

 1

Abstract—over the last few years, Grid technologies have

progressed towards a service-oriented paradigm that enables a

new way of service provisioning based on utility computing

models. Users consume these services based on their QoS

(Quality of Service) requirements. In such “pay-per-use” Grids,

workflow execution cost must be considered during scheduling

based on users’ QoS constraints. In this paper, we propose a

cost-based workflow scheduling algorithm that minimizes

execution cost while meeting the deadline for delivering results.

It can also adapt to the delays of service executions by

rescheduling unexecuted tasks. We also attempt to optimally

solve the task scheduling problem in branches with several

sequential tasks by modeling the branch as a Markov Decision

Process and using the value iteration method.

I. INTRODUCTION

Utility computing [23] has emerged as a new service
provision model and its services [10] are capable of
supporting diverse applications including e-Business and e-
Science over a global network. Users consume the services
when they need to, and pay only for what they use. In the
recent past, providing utility computing services has been
reinforced by service-oriented Grid computing [2][12] that
creates an infrastructure enabling users to consume utility
services transparently over a secure, shared, scalable and
standard world-wide network environment.

Many Grid applications such as bioinformatics and
astronomy require workflow processing in which tasks are
executed based on their control or data dependencies. As a
result, a number of Grid workflow management systems with
scheduling algorithms have been developed by several
projects such as Condor DAGMan [22], Askalon [11],
GrADS [8], ICENI [16], APST [3], and Pegasus [4][9]. They
facilitate the execution of workflow applications and
minimize their execution time on Grids. However, for
imposing workflow paradigm on utility Grids, execution cost
must also be considered when scheduling tasks on resources.
For a utility service, pricing is dependent on the level of QoS
offered such as the processing speed of the service. Typically,
service providers charge higher prices for higher QoS.
Therefore, users may not always need to complete workflows
earlier than they require. Instead, they prefer to use cheaper
services with lower QoS that are sufficient to meet their
requirements.

Given this motivation, we present a cost-based workflow
scheduling algorithm for time-critical workflow applications.
The objective function of the proposed scheduling algorithm
is to develop a workflow schedule such that it minimizes the
execution cost and yet meets the time constraints imposed by
the user. In order to solve scheduling problems efficiently for
large-scale workflows, we partition workflow tasks and
generate a workflow execution schedule based on the optimal
schedules of the task partitions. Scheduling based on
workflow partitions also allows the scheduler to re-compute
some partial workflows during the workflow execution, when
their initial schedules are violated. A deadline assignment
strategy is also developed to distribute the overall deadline
over each task partition. We also attempt to solve optimally
the scheduling problem for sequential tasks by modeling the
branch partition as a Markov Decision Process (MDP) [20],
which has proven to be effective for modeling decision
problems.

Several works have been proposed to address scheduling
problems based on users’ deadline constraint. Nimrod-G [6]
schedules independent tasks for parameter-sweep applications
to meet users’ deadline. In contrast, the scheduling algorithm
developed in the paper aims to schedule tasks with certain
dependencies. A market-based workflow management system
[13] locates an optimal bid based on the assigned deadline of
each individual task. However, in most situations users may
only want to specify a deadline for the entire workflow
execution. Therefore, we focus on how to assign sub-
deadlines of tasks to meet the overall deadline.

Proposed workflow scheduling approach can be used by

both end-users and utility providers. End users can use the

approach to orchestrate Grid services, whereas utility

providers can outsource computing resources to meet

customers’ service-level requirements.

The remainder of the paper is organized as follows. Section

II provides an overview of the workflow management system.

We describe our workflow scheduling approach in Section III.

Experimental details and simulation results are presented in

Section IV. Finally, we conclude the paper with directions for

further work in Section V.

II. WORKFLOW MANAGEMENT SYSTEM

Figure 1 shows the architecture of the workflow
management system. Users first submit workflow

Cost-based Scheduling of Scientific Workflow Applications on Utility Grids

Jia Yu†, Rajkumar Buyya† and Chen Khong Tham‡

† Grid Computing and Distributed Systems Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne, VIC 3010 Australia
{jiayu, raj}@csse.unimelb.edu.au

‡ Dept. of Electrical and Computer Engineering
National University of Singapore

10 Kent Ridge Crescent, Singapore 119260
eletck@nus.edu.sg

 2

specifications with their QoS requirements. The system then
discovers appropriate services for processing the workflow
tasks and schedules the tasks on the services. There are three
major steps in workflow scheduling: performance estimation,
workflow planning and workflow execution with run-time
rescheduling.

Fig. 1. Workflow management system architecture.

