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Abstract—over the last few years, Grid technologies have 

progressed towards a service-oriented paradigm that enables a 

new way of service provisioning based on utility computing 

models. Users consume these services based on their QoS 

(Quality of Service) requirements. In such “pay-per-use” Grids, 

workflow execution cost must be considered during scheduling 

based on users’ QoS constraints. In this paper, we propose a 

cost-based workflow scheduling algorithm that minimizes 

execution cost while meeting the deadline for delivering results. 

It can also adapt to the delays of service executions by 

rescheduling unexecuted tasks. We also attempt to optimally 

solve the task scheduling problem in branches with several 

sequential tasks by modeling the branch as a Markov Decision 

Process and using the value iteration method. 

I. INTRODUCTION 

Utility computing [23] has emerged as a new service 
provision model and its services [10] are capable of 
supporting diverse applications including e-Business and e-
Science over a global network. Users consume the services 
when they need to, and pay only for what they use. In the 
recent past, providing utility computing services has been 
reinforced by service-oriented Grid computing [2][12] that 
creates an infrastructure enabling users to consume utility 
services transparently over a secure, shared, scalable and 
standard world-wide network environment. 

Many Grid applications such as bioinformatics and 
astronomy require workflow processing in which tasks are 
executed based on their control or data dependencies. As a 
result, a number of Grid workflow management systems with 
scheduling algorithms have been developed by several 
projects such as Condor DAGMan [22], Askalon [11], 
GrADS [8], ICENI [16], APST [3], and Pegasus [4][9]. They 
facilitate the execution of workflow applications and 
minimize their execution time on Grids. However, for 
imposing workflow paradigm on utility Grids, execution cost 
must also be considered when scheduling tasks on resources. 
For a utility service, pricing is dependent on the level of QoS 
offered such as the processing speed of the service. Typically, 
service providers charge higher prices for higher QoS. 
Therefore, users may not always need to complete workflows 
earlier than they require. Instead, they prefer to use cheaper 
services with lower QoS that are sufficient to meet their 
requirements.  

Given this motivation, we present a cost-based workflow 
scheduling algorithm for time-critical workflow applications.  
The objective function of the proposed scheduling algorithm 
is to develop a workflow schedule such that it minimizes the 
execution cost and yet meets the time constraints imposed by 
the user. In order to solve scheduling problems efficiently for 
large-scale workflows, we partition workflow tasks and 
generate a workflow execution schedule based on the optimal 
schedules of the task partitions. Scheduling based on 
workflow partitions also allows the scheduler to re-compute 
some partial workflows during the workflow execution, when 
their initial schedules are violated. A deadline assignment 
strategy is also developed to distribute the overall deadline 
over each task partition. We also attempt to solve optimally 
the scheduling problem for sequential tasks by modeling the 
branch partition as a Markov Decision Process (MDP) [20], 
which has proven to be effective for modeling decision 
problems.   

Several works have been proposed to address scheduling 
problems based on users’ deadline constraint. Nimrod-G [6] 
schedules independent tasks for parameter-sweep applications 
to meet users’ deadline. In contrast, the scheduling algorithm 
developed in the paper aims to schedule tasks with certain 
dependencies. A market-based workflow management system 
[13] locates an optimal bid based on the assigned deadline of 
each individual task. However, in most situations users may 
only want to specify a deadline for the entire workflow 
execution. Therefore, we focus on how to assign sub-
deadlines of tasks to meet the overall deadline.  

Proposed workflow scheduling approach can be used by 

both end-users and utility providers. End users can use the 

approach to orchestrate Grid services, whereas utility 

providers can outsource computing resources to meet 

customers’ service-level requirements.  

The remainder of the paper is organized as follows. Section 

II provides an overview of the workflow management system. 

We describe our workflow scheduling approach in Section III. 

Experimental details and simulation results are presented in 

Section IV. Finally, we conclude the paper with directions for 

further work in Section V.  

