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a b s t r a c t 

There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to 

provision latency-sensitive real-time applications such as health monitoring, disaster management, and 

smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate 

layer to provide data, computation, storage, and networking services between Cloud datacenters and end 

users. A key element within such Fog computing environments is resource management. While there are 

existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog 

resource management encompassing system response time, network bandwidth, energy consumption and 

latency. To date no existing Fog resource manager considers these parameters simultaneously for decision 

making, which in the context of smart homes will become increasingly key. In this paper, we propose a 

novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which 

leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an 

IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical 

models within a small-scale smart home experiment. Results demonstrate our approach results a reduc- 

tion of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption. 

© 2019 Elsevier Inc. All rights reserved. 
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. Introduction 

Emerging Big Data and Internet of Things (IoT) applications

uch as smart cities and healthcare services have risen in soci-

tal prominence, demonstrated by an increase of data velocity of

50 MB per minute globally ( Chen and Zhang, 2014 ). Therefore,

uch applications require substantial data and computational capa-

ility to provision service ( Perera et al., 2017 ), possible via deploy-

ent within Cloud datacenters. However, such applications when

eployed within Cloud datacenters encounter potentially high la-

ency and response times due to large geographical distance and

ata bandwidth requirements between clients and the datacenter.

 Al-Fuqaha et al., 2015 ). Fog computing has been envisioned as a

eans to reduce the latency, via extending Cloud datacenters to in-

egrate with the network edge ( White et al., 2017; Gill et al., 2018 ).

hus, IoT environments can leverage fog-assisted Cloud computing

o execute latency-sensitive applications. 

Resource management – the process of scheduling and allocat-

ng resources to applications – is a fundamental concept within
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istributed systems ( Singh and Chana, 2016 ) in order to adhere

o specified Quality of Service (QoS) constraints whilst minimizing

verheads pertaining to performance, and energy waste ( Singh and

hana, 2016 ). While there exist a wide plethora of existing sched-

lers for distributed systems such as MESOS, YARN and BORG

n cloud, which have been created to operate within centralized

omputing infrastructure ( Rodriguez and Buyya, 2018 ). Specifically,

hese schedulers are not designed to operate within an environ-

ent including highly mobile edge devices ( Son and Buyya, 2019 ),

atency-sensitive applications, nor wide geographical areas intrinsic

o Fog computing environments. Resource management within Fog

omputing predominantly focuses on managing the compute and

torage service between edge devices and the Cloud datacenters

o process user tasks with minimum latency and response time

 Gill et al., 2018; Singh et al., 2016; Atzori et al., 2010; Deng et al.,

015 ). Existing IoT and Fog computing resource managers focus on

 singular or specific sub-set of metrics including application re-

ponse time, latency, energy, and network bandwidth ( Lee et al.,

016; Yu et al., 2017; Stojkoska and Trivodaliev, 2017; Zhang et al.,

017 ), Capturing all these parameters within a Fog computing re-

ource management is particularly important within the context of

mart homes, which are positioned to process increasingly larger

uantities of data from smart devices and appliances connected to

https://doi.org/10.1016/j.jss.2019.04.058
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
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IoT systems, whilst simultaneously ensuring high QoS and reduced

energy consumption to reduce electricity bills for home dwellers

( Garraghan et al., 2018 ). Due to the complexity of multi-objective

optimization of parameters for trade-off decision making in re-

source management (which has led to existing Fog resource man-

agement algorithms implementing FIFO or round-robin based ap-

proaches ( Lee et al., 2016; Yu et al., 2017 )), we believe that explor-

ing nature or bio-inspired algorithms is a promising approach to

address this problem for resource management ( Singh and Chana,

2016; Kaur et al., 2018 ). 

In this paper, we propose a Fog-enabled Cloud computing re-

source management framework for smart homes. Our approach,

R es OU rce managemen T t E chnique for sma R t homes ( ROUTER ) has

been designed to consider and optimize multiple parameters si-

multaneously including response time, network bandwidth, en-

ergy consumption and latency simultaneously via use of a Particle

Swarm Optimization algorithm (PSO). Stochastic nature of the par-

ticle increases due to this property of PSO and touches rapidly to

global minima with a realistic noble solution ( Hassan et al., 2005 ).

PSO has become prevalent due to its easiness and its usefulness

in extensive range of application with little cost of computation

( Chen and Yu, 2005; Hassan et al., 2005 ). ROUTER has been val-

idated through empirical findings via a case study of IoT based

smart home automation which are then integrated into iFogSim

for evaluation. The main contributions of this research work are as

follows: (i) a detailed requirement and design of an Fog-assisted

Cloud architecture to perform effective resource management for

various IoT edge devices; (ii) a request handler mechanism for Fog

computing jobs, and a multi-objective PSO based resource manage-

ment technique; (iii) a small-scale empirical study of an IoT smart

home environment that leverages a Fog-assisted Cloud computing

environment, analyzing the performance of various QoS parame-

ters within different operational contexts. 

The rest of the paper is organized as follows. Section 2 presents

related work of existing techniques. The proposed technique is pre-

sented in Section 3 . Section 4 describes the experimental setup

and case study. Section 5 describes the results of the evaluation.

Section 6 presents conclusions and future work. 

2. Related work 

Research into IoT applications within Fog computing is grow-

ing research field, with various unsolved research challenges

( Gill et al., 2018 ). This section presents the current research on re-

source management within Fog computing. 

