into account the current deployment of
vertices. To maximize the throughput, we adjust the number of
instances in a timely manner under the various resource con-
straints. The deployment optimization algorithm is described in
Algorithm 3.

The input of this algorithm includes m stream applications
set Gsa = {G1,G2, . . . ,Gm}, num available computing nodes
in data center DC = {cn1, cn2, . . . , cnnum}, input data stream
{rds (G1) , rds (G2) , . . . , rds (Gm)} for each stream application. The
output is the deployment of stream applications on available
computing nodes. Step 6 and step 7 initialize configuration pa-
rameters. Step 8 to step 15 deploy each vertex in one stream
application to an available computing node in a topologically
ordered manner by the first fit strategy. Especially, all instances
of any vertex are deployed to different compute nodes. Step 17 to
step 22 improve load balancing lbDC,[ts,te] of the data center during
[ts, te] by redirecting the input data tuple at instance level with
Algorithm 1. Step 23 to step 28 keep load ratio lrcni,[ts,te] of com-
puting node cni during [ts, te] within range

[
lrmin,cni , lrmax,cni

]
by

redirecting the input data tuple at instance level with Algorithm
1. Step 29 to step 33 optimize latency of application Gi by first fit
strategy with differential-scale vertex re-deployment. Step 34 to
step 38 optimize throughput of application Gi by increasing the
number of instances by pins% for each vertex, and deploying new
instances to an available compute node in a topologically ordered
manner with the first fit strategy. Step 39 to step 43 build state
dependency of all instances for each stateful vertex by Algorithm
2. The time complexity of Algorithm 3 is O (m · n), where m is the
number of stream applications, and n is the number of instances
of a vertex.

6. Performance evaluation

This section focuses on the evaluation of the proposed Dr-
Stream framework, discussing the experimental environment and
parameter settings, and providing a performance analysis on the
results.

6.1. Experimental environment and parameter setup

The proposed Dr-Stream framework is implemented and run
as an extension to Storm 1.2.2 [8] on top of CentOS 6.3 oper-
ation system. A monitor module is developed to monitor the
performance of Supervisors and Worker nodes. The redirection
algorithm among instances is implemented through the Cus-
tomStreamGrouping interface. The deployment optimization al-
gorithm is implemented through the IScheduler interface and
specified through configurations file Storm.yaml. Extensive ex-
periments have been conducted in a cluster hosted in the school
of Information Engineering, CUGB. The cluster consists of 35
computing nodes connected through a 1 Gbps LAN, with 1 des-
ignated computing node serving as the master node, running
Storm Nimbus, 2 designated as the Zookeeper nodes, and the rest
32 machines as the slave nodes, running Supervisor nodes. Each
machine in the cluster is equipped with Intel Core (TM) i5-8400
@ 2.8 GHz with 6-core and 8 GB RAM.



202 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208

Moreover, two types of stream applications Top_N and Word-
Count are submitted to the data center.

As shown in Fig. 17, the topology of TOP_N consists of vreader ,
vcount , vrank and vmerge. The function of each vertex is shown in
Table 1. The data stream grouping strategy from vreader to vcount ,
from vcount to vrank, and from vrank to vmerge are fields grouping,
fields grouping, and globalGrouping grouping, respectively. The
initial number of instances for vreader , vcount , vrank and vmerge are
20, 20, 16, 8.

As shown in Fig. 18, the topology of WordCount consists of
vreader , vsplit and vcount . The function of each vertex is shown in
Table 2. The data stream grouping strategy from vreader to vsplit

and from vsplit to vcount are shuffleGrouping and fields grouping,
respectively. The initial number of instances for vreader , vsplit and
vcount are 30, 30, 20, respectively.

The parameter settings of the experiment are shown in Ta-
ble 3.



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208 203

Fig. 17. Logical graph of Top_N.

Fig. 18. Logical graph of WordCount.

Table 1
Function of vertex in the logic graph of Top_N.
Vertex Function

vreader Read words from data stream
vcount Count words
vrank Rank words by count
vmerge Merge all ranks from upstream

Table 2
Function of vertex in the logic graph of WordCount.
Vertex Function

vreader Read sentence from data stream
vsplit Split words of sentence
vcount Count words

Table 3
Parameter settings.
Notations Value Description

lbmin,DC 0 Min load balancing of DC
lbmax,DC 0.3 Max load balancing of DC
lrmin,cni 0 Min load ratio of computing node cni
lrmax,cni 0.99 Max load ratio of computing node cni
pins 40 Incremental % of the number of instances

6.2. Performance results

The experimental settings contain four evaluation parameters:
average latency AL, average throughput AT, average load balanc-
ing lbavg,DC of data center DC, and average load ratio lravg,cn of a
computing node.