In order to plan in advance, the scheduler needs to predict

task execution time on the available services. Different
performance estimation approaches can be applied to
different types of utility service. We classify existing utility
services as either reservation-enabled resource or application
services. Resource services provide proportions of hardware
resources, such as computing processors, network resources,
storage and memory, as a service for remote client access.
Application services allow remote clients to use their
specialized applications. To submit tasks to resource services,
the scheduler needs to determine the number of resources and
duration required to run tasks on the discovered services. The
performance estimation for resource services can be achieved
by using existing performance estimation techniques (e.g.
analytical modeling [18], empirical [8] and historical data
[14][19]) to predict task execution time on every discovered
resource service. Unlike resource services, a reservation-
enabled application service is capable of providing estimated
service times based on the metadata of users’ service requests
[1]. As a result, the task execution time can be obtained by the
application providers.

Workflow planning is to select a service and execution time
slot for every task in the workflows based on users’ QoS
constraints, capability and availability of the services. The
reservation manager makes reservations in advance to ensure
the availability of the desired time slots for task execution.
Candidate time slots are also generated during planning time
for alternative reservations when a desired time slot is not
available at the time of reservation.

At workflow execution time, the contract between a service
provider and the workflow management system may be
violated by many reasons such as resource failure. Therefore,
rescheduling is deployed in the system to adapt to service

dynamics and update the schedule. For example, if the desired
start time of a task is delayed, the scheduler will adjust the
reservation schedule for its unexecuted child tasks to
compensate the delay.

III. A COST-BASED WORKFLOW SCHEDULING

The processing time and execution cost are two typical QoS
constraints for executing workflows on “pay-per-use” services.
The users normally would like to get the execution done at
lowest possible cost within their required timeframe. In this
section we present a cost-based workflow scheduling
methodology and algorithm that allows the workflow
management system to minimize the execution cost while
delivering results within a certain deadline.

1) Problem Description and Methodology

We model workflow applications as a Directed Acyclic

Graph (DAG). Let � be the finite set of tasks)1(niTi ≤≤ .

Let � be the set of directed arcs of the form),(ji TT where

iT is called a parent task of jT , and jT the child task of iT . We

assume that a child task cannot be executed until all of its
parent tasks are completed. Let D be the time constraint
(deadline) specified by the users for workflow execution.
Then, the workflow application can be described as a
tuple),(D�,�� .

In a workflow graph, we call a task which does not have

any parent task an entry task denoted as entryT and a task

which does not have any child task an exit task denoted

as exitT .

Let m be the total number of services available. There are a

set of services) (cond mm,mjn, 1i1:S ii

j

i ≤≤≤≤≤≡ is

capable of executing the task iT , but only one service can be

assigned for the execution of a task. Services have varied

processing capability delivered at different prices. We denote
j

it as the sum of the processing time and data transmission

time, and j

ic as the sum of the service price and data

transmission cost for processing iT on service j

iS .

The scheduling problem is to map every iT onto some j

iS to

achieve minimum execution cost and complete the workflow

execution within the deadline D . We solve the scheduling

problem by following the divide-and-conquer technique and

the methodology is listed below:

Step 1. Discover available services and predict execution

time for every task.

Step 2. Group workflow tasks into task partitions.

Step 3. Distribute users’ overall deadline into every task

partition.

Step 4. Query available time slots, generate optimized

schedule plan and make advance reservations

based on the local optimal solution of every task

partition.

GSP

Workflow Planning

Workflow Execution

Workflow Management System

Grid Service

Grid Service

Grid Market
Directory

Marketplace

Service Discovery

Advance Reservation

ServiceRequest(SLA)

Workflow Scheduling

GSP: Grid Service Provider

Feedback

SLA: Service Level Agreement

Workflow Specification

Grid Service

C
o

n
tract V

io
latio

n

QoS Request

QoS
Monitor

Executor

Performance Estimator

ReservationRequest(SLA)

 3

Step 5. Start workflow execution and reschedule when the

initial schedule is violated at run-time.

We provide details of steps 2-5 in the following sub-

sections. The service discovery can be done by querying a

directory service such as the Grid market directory [24] .

B. Workflow Task Partitioning

We categorize workflow tasks to be either a

synchronization task or a simple task. A synchronization task

is defined as a task which has more than one parent or child

task. In Figure 7a, 1T , 10T and 14T are synchronization tasks.

Other tasks which have only one parent task and child task are

simple tasks. In the example, 92 TT − and 1311 TT − are simple

tasks.

 (a) Before partitioning. (b) After partitioning.

Fig. 2. Workflow task partition.

Let a branch be a set of interdependent simple tasks that

are executed sequentially between two synchronization tasks.

For example, the branches in Figure 2b

are },,{ 432 TTT , },{ 65 TT , }{ 7T , },{ 98 TT , }{ 11T and },{ 1312 TT .

We then partition workflow tasks � into independent

branches)1(kiBi ≤≤ and synchronization tasks)1(liYi ≤≤ ,

such that k and l are the total number of branches and

synchronization tasks in the workflow respectively.