Deng et al. (2015) formulated a workload allocation problem to

study the tradeoff between energy consumption and delay within

a Cloud-Fog computing system. Furthermore, the primary prob-

lem is decomposed into three sub-problems to solve indepen-

dently, and demonstrated that Fog computing is efficient in re-

ducing transmission latency and communication bandwidth, how-

ever does not consider system network bandwidth and energy con-

sumption. Do et al. (2015) proposed a proximal algorithm for joint

resource allocation in the geo-distributed environment and reduc-

ing carbon footprint. Moreover, authors demonstrated that their

proposed solution can reduce system carbon footprints whilst of-

fering video streaming as a cloud service. Gu et al. (2015) pro-

posed a cost-efficient resource management technique integrated

within a medical Cyber-physical System in which virtual machine

placement, task distribution and base station association are inves-

tigated. Results demonstrated that the proposed solution performs

more effectively in comparison to a greedy algorithm in terms of

energy consumption. 

Lee et al. (2016) proposed a Gateway-based Fog Computing

(GFC) architecture for wireless sensors and actuator networks pre-

dominantly consisting of master and slave nodes, managing vir-
ual gateway functions, flows, and resources. Experimental results

how that GFC performs more effectively in terms of response

ime. Yu et al. (2017) proposed a Virtualization based Resource

rovisioning (VRP) algorithm for Fog computing and designed an

rchitecture using the concept of parallel and distributed load

alancing. Furthermore, the algorithm is evaluated within Cloud-

nalyst simulator that finds the proposed solution decreases the

ystem energy cost. Stojkoska and Trivodaliev (2017) proposed a

onceptual model for smart homes using IoT for fog computing,

nd suggests that energy consumption can be reduced via in-

egration of geographically distributed renewable energy sources.

hang et al. (2017) proposed a three-layer hierarchical game frame-

ork for resource management in Fog computing to solve the chal-

enges pertaining to fast data processing and minimum response

ime. This research work reported that Fog devices are more capa-

le to reduce latency as compared to the cloud by experiencing a

inor increase in energy consumption. Therefore, the trade-off be-

ween latency and power consumption is required to provide more

fficient services. 

From the literature it is observable that under-provisioning and

ver-provisioning of resources in existing Fog computing and IoT

esource management techniques ( Lee et al., 2016; Yu et al., 2017 ).

og devices have additional compute and storage power, however

t is not feasible for such devices to provide resource capacity

quivalent to that of Cloud datacenters, therefore efficient resource

anagement is required to process user requests in a timely man-

er. To solve this problem, the resource requirement for execution

f user tasks should be predicted accurately in advance to uti-

ize resources efficiently. The comparison of existing resource man-

gement techniques with the proposed technique (ROUTER) is de-

cribed in Table 1 . 

. ROUTER: Fog-assisted cloud based resource management for 

oT and big data analytics 

This section presents the proposed resource management tech-

ique (ROUTER) for Fog-assisted Cloud resource management for

mart homes. The architecture of ROUTER is shown in the Fig. 1 . 

Based on their functionality, the architecture is composed of

hree layers, the components of the proposed architecture are dis-

ussed below: 

Internet of Things (IoT): Edge devices comprising gateways, fog

evices, smart home appliances, sensors etc. A user may interact

ith the Fog computing environment via IoT applications or sen-

ors. The functionality of this layer is enhanced by installing intel-

igent and applications within end devices. 

Fog Computing: Collects data generated by bottom layer (IoT)

nd establishes communication between edge devices and the

loud datacenter. The functionality of the intermediate layer is

ivided into two sublayers: a) Field Area Network (end devices

nteracting with each other via 3 G/4 G/Wi-Fi) and b) Internet

rotocol/Multi-Protocol Label Switching (used to transfer the data

rom end devices to centralized cloud system). 

Cloud and Big Data: Manages the services which enable the

anagement of resources and processing of big data and IoT tasks.

urthermore, this layer provides QoS to Fog computing applications

nd the Cloud computing operational management. Applications

uch as Big Data processing is performed at this layer to handle

he large data coming from different IoT applications and process

hrough different stages such as preprocessing, classification and

rediction ( Gill et al., 2018 ). 

Cloud computing contains a wide variety of services that can

nhance application operation to minimize latency of executing

asks on Fog devices whilst decreasing Cloud economic costs. There

xist different types of services, which operate in tandem com-

rise: 
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Table 1 

Comparison of Existing Techniques with Proposed Technique (ROUTER). 

Authors Applicable Network Fog Nodes Nodal collaboration Focus Performance Parameters (QoS) 

Response 

Time 

Energy Latency Network 

Bandwidth 

Deng et al., 2015 Mobile Network Servers Master slave Application 

management 

✖ ✔ ✔ ✖ 

Do et al., 2015 Vehicular Network Servers Peer to Peer Application 

management 

✖ ✔ ✖ ✖ 

Gu et al., 2015 Mobile Network Base Stations Peer to Peer Network 

Management 

✖ ✔ ✖ ✖ 

Lee et al., 2016 IoT Network Devices Peer to Peer Resource 

Management 

✔ ✖ ✖ ✖ 

Yu et al., 2017 IoT Network Devices Peer to Peer Resource 

Management 

✖ ✔ ✖ ✖ 

Stojkoska and 

Trivodaliev, 2017 

Mobile Network Base Stations Cluster Application 

management 

✖ ✔ ✖ ✖ 

Zhang et al., 2017 Vehicular Network Servers Master slave Network 

Management 

✔ ✖ ✖ ✖ 

ROUTER 

(Proposed) 

IoT Network Devices 

and Servers 

Peer to Peer Application, 

Network and 

Resource 

Management 

✔ ✔ ✔ ✔ 

Fig. 1. ROUTER Architecture. 
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r

̶ Monitoring: Monitoring of service/application status and

performance. 