(1) Average Latency. The average latency AL or average re-
sponse time of applications is one of the most important per-
formance indicators that reflect the overall responsiveness of an
elastic stream computing system. On Storm platform, AL can be
retrieved through the Storm UI. The shorter the average latency
AL, the better the real-time performance.

The real-time latency of both Dr-Stream and the default de-
ployment strategies can reach a relatively stable state. In the
stable phase, Dr-Stream has a shorter real-time latency as com-
pared to the default strategy on Storm. As shown in Fig. 19,
when the rate of input data stream is 1000 tuples/s, the average
latency of Dr-Stream and that of the default are gauged at 41 ms
and 52 ms, respectively. Dr-Stream reduces it by 21%. When
the rate of input is 2000 tuples/s, the average latency of Dr-
Stream and that of the default Storm deployment strategy are
gauged at 109 ms and 149 ms, respectively. Dr-Stream reduces
it by 26%. For the two general stream applications, it is apparent
that the average latency of Dr-Stream is shorter than that of the
default Storm scheduling strategy in the stable phase. The average
latency is reduced by more than 20%.

With the increase of input rate, the average latency increases
under both deployment strategies. For a given input rate, Dr-
Stream has a shorter average than the default Storm strategy.

Fig. 19. Real-time latency at different input rates.

Fig. 20. Average latency at different input rates.

As shown in Fig. 20, when the rate of input data stream is 1500
tuples/s, the average latency of Dr-Stream and that of the default
Storm deployment strategy change to 78 ms and 98 ms, respec-
tively. Dr-Stream reduces it by 20%. However, when the rate
increases to 5000 tuples/s, the average latency of Dr-Stream and
that of the default Storm deployment strategy climb to 372 ms
and 595 ms, respectively. Dr-Stream reduces it by 37%. The higher
the data rate, the more significant this difference is noted.

(2) Average throughput. The average throughput AT is the
average data rates delivered by an output vertex of a stream ap-
plication. It can be evaluated by the number of output tuples per
second produced by each stream application. Average throughput
is also one of the most important performance indicators that
reflect the overall processing capability. The greater the system
throughput, the stronger the data processing capability of the
stream computing system.

The real-time throughput of both deployment strategies can
reach a relatively stable state. In the stable phase, Dr-Stream
has a higher real-time throughput as compared to the default
Storm strategy. As shown in Fig. 21, when the rate of input data
stream is 1000 tuples/s, the average throughput of Dr-Stream and
that of the default Storm deployment strategy are gauged at 530
tuples/s and 451 tuples/s, respectively. Dr-Stream improves it by



204 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208

Fig. 21. Real-time throughput at different input rates.

Fig. 22. Average throughput at different input rates.

17%. When the rate is 2000 tuples/s, the average throughput of
Dr-Stream and that of the default change to 1103 tuples/s and
851 tuples/s, respectively. Dr-Stream improves it by 29%. For the
given general stream applications, it is apparent that the average
throughput by Dr-Stream is higher than that of the default at the
stable phase. The average throughput is improved by more than
15%.

At each input rate, Dr-Stream beats the default Storm strategy
with a higher average throughput. With the increase of rate,
the difference between the two strategies becomes apparent.
The higher the data rate, the more significantly this difference
is noted. As shown in Fig. 22, when the rate is 1500 tuples/s,
the average throughput of Dr-Stream and that of the default
Storm deployment strategy are 832 tuples/s and 641 tuples/s,
respectively. Dr-Stream improves the average throughput by 29%.
The difference between the two is small. However, when the rate
increases to 5000 tuples/s, the average throughput of the two
become 2673 tuples/s and 1521 tuples/s, respectively. Dr-Stream
improves it by 75%. The difference becomes rather significant.

(3) Average load balancing lbavg,DC of data center DC. The av-
erage load balancing lbavg,DC of data center DC reflects the load
balancing metric of CPU queues on computing nodes during a
period of time. If the average load balancing lbavg,DC of DC is small,

Fig. 23. Real-time load balancing at different input rates.

Fig. 24. Average load balancing at different input rates.

the better load status is observed, and it demonstrates how well
the stream computing system adapts to data stream fluctuation.