LetV be a set of nodes in a DAG corresponding to a set of

task partitions)1(lkiVi +≤≤ . Let E be the set of directed

edges of the form),(ji VV where iV is a parent task partition

of jV and jV is a child task partition of iV . Then, a task

partition graph is denoted as),,(DEVG . A simple path

(referred to as path) in G is a sequence of task partitions such

that there is a directed edge from every task partition (in the

path) to its child, where none of the vertices (task partitions)

in the path is repeated.

A task partition iV has four attributes: ready time (][iVrt),

deadline (][iVdl), expected execution time (][iVeet). The

earliest ready time of iV is the earliest time the first task in it

can be executed and it can be computed according to its

parent partitions,][iVrt =][max j
iPjV

Vdl
∈

, where iP is the set of

parent task partitions of iV . The attributes are related as:

][iVeet =][iVdl -][iVrt .

C. Deadline Assignment

After workflow task partitioning, we distribute the overall

deadline between each iV in G . The deadline][iVdl assigned

to any iV is a sub-deadline of the overall deadline D . In this

paper, we consider the following deadline assignment policies:

P1. The cumulative sub-deadline of any independent path

between two synchronization tasks must be same.

A synchronization task cannot be executed until all tasks in

its parent task partitions are completed. Thus, instead of

waiting for other independent paths to be completed, a path

capable of being finished earlier can be executed on slower

but cheaper services. For example, the deadline assigned to

},{ 98 TT is the same as }{ 7T in Figure 7. Similarly, deadlines

assigned to },,{ 432 TTT , },{ 65 TT , and },{ { 7T

}},{ },{ 131210 TTT are same.

P2. The cumulative sub-deadline of any path from

)(ientryi VTV ∈ to)(jexitj VTV ∈ is equal to the overall

deadline D .

P2 assures that once every task partition is computed

within its assigned deadline, the whole workflow execution

can satisfy the user’s required deadline.

P3. Any assigned sub-deadline must be greater than or equal

to the minimum processing time of the corresponding task

partition.

If the assigned sub-deadline is less than the minimum

processing time of a task partition, its expected execution

time will exceed the capability that its execution services can

handle.

P4. The overall deadline is divided over task partitions in

proportion to their minimum processing time.

The execution times of tasks in workflows vary; some tasks

may only need 20 minutes to be completed, and some others

may need at least one hour. Thus, the deadline distribution for

a task partition should be based on its execution time. Since

there are multiple possible processing times for every task, we

use the minimum processing time to distribute the deadline.

We implemented deadline assignment policies on the task

partition graph by combining Breadth-First Search (BFS) and

Depth-First Search (DFS) algorithms with critical path

analysis to compute start times, proportion and sub-deadlines

of every task partition.

D. Planning

The planning stage generates an optimized schedule for

advance reservation and run-time execution. The scheduler

allocates every workflow task to a selected service such that

they can meet users’ deadline at the lowest possible execution

cost.

In general, mapping tasks on distributed services is an NP-

hard problem. To model the entire workflow as an

optimization problem will produce large scheduling overhead,

T9
T12

Branch

T1 T6

T7

T14 T5

T10
T8

T2 T3

T4

T11

T13

Simple task

Synchronization task

T1 T6

T7

T14 T5

T10
T8

T2

T9

T3

T4

T11

T12

T13

 4

especially for the problem with two dimension constraints

such as time and cost. Therefore, we solve the workflow

scheduling problem by dividing the entire problem into

several task partition scheduling problems. After deadline

distribution, we can find a local optimal schedule for each

partition based on its sub-deadline. If each local schedule

guarantees that their task execution can be completed within

the sub-deadline, the whole workflow execution will be

completed within the overall deadline. Similarly, the result of

the cost minimization solution for each task partition leads to

an optimized cost solution for the entire workflow.

Therefore, an optimized workflow schedule can be easily

constructed by all local optimal schedules.

There are two types of task partitions: synchronization task

and branch partition. The scheduling solutions for each type

of partition and the overall algorithm are described in

following sub-sections.

1) Synchronization Task Scheduling (STS)

For STS, the scheduler only considers one task to decide

the service for executing that task. The objective function for

scheduling of a synchronization task iY is:

j

icmin , where imj ≤≤1 and)(i

j

i Yeett ≤

The solution to a single task scheduling problem is simple.

The optimal decision is to select the cheapest service that can

process the task within the assigned sub-deadline.

2) Branch Task Scheduling (BTS)

If there is only one simple task in a branch, the solution for

BTS is the same as STS. However, if there are multiple tasks,

the scheduler needs to make a decision on which service to

execute each task after the completion of its parent task. The

optimal decision is to minimize the total execution cost of the

branch and complete branch tasks within the assigned sub-

deadline. The objective function for scheduling branch jB is:

�
∈ jBiT

k

icmin , where imk ≤≤1 and)(j
jBiT

k

i Beett ≤�
∈

BTS can be achieved by modeling the problem as a

Markov Decision Process (MDP) [20], which has been shown

to be effective for solving sequential decision problems.