̶ Knowledge Base: Stores historical information pertaining

to resource and application demand to improve decision-

making processes in future IoT-based applications. 

̶ Job Placement: Processes information provided by Moni-

toring services that contain available Cloud resource sta-

tus at a particular period of time. This information is

leveraged to discover the best machines to schedule jobs

(tasks) for execution. This is further interconnected with

Resource Provisioning to find allocation requirements of

new resources for existing tasks. 

̶ Big Data Analytics: Collects data from different IoT devices

to perform different data processing operations span-

ning data pre-processing, classification, and prediction

( Gill et al., 2018 ). This module assists in determining

threshold values for performance parameters for resource

scheduling decision making. 

̶ Resource Information: Obtains information from Monitor-

ing and Knowledge Base to profile applications and re-

sources. 

̶ Security : Provides authorization and authentication to ap-

plications and services to manage user credentials. 

̶ Resource Provisioning: Control and provides resource allo-

cation to various network, Fog and Cloud resources. Due

to changing the number of applications and requirements

of applications with the entire system, resources are al-

locating dynamically in response to QoS and operational

constraints. 

̶ Performance Prediction : Performance of free cloud re-

sources is visualized by utilizing the information of

Knowledge Base service and this information is further

forwarded to the Resource Provisioning service to deter-

mine application resource requirements. 

3.1. Request handler mechanism 

Fig. 2 shows the interaction of Fog Data Server (FDS) with

IoT devices and Cloud Data Server (CDS) in terms of the design

model. IoT layer contains end devices such as gateways and sen-

sors to retrieve information from the end user. It then forwards

the user information to FDS for further processing. The fog layer

contains multiple FDSs. The FDS comprises one Fog Server Man-

ager (FSM), which manages all FDS resources required for job ex-
Fig. 2. Functional C

Fig. 3. Request Hand
omponents. 

ler Mechanism. 

cution. Further, the request can be forwarded to cloud layer for

xecution in case of unavailability of resources at the FDS level.

he cloud layer has a number of CDS . Fig. 3 describes the interac-

ion of cloud layer, fog layer and IoT layer to handle a typical job

equest. 

There are two types of job processing requests. First, at the FDS

denoted by i f ) and another at the CDS (denoted by i c ), which is re-

uested by FDS in the case of unavailability of resources at the Fog

ayer. Initially, the IoT layer submits a job request ( i f ) to the clos-

st FDS (say FDS 1 ) intended to accelerate job execution. The FSM

hecks whether the resource demand of that particular request is

atisfied or not at FDS 1 . If the FDS 1 satisfies the resource demand

f request ( i f ) then the FSM starts its execution and tracks its exe-

ution status. 

If the FDS 1 partially satisfies the demand of the job request ( i f )

hen the FSM has to wait for Minimum Constraint Time ( M st ), oth-

rwise the job request is forwarded to the CDS . If all the resources

re occupied at the FDS 1 but is in its initial release state, then the

ob request ( i f ) must wait for Minimum Constraint Time ( M st ) to

elease the resources and then commence execution. If all the re-

ources are busy executing other FDS 1 yet some requests are fail-

ng during execution, then the FSM will discover another FDS 2 to

ffload requests. If all the resources are unavailable in all of the

DS within the Fog cluster, then job request ( i f ) are propagated to

he CDS over appropriate communication network and now this

equest is denoted as ( i c ) and user will receive a message “Wait

or processing” and then must wait for maximum allocated time

 M time ) to release the resources at CDS. FSM then sends the job re-

uest ( i c ) to closest CDS for further processing. The CDS provides

esources for execution of job requests with minimum response

ime and latency, and then sends an acknowledgement to the FDS.

he latency and response time values are predefined via analysis

nd modelling of historical system data and both the parameter

ave some fixed value for a certain interval (we have considered

ne-hour duration for intervals). Based on the performance of re-

ources (execution time and energy consumption), the value of la-

ency and response time is redefined at every interval. The next

ection describes the working of Fog server manager for schedul-

ng of resources. 

.2. Fog server manager 

This section describes the Fog server manager for scheduling

esources to execute job requests. 
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.2.1. Objective function 

The main objective of the fitness function is to optimize the

erformance parameters energy consumption ( E Consumption ), net-

ork bandwidth ( N Bandwidth ), latency ( Latency ) and the response

ime ( R Time ) to facilitate requests originating at the IoT layer. This

tness function ( Eq. (1) ) effectively compromises the following

erformance parameters 

 itness v alue = α E Consumption + β N Band wid th + γ Latency + μ R T ime 

(1) 

here 0 ≤α < 1, 0 ≤β < 1, 0 ≤μ< 1 and 0 ≤γ < 1 denotes weights

o prioritize components of the fitness function. The Network Band-

idth is defined as the number of bits transferred/received in one

econd. The Latency is defined as the delay before the transfer of

ob request for processing. The Response Time is defined as the

ength of time taken for a system to react to a job request first

ime. The Energy Consumption is the sum of energy consumed by

he processors, the switching equipment, the storage devices, the

etwork devices and other components such as fans or conversion

osses ( Al-Fuqaha et al., 2015 ). 