The real-time load balancing of both deployment strategies
can reach a relatively stable state. In the stable phase, Dr-Stream
has a less real-time load balancing as compared to the default
Storm strategy. As shown in Fig. 23, when the rate of input data
stream is 4000 tuples/s, the average load balancing of Dr-Stream
and that of the default Storm deployment strategy are 0.3 and
0.47, respectively. Dr-Stream reduces it by 36%. When the rate
of input data stream change to 5000 tuples/s, the average load
balancing values become 0.3 and 0.54, respectively. Dr-Stream
reduces it by 44%. For the given general examples of stream
applications, it is apparent that the average load balancing by Dr-
Stream is less than that of the default Storm scheduling strategy
in the stable phase. The average load balancing is reduced by
more than 35%.

At each input rate, Dr-Stream beats the default Storm strategy
with a less average load balancing value. When the rate increases
to a certain extent, Dr-Stream can stabilize the average load
balancing at the set maximum load balancing lbmax,DC of data
center DC by dynamically redirecting of real-time data streams.
As shown in Fig. 24, when the rate of input data stream is 1500
tuples/s, the average load balancing of Dr-Stream and that of



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208 205

Fig. 25. Average load ratio at different input rates.

the default Storm deployment strategy are 0.16 and 0.27, respec-
tively. Dr-Stream reduces it by 40%. When the rate is greater than
3500 tuples/s, the average load balancing of Dr-Stream is stabi-
lized at 0.3. However, the average load balancing of the default
continues to increase along with the increasing data stream rate.
When the rate is greater than 5000 tuples/s, the average load
balancing of the default reaches 0.54.

(4) Average load ratio lravg,cn. The average load ratio lravg,cn of
a computing node cn reflects the loading state of its CPU queue.
If lrcn,[ts,te] ≥ 1, then computing node cn is overloaded, lowering
the system performance. It is better to have the average load ratio
lravg,cn kept within the range of (0, 1). Given the average load ratio
lravg,cn ∈ (0, 1), the larger the average load ratio lravg,cn, the higher
the effective utilization of the compute node.

With the increase of rate, the average load ratio of computing
nodes increases under both deployment strategies. When the rate
increases to a certain extent, Dr-Stream can stabilize the average
load ratio at the set maximum load ratio lrmax,cni of computing
node. As shown in Fig. 25, when the rate is 1000 tuples/s, the
average load ratio of the two are 0.83 and 0.79, respectively.
This is because our scheduling strategy reduces the number of
computing nodes used without affecting the performance of the
stream computing system when the data steam rate is low. When
the rate increases to 2500 tuples/s, the average load ratio climbs
to 0.99 and 1, respectively, avoiding overloading computing node
and ensuring the system performance. When the rate is greater
than 2500 tuples/s, the load ratio by Dr-Stream can be controlled
at a high but efficient level, however, the ratio produced by the
default is always in an overload state, which directly lowers the
system performance.

7. Related work

In this section, we review the three broad categories of related
work: big data stream computing, load balancing optimization
for elastic stream computing systems and stream application
deployment on Storm platform.

7.1. Big data stream computing

Stream computing and batch computing [24] are the two most
important forms of big data computing paradigms, and they can
meet the computing needs of most big data scenarios. In general,
big data batch computing is used for large-scale data processing
in batches, where the processing results must be highly accurate,

and higher data processing delay is tolerable, even if it could take
as long as hours or days. On the other hand, an increasing number
of application scenarios have stringent real-time requirements.
The timely processing of data has become more prominent, and
the accuracy of processing results is no longer the primary goal.

To address this need, a new generation of big data streaming
computing architecture has been proposed and widely used, such
as Storm [8], Heron [25], and Samza [26]. Stream computing and
batch computing are not opposing alternatives but interactants.
They can be combined with each other to meet various goals
of data processing at different stages. At the initial stage when
fresh data is generated, new values need to be mined promptly.
Stream computing can meet the data processing needs at this
stage because of its stringent timeliness. When analyzing the
intrinsic values and the regularity of data at a later stage, the
batch calculation can meet the needs of data processing quite well
because of its high accuracy.

Stream computing also provides new opportunities for many
computing scenarios. Generally, security issues [27,28] are one
of the most significant challenges in cloud and fog computing
environments. Timeliness is crucial for the inspection of secu-
rity threats [29]. Through a streaming computing platform, we
can analyze data streams in real time to identify propagation
sources [30] and detect threats [31]. In addition, stream comput-
ing can also be applied in the fields of precision advertising [32]
and smart transportation [32], etc.