II. WORKFLOW MANAGEMENT SYSTEM 

Figure 1 shows the architecture of the workflow 
management system. Users first submit workflow 
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specifications with their QoS requirements. The system then 
discovers appropriate services for processing the workflow 
tasks and schedules the tasks on the services. There are three 
major steps in workflow scheduling: performance estimation, 
workflow planning and workflow execution with run-time 
rescheduling.  

 

 
Fig. 1. Workflow management system architecture. 

 
In order to plan in advance, the scheduler needs to predict 

task execution time on the available services. Different 
performance estimation approaches can be applied to 
different types of utility service. We classify existing utility 
services as either reservation-enabled resource or application 
services. Resource services provide proportions of hardware 
resources, such as computing processors, network resources, 
storage and memory, as a service for remote client access. 
Application services allow remote clients to use their 
specialized applications. To submit tasks to resource services, 
the scheduler needs to determine the number of resources and 
duration required to run tasks on the discovered services. The 
performance estimation for resource services can be achieved 
by using existing performance estimation techniques (e.g.   
analytical modeling [18], empirical [8] and historical data 
[14][19]) to predict task execution time on every discovered 
resource service. Unlike resource services, a reservation-
enabled application service is capable of providing estimated 
service times based on the metadata of users’ service requests 
[1]. As a result, the task execution time can be obtained by the 
application providers.  

Workflow planning is to select a service and execution time 
slot for every task in the workflows based on users’ QoS 
constraints, capability and availability of the services. The 
reservation manager makes reservations in advance to ensure 
the availability of the desired time slots for task execution. 
Candidate time slots are also generated during planning time 
for alternative reservations when a desired time slot is not 
available at the time of reservation.  

At workflow execution time, the contract between a service 
provider and the workflow management system may be 
violated by many reasons such as resource failure. Therefore, 
rescheduling is deployed in the system to adapt to service 

dynamics and update the schedule. For example, if the desired 
start time of a task is delayed, the scheduler will adjust the 
reservation schedule for its unexecuted child tasks to 
compensate the delay. 

III. A  COST-BASED WORKFLOW SCHEDULING 

The processing time and execution cost are two typical QoS 
constraints for executing workflows on “pay-per-use” services. 
The users normally would like to get the execution done at 
lowest possible cost within their required timeframe. In this 
section we present a cost-based workflow scheduling 
methodology and algorithm that allows the workflow 
management system to minimize the execution cost while 
delivering results within a certain deadline. 

 
1) Problem Description and Methodology 

We model workflow applications as a Directed Acyclic 

Graph (DAG). Let � be the finite set of tasks )1( niTi ≤≤ . 

Let � be the set of directed arcs of the form ),( ji TT where 

iT is called a parent task of jT , and jT the child task of iT . We 

assume that a child task cannot be executed until all of its 
parent tasks are completed. Let D be the time constraint 
(deadline) specified by the users for workflow execution. 
Then, the workflow application can be described as a 
tuple ),( D�,�� .  

In a workflow graph, we call a task which does not have 

any parent task an entry task denoted as entryT  and a task 

which does not have any child task an exit task denoted 

as  exitT .  

Let m be the total number of services available. There are a 

set of services )  (cond mm,mjn, 1i1:S ii

j

i ≤≤≤≤≤≡  is 

capable of executing the task iT , but only one service can be 

assigned for the execution of a task. Services have varied 

processing capability delivered at different prices. We denote 
j

it as the sum of the processing time and data transmission 

time, and j

ic  as the sum of the service price and data 

transmission cost for processing iT  on service j

iS .  

The scheduling problem is to map every iT  onto some j

iS to 

achieve minimum execution cost and complete the workflow 

execution within the deadline D . We solve the scheduling 

problem by following the divide-and-conquer technique and 

the methodology is listed below: 

 

Step  1.  Discover available services and predict execution 

time for every task. 

Step 2. Group workflow tasks into task partitions. 

Step 3.  Distribute users’ overall deadline into every task 

partition. 

Step  4.   Query available time slots, generate optimized 

schedule plan and make advance reservations 

based on the local optimal solution of every task 

partition. 
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Step  5.  Start workflow execution and reschedule when the 

initial schedule is violated at run-time. 