.2.2. Particle swarm optimization based resource scheduling 

lgorithm 

Particle Swarm Optimization (PSO) is motivated by the social

ctivities of species such as group of birds seeking food sources

 Chen and Yu, 2005 ) and works based on a global search method.

he PSO algorithm denotes the number of particles as a popula-

ion, which are first initialized randomly. The PSO improves the

tness value (as calculated using Eq. (1) ) of a particle in every

eneration. In the PSO algorithm, the particle’s position is denoted

s: a) global optimal state ( Global OptimalState ): best particle among

roup based on fitness value of all the particles b) and local op-

imal state ( Local OptimalState ): it is best fitness value of a particu-

ar particle. Further, [Eq. (1)] is used to update particle’s velocity

nd position in every generation. Every particle regulates its po-

ition based on the value of Global OptimalState and Local OptimalState in

very generation. The PSO can be used to solve resource scheduling

roblems due to (i) usefulness and easiness with less computation

ost and (ii) achieving global minima relatively quickly ( Chen and

u, 2005 ). Deteailed terminology of PSO used in this research work

s presented in Table 2 . 

There is a partial solution in genome for every particle, which

s considered as a resource identifier. The main motivation for

he PSO-based scheduling is to identify the best resource identi-

er, which creates the best solution for the particular optimiza-

ion problem such as resource scheduling. The selection process of

on-PSO based resource identifier stops after a pre-defined num-

er of iterations. We set a fixed number of iterations to keep the

omputation time low. In the PSO-based method, a new solution
Table 2 

PSO Terminology. 

PSO Terminology Description 

Particle Denoted as an independent instance in a s

Global OptimalState . Further, the performance

particle for this research work. 

Population Size It is a set of number of job requests, whic

Initial Random Velocity The movement of every particle is depend

effects: a) the affinity to reach neighborh

of a particle. Resources are mapped to re

resource which has higher value of fitne

Particle Velocity The probability distribution for the particle

Particle Position Present state of the particle (request), whi

submission state. 

Global Best Position ( Global OptimalState ) Best position of particle (job request) attai

Local Best Position ( Local OptimalState ) Best position of particle (job request) as p
ould be rejected if its fitness value is less than the current solu-

ion. Algorithm 1 presents the pseudo code of PSO based resource

cheduling algorithm. 

The working of PSO based resource scheduling algorithm can be

escribed as follows: 

1. Initializes the random feasible solution based on the request list

and resource list. 

2. Select the best heuristic from low-level heuristics. 

3. Every request represents the resource identifier with initial so-

lution, which accesses the value of fitness function. 

4. Randomly initializes the request’s position and request’s veloc-

ity. 

5. At each request position, select a low-level heuristic and calcu-

lates fitness value ( Local OptimalState ). 

6. If at particle position the Fitness ( Local OptimalState ) is greater than

Fitness ( Global OptimalState ) then Global OptimalState takes the value of

Local OptimalState . 

7. Identify the fitness value at best global position of the request. 

8. [Eq. (1)] is used to update the value of particle position and ve-

locity after selection of request from population. Furthermore,

it computes the fitness value of the new position and compares

with its previous position. 

9. If the value is better than the local best value then it assigns

the request’s present position to the global best value. 

0. Fitness at Local OptimalState and Global OptimalState is compared. If the

fitness at Local OptimalState is greater than at Global OptimalState then

it assigns the value of Local OptimalState to Global OptimalState . 

pply to the resource scheduling problem after selection of a low-

evel heuristic. The scheduling of resources is continued until all

he jobs are scheduled. 

. Performance evaluation 

To demonstrate the feasibility of the proposed approach, we

ave developed the framework and scenario into a Fog comput-

ng based environment using CloudSim ( Calheiros et al., 2011 )

nd iFogSim ( Gupta et al., 2017 ). In this research work, event

imulation functionalities of CloudSim have been used to imple-

enting functionalities of iFogSim architecture. CloudSim enti-

ies such as datacenters and communication amongst datacenters

hrough message sending operations are included. Therefore, the

ore CloudSim layer is responsible for handling events between fog

omputing components in iFogSim ( Gupta et al., 2017 ). iFogSim im-

lementation is established by simulated services and entities. The

roposed technique has been validated via deployment of a smart

ome automation experiment case study. The application model of

oT-based smart home automation is built into iFogSim in order

o validate the proposed technique through real-time application

in other words, data from the experiment is directly fed into the
earch space and its position is affected by the value of Local OptimalState and 

 of a particle is measured by its fitness value. A request is considered as a 

h are coming from IoT/edge devices. 

ent on 1) preliminary random velocity and 2) two randomly weighted 

ood’s best earlier position and b) the affinity to reach best earlier position 

quests based on these two affinities. Request will be processed on that 

ss. 

 determines the value of particle velocity. 

ch can be completion state, execution state, ready state, waiting state or 

ns among the total group of particles (job request list). 

article attains 
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Algorithm 1 PSO Based Resource Scheduling Algorithm. 

1. Input Value : No. of job requests and No. of resources 

2. Outcome : Resource scheduling for an execution of Job Requests 

3. Begin 

4. Initialize variables: Resource list, Job Request List, Randomly Allocating Input Value 

5. Population Size = Size of Population 

6. Initial RandomVelocity = Initial Random Velocity 

7. Particle Velocity = Velocity of Particle 

8. Particle Position = Position of Particle 

9. R P = Random Position 

10. Initial PopulationSize = Initial Population Size 

11. Global OptimalState = Global Optimal State 

12. Local OptimalState = Local Optimal State 

13. M IC = Maximum Iteration Count 

14. Counter = 1 

15. while ( counter ≥ 0 ) 

16. counter ++ 

17. if (counter ≥ Population Size ) 