3) MDP Model for Sequential Branch Tasks

The definition of our MDP model for scheduling branch iB

is described below:

States:

A Markov decision process is a state space S such that:

Definition 1: A state Ss ∈ consists of current execution task,

ready time RT and current location.

Actions and transitions:

For every state s , there is a set of actions sA . Actions incur

immediate utility and affect the MDP to transit from one state

to another.

Definition 2: An action in the MDP is to allocate a time slot

on a service to a task. There are two variables associated

with each action a : input data transmission time plus the

processing time of the service denoted as t and transmission

cost plus the service cost denoted as c .

Definition 3:)(s,a,s'u is the immediate utility obtained from

taking action a at state s and transitioning to state s' .

Definition 4: A transition incurred by an action from one

state to another is deterministic, as services are utility

services and can be reserved in advance.

 The MDP problem is to find an optimal policy *
π for all

possible states. A policy is a mapping from s to a . Decision

making for finding an optimal action for each state is not

based on the immediate utility of the action but its expected

utility, which is the sum of all the immediate utilities obtained

as a result of decisions made for transiting from this state to a

terminal state.

The value associated to each state represents the expected

utility of this state in the MDP. This value is calculated

recursively by using the value of successor states. The value

of one state s is:

)}'()',,({min)(sUsasusU
sAa

+=
∈

 The best action for state s is:

)}'()',,({minarg)(* sUsasus
sAa

+=
∈

π

The optimal policy indicates the best services that should

be assigned to execute branch tasks under a specific sub-

deadline. The computation of the optimal policy can be

solved by using a standard dynamic programming algorithm

such as policy iteration and value iteration [20] (we have used

value iteration here). Value iteration computes a new value

function for each state based on the current value of its next

state. Value iteration proceeds in an iterative fashion and can

converge to the optimal solution quickly. The complexity

analysis of value iteration can be found in [15]. By using

dynamic programming, we can also record a number of

candidate solutions while finding the optimal policy.

Therefore, once the optimal time slot is rejected or not

available, the scheduler can make another reservation

immediately by using second optimal slot.

4) Scheduling Algorithm

Algorithm 1 shows the pseudo-code of the algorithm for

planning an execution schedule. After acquiring the

information about available services for each task, a task

partition graph G is generated from the application graph �

and overall deadline D is distributed over every partition in it.

Then optimal schedules are computed for every partition in G

level-by-level using either STS or BTS. We also found that

after the optimization of one partition, there is an idle time

between its expected completion time and assigned sub-

a.c , otherwise

 ∞ , >RTs'. sub-deadline
)(s,a,s'u =

 5

deadline. Instead of waiting, we adjust the assigned sub-

deadlines of optimized partitions and the ready times of their

child partitions.

E. Rescheduling

 Run-time rescheduling is developed to adapt to dynamic

situations such as delays of services and variations in

availability of services due to failures, in order to complete

workflows and satisfy users’ requirements. The key idea of

our rescheduling policy for handling an unexpected situation

is to re-adjust sub-deadlines and re-compute optimal

schedules for unexecuted task partitions. We also consider

rescheduling the minimum number of tasks, since the

scheduler need to cancel earlier reservations for tasks that

need to be rescheduled to other services. Therefore, the

scheduler re-computes unexecuted task partitions level-by-

level. For example, if the execution of one task partition is

delayed, the scheduler looks at its child task partitions. If the

delay time can be accommodated by the child task partitions,

rescheduling will not impact on its lower levels. Otherwise,

the rest of the outstanding delay time is distributed further to

successive task partitions of the child partitions.

In addition to handling task execution delay, the level-by-

level task partition based approach can also be applied for

managing other dynamic situations such as service

unavailability and service policy change.

Algorithm 1 . Scheduling algorithm for cost optimization within

users’ deadline

Input: A workflow graph),(D�,��

Output: A schedule for all workflow tasks
1 request processing time and price from available services for �T

i
 ∈∀

2 convert � into task partition graph),(DV,EG

3 distribute deadline D over GV
i

 ∈∀

4 Repeat

5 ← S get unscheduled task partitions whose parent task partitions

6 have been scheduled
7 for all Si ∈ do

8 compute ready time of i

9 query available time slots during ready time and sub-deadline

10 on available services

11 if i is a branch then

12 compute an optimal schedule for i using BTS

13 Else

14 compute an optimal schedule for i using STS

15 end if

16 make advance reservations with desired services for all tasks in i

17 adjust sub-deadline of i

18 end for

19 until all partitions have been scheduled

IV. PERFORMANCE EVALUATION

We use GridSim [7][20] to simulate a Grid testbed for our

experiments. Simulation facilitates evaluation as the same

testbed environment can be repeated for different approaches.