7.2. Load balancing optimization for elastic stream computing sys-
tems

Load balancing optimization plays an important role [33,34] to
meet the need of low system latency and high system throughput
for an elastic stream computing system as the rate of real-time
data stream fluctuates over time. In recent years, there is great in-
terest in improving load balancing in a distributed environment.
However, it is challenging [35,36] to achieve load balancing in
stream computing systems due to a series of factors, such as the
unbounded volume of data streams, the fluctuating arrival rate,
and the lack of global consistency.

In [12], the authors proposed a framework that integrated the
optimization of load balancing, operator instance collocations and
horizontal scaling. Load balancing and horizontal scaling were
modeled as Mixed-Integer Linear Program, LP solver was used to
improve the load distribution in computing cluster.

To improve the load balancing for stateful applications in
Storm system, a locality-aware routing strategy was proposed
in [37], to improve the data stream locality for stateful stream
processing applications. Data migration was considered in the
routing processing.

Focusing on the need to incorporate aggregation cost in the
partitioning model, a cost model for stream partitioning was
introduced in [38], where the imbalance and aggregation cost on
the window of a stateful vertex was considered, and a stream
partitioning strategy was proposed to minimize the latency and
throughput of stream computing systems.

To improve throughputs and communication cost, in [39],
a scalable scheme partitioning model was proposed for stream
join operators. To find the migration plan with minimal data
communication cost, a lightweight computation model was also
presented.

Focusing on the dynamic parallelism configuration of parti-
tioning tasks on Spark platform, an analytical model for express-
ing the running time was proposed in [40], where an algorithms
for configuring dynamic partitioning was given to optimize the
resource of data center and the running time of Spark tasks.

To improve the throughput of a stream computing system,
in [41], a partitioning function for stateful data parallelism was



206 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208

proposed. Various desirable properties for the function was given,
such as balance properties, structural properties, adaptation prop-
erties.

To summarize, load balancing optimization for elastic stream
computing systems has been studied in many research work.
However, most of them achieved load balancing by redirecting
data stream among multiple instances at the instance level only.
Extensive experiments in this paper showed that such implemen-
tation of load balancing is limited. It is necessary to achieve a
larger range and a higher level of load balancing at vertex level
through node rescheduling. In our work, we improved the sys-
tem load balancing by simultaneously redirecting real-time data
stream at the instance level and by optimizing vertex deployment
at the vertex level.

7.3. Stream application deployment on storm platform

Stream applications deployment is important on Storm plat-
form to satisfy its performance requirements, such as low system
latency, high system throughput, and acceptable load balancing.
It is hard to find an optimal deployment as the problem of Stream
applications deployment is NP-hard [42,43], which has also been
extensively studied in recent years.

To implement an elastic stream computing system, in [13],
the authors tried to scale a stream computing system from two
dimensions: operator parallelism and resource scaling. A fine-
grained model and an elastic scaling framework that estimated
the resources utilization was proposed and implemented on
Storm platform.

In response to the uncertainty and complexity of stream-
ing data, in [44], a model-based scheduling scheme for stream
processing systems was proposed. It captured the system behav-
ior and provided an optimal allocation strategy to adapt to the
changing work conditions on Storm platform.

Due to the unpredictability of data sources, and the fact that
these stream applications often operate in a dynamic environ-
ment, the streaming applications require the support of elastically
scaling in response to workload variations. In [45], an optimal
operator deployment and replication strategy was proposed to
achieve elastic distributed data stream processing. The deploy-
ment and runtime decisions were made by solving a suitable
integer linear programming problem, with an objective func-
tion capturing the relative importance between QoS goals and
reconfiguration costs.

Graph partitioning is a NP-hard complexity problem in com-
puter science. In [46], graph partitioning was employed to par-
tition the work-load of stream programs, to improve the de-
ployment of applications, and to optimize the throughput on
heterogeneous distributed stream computing platforms.

A single bottleneck of an application (congested link or an
overloaded operator) can drastically throttle the system through-
put. In [47], two techniques were proposed to address the bot-
tleneck problems on stream computing platforms, which were
network-aware routing for fine-grained control of streams and
dynamic overlay generation for optimizing performance of group
communication operations.

Stream application deployment has been studied extensively
from resource optimization perspective recently with various
goals. However, the problem of continuous fluctuation in real-
time data streams has not been fully considered from the data
stream redirection perspective, which is another important factor
that affects the performance of streaming computing systems.
In this paper, we studied the application deployment strategy
on Strom platform from both the resource optimization per-
spective and the data stream redirection perspective. It provided
significant performance improvements on metrics such as system
latency, throughput, and load balancing.