18. break 

19. Particle Velocity ← Initial RandomVelocity 

20. Particle Position ← R P (Population Size ) 

21. Local OptimalState ← Particle Position 

22. ∀ Particle Position ∈ Initial PopulationSize , Compute Fitness Function [Eq. (1)] 

23. if Fitness Value (Global OptimalState ) ≥ Fitness Value (Local OptimalState ) then 

24. Global OptimalState ← Local OptimalState 

25. Counter = 1 

26. while (counter < M IC ) do 

27. counter ++ 

28. for Particle Position ∈ Initial PopulationSize do 

29. Particle Velocity ← Update_Particle_Velocity ( Particle Velocity , Global OptimalState , Local OptimalState ) 

30. Particle Position ← Update_Particle_Position ( Particle Position , Particle Velocity ) 

31. if Fitness Value (Particle Position ) ≤ Fitness Value (Local OptimalState ) 

32. then 

33. Local OptimalState ← Particle Position 

34. Global OptimalState ← Local OptimalState if Fitness Value (Local OptimalState ) ≤ Fitness Value (Global OptimalState ) else Global OptimalState 

35. return ( Global OptimalState ) 

36. while queue is not empty do 

37. ∀ resource ∈ resource list do 

38. Job request = dequeue from unprocessed job request queue 

39. schedule job request (based on fitness value [Eq. (1)]) 

40. if all the job requests not executed then Goto 15 

41. Finish 

Fig. 4. Front View of Smart Home. 

 

 

 

 

 

 

 

Fig. 5. Interaction of Smart Home Components with Mobile App using Arduino IDE. 
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simulator to provide edge-device operational behavior for the re-

source manager). 

4.1. Case Study: IoT based smart home automation 

In order to demonstrate an example smart home case study,

we interconnected multiple IoT devices wirelessly controllable by

using a smartphone. The scenario we have created consists of a

home consisting of three rooms (Garage, Lobby, and Bedroom), that

are capable of manipulating various devices and appliances within

each room to which consist of AC, fan, bulb and doors. Fig. 4 de-
icts the front view of smart home, whilst Fig. 5 describes an inter-

ction of smart home components with mobile app using Arduino

DE. 

Figs. 6 and 7 depicts the interaction of devices in the smart

ome application, and integration of different com ponents, respec-

ively. The smart home contains an Arduino board and different

ome appliances such as AC, fan, bulb and doors. The components

re interacting with each other via the following sequence: 

• Android to ESP8266: Initially, an Android device generates a sig-

nal to fetch required information from the smart home. This

signal is transferred to the ESP8266 module wirelessly using

the server created by the ESP over the local hotspot. This con-

nection uses a connection id between ESP and Android device,
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Fig. 6. Interaction of Arduino IDE and Arduino UNO. 
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where ESP sends the HTTP packet to initiate the connection.

This data is then further processed at the ESP8266 module. 
• Intranet Server: The Arduino based hardware is designed to pro-

vide an interface between the android application and appli-

ances. This is used to retrieve incoming data from sensors and

converts into digital and send it to android application over In-

ternet using Intranet server. This is also used to generate the

signal for a specific appliance selected by the user. 
• ESP8266 to Arduino: ESP receives the signal/data from the server

created at the specific static IP address. The Arduino then

matches the header with the prescribed header format and

then further breaks down the signal and uses the resultant data

to enable or disable the desired pins. 
• Controlling Device States: The Arduino directs the pins received

in the signal to turn ON/OFF home appliances as per user re-

quirements. The device status is then updated within the An-

droid application. 
• Intrusion/Breach Detections: When the security feature in the

Smart Home App is turned ON, the Passive Infra-Red (PIR) sen-

sor ( Sahoo and Pati, 2017 ) will be turned ON to detect the heat

signals and motion inside the room. If any movement is de-

tected, it will activate a buzzer and an SMS of the detected in-

trusion is sent to the owner’s phone. Similarly, when the door

is opened, the signal breaks and the owner is alerted with a

message of breach from the door. 
• Live Video Feed: The device actives an IP camera connected to

the Wi-Fi hotspot to create a live view in the application. There-

fore, when the server is started to project the video, its IP ad-

dress is be used inside Smart Home App to create the image. 

Fig. 8 shows the interface of the smart home. The user can

ontrol basic operations such as device selection, turn on/off
Fig. 7. Interaction of Diff
ome appliancchange light colors, fan speed, acquire sensor de-

ails, add/view event, and watch live feed camera. The home screen

hows the live view of various rooms as shown in Fig. 8 (g), and

ensor information such as temperature sensor, humidity sensor,

umber of devices connected to smart home and consumption of

lectricity. A user can further create a new event if required by us-

ng the “Add Task” shown in Fig. 8 (e). 

The use case diagram of smart home automation shown in

ig. 9 describes the interaction of different actors user, app

atabase and sensors. Fig. 10 shows the class diagram of smart

ome automation to describe the interaction of different classes

ith their different functions. Alert class describes the important

spects of real-time applications such as latency, response time

nd deadline. User will be alerted if response time is more than

hreshold value. Further, alert can be generated if deadline of

 particular request is missing. Moreover, user can be intimated

hen latency is more than its threshold value. 

.2. Implementation of proposed technique in iFogSim 

Fig. 11 describes the component mapping for smart home

utomation within a simulation environment using the. iFogSim

oolkit. Different sensors are used to control different activities

uch as voltage, light, motor speed (motion), room temperature

nd security of smart home. PIR sensor detects the movement of

bjects even beyond the boundaries of the smart home and detects

eat signature from the light. IP camera is used as an edge device .