Figure 3 shows the simulation environment in which

simulated services are discovered by querying GridSim Index

Service (GIS) and every service is able to handle free slot

query, reservation request and commitment.

We compare our proposed scheduling algorithm denoted as

Deadline-MDP with two other scheduling approaches:

Greedy- Cost and Deadline-Level. These two approaches are

derived from the cost optimization algorithm in Nimrod-G,

which is initially designed for scheduling independent tasks

on Grids. Greedy-Cost sorts services by their prices and

assigns as many tasks as possible to services without

exceeding the deadline. Deadline-Level first divides

workflow tasks into levels (based on their depth in the

workflow graph), then divides the deadline by the number of

levels and distribute the divided sub-deadlines over task

levels. In Greedy-Cost, the deadlines of all tasks are the same

as the overall deadline, whereas in Deadline-Level, tasks on

the same level have the same sub-deadline.

 a. Pipeline b. Parallel application (fMRI workflow [26])

c. Hybrid structure (protein annotation workflow [5])

Fig. 4. Workflow applications. The label on the left of a task denotes

the required service type. The number in brackets represents the length

of the task in MI.

Workflow
System

GIS

Grid
Service

1.register(service type)

1. register

4. AvailableSlotQuery(duration)

Grid

Service

2. query(type A)

3.service list

 5. slots

Fig. 3. Simulation environment.

6. makeReservation(task)

2

1

3

4

(300000)

(600000)

(900000)

(150000)

A

B

C

B

2

1

3

4

(300000)

(600000)

(900000)

(150000)

2

1

3

4

2

1

3

4

(300000)

(600000)

(900000)

(150000)

A

B

C

B

1 3 5 7

2 4 6 8

10 11 12

13 14 15

Align_wap

reslice

softmean

slicer

convert

(300000)

9

(600000)

(300000)

(600000)

(300000)

Align_wap

reslice

Align_wap Align_wap

reslice reslice

slicer slicer

convert convert

(300000) (300000) (300000)

(600000) (600000) (600000)

(300000) (300000)

(600000) (600000)

1 3 5 7

2 4 6 8

10 11 12

13 14 15

Align_wap

reslice

softmean

slicer

convert

(300000)

9

(600000)

(300000)

(600000)

(300000)

Align_wap

reslice

Align_wap Align_wap

reslice reslice

slicer slicer

convert convert

(300000) (300000) (300000)

(600000) (600000) (600000)

(300000) (300000)

(600000) (600000)

(900000)
1

5

6

2 3 4

109

11

12 13

15

7

14

SignalP COILS2 SEG PROSITE

TMHMM

Prospero HMMer

PSI-BLAST BLAST IMPALA

Summary

PSI-PRED

3D-PSSM

Genome

Summary

SCOP

(300000) (600000) (600000)

(300000)

(150000)

8

(150000)

(300000) (300000) (300000)

(600000)

(600000)

(300000)

(150000)

(300000)

(900000)
1

5

6

2 3 4

109

11

12 13

15

7

14

SignalP COILS2 SEG PROSITE

TMHMM

Prospero HMMer

PSI-BLAST BLAST IMPALA

Summary

PSI-PRED

3D-PSSM

Genome

Summary

SCOP

(300000) (600000) (600000)

(300000)

(150000)

8

(150000)

(300000) (300000) (300000)

(600000)

(600000)

(300000)

(150000)

(300000)

1

5

6

2 3 4

109

11

12 13

15

7

14

SignalP COILS2 SEG PROSITE

TMHMM

Prospero HMMer

PSI-BLAST BLAST IMPALA

Summary

PSI-PRED

3D-PSSM

Genome

Summary

SCOP

(300000) (600000) (600000)

(300000)

(150000)

8

(150000)

(300000) (300000) (300000)

(600000)

(600000)

(300000)

(150000)

(300000)

 6

We simulate three common workflow structures in

scientific workflow applications for our experiments: pipeline,

parallel and hybrid. A pipeline application (see Fig. 4a)

executes a number of tasks in a single sequential order. A

parallel application (see Fig. 4b) requires multiple pipelines

to be executed in parallel. For example, in Fig. 4b, there are 4

pipelines (1-2, 3-4, 5-6 and 7-8) before task 9. A hybrid

structure application (see Fig. 4c) is a combination of both

parallel and sequential applications. In our experiments, we

select a neuro-science workflow [26] for our parallel

application and a protein annotation workflow [5] developed

by London e-Science Centre for our hybrid workflow

structure application.