 

We provide details of steps 2-5 in the following sub-

sections. The service discovery can be done by querying a 

directory service such as the Grid market directory [24] . 

 

B. Workflow Task Partitioning  

We categorize workflow tasks to be either a 

synchronization task or a simple task. A synchronization task 

is defined as a task which has more than one parent or child 

task. In Figure 7a, 1T , 10T  and 14T  are synchronization tasks. 

Other tasks which have only one parent task and child task are 

simple tasks. In the example, 92 TT −  and 1311 TT −  are simple 

tasks.  

 

 

 

 

 

 

 

 

 

 
            (a)  Before partitioning.         (b)  After partitioning. 

Fig. 2. Workflow task partition.  

 

Let a branch be a set of interdependent simple tasks that 

are executed sequentially between two synchronization tasks. 

For example, the branches in Figure 2b 

are },,{ 432 TTT , },{ 65 TT , }{ 7T , },{ 98 TT , }{ 11T and },{ 1312 TT . 

We then partition workflow tasks �  into independent 

branches )1( kiBi ≤≤ and synchronization tasks )1( liYi ≤≤ , 

such that k  and l are the total number of branches and 

synchronization tasks in the workflow respectively.  

LetV be a set of nodes in a DAG corresponding to a set of 

task partitions )1( lkiVi +≤≤ .  Let E be the set of directed 

edges of the form ),( ji VV where iV is a parent task partition 

of  jV  and jV  is a child task partition of iV . Then, a task 

partition graph is denoted as ),,( DEVG . A simple path 

(referred to as path) in G is a sequence of task partitions such 

that there is a directed edge from every task partition (in the 

path) to its child, where none of the vertices (task partitions) 

in the path is repeated. 

A task partition iV has four attributes: ready time ( ][ iVrt ), 

deadline ( ][ iVdl ), expected execution time ( ][ iVeet ). The 

earliest ready time of iV is the earliest time the first task in it 

can be executed and it can be computed according to its 

parent partitions,   ][ iVrt = ][max j
iPjV

Vdl
∈

, where iP is the set of 

parent task partitions of iV . The attributes are related as: 

][ iVeet = ][ iVdl - ][ iVrt .   

 

C. Deadline Assignment  

After workflow task partitioning, we distribute the overall 

deadline between each iV  in G . The deadline ][ iVdl  assigned 

to any iV  is a sub-deadline of the overall deadline D . In this 

paper, we consider the following deadline assignment policies: 

 

P1. The cumulative sub-deadline of any independent path 

between two synchronization tasks must be same. 

A synchronization task cannot be executed until all tasks in 

its parent task partitions are completed. Thus, instead of 

waiting for other independent paths to be completed, a path 

capable of being finished earlier can be executed on slower 

but cheaper services. For example, the deadline assigned to 

},{ 98 TT  is the same as }{ 7T in Figure 7. Similarly, deadlines 

assigned to },,{ 432 TTT , },{ 65 TT , and },{ { 7T      

}},{ },{ 131210 TTT are same. 

 

P2. The cumulative sub-deadline of any path from 

)( ientryi VTV ∈  to )( jexitj VTV ∈  is equal to the overall 

deadline D .   

P2 assures that once every task partition is computed 

within its assigned deadline, the whole workflow execution 

can satisfy the user’s required deadline.  

 

P3. Any assigned sub-deadline must be greater than or equal 

to the minimum processing time of the corresponding task 

partition. 

If the assigned sub-deadline is less than the minimum 

processing time of a task partition, its expected execution 

time will exceed the capability that its execution services can 

handle.  

 

P4. The overall deadline is divided over task partitions in 

proportion to their minimum processing time. 

The execution times of tasks in workflows vary; some tasks 

may only need 20 minutes to be completed, and some others 

may need at least one hour. Thus, the deadline distribution for 

a task partition should be based on its execution time. Since 

there are multiple possible processing times for every task, we 

use the minimum processing time to distribute the deadline.  

 

We implemented deadline assignment policies on the task 

partition graph by combining Breadth-First Search (BFS) and 

Depth-First Search (DFS) algorithms with critical path 

analysis to compute start times, proportion and sub-deadlines 

of every task partition.  