8. Conclusions and future work

Low system latency, high system throughput, and acceptable
load balancing are critical performance requirements for an elas-
tic stream computing system. One of the major challenges to
realize an elastic stream computing system is how to contin-
uously and adaptively adjust resource allocation for streaming
applications. A rescheduling scheme with efficient performance
optimization does not always work due to the relatively long
decision time. The computing environment might have under-
gone fundamental changes due to data steam fluctuation. In
addition, the loss of vertex state information and load shed-
ding of data tuples during operator rescheduling have not been
fully considered. To address these problems, we try to optimize
system performance from the perspective of data stream redirec-
tion by proposing a dynamic redirection framework Dr-Stream.
It processes fluctuating data streams in a scalable and elastic
manner, optimizing system performance and adjusting the load
to resources without causing data or state loss. Meanwhile, the
fine-grained resource optimization is also incorporated to fur-
ther improve system performance, such as lower system latency,
higher system throughput, and acceptable load balancing.

Our contributions are summarized as follows:
(1) Provided a general stream application model, a data stream

model and a data stream grouping model, as well as formalization
of the load balancing optimization and data stream redirection
problems;

(2) Redirected data streams among multiple instances of an
operator at runtime; managing the states of stateful operators by
a logical ring-based strategy;

(3) Determined the number of instances for each operator, and
deployed the instances to computing nodes;

(4) Evaluated the fulfillment of low latency, high throughput,
and acceptable load balancing objectives;

(5) Implemented a prototype and tested the performance of
the proposed Dr-Stream;

Our future work will be focusing on the following directions:
(1) To integrate the state migration as a part of Dr-Stream,

considering fault tolerance strategies to improve system reliabil-
ity.

(2) To apply the Dr-Stream in real big data stream computing
application scenarios, such as urban intelligent transportation and
geological disaster real-time warning.

CRediT authorship contribution statement

Dawei Sun: Conceptualization, Methodology, Validation, Writ-
ing - original draft, Funding acquisition. Shang Gao: Formal anal-
ysis, Investigation, Writing - review & editing. Xunyun Liu: Vali-
dation, Investigation, Writing - review & editing. Xindong You:
Data curation, Funding acquisition. Rajkumar Buyya: Supervi-
sion, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China under Grant No. 61972364; the Fundamental
Research Funds for the Central Universities, China under Grant
No. 2652018081; Australian Research Council (ARC) Discovery
Project; Promoting the Developing University Intension–Disciplin
ary Cluster, China No. 5211910940, Qin Xin Talents Cultivation
Program, China, and Beijing Information Science & Technology
University, China No. QXTCP B201908.



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208 207

References

[1] H. Röger, R. Mayer, A comprehensive survey on parallelization and elas-
ticity in stream processing, ACM Comput. Surv. 1 (2019) 1–37, https:
//arxiv.org/abs/1901.09716.

[2] A. Shukla, Y. Simmhan, Model-driven scheduling for distributed stream
processing systems, J. Parallel Distrib. Comput. 117 (2018) 98–114.

[3] Z. Zvara, P.G.N. Szabó, B. Balázs, A. Benczúr, Optimizing distributed data
stream processing by tracing, Future Gener. Comput. Syst. 90 (2019)
578–591.

[4] A. Rezaeian, M. Naghibzadeh, D.H.J. Epema, Fair multiple-workflow
scheduling with different quality-of-service goals, J. Supercomput. 75 (2)
(2019) 746–769.

[5] J. Fang, R. Zhang, T.Z.J. Fu, Z. Zhang, A. Zhou, X. Zhou, Distributed
stream rebalance for stateful operator under workload variance, IEEE Trans.
Parallel Distrib. Syst. 29 (10) (2018) 2223–2240.

[6] M. Dias de Assunção, A. da Silva Veith, R. Buyya, Distributed data stream
processing and edge computing: A survey on resource elasticity and future
directions, J. Netw. Comput. Appl. 103 (2018) 1–17.

[7] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy,
Storm@twitter, in: Proc. 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2014, ACM Press, 2014, pp. 147–156.

[8] Storm, http://storm.apache.org.
[9] L. Eskandari, J. Mair, Z.Y. Huang, D. Eyers, T3-Scheduler: A topology and

traffic aware two-level scheduler for stream processing systems in a
heterogeneous cluster, Future Gener. Comput. Syst. 89 (2018) 617–632.

[10] Q.C. To, J. Soto, V. Mark, A survey of state management in big data
processing systems, VLDB J. 27 (6) (2018) 847–872.