As execution requirements for tasks in scientific workflows

are heterogeneous, we use service type to represent different

type of service. Every task in our experimental workflow

applications requires a certain type of service. For example,

task 1, 3, 5, 7 in parallel application requires service type

Align_wap and task 2, 4, 6 and 8 requires reslice. In the

simulation, we use MI (million instructions) to represent the

length of tasks and use MIPS (Million Instructions per

Second) to represent the processing capability of services.

We simulate 15 types of services, each supported by 10

different service providers with different processing

capability. The values of MIPS for services range from 100 to

5000 and the value of MI for each task is indicated in bracket

next to the task in Figure 4.

In the experiments, every task in the workflows generates

output data required by its child tasks as inputs. The data need

to be staged out from the task processing node and staged into

the processing node of its child tasks. The I/O data of the

workflows range from 10MB to 1024 MB. The available

network bandwidths between services are 100Mbps,

200Mbps, 512Mbps and 1024Mbps.

For our experiments, the cost that a user needs to pay for a

workflow execution comprises of two parts: processing cost

and data transmission cost. Table I shows an example of

processing cost, while Table II shows an example of data

transmission cost. It can be seen that the processing cost and

transmission cost are inversely proportional to its processing

time and transmission time respectively.

The two metrics used to evaluate the scheduling

approaches are time constraint and execution cost. The former

indicates whether the schedule produced by the scheduling

approach meets the required deadline, while the latter

indicates how much it costs to schedule the workflow tasks on

the testbed.

Figure 5 to 7 compare the execution time and cost of using

Deadline-MDP, Deadline-Level and Greedy-Cost for

scheduling pipeline, parallel and hybrid structure applications

with deadline 0.5, 1, 1.5, 2, and 2.5 hours respectively. It can

be seen that Greedy-Cost does not guarantee that users’

deadlines can be met, whereas both Deadline-MDP and

Deadline-Level can meet deadlines. Greedy-Cost also incurs

significantly higher execution costs even though it takes

longer time to complete executions. This is because it

attempts to meet the deadline by employing faster but more

expensive services as the deadline approaches.

Pipeline Application

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5

User Deadline (hours)

C
o

m
p

le
ti

o
n

 T
im

e
 (

h
o

u
rs

)

Deadline-MDP

Deadline-Level

Greedy-Cost

a . Execution time of three approaches.

Pipeline Application

0

5000

10000

15000

20000

25000

30000

0.5 1 1.5 2 2.5

User Deadline (hours)

E
x
e
c

u
ti

o
n

 C
o

s
t

(G
$

)

Deadline-MDP

Deadline-Level

Greedy-Cost

b. Execution cost of three approaches.

Fig. 5 Execution time and cost using three approaches for scheduling

the pipeline application.

Parallel Application

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5

User Deadline (hours)

C
o

m
p

le
ti

o
n

 T
im

e
 (

h
o

u
rs

)

Deadline-MDP

Deadline-Level

Greedy-Cost

a. Execution time of three approaches.

Service
ID

Processing Time
(sec)

Cost
(G$)

1 1200 300

2 600 600

3 400 900

4 300 1200

Bandwidth
(Mbps)

Cost/sec
(G$/sec)

100 1

200 2

512 5.12

1024 10.24

Table I. Service speed and
corresponding price for executing a task.

Table II. Transmission
bandwidth and corresponding price.

 7

Parallel Application

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.5 1 1.5 2 2.5

User Deadline (hours)

E
x
e
c

u
ti

o
n

 C
o

s
t

(G
$
)

Deadline-MDP

Deadline-Level

Greedy-Cost

b. Execution time of three approaches.

Fig. 6. Execution time and cost using three approaches for scheduling

the parallel application.

Hybrid Structure Application

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5

User Deadline (hours)

C
o

m
p

le
ti

o
n

 T
im

e
 (

h
o

u
rs

)

Deadline-MDP

Deadline-Level

Greedy-Cost

a. Execution time of three approaches.

Hybrid Structure Application

0

2000

4000

6000

8000

10000

12000

0.5 1 1.5 2 2.5

User Deadline (hours)

E
x
e
c
u

ti
o

n
 C

o
s
t

(G
$
)

Deadline-MDP

Deadline-Level

Greedy-Cost

b. Execution cost of three approaches.

Fig. 7. Execution time and cost using three approaches for scheduling

the hybrid structure application.

a. Percentage of tasks completed.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.5 1 1.5 2 2.5

E
x
e
c
u
ti
o
n
 C

o
s
t
(G

$
)

Completion Time (Hours)

DeadlineDeadline

Deadline-MDP
Deadline-Level

Greedy-Cost

b. Execution Cost.

Fig.8. Deadline-MDP, Deadline-Level, and Greedy-Cost scheduling for

Hybrid Structure Application.