 

D. Planning  

The planning stage generates an optimized schedule for 

advance reservation and run-time execution. The scheduler 

allocates every workflow task to a selected service such that 

they can meet users’ deadline at the lowest possible execution 

cost.  

In general, mapping tasks on distributed services is an NP-

hard problem. To model the entire workflow as an 

optimization problem will produce large scheduling overhead, 
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especially for the problem with two dimension constraints 

such as time and cost. Therefore, we solve the workflow 

scheduling problem by dividing the entire problem into 

several task partition scheduling problems.  After deadline 

distribution, we can find a local optimal schedule for each 

partition based on its sub-deadline. If each local schedule 

guarantees that their task execution can be completed within 

the sub-deadline, the whole workflow execution will be 

completed within the overall deadline. Similarly, the result of 

the cost minimization solution for each task partition leads to 

an optimized cost solution for the entire workflow.  

Therefore, an optimized workflow schedule can be easily 

constructed by all local optimal schedules.  

There are two types of task partitions: synchronization task 

and branch partition. The scheduling solutions for each type 

of partition and the overall algorithm are described in 

following sub-sections.  

 

1) Synchronization Task Scheduling (STS) 

For STS, the scheduler only considers one task to decide 

the service for executing that task. The objective function for 

scheduling of a synchronization task iY  is: 

j

icmin , where imj ≤≤1  and )( i

j

i Yeett ≤  

The solution to a single task scheduling problem is simple. 

The optimal decision is to select the cheapest service that can 

process the task within the assigned sub-deadline. 

 

2) Branch Task Scheduling (BTS) 

If there is only one simple task in a branch, the solution for 

BTS is the same as STS. However, if there are multiple tasks, 

the scheduler needs to make a decision on which service to 

execute each task after the completion of its parent task.  The 

optimal decision is to minimize the total execution cost of the 

branch and complete branch tasks within the assigned sub-

deadline. The objective function for scheduling branch jB  is: 

�
∈ jBiT

k

icmin , where imk ≤≤1 and )( j
jBiT

k

i Beett ≤�
∈

 

BTS can be achieved by modeling the problem as a 

Markov Decision Process (MDP) [20], which has been shown 

to be effective for solving sequential decision problems.  

 

3) MDP Model for Sequential Branch Tasks  

The definition of our MDP model for scheduling branch iB  

is described below: 

 

States: 

A Markov decision process is a state space S  such that:  

Definition 1: A state Ss ∈  consists of current execution task, 

ready time RT and current location.  

 

Actions and transitions: 

For every state s , there is a set of actions sA . Actions incur 

immediate utility and affect the MDP to transit from one state 

to another. 

 

Definition 2: An action in the MDP is to allocate a time slot 

on a service to a task. There are two variables associated 

with each action a : input data transmission time plus the 

processing time of the service denoted as t  and transmission 

cost plus the service cost denoted as c . 

 

Definition 3: )(s,a,s'u  is the immediate utility obtained from 

taking action a at state s and transitioning to state s'  .  

 

 

 

 

Definition 4: A transition incurred by an action from one 

state to another is deterministic, as services are utility 

services and can be reserved in advance. 

 

 The MDP problem is to find an optimal policy *
π  for all 

possible states. A policy is a mapping from s  to a .  Decision 

making for finding an optimal action for each state is not 

based on the immediate utility of the action but its expected 

utility, which is the sum of all the immediate utilities obtained 

as a result of decisions made for transiting from this state to a 

terminal state.  

The value associated to each state represents the expected 

utility of this state in the MDP. This value is calculated 

recursively by using the value of successor states. The value 

of one state s  is: 

)}'()',,({min)( sUsasusU
sAa

+=
∈

 

 The best action for state s  is:  

)}'()',,({minarg)(* sUsasus
sAa

+=
∈

π  

The optimal policy indicates the best services that should 

be assigned to execute branch tasks under a specific sub-

deadline. The computation of the optimal policy can be 

solved by using a standard dynamic programming algorithm 

such as policy iteration and value iteration [20] (we have used 

value iteration here). Value iteration computes a new value 

function for each state based on the current value of its next 

state. Value iteration proceeds in an iterative fashion and can 

converge to the optimal solution quickly. The complexity 

analysis of value iteration can be found in [15]. By using 

dynamic programming, we can also record a number of 

candidate solutions while finding the optimal policy. 