Tmega328P based Arduino board is connected to every appliance

f the smart home. Smart Home App is communicating with Fog

evice using the HTTP communication protocols (ESP8266 mod-

le). 

The following classes within iFogSim are modified to imple-

ent IoT based smart home application within the greater Fog en-

ironment: 

FogDevice: Describes the hardware features of Fog devices and

heir relations with sensors and other Fog devices. We have ex-

ended PowerDatacenter class of CloudSim ( Calheiros et al., 2011 )

o allow the main attributes of the FogDevice class to access down-

ink and uplink bandwidths (specifying the communication capac-

ty of Fog devices), storage size, processor and memory. Func-

ions of this class specify the scheduling of resources among ap-

lication modules executing on it and their deployment and re-

ease after execution. Moreover, we have developed a Listener mod-

le, which receives the data from different sensors as shown in

ig. 11 . 

Sensor: In the iFogSim toolkit, IoT sensors are represented

y instances of the Sensor class. Features of a sensor, extending

rom its connectivity to output aspects, are represented by at-

ributes of this class. The class holds a reference attribute to the

ateway Fog device to which the sensors are attached. We used
erent Components. 
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Fig. 8. Different Operations of Smart Home App. 
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reference attributes of Sensor class to simulate the behavior of dif-

ferent sensors, which are gathering different types of information

at IoT layer as shown in Fig. 10 . 

Actuator: Defines a method to perform an action on arrival of a
tuple from an application module to perform different operations

of smart home automation as described in Table 3 . When user pre-
forms any operation, this class override the defined method to ex-

ecute corresponding operation. The latency of different devices is

defined using attributes of this class as shown in Table 4 . 

Communication Network: The physical topology (tree topol-

ogy) of the smart home automation is modeled in iFogSim via

FogDevice, Sensor and Actuator classes as described in Fig. 11 . 

Controller: The Controller object launches the AppModules on

their assigned Fog devices following the placement information

provided by Module Mapping object and periodically manages the

resources of Fog devices as shown in Fig. 11 . When the simulation

is terminated, the Controller object gather results of cost, network

usage and energy consumption during the simulation period from

the Fog devices. 

Tuple: Central unit of communication amongst Fog entities. The

sensors in iFogSim generate tuples that can be referred as tasks
n Cloud computing. The creation of tuples (tasks) is event driven

nd the interval between generating two tuples is set following de-

erministic distribution while creating the sensors. The instances

f Tuple class in iFogSim ( Gupta et al., 2017 ) are represented as

uples, which are inherited from the Cloudlet class of CloudSim

 Calheiros et al., 2011 ). Categorization of tuples is done with its

ype and destination and source application modules and it is de-

cribed in Table 3 . The length of data encapsulated in the tuple

nd processing requirements (defined as Million Instructions (MI))

re specified by the attributes of the class. 

- Application: The smart home application is modeled as a di-

rected acyclic graph (DAG), the vertices of the graph repre-

senting modules that perform processing on incoming data and

edges denoting data dependencies between modules as shown

in Fig. 11 . These entities are realized using the following classes.

- AppModule: Instances of AppModule class represent process-

ing elements of fog applications and realize the vertices of

DAG. AppModule is implemented by extending the class Pow-

erVm in CloudSim. For each incoming tuple, an AppModule in-

stance processes it and generates output tuples that are sent
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Fig. 9. Use Case Diagram of Smart Home Automation. 
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to next modules in the DAG. The application modules of SHA

are Admin, Owner, System, Appliances, Events, Database and

Sensors/IP Camera as shown in Fig. 12 and the description of

above-mentioned application modules is given in Section 4.2.1 . 

- AppEdge: An AppEdge instance denotes the data dependency

between a pair of application modules and represents a di-

rected edge. Each edge is characterized by the type of tu-

ple it carries, which is captured by the tupleType attribute

of AppEdge class along with the processing requirements and

length of data encapsulated in these tuples. The edges between

the application modules in the smart home application are de-

scribed in Table 3 . 

- AppLoop: AppLoop is an additional class, used for specifying

the process-control loops of interest to the user. In iFogSim, the

developer can specify the control loops to measure the end-

to-end latency. An AppLoop instance is fundamentally a list of

modules starting from the origin of the loop to the module

where the loop terminates. There are two loops “monitor() and

update()” in SHA as shown in Fig. 12 . 
• Monitoring Service: Fog server manager is used to mon-

itor the resource utilization statistics during scheduling of

resources. 
• Resource Management Service : We have used edge-ward

placement strategy for the deployment of application mod-

ules close to the edge of the network and customized

resource scheduling policy by overriding the method up-

dateAllocatedMips inside the class FogDevice (as discussed

in Section 3 ). Proposed resource scheduling policy schedules

the fog devices for execution of different application mod-

ules to perform various operations of smart home applica-

tion. The pseudo code for resource scheduling policy is given

in Fig. 4 . 

The detailed description to model and simulate Fog computing

nvironment in iFogSim for different applications can be found in

 Gupta et al., 2017 ). 
.2.1. Application Model: smart home automation 

Fig. 12 shows the application model of the Smart Home Au-

omation (SHA), which describes the sequence of operations of an

pplication and their type of tuples. 

The application modules are modeled in iFogSim using the App-

odule class. As depicted in Fig. 12 , there are data dependen-

ies between modules, and these dependences are modeled using

ppEdge class in iFogSim. The control loop of interest for SHA ap-

lication is modeled in iFogSim using AppLoop class. The applica-

ion receives signals by different sensors and an actuator DISPLAY

isplays the current status of smart home to the user through pre-

onfigured mobile device. SHA application consists of different ma-

or modules as shown in Fig. 12 . The functions of these modules

re as follows: 

1 Admin : An administrator can add/remove or configure new

smart devices to the Smart Home environment. The other func-

tions of an administrator are: 1) to create, configure or delete

user settings via the administration user interface and 2) to re-

set all settings to defaults or a saved configuration. 