Both Deadline-Level and Deadline-MDP can meet the

deadlines, but Deadline-MDP spends much less cost for

shorter deadlines. Deadline-MDP can achieve that for the

pipeline application by modeling the entire pipeline

application as one MDP process, such that it can find an

optimal path among the cheapest services to execute tasks and

transfer input/output data. Similarly for the parallel

application, it also optimizes the cost for branches within the

parallel application.

For the hybrid structure application, Deadline-MDP

performs better as it assigns sub-deadlines to tasks based on

their dependencies and estimated execution times. Deadline-

Level assigns sub-deadlines only based on the task level and

thus incurs unnecessary cost. This is because parent tasks that

are completed earlier using faster but more expensive services

still need to wait for other slower parent tasks to be completed

before their child tasks can start execution. This shows that it

is important to consider task dependencies as it is pointless to

employ expensive services if not required.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5

P
e
rc

e
n
ta

g
e
 o

f
T

a
s
k
s
 C

o
m

p
le

te
d
 (

%
)

Completion Time (Hours)

Deadline

delay 0 mins
delay 5 mins

delay 10 mins

a. Percentage of tasks completed. 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5

P
e
rc

e
n
ta

g
e
 o

f
T

a
s
k
s
 C

o
m

p
le

te
d
 (

%
)

Completion Time (Hours)

DeadlineDeadlineDeadlineDeadlineDeadlineDeadline

Deadline-MDP
Deadline-Level

Greedy-Cost

 8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.5 1 1.5 2 2.5

E
x
e
c
u
ti
o
n
 C

o
s
t
(G

$
)

Completion Time (Hours)

Deadline

delay 0 mins
delay 5 mins

delay 10 mins

b. Execution cost.

Fig. 9. Deadline-MDP scheduling with delay of 0, 5, and 10 minutes for

task 6 in Hybrid Structure Application.

Figure 8 shows the percentage of tasks completed and

execution cost for the hybrid structure application at various

times. We can see that Deadline-Level attempts to complete

tasks earlier by using more expensive but faster services.

However its final completion time is only marginally lower

than that of Deadline-MDP. On the other hand, Deadline-

MDP selects much cheaper services than Deadline-Level but

can still meet the final deadline. In contrast, Greedy-Cost

chooses cheaper services and completes tasks slowly at the

early stages of the execution such that it does not have enough

time to complete the partially remaining tasks before the

deadline, even though it selects more expensive services to

speed up execution during the final stage.

We now evaluate the rescheduling approach in Deadline-

MDP. Figure 9 shows how Deadline-MDP performs with

delays of 0, 5 and 10 minutes for the execution of task 6 in

the hybrid structure application. For the delays of 5 minutes

and 10 minutes, Deadline-MDP can still meet the deadline by

rescheduling the partially remaining unexecuted tasks.

However, the execution cost increases for longer delays since

the scheduler switches the remaining tasks to more expensive

services in order to complete the remaining execution within

the deadline.

VI. CONCLUSION AND FUTURE WORK

Utility Grids enable users to consume utility services

transparently over a secure, shared, scalable and standard

world-wide network environment. Users are required to pay

for access services based on their usage and the level of QoS

provided. Therefore, workflow execution cost must be

considered during scheduling. In this paper, we proposed a

cost-based workflow scheduling algorithm that minimizes the

cost of execution while meeting the deadline. We also

described task partitioning and overall deadline assignment

for optimized execution planning and efficient run-time

rescheduling. We have used a Markov Decision Process

approach to schedule sequential workflow task execution,

such that it can find the optimal path among services to

execute tasks and transfer input/output data. The experimental

results demonstrate that the proposed scheduling approach

can meet users’ deadline whilst spending less cost. It can also

adapt to the delays of service executions by rescheduling

unexecuted tasks to meet users’ deadlines. In future, we will

further enhance our scheduling method to support multiple

service negotiation models.

ACKNOWLEDGMENTS

We would like to thank Hussein Gibbins, Chee Shin Yeo,

Srikumar Venugopal, Sushant Goel, Tianchi Ma and Arun

Konagurthu for their comments on this paper. We also want

to thank Anthony Sulistio for providing reservation

infrastructure in GridSim. This work is partially supported

through StorageTek Fellowship and Australian Research

Council (ARC) Discovery Project grant.

REFERENCES

[1] S. Benkner et al., “GEMSS: Grid-infrastructure for Medical Service
Provision”, In HealthGrid 2004 Conference, 29th-30th Jan. 2004,
Clermont-Ferrand, France.