Therefore, once the optimal time slot is rejected or not 

available, the scheduler can make another reservation 

immediately by using second optimal slot.  

  

4) Scheduling Algorithm 

Algorithm 1 shows the pseudo-code of the algorithm for 

planning an execution schedule. After acquiring the 

information about available services for each task, a task 

partition graph G is generated from the application graph �  

and overall deadline D is distributed over every partition in it. 

Then optimal schedules are computed for every partition in G 

level-by-level using either STS or BTS. We also found that 

after the optimization of one partition, there is an idle time 

between its expected completion time and assigned sub-

a.c ,  otherwise 

   ∞ , >RTs'. sub-deadline 
)(s,a,s'u = 
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deadline.  Instead of waiting, we adjust the assigned sub-

deadlines of optimized partitions and the ready times of their 

child partitions.  

 

E. Rescheduling  

 Run-time rescheduling is developed to adapt to dynamic 

situations such as delays of services and variations in 

availability of services due to failures, in order to complete 

workflows and satisfy users’ requirements. The key idea of 

our rescheduling policy for handling an unexpected situation 

is to re-adjust sub-deadlines and re-compute optimal 

schedules for unexecuted task partitions. We also consider 

rescheduling the minimum number of tasks, since the 

scheduler need to cancel earlier reservations for tasks that 

need to be rescheduled to other services. Therefore, the 

scheduler re-computes unexecuted task partitions level-by-

level. For example, if the execution of one task partition is 

delayed, the scheduler looks at its child task partitions. If the 

delay time can be accommodated by the child task partitions, 

rescheduling will not impact on its lower levels. Otherwise, 

the rest of the outstanding delay time is distributed further to 

successive task partitions of the child partitions.  

In addition to handling task execution delay, the level-by-

level task partition based approach can also be applied for 

managing other dynamic situations such as service 

unavailability and service policy change.  

 

 
Algorithm 1 . Scheduling algorithm for cost optimization within 

users’ deadline  

Input:     A workflow graph ),( D�,��  

Output:  A schedule for all workflow tasks  
1  request processing time and price from available services for �T

i
   ∈∀

2  convert � into task partition graph ),( DV,EG  

3 distribute deadline D over GV
i

   ∈∀  

4 Repeat  

5      ← S get unscheduled task partitions whose parent task partitions    

6   have been scheduled 
7    for all Si   ∈ do   

8 compute ready time of i 

9 query available time slots during ready time and sub-deadline     

10     on available services  

11          if i is a branch then     

12          compute an optimal schedule for i using BTS        

13         Else 

14          compute an optimal schedule for i using STS                

15    end if                      

16    make advance reservations with desired services for all tasks in i

17    adjust sub-deadline of i 

18      end for 

19 until  all partitions have been scheduled 

 

IV. PERFORMANCE EVALUATION 

We use GridSim [7][20] to simulate a Grid testbed for our 

experiments. Simulation facilitates evaluation as the same 

testbed environment can be repeated for different approaches. 

Figure 3 shows the simulation environment in which 

simulated services are discovered by querying GridSim Index 

Service (GIS) and every service is able to handle free slot 

query, reservation request and commitment. 

We compare our proposed scheduling algorithm denoted as 

Deadline-MDP with two other scheduling approaches: 

Greedy- Cost and Deadline-Level. These two approaches are 

derived from the cost optimization algorithm in Nimrod-G, 

which is initially designed for scheduling independent tasks 

on Grids. Greedy-Cost sorts services by their prices and 

assigns as many tasks as possible to services without 

exceeding the deadline. Deadline-Level first divides 

workflow tasks into levels (based on their depth in the 

workflow graph), then divides the deadline by the number of 

levels and distribute the divided sub-deadlines over task 

levels. In Greedy-Cost, the deadlines of all tasks are the same 

as the overall deadline, whereas in Deadline-Level, tasks on 

the same level have the same sub-deadline. 