[11] B. Gedik, S. Schneider, M. Hirzel, K.L. Wu, Elastic scaling for data stream
processing, IEEE Trans. Parallel Distrib. Syst. 25 (6) (2014) 1447–1463.

[12] K.G.S. Madsen, Y.L. Zhou, J.N. Cao, Integrative dynamic reconfiguration in
a parallel stream processing engine, in: Proc. 2017 IEEE 33rd International
Conference on Data Engineering, ICDE 2017, IEEE Press, 2017, pp. 227–230.

[13] F. Lombardi, L. Aniello, S. Bonomi, L. Querzoni, Elastic symbiotic scaling of
operators and resources in stream processing systems, IEEE Trans. Parallel
Distrib. Syst. 29 (3) (2018) 572–585.

[14] J. Fang, P. Chao, R. Zhang, X. Zhou, Integrating workload balancing and
fault tolerance in distributed stream processing systems, World Wide Web
(2019) http://dx.doi.org/10.1007/s11280-018-0656-0.

[15] S. Schneider, J. Wolf, K. Hildrum, R. Khandekar, K.L. Wu, Dynamic load bal-
ancing for ordered data-parallel regions in distributed streaming systems,
in: Proc. 17th International Middleware Conference, Middleware 2016, Dec.
2016, p. a21.

[16] K. Vasiliki, L. John, H. Moritz, D. Desislava, F. Matthew, Three steps is
all you need: fast, accurate, automatic scaling decisions for distributed
streaming dataflows, in: Proc. 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Oct. 2018, pp. 783-798.

[17] M. Bilal, M. Canini, Towards automatic parameter tuning of stream pro-
cessing systems, in: Proc. 2017 Symposium on Cloud Computing, SoCC
2017, ACM Press, 2017, pp. 189–200.

[18] M.A.U. Nasir, G.D.F. Morales, N. Kourtellis, M. Serafini, When two choices
are not enough: Balancing at scale in distributed stream processing, in:
Proc. 2016 IEEE 32nd International Conference on Data Engineering, ICDE
2016, IEEE Press, 2016, pp. 589–600.

[19] L. Su, Y. Zhou, Passive and partially active fault tolerance for massively
parallel stream processing engines, IEEE Trans. Knowl. Data Eng. 31 (1)
(2019) 32–45.

[20] D. Millot, C. Parrot, Optimization of the processing of data streams on
roughly characterized distributed resources, IEEE Trans. Parallel Distrib.
Syst. 27 (5) (2016) 1415–1429.

[21] C. Mariluz, B.V. Pablo, S.F. Luis, T-hoarder: A framework to process twitter
data streams, J. Netw. Comput. Appl. 83 (2017) 28–39.

[22] I. Flouris, N. Giatrakos, A. Deligiannakis, M. Garofalakis, M. Kamp, M. Mock,
Issues in complex event processing: Status and prospects in the big data
era, J. Syst. Softw. 127 (2017) 217–236.

[23] J. Rho, T. Azumi, M. Nakagawa, K. Sato, N. Nishio, Scheduling parallel and
distributed processing for automotive data stream management system, J.
Parallel Distrib. Comput. 109 (2017) 286–300.

[24] Y.P. Wen, Z.B. Wang, Y. Zhang, J.X. Liu, B.Q. Cao, J.J. Chen, Energy and
cost aware scheduling with batch processing for instance-intensive IoT
workflows in clouds, Future Gener. Comput. Syst. 101 (2019) 39–50.

[25] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J.M. Patel,
K. Ramasamy, S. Taneja, Twitter heron: Stream processing at scale, in: Proc.
the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2015, ACM Press, 2015, pp. 239–250.

[26] Samza, http://samza.apache.org/.
[27] S. Ivan, S. Wen, X. Huang, H. Luan, An overview of fog computing and its

security issues, Concurr. Comput.: Pract. Exper. 28 (10) (2015) 2991–3005.

[28] S. Moin, A. Karim, Z. Safdar, K. Safdar, E. Ahmed, M. Imran, Securing IoTs
in distributed blockchain: Analysis, requirements and open issues, Future
Gener. Comput. Syst. 100 (2019) 325–343.

[29] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, K. Ren, An-
droid HIV: A study of repackaging malware for evading machine-learning
detection, IEEE Trans. Inf. Forensics Secur. 15 (1) (2020) 987–1001.