[2] S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt, “VGE - A
Service-Oriented Grid Environment for On-Demand Supercomputing”,
In the Fifth IEEE/ACM International Workshop on Grid Computing

(Grid 2004), Pittsburgh, PA, USA, November 2004.
[3] A. Birnbaum et al., “Grid workflow software for High-Throughput

Proteome Annotation Pipeline”, In 1st International Workshop on Life

Science Grid (LSGRID2004), Ishikawa, Japan, June 2004.
[4] J. Blythe et al., “Task Scheduling Strategies for Workflow-based

Applications in Grids”, In IEEE International Symposium on Cluster

Computing and Grid (CCGrid), 2005.
[5] A. O’Brien, S. Newhouse and J. Darlington, “Mapping of Scientific

Workflow within the e-Protein project to Distributed Resources”, In
UK e-Science All Hands Meeting, Nottingham, UK, Sep. 2004.

[6] R. Buyya, J. Giddy, and D. Abramson, “An Evaluation of Economy-
based Resource Trading and Scheduling on Computational Power
Grids for Parameter Sweep Applications”, In 2nd Workshop on Active

Middleware Services (AMS 2000), Kluwer Academic Press, August 1,
2000, Pittsburgh, USA.

[7] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for
Grid Computing”, Concurrency and Computation: Practice and

Experience, Vol. 14(13-15):1175-1220, Wiley Press, USA, 2002.
[8] K. Cooper et al., “New Grid Scheduling and Rescheduling Methods in

the GrADS Project”, In NSF Next Generation Software Workshop,
International Parallel and Distributed Processing Symposium, Santa Fe,
IEEE CS Press, Los Alamitos, CA, USA, April 2004.

[9] E. Deelman et al., “Mapping Abstract Complex Workflows onto Grid
Environments”, Journal of Grid Computing, Vol.1:25-39, 2003.

[10] T. Eilam et al., “A utility computing framework to develop utility
systems”, IBM System Journal, Vol. 43(1):97-120, 2004.

[11] T. Fahringer et al., “ASKALON: a tool set for cluster and Grid
computing”, Concurrency and Computation: Practice and Experience,
17:143-169, Wiley InterScience, 2005.

[12] I. Foster et al., “The Physiology of the Grid”, Open Grid Service
Infrastructure WG, Global Grid Forum, 2002.

[13] A. Geppert, M. Kradolfer, and D. Tombros, “Market-based Workflow
Management”, International Journal of Cooperative Information

Systems, World Scientific Publishing Co., NJ, USA, 1998.
[14] S. Jang et al., “Using Performance Prediction to Allocate Grid

Resources”. Technical Report 2004-25, GriPhyN Project, USA.
[15] O. Madani, “Polynomial Value Iteration Algorithms for Deterministic

MDPs”, In 18th Conference on Uncertainty in Artificial Intelligence,
August, 2002.

[16] A. Mayer et al., “ICENI Dataflow and Workflow: Composition and
Scheduling in Space and Time”, In UK e-Science All Hands Meeting,
Nottingham, UK, IOP Publishing Ltd, Bristol, UK, September 2003.

[17] S. Newhouse, “Grid Economy Services Architecture (GESA)”, Grid

Economic Services Architecture WG, Global Grid Forum, 2003.

 9

[18] G. R. Nudd et al., “PACE- A Toolset for the performance Prediction of
Parallel and Distributed Systems”, International Journal of High

Performance Computing Applications (JHPCA), Special Issues on
Performance Modelling- Part I, 14(3): 228-251, SAGE Publications
Inc., London, UK, 2000.

[19] W. Smith, I. Foster, and V. Taylor, “Predicting Application Run Times
Using Historical Information”, In Workshop on Job Scheduling

Strategies for Parallel Processing, 12th International Parallel
Processing Symposium & 9th Symposium on Parallel and Distributed
Processing (IPPS/SPDP '98), IEEE Computer Society Press, Los
Alamitos, CA, USA, 1998.

[20] A. Sulistio and R. Buyya, “A Grid Simulation Infrastructure
Supporting Advance Reservation”, In 16th International Conference

on Parallel and Distributed Computing and Systems (PDCS 2004),
November 9-11, 2004, MIT Cambridge, Boston, USA.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, MIT Press, Cambridge, MA, 1998.
[22] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor - A

Distributed Job Scheduler”, Beowulf Cluster Computing with Linux,
The MIT Press, MA, USA, 2002.

[23] G. Thickins, “Utility Computing: The Next New IT Model”, Darwin

Magazine, April 2003.
[24] J. Yu, S. Venugopal, and R. Buyya, “A Market-Oriented Grid

Directory Service for Publication and Discovery of Grid Service
Providers and their Services”, Journal of Supercomputing, Kluwer
Academic Publishers, USA, 2005.

[25] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems
for Grid Computing”, Technical Report, GRIDS-TR-2005-1, Grid
Computing and Distributed Systems Laboratory, University of
Melbourne, Australia, March 10, 2005.

[26] Y. Zhao et al., “Grid Middleware Services for Virtual Data Discovery,
Composition, and Integration”, In 2nd Workshop on Middleware for

Grid Computing, October 18, 2004, Toronto, Ontario, Canada.