 

 
 

 

 

 

 
     
 
 
 
 
 
 
 
 
     
            a. Pipeline                b. Parallel application  (fMRI workflow [26])        

 

 

 

 

 

 

 

 

 

 

 

 

       

c. Hybrid structure (protein annotation workflow [5]) 

Fig. 4.  Workflow applications. The label on the left of a task denotes 

the required service type. The number in brackets represents the length 

of the task in MI. 
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Fig. 3. Simulation environment. 
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We simulate three common workflow structures in 

scientific workflow applications for our experiments: pipeline, 

parallel and hybrid. A pipeline application (see Fig. 4a) 

executes a number of tasks in a single sequential order. A 

parallel application (see Fig. 4b) requires multiple pipelines 

to be executed in parallel. For example, in Fig. 4b, there are 4 

pipelines (1-2, 3-4, 5-6 and 7-8) before task 9. A hybrid 

structure application (see Fig. 4c) is a combination of both 

parallel and sequential applications. In our experiments, we 

select a neuro-science workflow [26] for our parallel 

application and a protein annotation workflow [5] developed 

by London e-Science Centre for our hybrid workflow 

structure application.  

As execution requirements for tasks in scientific workflows 

are heterogeneous, we use service type to represent different 

type of service. Every task in our experimental workflow 

applications requires a certain type of service. For example, 

task 1, 3, 5, 7 in parallel application requires service type 

Align_wap and task 2, 4, 6 and 8 requires reslice. In the 

simulation, we use MI (million instructions) to represent the 

length of tasks and use MIPS (Million Instructions per 

Second) to represent the processing capability of services.  

We simulate 15 types of services, each supported by 10 

different service providers with different processing 

capability. The values of MIPS for services range from 100 to 

5000 and the value of MI for each task is indicated in bracket 

next to the task in Figure 4.  

In the experiments, every task in the workflows generates 

output data required by its child tasks as inputs. The data need 

to be staged out from the task processing node and staged into 

the processing node of its child tasks. The I/O data of the 

workflows range from 10MB to 1024 MB. The available 

network bandwidths between services are 100Mbps, 

200Mbps, 512Mbps and 1024Mbps.  

For our experiments, the cost that a user needs to pay for a 

workflow execution comprises of two parts: processing cost 

and data transmission cost. Table I shows an example of 

processing cost, while Table II shows an example of data 

transmission cost. It can be seen that the processing cost and 

transmission cost are inversely proportional to its processing 

time and transmission time respectively. 
 
 
 
           

 

 

 

 

 

 
 

The two metrics used to evaluate the scheduling 

approaches are time constraint and execution cost. The former 

indicates whether the schedule produced by the scheduling 

approach meets the required deadline, while the latter 

indicates how much it costs to schedule the workflow tasks on 

the testbed.  

Figure 5  to 7 compare the execution time and cost of using 

Deadline-MDP, Deadline-Level and Greedy-Cost for 

scheduling pipeline, parallel and hybrid structure applications 

with deadline 0.5, 1, 1.5, 2, and 2.5 hours respectively. It can 

be seen that Greedy-Cost does not guarantee that users’ 

deadlines can be met, whereas both Deadline-MDP and 

Deadline-Level can meet deadlines. Greedy-Cost also incurs 

significantly higher execution costs even though it takes 

longer time to complete executions. This is because it 

attempts to meet the deadline by employing faster but more 

expensive services as the deadline approaches. 
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a . Execution time of three approaches. 
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b. Execution cost of three approaches. 

Fig. 5 Execution time and cost using three approaches for scheduling 

the pipeline application. 
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a. Execution time of three approaches.  

 

Service 
ID 

Processing Time 
(sec) 

Cost 
(G$) 

1 1200 300 

2 600 600 

3 400 900 

4 300 1200 

 

Bandwidth 
(Mbps) 

Cost/sec 
(G$/sec) 

100 1 

200 2 

512 5.12 

1024 10.24 

 

Table I. Service speed and 
corresponding price for executing a task. 