[30] J. Jiang, S. Wen, S. Yu, Y. Xiang, W. Zhou, Identifying propagation sources in
networks: State-of-the-Art and comparative studies, IEEE Commun. Surv.
Tutor. 19 (1) (2017) 465–481.

[31] T. Wu, S. Wen, Y. Xiang, W. Zhou, Twitter spam detection: Survey of new
approaches and comparative study, Comput. Secur. 76 (2018) 265–284.

[32] T.R. Rao, P. Mitra, R. Bhatt, A. Goswami, The big data system, compo-
nents, tools, and technologies: a survey, Knowl. Inf. Syst. 60 (3) (2019)
1165–1245.

[33] B.V. Pablo, F.G. Norberto, S.F. Luis, A.F. Jesus, Patterns for distributed real-
time stream processing, IEEE Trans. Parallel Distrib. Syst. 28 (11) (2017)
3243–3257.

[34] N. Hidalgo, D. Wladdimiro, E. Rosas, Self-adaptive processing graph with
operator fission for elastic stream processing, J. Syst. Softw. 127 (2017)
205–216.

[35] M.A.U. Nasir, G. De Francisci Morales, D. García-Soriano, N. Kourtellis, M.
Serafini, The power of both choices: Practical load balancing for distributed
stream processing engines, in: IEEE 31st International Conference on Data
Engineering, ICDE 2015, IEEE Press, 2015, pp. 137–148.

[36] G. Jon, S. Malte, B. Jonathan, T.A. Lara, E. Martin, K. Eddie, K.M. Frans, M.
Robert, Noria: dynamic, partially-stateful data-flow for high-performance
web applications, in: Proc. 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Oct. 2018, pp. 213–231.

[37] M. Caneill, A. El Rheddane, V. Leroy, N. De Palma, Locality-aware routing
in stateful streaming applications, in: Proc. 17th International Middleware
Conference, Middleware 2016, IEEE Press, 2016, p. a4.

[38] N.R. Katsipoulakis, A. Labrinidis, P.K. Chrysanthis, A holistic view of stream
partitioning costs, in: Proc. 43rd International Conference on Very Large
Data Bases, VLDB 2017, Aug. 2017, pp. 1286–1297.

[39] J. Fang, R. Zhang, X. Wang, A. Zhou, Distributed stream join under workload
variance, World Wide Web 20 (5) (2017) 1089–1110.

[40] A. Gounaris, G. Kougka, R. Tous, C.T. Montes, J. Torres, Dynamic configura-
tion of partitioning in spark applications, IEEE Trans. Parallel Distrib. Syst.
28 (7) (2017) 1891–1904.

[41] B. Gedik, Partitioning functions for stateful data parallelism in stream
processing, VLDB J. 23 (4) (2014) 517–539.

[42] M. Nardelli, V. Cardellini, V. Grassi, F. Lo Presti, Efficient operator place-
ment for distributed data stream processing applications, IEEE Trans.
Parallel Distrib. Syst. (2019) http://dx.doi.org/10.1109/TPDS.2019.2896115.

[43] T. Buddhika, R. Stern, K. Lindburg, K. Ericson, S. Pallickara, Online
scheduling and interference alleviation for low-latency, high-throughput
processing of data streams, IEEE Trans. Parallel Distrib. Syst. 28 (12) (2017)
3553–3569.

[44] Y. Wang, Z. Tari, M.R.H. Farahabady, A.Y. Zomaya, Model-based scheduling
for stream processing systems, in: Proc. 2017 IEEE 19th Intl Conference
on High Performance Computing and Communications, HPCC 2017, IEEE
Press, 2017, pp. 215–222.

[45] V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Optimal operator
deployment and replication for elastic distributed data stream processing,
Concurr. Comput.: Pract. Exper. 30 (9) (2018) e4334(1-20).

[46] V.T.N. Nguyen, R. Kirner, Throughput-driven partitioning of stream pro-
grams on heterogeneous distributed systems, IEEE Trans. Parallel Distrib.
Syst. 27 (3) (2016) 913–926.

[47] N. Rapolu, S. Chakradhar, A. Grama, VAYU: Accelerating stream processing
applications through dynamic network-aware topology re-optimization, J.
Parallel Distrib. Comput. 111 (2018) 13–23.