2 Owner : The Owner of SHA enabled mobile device can select

appliances, turn/on off devices, select attributes and receive

SMS of an intrusion detection. 

3 System : The system module automatically choose device if user

is connected to home network and notifies the current status of

home to user. 

4 Appliances : The user can control the basic functionalities of

their home appliances. For instances, turn on/off, changing the

color of lights, speed of fans, etc. 

5 Events : SHA application provides the functionality of reminding

the current occurring events to the user. The user has to add an

event in SHA application with the option of reminding or not.

If not, application will not remind for event, but the user can

have look of event going to occur. 

6 Database : The SHA application communicates with a database

module to send, receive and store sensor information. This

module provides encrypted back-end database. 
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Fig. 10. Class Diagram of Smart Home Automation. 
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7 Sensors/IP Camera : SHA application monitors the data coming

from the sensors. For instances, check home temperature and

humidity using temperature and humidity sensor, check current

power consumption by the house using kWh measuring sen-

sor, etc. SHA application monitors the outside activities of home

using live feed camera and intruder detection system. Intruder

detection system contains PIR sensors all around the house to

detect any proximity to the house and alert the owner of that

house. 

The properties of tuples (modeled using Tuple class) carried by

edges between the modules in the smart home application are de-

scribed in Table 3 . 

The latency of different devices from source to destination is

described in Table 4 . 
The configuration (CPU GHz, RAM size and Power) of different

og devices is described in Table 5 . 

. Evaluation Results 

The experiments have been performed with different QoS pa-

ameters, such as response time, latency, energy consumption and

etwork bandwidth. 

.1. Benchmark techniques 

To evaluate the performance of the resource management tech-

ique ROUTER, we selected compared it against two similar tech-

iques from the literature: Gateway-based Fog Computing (GFC)
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Table 3 

The description of Intermodule Edges in the Smart Home Application. 

Operation Name Tuple Type Description CPU Length (MIPS) Network Length (Bytes) 

Register New Mobile Phone/Device Add User Add new user to Smart Home Application 20 0 0 48 

Get Status of Event Return Status Returns the status of every event after its 

occurrence 

2200 60 

Update Information of User Update User Update the user details 2800 63 

Unregister Mobile Phone/Device Delete User Delete user form SHA database 20 0 0 50 

Sign Up Login User performs login to application in order to 

get access to device 

3500 57 

Verification of Registered Device Verify Verify the details of user for authentication 2200 45 

Choose Home Appliance Select Appliance Select the appliance, which can be AC, 

microwave, fan, light, washing machine etc. 

20 0 0 52 

Get Status Check Status Check the status of the security of home 2200 54 

Show Status Display Status Display the checked status on mobile display 3100 50 

Fog Device Selection Choose Device Enable authorized user to choose a 

communicating device 

2200 50 

Choose Variables Select Attributes Select attributes for Set Value Function 3500 55 

Assign Value to Variables Set Value Enable user to adjust values according to the 

appliances and device capacities using open 

adjustment panel. 

30 0 0 50 

Change Appliance Details Update Update the appliance information 20 0 0 50 

Turn ON-OFF Electric Appliance Turn On/Off Enable the user to turn on/off the chosen 

appliance 

2200 66 

Display Task View Event Enable the user to add the selected task 3100 65 

Create Task Add Event Enable the user to add the new tasks and also 

reminds you about their occurrence. 

2700 66 

Delete Task Remove Event Enable the user to remove the particular task 2300 65 

Get Information about Home Notify User Notify the current status of home to user 3600 50 

Get Sensor Information Return Signals Enable the user to learn info about the device 

from the sensors 

3450 55 

Watch Live Feed Camera Sensing/ Monitor Enable the user to watch live view of outside 

his house through IP camera. 

3500 55 

Fig. 11. The Mapping of the Components of Smart Home Automation with iFogSim Toolkit. 
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echnique ( Lee et al., 2016 ) and Virtualization based Resource Pro-

isioning (VRP) technique ( Yu et al., 2017 ) discussed in Section 2 .

e further detail precise functionality and differences with our ap-

roach below: 

• GFC ( Lee et al., 2016 ) is a gateway-based fog computing ar-

chitecture for wireless sensors and actuator networks which

consists of master and slave nodes, and manages virtual gate-

way functions, flows, and resources. In GFC, gateway and mas-

ter node are connected by Ethernet interface, and master node
controls the virtual path among slave nodes. Further, slave

node performs the resource management for scheduling of re-

sources to process job requests. GFC uses First Come First Serve

(FCFS) based resource scheduling algorithm to schedule the re-

sources to optimize response time. The GFC is implemented

using CloudSim toolkit by extending new class, which con-

tains the implementation of three fog nodes. Authors have done

without using ifogsim by adding new class, which extends the

resource scheduling class of CloudSim. They focused only on
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Fig. 12. Application Model of the Smart Home Automation. 

Table 4 

Latency of different Devices. 

Source Destination Latency (secs) 

IP Camera Smartphone 6 

Smartphone Wi-Fi Gateway 2 

Wi-Fi Gateway ISP Gateway 4 

ISP Gateway Cloud Data Server (CDS) 100 

Table 5 

Configuration of different Fog Devices. 