 

Table II. Transmission  
bandwidth and corresponding price. 
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Parallel Application
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b. Execution time of three approaches.  

Fig. 6. Execution time and cost using three approaches for scheduling 

the parallel application. 

Hybrid Structure Application
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a. Execution time of three approaches. 
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b. Execution cost of three approaches. 

Fig. 7. Execution time and cost using three approaches for scheduling 

the hybrid structure application. 

 

 
a. Percentage of tasks completed. 
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b. Execution Cost. 

Fig.8. Deadline-MDP, Deadline-Level, and Greedy-Cost scheduling for 

Hybrid Structure Application. 

 

Both Deadline-Level and Deadline-MDP can meet the 

deadlines, but Deadline-MDP spends much less cost for 

shorter deadlines. Deadline-MDP can achieve that for the 

pipeline application by modeling the entire pipeline 

application as one MDP process, such that it can find an 

optimal path among the cheapest services to execute tasks and 

transfer input/output data. Similarly for the parallel 

application, it also optimizes the cost for branches within the 

parallel application.  

For the hybrid structure application, Deadline-MDP 

performs better as it assigns sub-deadlines to tasks based on 

their dependencies and estimated execution times. Deadline-

Level assigns sub-deadlines only based on the task level and 

thus incurs unnecessary cost. This is because parent tasks that 

are completed earlier using faster but more expensive services 

still need to wait for other slower parent tasks to be completed 

before their child tasks can start execution. This shows that it 

is important to consider task dependencies as it is pointless to 

employ expensive services if not required. 
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a. Percentage of tasks completed.  0
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b. Execution cost. 

Fig. 9. Deadline-MDP scheduling with delay of 0, 5, and 10 minutes for 

task 6 in Hybrid Structure Application. 

 

Figure 8 shows the percentage of tasks completed and 

execution cost for the hybrid structure application at various 

times. We can see that Deadline-Level attempts to complete 

tasks earlier by using more expensive but faster services. 

However its final completion time is only marginally lower 

than that of Deadline-MDP. On the other hand, Deadline-

MDP selects much cheaper services than Deadline-Level but 

can still meet the final deadline. In contrast, Greedy-Cost 

chooses cheaper services and completes tasks slowly at the 

early stages of the execution such that it does not have enough 

time to complete the partially remaining tasks before the 

deadline, even though it selects more expensive services to 

speed up  execution during the final stage.  

We now evaluate the rescheduling approach in Deadline-

MDP. Figure 9 shows how Deadline-MDP performs with 

delays of 0, 5 and 10 minutes for the execution of task 6 in 

the hybrid structure application. For the delays of 5 minutes 

and 10 minutes, Deadline-MDP can still meet the deadline by 

rescheduling the partially remaining unexecuted tasks. 

However, the execution cost increases for longer delays since 

the scheduler switches the remaining tasks to more expensive 

services in order to complete the remaining execution within 

the deadline.  

 

VI. CONCLUSION AND FUTURE WORK 

Utility Grids enable users to consume utility services 

transparently over a secure, shared, scalable and standard 

world-wide network environment. Users are required to pay 

for access services based on their usage and the level of QoS 

provided. Therefore, workflow execution cost must be 

considered during scheduling.  In this paper, we proposed a 

cost-based workflow scheduling algorithm that minimizes the 

cost of execution while meeting the deadline. We also 

described task partitioning and overall deadline assignment 

for optimized execution planning and efficient run-time 

rescheduling. We have used a Markov Decision Process 

approach to schedule sequential workflow task execution, 

such that it can find the optimal path among services to 

execute tasks and transfer input/output data. The experimental 

results demonstrate that the proposed scheduling approach 

can meet users’ deadline whilst spending less cost. It can also 

adapt to the delays of service executions by rescheduling 

unexecuted tasks to meet users’ deadlines. In future, we will 

further enhance our scheduling method to support multiple 

service negotiation models.  
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