Dawei Sun is an associate professor in the School of In-
formation Engineering, China University of Geosciences,
Beijing, P.R. China. He received his Ph.D. degree in
computer science from Northeastern University, China
in 2012, and conducted the Postdoctoral research in
the department of computer science and technology
at Tsinghua University, China in 2015. His current
research interests include big data computing, cloud
computing, and distributed systems. He has authored
or co-authored over 60 journal and conference papers
in the above areas.

https://arxiv.org/abs/1901.09716
https://arxiv.org/abs/1901.09716
https://arxiv.org/abs/1901.09716
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb2
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb2
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb2
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb3
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb3
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb3
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb3
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb3
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb4
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb4
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb4
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb4
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb4
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb5
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb5
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb5
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb5
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb5
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb6
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb6
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb6
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb6
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb6
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb7
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb7
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb7
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb7
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb7
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb7
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb7
http://storm.apache.org
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb9
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb9
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb9
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb9
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb9
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb10
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb10
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb10
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb11
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb11
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb11
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb12
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb12
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb12
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb12
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb12
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb13
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb13
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb13
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb13
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb13
http://dx.doi.org/10.1007/s11280-018-0656-0
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb17
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb17
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb17
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb17
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb17
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb18
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb18
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb18
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb18
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb18
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb18
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb18
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb19
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb19
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb19
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb19
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb19
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb20
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb20
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb20
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb20
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb20
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb21
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb21
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb21
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb22
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb22
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb22
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb22
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb22
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb23
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb23
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb23
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb23
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb23
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb24
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb24
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb24
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb24
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb24
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb25
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb25
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb25
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb25
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb25
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb25
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb25
http://samza.apache.org/
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb27
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb27
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb27
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb28
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb28
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb28
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb28
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb28
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb29
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb29
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb29
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb29
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb29
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb30
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb30
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb30
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb30
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb30
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb31
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb31
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb31
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb32
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb32
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb32
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb32
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb32
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb33
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb33
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb33
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb33
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb33
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb34
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb34
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb34
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb34
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb34
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb35
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb35
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb35
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb35
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb35
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb35
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb35
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb37
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb37
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb37
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb37
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb37
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb39
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb39
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb39
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb40
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb40
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb40
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb40
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb40
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb41
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb41
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb41
http://dx.doi.org/10.1109/TPDS.2019.2896115
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb43
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb43
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb43
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb43
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb43
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb43
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb43
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb44
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb44
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb44
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb44
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb44
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb44
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb44
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb45
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb45
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb45
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb45
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb45
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb46
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb46
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb46
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb46
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb46
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb47
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb47
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb47
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb47
http://refhub.elsevier.com/S0167-739X(19)32347-7/sb47


208 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 112 (2020) 193–208

Shang Gao received her Ph.D. degree in computer sci-
ence from Northeastern University, China in 2000. She
is currently a senior lecturer in the School of Informa-
tion Technology, Deakin University, Geelong, Australia.
Her current research interests include distributed
system, cloud computing, and cyber security.

Xunyun Liu received the B.E. and M.E degree in
Computer Science and Technology from the National
University of Defense Technology in 2011 and 2013,
respectively. He obtained the Ph.D. degree in Com-
puter Science at the University of Melbourne in 2018.
His research interests include stream processing and
distributed systems.

Xindong You is currently an Associate Professor of
Department of Computer Science at Beijing Infor-
mation Science & Technology University, China. She
was a post-doctoral position with the Beijing Institute
of Graphic Communication, Tsinghua University from
2016 to 2018. Before as a post-doctoral, she is an
Associate Professor at Hangzhou Dianzi University. She
received her Ph.D. degree in computer science from
Northeastern University, China in 2007. Her current re-
search areas include Distributed Computing and Cloud
Storage, etc.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving as the
founding CEO of Manjrasoft, a spin-off company of the
University, commercializing its innovations in Cloud
Computing. He has authored over 650 publications and
four text books. He is one of the highly cited authors in
computer science and software engineering worldwide
(h-index 132, 93,200+ citations). He has served as the
founding Editor-in-Chief (EiC) of IEEE Transactions on

Cloud Computing and now serving as EiC of Journal of Software: Practice and
Experience.


	Dynamic redirection of real-time data streams for elastic stream computing
	Introduction
	Paper contributions
	Paper organization

	Background
	System model
	Stream application model
	Data stream model
	Data stream grouping model

	Problem formalization
	Load balancing problem of a data center
	Load balancing optimization
	Data stream redirection

	Dr-Stream: Architecture and algorithms
	System architecture
	Lightweight load balancing based redirection among instances
	Logical ring-based state management
	Deployment optimization

	Performance evaluation
	Experimental environment and parameter setup
	Performance results

	Related work
	Big data stream computing
	Load balancing optimization for elastic stream computing systems
	Stream application deployment on storm platform

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