Device Type CPU GHz RAM (GB) Power (W) 

VM 3.0 4 107.339 

Wi-Fi Gateway 3.0 4 107.339 

Smartphone 1.6 1 87.53 

ISP Gateway 3.0 4 107.339 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

i  

b  

d  

r  

d  

t  

S

5

 

b  

s  

G  

R  

l  

c  

q  

t  

f

 

t  

p  

o  

R  

o  

n  

r  

(  

w

 

t  

t  

i  

r  

q  
single performance parameter (response time) with limited fog

nodes and problem the starvation can occur in case of larger

job request, which further leads delay the execution of pending

deadline-oriented jobs. 
• VRP algorithm ( Yu et al., 2017 ) uses the concept of parallel

and distributed load balancing to develop virtualization based

resource scheduling algorithm. VPR uses round robin based

scheduling algorithm to process the job requests, which gives

fixed time quantum to every job request, which can behave

same as FCFS if time quantum is too large. If time quantum is

too short much of time is spent in process switching and hence

latency and response time increases. Further, the algorithm is

tested on Cloud-Analyst simulator that finds proposed solution

performs better in terms of energy cost of only processor. 

ROUTER operates by using PSO based resource scheduling tech-

nique, which uses multi-objective fitness function to optimize the

four different QoS parameters simultaneously. ROUTER forwards

the job request to CDS if the FDS is not able to process within

threshold time. Furthermore, ROUTER is validated via integration
ith a lab-controlled smart home automation case study described

n Section 4 , which is further integrated into an application model

uilt within the iFogSim application layer. Both VRP and GFC use

ummy jobs to evaluate their performance while ROUTER uses

eal-time traffic generated from smart home application. In or-

er to evaluate the performance of ROUTER, GFC and VRP effec-

ively, we used the identical simulation environment described in

ection 4 . 

.2. Analysis results 

Network Bandwidth: Fig. 13 (a) shows the average network

andwidth of 1789.6 B/s, 2714.45 B/s and 2830.25 B/s for all re-

ource managers ROUTER, GFC, and VRP. It is observable that both

FC and VRP have a similar network bandwidth of 2770 B/s,

OUTER on average uses 1790 B/s, which is 12.36% and 14.43%

ess than GFC and VRP, respectively. This is because, ROUTER pro-

esses data of IoT devices effectively while fulfilling the QoS re-

uirements at runtime. Another reason of better performance is

hat PSO achieves global minima quickly, which distributes load ef-

ectively during scheduling of resources. 

Latency: We analyzed the latency of each resource management

echnique (i.e. the delay before transfer of user requests for job

rocessing). With increasing the number of operations, the value

f latency increases as shown in Fig. 13 (b). It is observable that

OUTER has a lower latency in contrast to both GFC and VRP (as

perations increase). The average value of latency in ROUTER tech-

ique is 10.14% and 14.44% less than GFC and VRP respectively. The

eason is because ROUTER executes job requests at Fog Data Server

FDS) instead of sending job requests to Cloud Data Server (CDS)

hich would result in a larger communication delay. 

Response Time: Fig. 13 (c) shoes the time taken for a system

o react to a user request. With increasing the number of opera-

ions, response time increases. The average value of response time

n ROUTER technique is 14.03% and 15.65% less than GFC and VRP

espectively. The reason for reduced response time is due to the re-

uest handling mechanism provisioning resources for job requests
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Fig. 13. Evaluation results for resource managers ROUTER, GFC, and VRP: (a) Network Bandwidth, (b) Latency, (c) Response Time, (d) Energy Consumption. 

b  

t  

a

 

b  

d  

(  

t  

T  

1  

t  

o  

s  

d

6

 

n  

e  

w  

v  

t  

i  

p  

s  

b

 

w  

a  

p  

t  

t  

t  

w

A

 

P  

M

a  

d  

D

R

A  

 

A  

C  

 

 

C  

C  

D  

 

efore actual scheduling of resources. Furthermore, ROUTER tracks

he state of all resources at each point of time, enables it to take

n optimal decision than GFC and VRP. 

Energy Consumption : It is the sum of energy consumed

y the processor, switching equipment, storage device, network

evice and other components such as fans, conversion losses

 Al-Fuqaha et al., 2015 ). With increasing the number of operations,

he value of energy consumption increases as shown in Fig. 13 (d).

he average value of energy consumption in ROUTER technique is

2.35% and 13.45% less than GFC and VRP respectively. An effec-

ive scheduling of resources using PSO reduces significant amount

f network traffic, which leads to reducing the number of idle re-

ources (processor, switching equipment, storage device, network

evice) that reduces the wastage of energy. 

. Conclusions and future work 

In this research paper, QoS-aware resource management tech-

ique (ROUTER) is proposed using fog-assisted cloud computing

nvironment, which manages IoT devices efficiently. Furthermore,

e designed a case study of IoT based smart home automation to

alidate the proposed technique. The performance of the proposed

echnique has been evaluated in Fog computing environment us-

ng iFogSim toolkit. Experimental results demonstrate that the pro-

osed technique reduces the network bandwidth by 12.36%, re-

ponse time by 10.14%, latency by 14.03% and energy consumption

y 12.35% and it detects intrusions to provide security. 

In future, the proposed technique can be enhanced to work

ith some other parameters such as scalability, cost, reliability and

vailability. In fog computing system, trade-off between delay and
ower consumption is an open research area. Further, the proposed

echnique will be verified in a real fog environment for the prac-

ical realization. In future, ROUTER architecture can be generalized

o other fog computing applications such as agriculture, healthcare,

eather forecasting, traffic management and smart city. 
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